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ARTICLE

Predicting the Onset of Nonlinear Pharmacokinetics

Andrew M. Stein1 and Lambertus A. Peletier2

When analyzing the pharmacokinetics (PK) of drugs, one is often faced with concentration C vs. time curves, which display 
a sharp transition at a critical concentration Ccrit. For C > Ccrit, the curve displays linear clearance and for C < Ccrit clear-
ance increases in a nonlinear manner as C decreases. Often, it is important to choose a high enough dose such that PK re-
mains linear in order to help ensure that continuous target engagement is achieved throughout the duration of therapy. In this 
article, we derive a simple expression for Ccrit for models involving linear and nonlinear (saturable) clearance, such as 
Michaelis- Menten and target- mediated drug disposition (TMDD) models.

CPT Pharmacometrics Syst. Pharmacol.  (2018) 7, 670–677; doi:10.1002/psp4.12316; published online on 08 
September 2018.

Study Highlights

When analyzing the pharmacokinetics (PK) of drugs, 
one is often faced with concentration vs. time curves 
which display a sudden increase in the elimination rate 
below a certain critical concentration (Ccrit). Examples of 
this phenomenon, in which the PK exhibit this nonlinear 
behavior, are shown in Figure 1 for efalizumab (anti- 
CD11a),1 mavrilimumab (antigranulocyte- macrophage 
colony- stimulating factor receptor),2 and romosozumab 
(antisclerostin).3

This nonlinearity shown in Figure 1 results from a com-
bination of two pathways of drug clearance: (i) a linear, 
nonspecific clearance due to endocytosis; and (ii) a nonlin-
ear, saturable clearance due to internalization of the target 
receptor:

• At high drug concentrations, the target receptor is satu-
rated and the rate of elimination is governed by the non-
specific clearance.

• At lower drug concentrations, when the target receptor is 
no longer saturated, both the nonspecific route and the 

saturable route contribute to drug clearance and, hence, the 
rate of elimination increases as the concentration decreases.

A common goal when selecting the dose and regimen of a 
drug is to maintain a drug concentration that stays above the 
Ccrit. There are two reasons for this goal.

1. Ensure lower PK variability in the population, because 
Ccrit may vary between subjects.

2. Ensure that target occupancy remains high, as main-
taining drug concentrations above Ccrit is thought to be 
a necessary (although not sufficient) condition to main-
tain target saturation.4

In this article, we show examples of systems that have 
a simple critical value for the drug concentration Ccrit such 
that as long as the drug concentration remains above this 
value, target mediated elimination is saturated and the 
PK is linear. In Figure 1, Ccrit is illustrated; when the con-
centration falls below Ccrit, the elimination rate suddenly 
increases.
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WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Mathematical models of nonlinear PK and TMDD of 
mAbs are widely used to guide drug development. Often, 
it is important to choose a high enough dose such that 
PK remains linear to help ensure that continual target 
 engagement is achieved throughout the duration of ther-
apy. There has not yet been a demonstration for how the 
PK/ pharmacodynamic parameters impact the onset con-
centration at which the nonlinearity is observed.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  How the PK and binding properties of the drug impact 
the onset of nonlinear PK.

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
✔  Ccrit was derived and was found to be equal to  
Vmax/Cl for the Michaelis- Menten model or ksyn/(Cl/Vc) for 
the TMDD model.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  The Ccrit parameter can be used to provide better intu-
ition for how the PK parameters impact drug concentration 
profiles and, in particular, guide the modeler in understand-
ing where the random effects may need to be added and 
what parameters of the model are identifiable.

mailto:andrew.stein@novartis.com


Predicting Nonlinear Pharmacokinetics  
Stein and Peletier

671

www.psp-journal.com

We derive an analytical expression for Ccrit for both the 
Michaelis- Menten model1,5 and the target- mediated drug 
disposition model (TMDD).6–8 Both models have two routes 
of clearance: nonspecific- linear elimination and saturable- 
nonlinear elimination. Both analyses will be discussed in the 
absence and in the presence of a peripheral compartment. 
In the presence of a peripheral compartment, the analysis 
becomes more complex, but it is still transparent in common 
cases, such as rapid exchange between the two compart-
ments. In all cases, Ccrit is independent of drug dose and 
volume of distribution.

