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ABSTRACT
The problem of modeling the relationship between a set of covari-
ates and a multivariate response with correlated components often
arises in many areas of research such as genetics, psychometrics,
signal processing. In the linear regression framework, such task can
be addressed using a number of existing methods. In the high-
dimensional sparse setting, most of these methods rely on the idea
of penalization in order to efficiently estimate the regression matrix.
Examples of such methods include the lasso, the group lasso, the
adaptive group lasso or the simultaneous variable selection (SVS)
method. Crucially, a suitably chosen penalty also allows for an effi-
cient exploitation of the correlation structure within themultivariate
response. In this paper we introduce a novel variant of such method
called the adaptive SVS, which is closely linked with the adaptive
group lasso. Via a simulation study we investigate its performance in
the high-dimensional sparse regression setting. We provide a com-
parison with a number of other popular methods under different
scenarios and show that the adaptive SVS is a powerful tool for effi-
cient recovery of signal in such setting. The methods are applied to
genetic data.
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1. Introduction

In this paper we focus on the problem of modeling and discovering association between
genotypes, or in principal any covariates of interest, and multivariate correlated pheno-
types. We focus on exploratory analysis based on regression, where genetic loci are used
as explanatory variables for a multivariate phenotype, which is the dependent variable.
Although we primarily formulate the problem and the methods within a genetic setting
where the number of covariates of interest is larger than the dimension of the response,
the methodology can be readily applied in many other areas with similar characteristics.
Our results were obtained for a general setting in which the response (e.g. phenotype) is
assumed to be generated via a factor model from the underlying covariates (e.g. genetic
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variants). In a genetic setting, the phenotype typically consists of several related quantita-
tive measurements which together describe the condition of interest, while the goal is to
find a link between the condition and a subset of the available genetic variants. Since the
observed quantitative measurements all relate to a single underlying medical condition,
they often exhibit correlation (dependence). If considered separately, these measurements
are typically only loosely associated with the patient’s genotype, which makes identifying
the association a very difficult task. Therefore, they should be treated simultaneously in a
way that reflects this correlation in order to increase the statistical efficiency of the anal-
ysis. In [1] a methodology is described for finding a linear combination of the multiple
phenotypes that maximizes the evidence for association with a SNP (single nucleotide
polymorphism). The paper [8] gives an overview of many existing methods for genetic
association studies with multiple outcomes, and compares a number of methods that are
directly available in genetics software. In the present paper we restrict ourselves tomethods
based on a multiple-response multivariate regression.

Within the genetic context the multiple-response multivariate linear regression
approach must cope with the usual complication of high dimensionality of the regres-
sors: the sample size (the number of individuals) is smaller than the number of available
regressors. Typically, this high-dimensionality problem is dealt with by using penalized
regression methods, which have been extensively studies for the last two decades and
much knowledge has been accumulated both in the classical and especially in the high-
dimensional setting by Bickel et al. [2], Bühlmann et al. [4], Castillo et al. [5], Castillo
and van der Vaart [6], Zhang and Huang [30] and others. However, only some of these
methods properly reflect the nature of the current problem of modeling multivariate phe-
notypes with correlated coordinates. Available methods include the graph-guided fused
lasso (GFlasso) [12] and simultaneous variable selection (SVS) [23,24].

In this paper we propose an adaptation of the SVS method by changing the estimation
objective function so that it better reflects the information within the data to which it is
applied. This adaptive SVS method is directly linked to two existing statistical methods.
On the one hand, it is an extension of the SVSmethod [24]. On the other hand, it is closely
linked with the adaptive group lasso method [25]. Extensive simulation studies are per-
formed to compare its performance with other penalty methods that are often used for
modeling data with multiple-response and high-dimensional multivariate covariates.

We describe the SVS and the proposed adapted SVS method in Section 2. Next, we
investigate the performance of the adaptive SVS method and compare it with several other
suitable methods by means of several simulation studies in Section 3. Finally, in Section 4
we apply the adaptive SVS method to an eQTL analysis of an existing expression data set,
where we look for SNP-driven gene expression regulation.

The content of this paper is based on Part III of the first author’s PhD thesis [18], for
which the other two authors served as supervisors.

2. Methods

2.1. Assumptions and notation

We assume an n × p-dimensional random matrix of responses Y = (Yij) with inde-
pendent rows and (possibly) dependent columns. Further, we assume we have an



JOURNAL OF APPLIED STATISTICS 3

n × q-dimensional regression matrix X = (xij) and a q × p-dimensional (non-random)
matrix of regression parameters B = (βij) such that

Y = XB + E, (1)

where E is an n × p-dimensional random matrix with zero mean and independent rows
and variance matrix �. To eliminate the need for intercept in model (1), we center (on a
per-column basis) both the responsematrixY and the regressionmatrixX. In the intended
genetic application the matrix X contains genetic information at q loci and the rows of Y
can be seen as a p-dimensional multivariate phenotype.

Since the number of parameters in the full model far exceeds the number of available
observations, a reliable inference about the model’s parameters is a daunting task which
demands additional assumptions about the modeled phenomena. A popular approach to
dealing with such systems is the concept of sparsity, which is the notion that the observed
response is in fact influenced only by a subset of the available explanatory variables; there
exists a combination of i ∈ {1, . . . , q}, j ∈ {1, . . . , p} such that βij = 0. Furthermore, the
assumption of common association is often made in this setting: For any i ∈ {1, . . . , q},
j ∈ {1, . . . , p} it holdsβij = 0 if and only ifβik = 0 for all k �= j. Thismeans that if one of the
components of the multivariate phenotype is associated with a locus, then all other com-
ponents of the phenotype are also associated with that locus, and vice-versa. For discussion
of this assumption, see for instance the discussions to [1].