METHODS

For modeling the onset of the PK nonlinearity, we focus 
on the two models that are frequently used by the phar-
macometrics community: Michaelis- Menten and TMDD. 
A more general theoretical derivation of Ccrit for any PK 
model is beyond the scope of this article. We start by 
focusing on the simpler case of the one- compartment 
model and then extend this analysis to the two- 
compartment scenario. The two- compartment models 
are shown schematically in Figure 2 below. The corre-
sponding one- compartment models are identical with 
the models shown in Figure 2, except that the peripheral 
compartments (Cp) are removed.

Michaelis- Menten elimination

One- compartment model. The basic model for linear 
and nonlinear drug elimination involves a single (central) 
compartment and a single differential equation for the 
concentration C of the drug involving linear and saturable 
elimination side by side:

Here, Vc is the volume of the central compartment, Cl 
a first order clearance rate, Vmax is the maximum rate of 

saturable elimination and KM is the Michaelis- Menten con-
stant. For an initial i.v. bolus dose D, the initial concentration 
is given by C(0) = D/VC.

Two- compartment model. When the drug is distributed 
over a central compartment with concentration Cc and 
a peripheral compartment Cp, with linear and nonlinear 
elimination occurring only from the central compartment, 
the PK are described by the system of equations:

in which exchange between the compartments is driven by 
the difference in drug concentration in the two compart-
ments (i.e., by the term Q(Cc–Cp) where Q denotes a non-
specific clearance rate).

(1)Vc
dC

dt
=−Cl ⋅C−Vmax

C

C+KM

.

(2)

⎧
⎪
⎨
⎪
⎩

Vc
dCc

dt
=−Cl ⋅Cc−Vmax

Cc

Cc+KM

−Q(Cc−Cp)

Vp
dCp

dt
= +Q(Cc−Cp)

Figure 1 Nonlinear pharmacokinetics for efalizumab, mavrilumab, and romosozumab. Note that for all three drugs, as the concentration 
drops below the critical concentration (Ccrit), the elimination rate suddenly increases.

Figure 2 Structural scheme of the basic model describing 
(a) Michaelis- Menten kinetics and (b) target- mediated 
drug disposition (TMDD) where a drug C binds a target 
receptor R which is synthesized by a zero order reaction and 
degenerates according to a first order reaction. Drug and 
target form a complex CR, which internalizes through a first- 
order reaction.

(a) (b)
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If initially, an i.v. bolus dose D is supplied to the central 
compartment while the peripheral compartment is empty, 
the initial conditions are here Cc(0) = D/Vc and Cp(0) = 0.

Target- mediated drug disposition
In its most elementary form, TMDD target kinetics is as-
sumed to follow a zero- order production rate ksyn and a first- 
order elimination rate ke(R)R. The formation of drug- target 
complex CR takes place via a second- order process konC · R, 
a  first- order loss of the drug- receptor complex via koffCR, 
and an irreversible first- order elimination process ke(CR)CR.  
In Figure 2 this system of reactions is shown schematically.

One- compartment model. Mathematically, the one- 
compartment TMDD model is described by the system of 
differential equations below:

Note that in the absence of drug, the steady- state target 
concentration is given by R0 = ksyn/ke(R). Here, we assume 
that the drug is supplied through an i.v. bolus dose D to the 
system when it is free from drug and the target is at steady 
state (i.e., C(0) = D/Vc, R(0) = R0 and CR(0) = 0).

By adding the first and the third equations, we obtain an 
equation for the total amount of drug Ctot = C + CR and, sim-
ilarly, by adding the second and the third equations we obtain 
an equation for the total amount of the target, Rtot = R + CR:

Note that the on- rate and the off- rate constants kon and koff 
no longer appear in these equations.

In practice, drug binding and complex internalization is 
fast, so that after a short time drug, target, and drug- target 
complex are in quasi- steady- state (QSS)9 (i.e., C, R, and CR) 
are approximately related through the expressions:

where

Two- compartment model. The two- compartment model 
is similar to the one- compartment model with the addition 
of a peripheral compartment with the initial condition 
Cp(0) = 0.