2.2. Simultaneous variable selection

The newmethod proposed in this paper is a generalized version of the SVSmethod, which
is described in this subsection. The SVS penalized method was specifically designed for
the multiple-response multivariate regression model. It is based on the idea to penalize the
sum of squared residuals by the sum of �α norms of the rows of the parameter matrix B,
thereby forcing the resulting estimates closer together. The SVS estimator for B is defined
by

B̂SVS(λ) = argmin
B

‖Y − XB‖22 + λ

q∑
k=1

‖βk•‖α , (2)

where λ > 0 is a tuning constant and βk• is the kth row of the matrix B and α is a pos-
itive constant determining the type of norm that is applied to the rows of the parameter
matrix B before these norms are summed up to create a penalty. The penalty is a combined
�1/�α type norm; the �1 part is to achieve sparsity among regressors (only a handful of
active/selected SNPs), while the �α norm over the vector of effects of an individual regres-
sor (a SNP) on the various components of the phenotype leads to shrinkage to zero of the
group of coefficients for that regressor. The value of α determines the specific degree and
type of shrinkage. In other words, the common association assumption is reflected in the
penalty primarily by the �α norm at SNP level (for α > 1). Shrinkage to zero due to the
�α norm is easiest to understand for α = 2, when the penalty corresponds to ridge regres-
sion, a method that is well known to shrink parameter estimates simultaneously to zero.
For larger values of α, and for α = ∞ in particular, the penalty becomes increasingly more
sensitive to the value of the largest effect of a regressor towards the phenotype. The case
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with α = 1 turns SVS into the lasso, at which point the grouping effect is absent. In this
case there is no qualitative difference in treatment by the penalty of effects corresponding
to the same and to different SNPs. Consequently, the penalized method does not conform
to the common association assumption. See, for example, Hastie et al. [9] for discussion of
the shrinkage effects of the various penalties.

The caseα = ∞ is referred to as the L∞− SVS [16,24], and the case ofα = 2 as L2− SVS
[15,17,20,24]. The L2− SVS can be viewed as a special case of the group lasso estimator
with q groups, where each of the groups corresponds to one coordinate of the multivariate
phenotypes, and the weight matrices are all equal to the p-identity matrix Ip [29,32].

2.3. Adaptive simultaneous variable selection

We define the adaptive SVS (aSVS) estimator of the parameter matrix B of (1) as

B̂aSVS(λ) = argmin
B

‖Y − XB‖22 + λ

q∑
k=1

πk‖βk•‖α , (3)

where λ > 0 is a tuning parameter and πk, k = 1, . . . , q, are non-negative penalization
weights. In the paper we assume that the penalization weights are scaled so that they satisfy∑

k πk = q. This results in no loss of generality provided that all πk are finite. The adaptive
SVSwithα = ∞, α = 1 and α = 2 are referred to as L∞− aSVS, L1−aSVS and L2− aSVS,
respectively. Putting α = 1 leads to a version of the adaptive lasso [31], while α = 2 is also
known as the adaptive group lasso [25].

The motivation behind the penalization weights is to change the degree by which each
regressor (SNP) contributes to the value of the penalty, thus making the estimate adapt
to additional information available to the user as expressed through πk. A large value of
πk means that the kth regressor (SNP) is heavily penalized relative to the regressors with
small penalization weights, thus restricting the freedom of the kth regressor parameter
estimate and making it deflated compared to their (non-adaptive) SVS counterparts. On
the other hand, a small value ofπk givesmore freedom to the estimates for the kth regressor
thus allowing them to inflate, while πk = 0 leads to no penalization for the kth regressor.
Thus the presence of weights may lead to an additional grouping mechanism among the
estimated effects of an individual regressor.

As we show below, applying this simple modification to the form of the penalty can sig-
nificantly improve the performance of the SVS method. In order to achieve this, however,
the penalization weights πk in Equation (3) must be suitably selected. One way to do this
is to employ an initial data-based estimator of B and use it to define πk and let the method
adapt to the initial estimate of B, hence the name adaptive SVS. If the initial estimator
is reasonable enough, and is used sensibly, the adaptation should result in an efficiently
performing method. For instance, with α = 1 the adaptive SVS turns into the adaptive
lasso and its consistency and oracle properties immediately translate to the adaptive SVS
with α = 1 [10]. Moreover, for α = 2 the adaptive SVS turns into the adaptive group
lasso and its consistency and oracle properties translate to the adaptive SVS with α = 2
[27,28]. Consequently, it appears reasonable to expect that other adaptive variants of the
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adaptive SVS might also perform well under similar conditions. For other optimality con-
ditions and amore general treatment of the theoretical properties of thesemethodswe refer
to [3].

2.3.1. Choice of penalization weights
For good performance the penalization weights must be chosen suitably, given the clear
danger that regression coefficients of truly associated covariates might be shrunk too close
to zero, and conversely for the non-associated covariates. We investigate using penaliza-
tion weights based on ordinary least squares (OLS) estimates resulting from univariate
regression of each component of the phenotype on each regressor.

In the univariate OLS approach we regress each component of the phenotype on each
regressor separately and apply a chosen function to obtain a single weighing factor for each
regressor. This effectively boils down to using the Pearson correlation coefficient of each
regressor with each component of the phenotype. Such approach is quite advantageous
because of its computational simplicity, which contributes to fast analysis. In formulas, we
compute B̂ols = (b ols

kl ) according to

b ols
kl = argmin

b∈R

‖Y•l − bX•k‖2, k = 1, . . . , q, l = 1, . . . , p,

and use it as the initial estimate for B. Then, since weighing in the adaptive SVS of (3) is
done per regressor, for each kwe need to transform b ols

kl , l = 1, . . . , p, into a single valueπk.
It is desirable that the penalization weight πk is ‘large’ whenever the vector b ols

kl is ‘small’,
i.e. near zero. One way to achieve this is to first reduce the latter vector (in absolute value)
to its mean, and next define the weight as a decreasing function of this mean. Later in the
paper we shall study the choices πk ∝ ((1/p)

∑
l |b ols

kl |)−ν , for ν = 0.5, 1, 2. In general, the
higher the value of ν, themore the adaptive SVS estimator relies on the information carried
by the mean univariate effects as to the relative importance of each regressor. Therefore,
of the three, the choice ν = 0.5 is the more conservative one and should be a reasonable
choice in those applications where the data is expected to be noisy and/or if outliers are
suspected. For clean data, on the other hand, the choices of ν = 1 or ν = 2 are likely to
yield superior performances, as evidenced by the simulation study below.

In our applications, we must keep in mind that using univariate regression as a proxy
for a multivariate model can be tricky unless the design matrix is (near) orthogonal, since
with highly correlated regressors many estimates might end up large while in reality only
a handful of the corresponding parameters are in fact non-negligible. For such data, these
concerns can be mitigated via the choice of ν, or through the use of a different functional
form for the weights, such as replacing the mean by the median when determining πk.
However, in the adaptive SVS method the univariate OLS estimates are used only mainly
as a basis for the subsequent estimation by the adaptive SVS, which limits the severity of
this caveat.