Model analysis, fitting, and simulation
A mathematical analysis of the above equations was 
performed to derive Ccrit for each model above. To test 
the theory, the data from Figure 1 was fit to the two- 
compartment TMDD model from Eq. 7 where it was as-
sumed that ke(R) = ke(CR). This assumption is typically made 
when fitting the PK for membrane- bound targets where it 
can be especially difficult to estimate ke(R).

10 Good fits can 
still be achieved even when implementing this constraint.

Sensitivity analyses were performed for the one- 
compartment Michaelis- Menten and TMDD models and the 

(3)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dC

dt
= −konC ⋅R+koffCR−ke(C)C; ke(C)=

Cl

vC

dR

dt
=ksyn−konC ⋅R+koffCR−ke(R)R

dCR

dt
= konC ⋅R−koffCR−ke(CR)CR

(4)

⎧
⎪
⎨
⎪
⎩

dCtot

dt
= −ke(C)C−ke(CR)CR

dRtot

dt
=ksyn−ke(R)R−ke(CR)CR

(5)CR=Rtot

C

C+KSS

and R=Rtot

KSS

C+KSS

(6)KSS=

koff+ke(CR)

kon

(7)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dCtot

dt
=−ke(C)C−ke(CR)CR−Q(C−Cp)

dCptot

dt
= +Q(C−Cp)

dRtot

dt
=ksyn−ke(R)R−ke(CR)CR

Table 1 Parameters for mavrilimumab, efalizumab, and romosozumab, based on fits to data

Mavrilimumab Efalizumab Romosozumab Units

Weight- based dose 10 10 10 mg/kg

Equivalent molar dose 4667 4667 4667 nmol

Vc 2.8 2.4 2.4 L

Vp 5.6 3.6 2.6 L

Cl 0.3 0.46 0.25 L/d

Q 1.7 9.7 0.54 L/d

ksyn = Vmax/Vc 2.4 8.5 6.1 nM/d

Kss = KM 1.1 1.2 12 nM

ke(R) 2.2 4400 860 1/d

ke(CR) 2.2 4400 860 1/d

koff 10 – – 1/d

kon = (koff + ke(CR))/Kss 11 – – 1/(nM · d)

Cl, clearance; ke(C), drug elimination rate; ke(R), receptor elimination rate; KM, Michaelis-Menten constant; koff, dissociation rate; kon, association rate; Kss, 
quasi-steady-state constant; ksyn, receptor synthesis rate; Q, intercompartmental clearance; Vc, central volume; Vmax, maximal rate of saturable (nonlinear) 
elimination; Vp, peripheral volume.
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two- compartment Michaelis- Menten model. In the sensitiv-
ity analysis, one parameter at a time was changed while all 
other parameters were held fixed, and the calculated Ccrit 
was plotted together with the simulated PK data.

Because dosing of monoclonal antibodies (mAbs) is usu-
ally reported in mg/kg, but the binding model requires doses 
of nmol and concentrations of nM, a dose of 10 mg/kg is 
converted to nanomoles for the model simulations using 
the formula below, which assumes a 70 kg patient and a 
150 kDa drug (typical antibody).

RESULTS
Model fit
The model fits to the data are shown in the 
Supplementary Material and the parameters from the 
fits that are subsequently used for simulations are listed 
in Table 1. These parameters were also used to com-
pute the Ccrit lines, as described below. Note that the 
large values for ke(R) and ke(CR) for romosozumab and 
efalizumab are due to the practical unidentifiability of 
these parameters.11

Michaelis- Menten elimination
One- compartment model. For drug concentrations, 
which are either large or small with respect to KM, Eq. 1 can 
be approximated by the following simpler equations:

Thus, on a logarithmic scale, the graph of C(t) will be ap-
proximately linear for both large and small values of C; for 

the range of concentrations in between, the graph curves 
down connecting the upper linear segment with the lower 
linear segment (see Figure 3).

Of particular interest is the situation when the rate of 
elimination increases substantially at low concentrations. 
According to Eq. 8, this is the case when:

Throughout this article, it will be assumed that Eq. 9 
holds. The sensitivity analysis for romosozumab in the 
Supplementary Material demonstrates that for small val-
ues of Vmax or large values of KM, the shoulder (where the 
onset of the PK nonlinearity is observed) disappears entirely 
and the PK appears linear.

As the concentration drops, the elimination rate increases, 
and it is important to know at which concentration this tran-
sition takes place. We define this critical concentration, Ccrit, 
as the value of C where the rate of elimination doubles from 
its value at large drug concentrations. This definition was 
chosen because when the rate of elimination doubles, that 
means the linear and nonlinear components of elimination 
contribute equally. Ccrit is derived by dividing Eq. 1 by C, 
which gives:

It can readily be seen that for large concentrations, the 
slope is Cl and, thus, the rate of elimination doubles when:

By assumption of Eq. 9, we may neglect KM in the right 
expression in Eq. 11 and, thus, define the critical concen-
tration to be:

10 mg

kg
⋅

70 kg

patient
⋅

1 g

1000 mg
⋅

1 mol

150 ⋅103 g
⋅

109 nmol

mol
=467 nmol

(8)

⎧
⎪
⎨
⎪
⎩

Vc
dC

dt
=−Cl ⋅C−Vmax≈−Cl ⋅C for C≫KM,

Vc
dC

dt
=−

�
Cl+

Vmax

KM

�
C for C≪KM.

(9)
Vmax

KM

≫Cl ⟹ KM≪

Vmax

Cl
.

(10)Vc
d

dt
log (C)=−

(
Cl+

Vmax

C+KM

)

(11)
Vmax

C+KM

=Cl or C=
Vmax

Cl
−KM

Figure 3 Mavrilimumab: one- compartment model in Eq. 1 in which the base parameter values are in Table 1. Each plot shows a 
sensitivity analysis where the parameter in the title is changed from 0.1- fold to 10- fold. The dot shows critical concentration. CL, 
clearance; Vmax, maximal rate of saturable elimination.
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Note that neither the drug dose nor the volume Vc of the 
central compartment enters the definition of Ccrit.

In Figure 3, we show simulations of concentration 
graphs based on Eq. 1 for data from mavrilimumab in which 
Cl = 0.3 L/d, Vmax = 6.7 nmol/d, and KM = 1.1 nM (Table 1).  
Then, according to Eq. 12, Ccrit = 22 nM. Note that here Ccrit 
is large compared to KM so that for the base values condition 
Eq. 9 is satisfied.

Figure 3 shows how Ccrit, computed from Eq. 12 and in-
dicated by a dot, changes when one of the parameters in-
volved in the model is varied. In addition, it shows where Ccrit 
fits in the concentration- time curve of the drug. The graph 
for the largest parameter value is drawn in red and the graph 
for the smallest is drawn in magenta.

In the first panel in Figure 3, in which the dose is varied 
while keeping C(0) > Ccrit, it is shown how both numerically 
and geometrically Ccrit corresponds to the kink in the graph, 
irrespective of the dose value. According to Eq. 12, as Vmax 
increases, Ccrit moves up, while as Cl increases Ccrit moves 
down, and this is observed in the second and third panels. 
Because Ccrit does not depend on either Vc or KM, it does not 
move in the fourth and the fifth panels.

Two- compartment model. As we shall see, for initial 
drug concentrations that are large enough, the switch 
from linear to nonlinear drug elimination is apparent in this 
situation as well, and it is possible to identify a critical drug 
concentration Ccrit. Here, we only derive the formula for 
Ccrit for the special case when drug exchange between 
the two compartments is fast relative to the nonspecific 

clearance (Cl) and the saturable clearance (Vmax), such as 
when:

Under these conditions, it is found that the two concen-
trations, Cc and Cp, rapidly coalesce (i.e., Cc(t)–Cp(t) → 0), 
and Ccrit in both the central and peripheral compartments 
is given by the same formula as for the one- compartment 
model (i.e., by Eq. 12):

The details of the derivation of Eq. 14 are provided further 
below.

In Figure 4, we show simulations for the two- compartment 
Michaelis- Menten model for parameter values, which are 
varied around the base parameters listed in Table 1, as in-
dicated in the headings of the different panels. The graphs 
in the different panels are comparable to those shown in 
Figure 3 for the one- compartment model, except that many 
show a weak point of inflection below the Ccrit.