2.3.2. Naive OLS approach
Despite the lack of orthogonality in many applications, which complicates the use of OLS
in such setting, the univariate OLS-based analysis is surprisingly popular in many appli-
cations such as genetics and psychometrics. Therefore, we include this method in our
simulation study, where it is referred to as the naive OLSmethod. Since the method always
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yields non-zero estimates, unlike many penalized regression methods, it does not pos-
sess an inherent selection property. The usual way to solve this issue is to look at the
p-values associated with each univariate estimate and base the selection on them. Given
the large number of these p-values a multiple testing correction is necessary in order to
avoid a potentially huge number of false selections. To that end we focus on the Bonferroni
corrected p-values associated with the univariate OLS estimates.

3. Simulation study

We investigate the performance of the adaptive SVS method on data sets generated from
real genetic data. We use the multivariate multiple regression model to generate correlated
multivariate phenotypes and we deploy the adaptive SVS and several other methods and
compare their relative performances using various measures. Of course, we prevented a
possibly spurious advantage of ‘using the data twice’, once for the choice of weight and once
for parameter estimation, by incorporating the determination of the weight into each sim-
ulation run. The cross-validation (CV) steps, which were utilized to determine the value of
the smoothing parameter λ (as well as the additional parameters in the fusion methods),
were similarly accounted for.

3.1. Data simulation

3.1.1. Genotype data
The simulation was based on real life genotype data which contained a total 3000 SNPs
for 2000 individuals. The genotypes for each locus were numerically represented as the
number of minor alleles at that locus, i.e. each genotype was a sequence of 2000 values
from the set {0, 1, 2}. Figure 1 shows the linkage disequilibrium (LD) heat plot for the
full data set. We chose to work with an empirical data set, rather than a simulated set, in
view of the difficulty of representing and simulating from a realistic very high-dimensional
distribution.

Next we chose 8 of the available 3000 SNPs at random (from the SNPs with MAF at
least 0.2) to serve as the neighbors of 8 additional simulated SNPs, which were subsequently
used as causal (i.e. have non-zero regression coefficients). Simulating these additional SNPs

Figure 1. Heat map of linkage disquilibrium patterns as measured by squared correlation coefficient
within the real life genetic data set with q0 = 3000 SNPs and n= 2000 individuals used as a basis for
the simulation study in this paper. SNPs are numbered 1, 2, . . . , 3000 from left to right and the empirical
SNPs used as neighbors in simulation are selected from SNPs 2001, . . . , 3000.
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Figure 2. Typical observed sample correlation coefficients between a set of 8 simulated SNPs and the
rest of the real life 3000 SNPs. Positions of the simulated SNPs (next to their empirical neighbor SNPs) are
denoted by vertical lines, where the heights of these lines express the observedmaximumandminimum
correlations.

allowed us to control the LD with their neighbors, and also their minor allele frequency.
The 8 SNPs were simulated for each individual such that the LD with their neighbor was
either 0.2 or 0.75, and the MAFs were either 0.1 or 0.5. We merged the simulated SNP
genotypes with the real-life SNP genotypes to obtain a data set representing 3008 SNPs for
2000 individuals, from which we would next construct the design matrix for the further
simulations.

Repeating this process of selecting SNPs and simulating genotypes as their neighbors
25 times, we obtained a total of 25 design matrices. For illustration Figure 2 shows the
observed correlations between the simulated SNPs and the rest of the full genotype data
set for a single, randomly chosen design matrix (out of the collection of 25).

3.1.2. Phenotype data
Starting with X = (xij) we repeatedly simulated p-dimensional phenotypes for each of the
n individuals using the linear regression model (1) with q × p regression matrix B. For the
simulation of phenotypeswe considered several different scenarios (settings of parameters)
in order to investigate different aspects of the performances of the consideredmethods. For
given choices of n and pwe start by generating a factor variable for each of the n individuals
through a univariate-response multivariate linear regression model where only the simu-
lated SNP genotypes have non-zero coefficients, henceforth referred to as the causal SNPs.
Denoting by Q the set of all SNPs (i.e. columns of X = (xij)), we simulated a vector of n
factor variables F = (F1, . . . , Fn)′ according to

Fi =
∑
k∈Q

αk xik + ei, i = 1, . . . , n, (4)

where αk, k ∈ Qwere selected in several different ways specified below (see scenarios A, B,
C) and ei are independent zero-mean normally distributed errors with fixed variance 0.2.

The observed factor variables F1, . . . , Fn were entered into p univariate linear regression
models with normally distributed independent random errors and regression coefficients
ranging over predefined set of values, which produced an n × pmatrix of row-wise inde-
pendent and column-wise correlated responses Y = (Yij). Written in formula the model
is

Yij = γjFi + eij, i = 1, . . . , n, j = 1, . . . , p. (5)
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Table 1. Summary of settings used during phenotype simulation via (4) and (5) under scenarios A, B and
C.

scenario A B C

phenotypes p= 5 p= 10
sample size n= 2000 n = 100, 200, . . . , 2000
number of SNPs q= 3008 q= 1004
non-causal SNPs q0 = 3000 q0 = 1000
causal SNPs q1 = 8 q1 = 4
αk αk = 0 for k = 1, . . . , 3000 αk = 0 for k = 1, . . . , 1000

αk = 0.1 for k = 3001, . . . , 3004 αk = 0.05 for k = 1001
αk = 0.15 for k = 3005, . . . , 3008 αk = 0.1 for k = 1002

αk = 0.15 for k = 1003
αk = 0.2 for k = 1004

γj γj = j/10 for j = 1, . . . , 5 γj = j/10 for j = 1, . . . , 10 γj = j/10 − 0.5 for j = 1, . . . , 10
error variance σ 2 = 0.2 σ 2 = 0.2

Note that Equation (5) impliesEYij = ∑
k∈Q βkjxik, i = 1, . . . , n, j = 1, . . . , p, where βkj =

αkγj. The idea in Equation (4) is to set only a small fraction of values of αk, k ∈ Q non-zero.
Respectively, denote the subsets of zero and non-zero coefficients by Q0 and Q1 and their
sizes by q0 and q1. In the three scenarios below, we have q = q0 + q1 = 3008 and q1 = 8
(scenario A) and q=1004 and q1 = 4 (scenarios B and C) with only the simulated SNPs
in Q1.