Evidently, the location of Ccrit on the graphs, as defined 
by Eq. 14, has not changed much from what was seen 
in Figure 3. This is remarkable because the condition in 
Eq. 13 is not satisfied by the base values of the parameters. 
Specifically, the value of the intercompartmental clearance 
Q is not large compared to Vmax. On the other hand, Q is 
indeed large compared to the nonspecific clearance Cl, as 
is also borne out by the different graphs shown in Figure 4, 
which exhibit a clear two- phase structure during the initial 
development.

(12)Ccrit

def
=

Vmax

Cl
.

(13)Q≫Cl and Q≫Vmax.

(14)Ccrit=
Vmax

Cl
.

Figure 4 Mavrilimumab two- compartment Michaelis- Menten model, in which the base parameter values are listed in Table 1, and 
each plot shows a sensitivity analysis in which the parameter in the title is changed from 0.1- fold to 10- fold. The dot shows critical 
concentration. CL, clearance; Vmax, maximal rate of metabolism.
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Rapid exchange between central and peripheral 
compartments
Suppose that Q ≫ Cl and Q ≫ Vmax. Then, when we di-
vide the system of Eq. 2 by Q, and scale the time variable 
according to τ = Qt, we obtain, with x (τ) = Cc(τ/Q) and  
y (τ) = Cp(τ/Q),

where

Adding the two equations we find for the total amount of 
drug:

the conservation law:

Thus, there is very little loss of drug: on the fast time scale 
τ = O(1) (i.e., t = O(1/Q)). Similarly, by dividing the equations 
by their respective volumes and then subtracting the two 
equations we obtain:

so that Cc(t) – Cp(t) → 0 on the fast time scale as well. Therefore, 
within a very short time, we may write A(t) = (Vc + Vp)Cc(t).

We now go back to Eq. 18 and multiply it by Q so that 
the original time variable t is returned. In light of Eq. 19, this 
yields the following equation:

where Vss is the volume of distribution at steady state.
Following the arguments given for the one- compartment 

model, we find that the formula for Ccrit, as given by Eq. 12, 
has not changed.

Target- mediated drug disposition

One- compartment model. Suppose that the drug 
concentration is large compared to the dissociation 
constant (i.e., C(t) ≫ KSS over a period 0 < t < t0). Then Eq. 5 
implies that during this interval we have:

With these equalities, the system in Eq. 4 can be approx-
imated by the following pair of equations:

Thus, when we subtract the second equation in Eq. 23 
from the first we obtain for 0 < t < t0

or, when we multiply by Vc,

This equation is formally the same as the first equation 
in the system of Eq. 8. Following the reasoning used in the 
Michaelis- Menten elimination Subsection to derive Ccrit, we 
assume, as in Eq. 9, that:

and show that

Thus, by assuming rapid drug binding and complex inter-
nalization, drug clearance can be seen as the sum of linear 
and Michaelis- Menten type elimination resulting in the same 
expression for the Ccrit.

In Figure 5, we show simulations for the one- 
compartment Michaelis- Menten and TMDD models and 
we see that for mavrilimumab, a typical antibody for which 
Eq. 26 is satisfied, simulations give corresponding results 
and, as we have seen in Figures 3 and 4 for the Michaelis- 
Menten model, Ccrit fits snugly in the arm of the concentra-
tion curves.

In the first five graphs, in which simulations for the 
Michaelis- Menten model and the TMDD model are shown 
together (the Michaelis- Menten model is dashed and the 
TMDD is solid), the Michaelis- Menten model curves lie 
below the TMDD curves. This can be understood by com-
paring the equations for Ctot and Rtot in Eqs. 4 and 23 and 
remembering that CR < Rtot.

The similarity between the Michaelis- Menten and TMDD 
models has been reported elsewhere.10,11 Comparable find-
ings were observed for the two- compartment model as well. 
Note that the similarity of the Michaelis- Menten and TMDD 
models may not apply for other biologics, such as bispecific 

(15)

⎧
⎪
⎨
⎪
⎩

Vc
dx
dτ

=−� ⋅x− (x−y)−�(�),

Vp
dy
dτ

=x−y

(16)𝜖=
Cl

Q
≪1 and 𝜈(𝜏)=

Vmax

Q

Cc

Cc+KM

≪1

(17)A(�)
def
= Vcx(�)+Vpx(�),

(18)

d

d�
(Vc x+Vp y)=−� ⋅x−�≈0

(19)d

d�
(x−y)≈−

(
1

Vc

+
1

Vp

)
(x−y)