Simulating data according to the scheme described by (4) and (5) is designed to induce
dependence between the components of the multivariate phenotypes in a way that adheres
to the assumptions of sparsity and common association. We simulated data under the three
different scenarios A, B and C. The settings for these scenarios are given in Table 1.

Under scenarios B and C we allowed the sample sizes to vary, which is intended to yield
insight into the dynamics of performance by the comparedmethods in terms of sample size.
Theway the two scenarios B andC differ is in the choice of the values of the loading param-
eters γ1, . . . , γ10. Under scenario Bwe put γj = j/10where j = 1, . . . , 10, whichmeans that
all of the loadings take non-zero values and all of them are positive, which should favor
the use of naive OLS approach with the summed-up phenotypes. On the other hand, the
loadings γj = j/10 − 0.5, for j = 1, . . . , 10, of scenario C lead to a different direction of
dependence between the first 4 and 5 last phenotypes (negative and positive, respectively),
with the 5th phenotype being noise only. This setup emulates a situation in which the type
of relationship between the genotypes and the considered phenotypes is not favorable for
the naive OLS with the summed-up phenotypes. It also allowed us to investigate the per-
formance of the methods under slight deviation from the common association assumption,
which is violated due to γ5 being zero under scenario C. With the varying signs of the
resulting univariate regression coefficients this scenario is also less favorable from the per-
spective of the specific way in which we determine the weights by averaging the estimates
of the univariate regression coefficients.

3.2. Used estimationmethods

In the analysiswe considered both versions of the adaptive SVSmethod, namelyL∞− aSVS
and L2− aSVS, each in several different variants based on different choices for the adapta-
tion weights. As performance benchmarks for the adaptive SVS we use the non-adaptive
SVS of (2), the naive OLS (with Bonferroni correction), the lasso [22], the adaptive lasso
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[31], and the GFlasso of (A.2) (the latter two are described in the appendix of the paper).
In order to eliminate the need for an intercept in the models we centered (per-column) all
of the phenotype and genotype matrices.

Regarding the GFlasso we used several values for the cut-off parameter ρ, namely
0.05, 0.1, 0.2, 0.3. Based on the maximum observed correlations within the data larger
values for ρ would be redundant. For the weighing function inside the fusion penalty
we selected w(r) = |r|. In the adaptive SVS methods we used the univariate OLS-based
weights obtained with f equal to the mean and applied the power transformations to them
via

πν
k = dk

(∑
l

b ols
kl /p

)−ν

, (6)

where ν = 1, 2, 0.5 with dk chosen so that
∑

k πk = q. We respectively denote the
resulting methods corresponding to each value of ν as L2− aSVS(1), L2− aSVS(2), and
L2− aSVS(0.5) for α = 2, and L∞− aSVS(1), L∞− aSVS(2), and L∞
− aSVS(0.5) for α = ∞.

In the comparison of methods we also include the lasso and the adaptive lasso methods.
We used four different variants of the adaptive lasso described in (A.1), which differed
by the choices of weights wkl. The first three variants utilized the same univariate OLS
approach as the adaptive SVSmethods, which was achieved by puttingwkl = πν

k for all l =
1, . . . , pwith the same choices for ν = 1, 2, 0.5. The corresponding adaptive lasso methods
are referred to as alasso(1), alasso(2), and alasso(0.5). The fourth variant of the adaptive
lasso utilized weights based on the lasso with λ determined through CV. We refer to the
resulting method as alasso(lasso).

3.3. Measures of performance

In order to judge the performances of each method we calculated and plotted several
measures, which focus on the quality of an estimatorwith respect to three different perspec-
tives. Our first measure of quality of an estimate is the fraction of non-zero values among
estimates of true zero coefficients, also known as the false selection rate (FSR). A comple-
mentary measure is the ratio of non-zero values among estimates of the true non-zero
coefficients, also known as the true selection rate (TSR).

The overall quality of an estimate B̂ = (bij) can be measured by the squared expectation
prediction error SEPE = ‖X̂B − XB‖2. Since such definition of prediction error is sample
size dependent, for comparison of prediction errors over various sample sizes it is useful
to scale SEPE by n, which yields the average squared prediction error per individual. We
use such rescaled SEPE to compare the performances under the scenarios B and C. For the
comparison of the methods we first judge the methods based on how low their minimum
observed values of SEPE are.

Additionally, we use the total estimation error (TEE), which is the �1 distance between
the estimates and the true values of the regression matrix B. Focusing on all SNPs inQ, the
causal SNPs in Q1, or the non-causal SNPs in Q0, respectively, leads to

TEEβ
z =

∑
k∈Q0

p∑
j=1

| bkj|, TEEβ
nz =

∑
k∈Q1

p∑
j=1

| bkj − βkj|,
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TEEβ
sum = TEEβ

z + TEEβ
nz.

3.4. Investigation under scenario A

We first focus on the performance aspects of the methods under scenario A. The choice
of penalty parameters were determined based on 2-fold CV. Analysis showed that this is a
reliable procedure under scenarios similar to A (results not shown). Table 2 illustrates the
performance of the estimation methods.

3.4.1. Performance of L2 − aSVS and L∞− aSVSmethods
In Table 2 we see that, when compared to the non-adapted L2− SVS, all variants of
L2− aSVS provide noticeably better performances in terms ofminimum SEPE andFSR and
TSR. The improvement over the non-adaptive SVS is most visible for L2− aSVS(2), while
L2− aSVS(1) is a very close second. Besides good prediction performance, the adaptive
SVS variants yield similarly flattering results in terms of FSR. In addition, the comparison
of the true selection rates of L2− aSVS(2), L2− aSVS(1), L2− aSVS(0.5) against L2− SVS
shows appreciable improvements by the adaptive SVS methods over the (non-adaptive)
SVS.

Turning to methods L∞− SVS and L∞− aSVS, we observe a similar rate of improve-
ment in terms of SEPE, FSR and TSR by the adaptive SVS methods over the non-adaptive
L∞− SVS (relative to the �2 methods). Similarly to the �2 methods, the �∞ adaptive SVS
methods provide substantial improvement of prediction errors over their non-adaptive
counterpart. Generally speaking, the �∞ methods show noticeably higher FSR. In terms
of TSR the �∞ methods exhibit as good a performance as their �2 counterparts, when
they successfully identify all non-zero parameters in all data sets. The non-adaptive SVS
methods appear to be inferior to the adaptive SVS in this respect.

Next, we focus on the performances of the GFlasso and the lasso relative to the adaptive
SVSmethods. It appears that the adaptive SVSmethods quite convincingly outperform the
rest of the considered methods. Compared to any of the adaptive SVS methods, both the
lasso and the variants of the GFlasso yield substantially inferior performance in terms of
the three measures. This suggests that the exploitation of the correlation in the response by

Table 2. Average observed SEPE, FSR, TSR at cross-validated penalties under scenario A.

Method λcv (μcv) SEPE FSR TSR

L2− aSVS(2) 190 2.73 0.0038 1.00
L∞− aSVS(2) 320 3.03 0.028 1.00
L2− aSVS(1) 34 3.26 0.011 1.00
L∞− aSVS(1) 55 4.12 0.039 1.00
L2− aSVS(0.5) 20 4.47 0.021 1.00
L∞− aSVS(0.5) 35 5.50 0.046 1.00
L2− SVS 17 7.58 0.031 0.97
L∞− SVS 33 8.97 0.047 0.97
GFlasso(ρ = 0.2) 8 (65) 9.70 0.073 0.80
GFlasso(ρ = 0.3) 11 (40) 10.43 0.024 0.71
GFlasso(ρ = 0.1) 6 (50) 10.24 0.150 0.90
GFlasso(ρ = 0.05) 5 (70) 10.45 0.240 0.99
lasso 11 11.47 0.015 0.67

Note: The averages are taken over the 25 data sets and the rows are ordered by the minimum SEPE with the best values in
each columnmarked by bold italic.
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the fusion penalty of the GFlasso is somewhat limited and generally performs worse than
what is achieved by the �2 and �∞ penalties used by the adaptive SVS methods. Overall, it
seems that L2− aSVS(1) and L2− aSVS(2) are the champions among all of the considered
methods under scenario A.

3.5. Performance for a single data set under scenario A

For each data set under scenario A we obtained estimates for B = (βij) using 2-fold cross-
validated values of the penalty parameters. In Table 3 we included the observed values of
SEPE, FSR, TSR, TEEβ

z , TEE
β
nz and TEE

β
sum. In this comparison we included the naive OLS

in order to compare this simplistic method with the more sophisticated methods.
When comparing the adaptive SVS under cross-validated penalties among themselves,

it seems to be L2− aSVS(2) and L∞− aSVS(2) that are ahead of the othermethods in terms
of FSR. Both of thesemethods falsely select only 21 out of the 3000 non-causal SNPs. Addi-
tionally, the other variants of the adaptive SVS are not trailing toomuch behind. The results
are quite impressive, especially when compared with the GFlasso and the lasso methods.
The impressiveness of the low FSR by L2− aSVS(2) and L∞− aSVS(2) is further enhanced
by the fact that virtually all of the falsely selected SNPs have estimates that are smaller than
all of the estimates for the causal SNPs. Moreover, all of the causal SNPs were correctly
selected by the adaptive SVS methods. Compared with the adaptive SVS, the only vari-
ant of the GFlasso that bears any comparison is that with ρ = 0.3. In terms of prediction
error, it is again L2− aSVS(2) and L∞− aSVS(2) that perform best among all considered
methods. The other adaptive methods also provide considerably improved performance
over the two non-adaptive SVSmethods and especially over the GFlasso and the lasso. The
naive OLS method performs relatively poorly at both estimation and model selection.

3.6. Investigation under scenarios B and C

The data sets simulated under scenarios B and C were analysed by the methods employed
under scenario A and by the additional four variants of the adaptive lasso. The aspect of
performance we investigated under scenarios B and C was the sensitivity of each method’s

Table 3. Observed values of performance measures SEPE, FSR, TSR, TEEβ
z , TEE

β
nz and TEE

β
sum for a single

data set under scenario A.

Method Penalty SEPE FSR TSR TEEβ
z TEEβ

nz TEEβ
sum

L2− aSVS(2) λcv = 190 2.73 0.006 1 0.18 3.6 3.78
L∞− aSVS(2) λcv = 280 3.03 0.041 1 0.24 3.8 4.04
L2− aSVS(1) λcv = 34 3.26 0.012 1 0.20 3.5 3.7
L∞− aSVS(1) λcv = 55 4.12 0.043 1 0.33 3.7 4.03
L2− aSVS(0.5) λcv = 20 4.47 0.019 1 0.25 3.2 3.45
L∞− aSVS(0.5) λcv = 35 5.50 0.053 1 0.32 3.4 3.72
L2− SVS λcv = 17 7.58 0.029 1 0.28 2.4 2.68
L∞− SVS λcv = 31 8.92 0.029 1 0.16 2.6 2.76
GFlasso(ρ = 0.2) λcv = 8.4,μcv = 64.9 9.70 0.250 1 0.44 2.3 2.74
GFlasso(ρ = 0.05) λcv = 4.6,μcv = 68.7 10.45 0.690 1 0.87 2.8 3.67
GFlasso(ρ = 0.1) λcv = 6.4,μcv = 52.3 10.24 0.420 1 0.66 2.6 3.26
GFlasso(ρ = 0.3) λcv = 10.7,μcv = 38.3 10.43 0.094 1 0.37 1.9 2.27
lasso λcv = 11 11.47 0.059 1 0.44 1.9 2.34
naive OLS (MTC) none 15.85 0.016 0.75 4.20 4.5 8.70

Note: The rows are ordered according to observed SEPE and the best value in each column is marked by bold italic font.
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performance to sample size. We used the N=25 simulated genotype-phenotype data sets
under each scenario, which we repeatedly analyzed using k ≤ 2000 of the 2000 individuals,
where k ranged between 400 and 2000 in steps of 100. When increasing k, a randomly
selected additional 100 individuals were added to the previously selected individuals in
each step.

We additionally used the adaptive lasso methods alasso(1), alasso(2), alasso(0.5) and
alasso(lasso). In the GFlasso methods we put ρ equal to 0.05, 0.1, 0.2, 0.3 and 0.4 under
scenario B, whereas under scenario C we only considered values 0.05, 0.1 and 0.2. These
choices were motivated by the maximum absolute values of correlation between the com-
ponents of the phenotypes in each of these data sets, which under scenario B were between
0.5 and 0.6, while under scenario C they were between 0.2 and 0.3 for all considered sample
sizes. The observed correlation coefficients are plotted in Figure 3, which shows histograms
of the correlations and the maximum absolute value of the correlations as function of sam-
ple size. The plots clearly show the effect of the parameter choices we made under the two
scenarios. In the plots on the right we can see the maxima of absolute correlations, which
decrease with sample size. We can also clearly see where the maxima lie, which justifies the
chosen values for ρ under the two scenarios.