(20)Vss

dCc

dt
=−Cl ⋅Cc−Vmax

Cc

Cc+KM

(21)Vss=Vc+Vp

(22)CR≈Rtot and R≈0

(23)

⎧
⎪
⎨
⎪
⎩

d

dt
(C+Rtot)=−ke(C)C−ke(CR)Rtot

dRtot

dt
=ksyn−ke(CR)Rtot

(24)
dC

dt
=−ke(C)C−ksyn

(25)Vc
dC

dt
=−Cl ⋅C−Vmax where Vmax=Vc ksyn

(26)
Vmax

Cl
≫Kss or

ksyn

ke(C)

≫Kss

(27)Ccrit=
Vmax

Cl
=

ksyn

ke(C)
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target engagers or cytokines where the doses are much 
lower.7,12

DISCUSSION

In practice, Ccrit is a useful quantity. We list a few applica-
tions below.

One application of Ccrit is in providing an initial esti-
mate for Vmax or ksyn from a graphical inspection of the 
data. For large, i.v. doses, Cl can be estimated by non-
compartmental analysis by computing the area under 
the curve (AUC)0–∞ for a single dose and then computing  
Cl = Dose/AUC0-∞. Then, Ccrit can be estimated from 
a graph of the PK and Eq. 14 is then applied to get 
Vmax = Ccrit · Cl or ksyn = Ccrit · Cl/Vc.

Another application is that when fitting a population PK 
model, there may be patients who have similar PK above 
Ccrit (and, thus, similar Cl) but different Ccrit levels. When this 
is observed, we have found that a random effect on Vmax 
was needed to capture the intersubject variability in the low 
concentration data.

Finally, Ccrit is also useful in understanding the iden-
tifiability of TMDD models when fit to data of the type 
shown in Figure 1. Here, it has been shown that once 
the linear PK parameters have been identified (say from 
high- dose data) ksyn is the only remaining parameter 
needed to determine Ccrit. Then, given ksyn, KSS is the 
only remaining parameter needed to determine the slope 
of the nonlinearity. Thus, these two parameters are often 
estimable from the nonlinear PK alone. However, other 

parameters of the TMDD model, such as the receptor 
density R0 = ksyn/ke(R) (often assumed to be constant with 
ke(R) = ke(CR)) is often not identifiable with PK data alone, 
as previously reported.10,11

One key assumption for the Ccrit estimate to apply is 
that initially, the drug concentration is large so that the 
nonlinear elimination term initially has a negligible contri-
bution to the PK curve. If this assumption does not hold, 
there may be no kink and hence no Ccrit. In addition, there 
may be a kink, but if the dose is low enough such that the 
nonlinear component already contributes significantly to 
the elimination, Ccrit as calculated here will not describe 
the kink. In the extreme case that Cl → 0 for a drug with 
only saturable elimination, Ccrit → ∞ and is essentially 
unobservable. Thus Ccrit as defined here is no longer of 
practical value in scenarios where the saturable route of 
elimination dominates for all observable drug concen-
trations, as is the case for drugs that are given at low 
doses, such as bispecific target engagers and cytokines. 
To describe the kink in the PK curve in these scenarios 
(shown in more detail in the Supplementary Material) an 
alternative definition of Ccrit would be needed. Ccrit is of 
its greatest utility for mAbs (or other drugs) given at suf-
ficiently high doses, such that both linear and nonlinear 
elimination phases are observable.

In summary, when developing antagonists, it is often 
the goal to pick a dosing regimen where the drug con-
centration stays above Ccrit. In this article, we have de-
veloped a simple formula for this critical concentration:  
Ccrit = Vmax/Cl = ksyn/ke(C).

Figure 5 Mavrilimumab one- compartment Michaelis- Menten model (MM; solid line) and target- mediated drug disposition 
(TMDD; dashed line) model, in which the base parameter values are in Table 1 and each plot shows a sensitivity analysis where 
the parameters in the title is changed from 0.1- fold to 10- fold. The dot shows critical concentration. For the TMDD model, 
ksyn = Vmax/Vc, Kss = KM
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