For each sample size, scenario andmethodwe calculated an estimate ofB and used these
to obtain average values of the prediction error SEPE, selection rates FSR, TSR, and total
estimation errors TEEβ

z , TEE
β
nz, TEE

β
sum, which we plotted in Figure 4. Since there are large

differences between the performance of different methods, the plots are on logarithmic
scales. We also note that we plotted smoothed versions of the actually observed lines.

3.6.1. Selection rates
Judging from the plots in Figure 4, while keeping in mind the natural trade-off between
FSR and TSR, it is quite clear that the variants of the adaptive SVS perform very well in
terms of both FSR and TSR under both scenarios. Especially L2− aSVS(1), L2− aSVS(2),
L2− aSVS(0.5) and L∞− aSVS(1) exhibit FSR below 1% andTSR generally well above 50%
for (almost) all sample sizes. Additionally, with TSR increases up to about 80% with sam-
ple size for these methods, which under scenario C makes them ”catch up” to the best
performing method in terms of TSR, while under scenario B they do not trail far behind
the champions either. The most positive aspect of the good TSR performance by the adap-
tive SVS methods is the fact that it is not paid for by a lousy FSR showing. For all adaptive
SVS methods FSR remains well controlled for all considered sample sizes.

As far as the non-adaptive SVS methods are concerned, both of them appear to be very
good performers in terms of FSR, lacking only slightly behind the adaptive SVS methods
under both scenarios. In terms of TSR both the non-adaptive SVS methods are perform-
ing well under scenario B, while under scenario C the method L2− SVS appears to be
noticeably inferior compared to the other SVS methods.

We notice large differences among the variants of GFlasso, where the performances in
terms of FSR and TSR hugely depend on the value of ρ. Looking at the FSR plots, it is
clear that for small values of ρ the performance of GFlasso in terms of FSR is quite bad
under both scenarios, where especially under scenario C two out of the three of theGFlasso
variants have an unacceptably high FSR.
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Figure 3. Sample correlation coefficients between components of thephenotypeunder scenarios B and
C. The histograms show the observed correlations between the 10 components of the phenotypes for
25 data sets and all considered sample sizes (a total of 340 values) with corresponding kernel density
estimators and mean correlations superposed onto the histogram as solid black lines. The curves (right)
show the mean maximum absolute value of correlations as functions of the sample sizes (means taken
over the 25 data sets).

Turning to the adaptive lasso, Figure 4 shows that in terms of FSR the differences
between the four variants of the adaptive lasso are rather small. Keeping in mind the log-
scales of the y-axes, there seems to be virtually no difference between the methods. It is
quite clear that the adaptive lasso does not substantially improve on the lasso.

3.6.2. Prediction and estimation errors
Looking at the SEPE plot (top) in Figure 4 we can clearly see that it is again the adaptive
methods that provide the superior performances in terms of SEPE, where L2− aSVS(2),
L2− aSVS(1), L∞− aSVS(2) and L∞− aSVS(1) particularly stand out under both sce-
narios. Under both scenarios the ratio of improvement was increasing with sample size
suggesting that the adaptive SVSmethodsmakemore efficient use of the additional data. In
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Figure 4. Observed averagemeasures of performance FSR, TSR, SEPE and TEEβ
z , TEE

β
nz , TEE

β
sum for various

methods (including theall-zero estimate B̂0 = 0) as functionsof sample sizes under scenarios B (top) and
C (bottom). For easier reading the values of SEPE were scaled up by the base line sample size of 2000.
The y-axes are on natural logarithmic scales.

Figure 4 we present three total estimation error measures for each scenario, namely TEEβ
z ,

TEEβ
nz,TEE

β
sum. Looking at the overall estimation errorTEEβ

sum under scenario Bwe notice
an ordering of the methods that is very similar to that given by SEPE. It is again clear that
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the best performance is provided by the adaptive SVS methods. The plots with TEEβ
z and

TEEβ
nz provide further confirmation of the superiority of the adaptive SVS methods. Turn-

ing to scenario C, the overall estimation error TEEβ
sum shows that the best choices seem to

again be the three adaptive SVS methods L2− aSVS(1), L2− aSVS(2) and L2− aSVS(0.5),
while L∞− aSVS(1), L2− aSVS(2) and the non-adaptive L2− SVS are not far behind.

4. Application to data: alternative splicing

In this section we present the results of an eQTL analysis of the expression data gener-
ated by the Geuvadis RNA sequencing project for 1000 Genomes samples [14]. The goal is
to identify a SNP-driven gene expression regulation process known as alternative splic-
ing. About 94% of our genes are so called interrupted genes [26], which means that they
consist of several regions of different functional type referred to as exons and introns. The
number of exons in human genes varies between 1 and 363 and the average number of
exons per gene is about 10 [21]. During DNA transcription the genetic code undergoes
a process called splicing, when introns are removed while exons are preserved and tran-
scribed into RNA (i.e. expressed). Crucially, however, not all exons are always expressed,
which means that the same genetic code in a gene can lead to different RNA transcripts.
This occurs when, during RNA transcription, different subsets of exons are expressed. This
phenomenon when a single gene produces different RNA transcripts is called alternative
splicing. Interestingly, different RNA transcripts do not have to result in differential protein
expression.

If expression data per exon is available, it is possible to look for evidence of alterna-
tive splicing. This can be done by checking if all exons are observed in equal proportion.
There are technical limitations that need to be taken into account during such analysis. For
instance, exon lengthmay affectmeasurements since exons below a certainminimal length
may be less efficiently handled both during sequencing and during alignment. This effect
is not linear, which means that as exon length decreases, the number of reads mapping to
the exon decreases with exon length faster than linearly.

4.1. Data

The complete Geuvadis data contains 148,002 exons spread over 15,480 genes. After qual-
ity control (QC) performed by the Geuvadis team there were 462 unrelated individuals
from various cohorts remaining. In the pilot study we restricted the focus only to exons
on chromosome 1 and used the usual QC criteria such as a MAF threshold of 5%, etc.
The distribution of per-gene exon counts on chromosome 1 in the raw data is shown in
Figure 5. While the maximum observed number of exons in a single gene was 105, over
50% of the included genes have 8 or fewer exons, only 10% have more than 20 exons and
only 1% genes contained more than 40 exons.

The raw data was pre-processed and to correct for large trends typically produced by
batch effects, the first 10 principal components were removed. However, in the pilot we
did not correct for the effect of exon length on expression. Exons that were not expressed
at all in the data were eliminated. Moreover, genes with only a single exon were also
removed, since these cannot undergo alternative splicing. From the total of 14,758 exons



16 J. PECANKA ET AL.

Figure 5. Distribution of per-gene exon counts (top) and per-gene SNP counts (bottom) on chromo-
some 1 in pre-processed Geuvadis data. Shades of gray correspond to the height of each bar in both
plots.

in 1389 genes on chromosome 1, there were 14,656 exons in 1376 genes left in the data
set after pre-processing. In order to improve the homogeneity of the data we addition-
ally removed the data for the Yoruba population from the pilot study, after which there
were 373 samples left. Besides removing the top 10 principal components, the exon expres-
sion data was further transformed to account for the fact that exon expressions are on an
exponential scale. The transformation used was the variance-stabilizing transformation
h(y) = γ arcsin h(a + by) [11]. The constants a, b, γ are determined by fitting an assumed
quadratic relationship between the mean and the variance of the data parameterized via
a, b, γ (for details see [11]).

4.2. Data analysis

The transformed expression counts for each exon of the gene were entered as multivariate
response matrix Y into a linear model of (1) with individual SNP genotypes forming the
columns of the design matrix X. For every gene the number of rows in both Y and X (i.e.
the sample size) was the number of individuals in the data, whichwas n=373. The number
of columns in Y and X differed between the genes. For simplicity of analysis each column
of Y and X were centered with the corresponding (per-column) sample means.

For each of the penalized methods the values of penalty parameter was optimized
via 10-fold CV. The estimation methods of primary interest were the variants of the L2-
aSVS method. For reasons of computational complexity we chose the �2-based methods
instead of the �∞ methods, since the available solver MOSEK is considerably less effi-
cient than the glmnet package for R. For the analysis we used both the non-weighted
(L2-SVS) and weighted variants of the method with several different weighting schemes,
which were all based on the univariate OLS approach. Three of them were identical to
the ones used throughout Chapter 2.3, which we denoted by L2-aSVS(1), L2-aSVS(2) and
L2-aSVS(0.5). In addition to those we also considered a number of higher power transfor-
mations of the OLS-based weights and denote the corresponding methods as L2-aSVS(ν),
where ν = 3, . . . , 10 (see (6)). The higher power transformations put more emphasis on
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Table 4. Comparison of SNP and gene selection counts by various regression methods.

genes (total of 1376) SNPs (total of 4,958,575)

method (M) selected ratio selected ratio avg per-gene

L2-SVS 512 37.21% 1782 0.0359% 3.48
L2-aSVS(0.5) 442 32.12% 1399 0.0282% 3.17
L2-aSVS(1) 368 26.74% 1100 0.0222% 2.99
L2-aSVS(2) 280 20.35% 797 0.0161% 2.85
L2-aSVS(3) 235 17.08% 662 0.0134% 2.82
L2-aSVS(4) 205 14.90% 644 0.0130% 3.14
L2-aSVS(5) 200 14.53% 653 0.0132% 3.27
L2-aSVS(6) 205 14.90% 689 0.0139% 3.36
L2-aSVS(7) 211 15.33% 741 0.0149% 3.51
L2-aSVS(8) 216 15.70% 815 0.0164% 3.77
L2-aSVS(9) 231 16.79% 996 0.0201% 4.31
L2-aSVS(10) 222 16.13% 1033 0.0208% 4.65

lasso 80 5.81% 231 0.0047% 2.89
alasso(0.5) 82 5.96% 253 0.0051% 3.09
alasso(1) 86 6.25% 275 0.0055% 3.20
alasso(2) 108 7.85% 345 0.0070% 3.19
naiveols 242 17.59% 6669 0.1345% 27.56

the initial univariate OLS estimates. It seems reasonable to expect that there is an opti-
mum transformation which strikes the right balance between the information contained
within the univariate OLS estimates, which determine the weights, and the ability of
penalized regression methods to uncover the association. Analogously to the adaptive
SVS methods above, we denote the three adaptive lasso variants as alasso(1), alasso(2),
alasso(0.5).

For the SVSmethods Table 4 shows that the non-adaptive L2-SVS yields the least sparse
solution and selects 1782 SNPs in 512 genes. With the adaptation we obtain much sparser
solutions and both the SNP and the gene selection counts decrease. Since the 11 adaptive
SVS methods differ only by the degree to which the initial univariate OLS estimates shape
the final solution it is not surprising that higher values of p lead to more sparse solutions
with for instance L2-aSVS(1) and L2-aSVS(2). The sparsity generally increases further with
increasing p.

Finally, we also focused on the comparison of the individual penalized regressionmeth-
ods against each other in applied setting. It turned out, likely due to the more efficient
exploitation of the multivariate nature of the responses, that the adaptive SVS methods
provided SNP selection for a significantly larger portion of the considered genes com-
pared to the lasso and the adaptive lasso variants. It seems that the latter are perhaps
too restrictive during selection. While selecting a larger number of genes, the adaptive
SVS variants simultaneously limit the number of selected SNPs to a manageably small
number.

5. Discussion

In this paper we presented an adaptive SVS, which is a method for estimating parameters
in the multivariate multiple regression model of (1) particularly suitable for applica-
tions where the assumptions of sparsity and common association are reasonable. We put
the method under thorough scrutiny in a realistic simulation study in the context of



18 J. PECANKA ET AL.

genotype-phenotype data, where we compared it from numerous perspectives with sev-
eral other methods under several different simulation scenarios. We considered several
flavors of the adaptive SVSmethodwhich differed by the type of penalty and by the way the
adaptation weights were calculated (i.e. the specific choices of α and πk in Equation (3)).
A general conclusion that can be drawn from our investigation is that the adaptive SVS
method is a powerful tool and many of the considered flavors yield good performance
in terms of both selection rates, prediction errors and estimation accuracy. An overall
impression is that most of the considered flavors of the adaptive SVS method perform
persuasively better than the other considered methods. This includes even those meth-
ods that were specifically tailored for the multivariate-response model with correlated
components.

Due to the popularity of the naive OLS, we also considered the performance of this
method under several different scenarios. We showed that although the method can work
quite well in certain respects such as TEEβ

nz under scenario B, it often fails miserably in
other respects (TEEβ

z and SEPE) and/or under other scenarios (A and C). However, the
adaptive SVSmethods seem to be on par with the naiveOLS even under the scenario favor-
able to the naive OLS, while the naive OLS is clearly inferior to the adaptive SVS methods
in all of the other considered measures. It seems therefore clearly unwise to use the naive
OLS as the method of choice for such analysis.

The adaptive SVS method requires user input in two distinct ways. On the one hand,
it requires the user to select a suitable way to determine the adaptation weights, where we
showed that an approach as simple as univariate regression can already yield very favorable
behavior. This suggests that there is still room for improvement of the performance of the
adaptive SVSmethod by using amore sophisticatedway of determining adaptationweights
although probably at the cost of increased computational burden. On the other hand, like
any penalized regression method, the adaptive SVS also requires a good choice of value of
the tuning penalty parameter.

An advantage of using the univariate OLS for determining the adaptation weights πk is
the straightforwardness of such approach. It relies on linear correlation between regressors
and responses, which also makes it simple and fast to implement. After a fixed f is chosen,
there are nomore tuning parameters involved in determining the adaptation weights. This
increases the appeal of the univariate OLS approach in comparison with for instance using
the non-adaptive SVS or the lasso as the basis for determining the weights, which would
require additional analysis to determine their penalty parameters.

GFlasso represents a natural extension of the lasso, which seeks to improve on the lasso
in the current model by utilizing the covariance structure of the multivariate response by
introducing a second penalty, although this comes at a price of higher computational com-
plexity as well as a more difficult choice of tuning penalty parameters λ and μ. The SVS
methods, on the other hand, require the choice of only one penalty parameter, while also
reflecting the multivariate nature of the response to some extent.

Usual ways to determine the tuning parameters include CV and information criteria
such as AIC, BIC and GIC [7]. In our analysis we showed that the non-adaptive approach
based on CV works quite well towards allowing the method to maximize its potential.

In summary, the adaptive SVS is a strongmethod that in our opinion should become the
workhorse for analysis of association between a large number of regressors and correlated
multivariate phenotypes.
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Appendix

A.1 Software

The GFlasso estimates were computed using a MATLAB (www.matlab.com) script, which was gra-
ciously provided to us by Seyoung Kim, one of the authors of the method. Estimates of regression
parameters by the �2 norm-based adaptive and non-adaptive SVS methods were obtained using the
R package glmnet [19], while the �∞ norm-based estimates were determined using the large-scale
optimization softwareMOSEK and the R interface packageRmosek available fromCRAN.MOSEK
is a commercial high performance software for large-scale optimization. A free academic licence can
be obtained at http://www.mosek.com. Finally, the lasso and the adaptive lasso estimates we calcu-
lated using glmnet. For the aSVS method a custom script was used to facilitate the usage of the
existing software (e.g. glmnet, MOSEK). This script has not been implemented as a stand-alone
package.
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In terms of computational burden, the adaptation in aSVS requires essentially only the fitting of
a large number of univariate regressions, which, compared to the non-adaptive SVS, does not add
much computational complexity in typical applications. However, the computational efficiency of
aSVS depends highly on the specific algorithm and solver used. The availability of such algorithm
and the efficiency of the utilized solver closely links to the choice of α in Equation (3). For α = 1
and α = 2 the method essentially reduce to the lasso and the group lasso, respectively, for both
of which there exist very efficient algorithms and solvers (e.g. glmnet, [19]). Consequently, on an
ordinary machine, an application of aSVS to a single dataset of the type considered in this paper is
a matter of seconds, with the exact time depending on the hardware. For our third choice α = ∞,
the situation is somewhat less favorable, as no specialized solver appears to be available at this time.
Our implementation using the general solverMOSEK requires neededminutes rather than seconds,
making this choice less suitable for application in the very high-dimensional settings.

A.2 Adaptive lasso

As an extension to the lasso, the adaptive lasso [31] is defined as

B̂alasso(λ) = argmin
B=(βij)

‖Y − XB‖22 + λ
∑
i,j

wij|βij|. (A1)

The difference between the penalty of the lasso and that of the adaptive lasso is the presence of
weights wij in the latter. As we can see from (A1), employing the weights inside the �1-type penalty
allows the user to differentiate the amount penalization each regressor receives, thus permit some
of them to obtain larger estimates (in absolute value sense) compared to the lasso while forcing the
rest closer to zero.

A.3 Graph-guided fused lasso

The graph-guided fused lasso (GFlasso) method is based on the lasso with a secondary fusion
penalty introduced to bind the estimates of parameters of the same regressor when highly corre-
lated responses are modeled [12,13]. Their graph-guided fusion penalty is guided by a phenotype
graph. More specifically, using correlations of the phenotypes a graph of phenotypes as nodes is
constructed in which two phenotypes are connected by an edge if their correlation exceeds a preset
bound. Whenever two nodes are connected by an edge the parameter estimates for the correspond-
ing components of the phenotype are fused together via the �1 norm. For more adaptability, the
terms inside the fusion penalty are weighted by the amount of correlation between the components
of the phenotype, which results in the graph-weighted fused lasso (G_wFlasso) defined as

B̂Gw(λ,μ) = argmin
B

‖Y − XB‖22 + λ‖B‖1 + μ

p∑
k,l=1

w(rkl)‖β•k − sgn(rkl)β•l‖1. (A2)

The tuning parameters λ andμ determine the amount of penalization by each penalty, whileβ•k,β•l
are the kth and lth columns of B, respectively, and rkl is the Pearson correlation coefficient of the
response vectorsYk andY l (columns ofY) andw(r) is a weight function, i.e. a non-negative function
on (−1, 1). Additionally, Kim et al. [12] require w(r) to be equal to 0 on (−ρ, ρ) where ρ ∈ (0, 1) is
a suitably chosen cut-off value so that the pairs of phenotypes with correlation coefficient below ρ

(in absolute value) do not enter the fusion penalty.
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