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Abstract 

Purpose: To investigate the feasibility of automatic quantification of bone marrow 
edema (BME) on MRI of the wrist in patients with early arthritis. 
 
Methods: For 485 early arthritis patients (clinically confirmed arthritis of ≥ 1 joint, 
symptoms for < 2 years), MR scans of the wrist were processed in three automatic 
stages. First, super-resolution reconstruction was applied to fuse coronal and axial 
scans into a single high-resolution three-dimensional image. Next, the carpal bones 
were located and delineated using atlas-based segmentation. Finally, the extent of 
BME within each bone was quantified by identifying image intensity values 
characteristic of BME by fuzzy clustering and measuring the fraction of voxels 
with these characteristic intensities within each bone. Correlation with visual BME 
scores was assessed through Pearson correlation coefficient. 
 
Results: Pearson correlation between quantitative and visual BME scores across 
485 patients was 𝑟𝑟 = 0.83, 𝑃𝑃 < 0.001. 
 
Conclusion: Quantitative measurement of BME on MRI of the wrist has potential 
to provide a feasible alternative to visual scoring. Complete automation requires 
automatic detection and compensation of acquisition artifacts. 
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Introduction 
The presence of bone marrow edema-like abnormalities (BME) has been shown to 

be a strong predictor of radiographic progression in rheumatoid arthritis (RA) 

patients [1–4], and is therefore an important biomarker in early arthritis. Evaluation 

of BME is done on MRI, where it is visually scored based on the Outcome 

Measures in Rheumatology RA-MRI Scoring (RAMRIS) system [5,6]. This 

scoring method requires a trained reader to visually estimate the volume of BME. 

Such estimates are challenging and time-consuming because of the need to assess 

multiple imaging planes and slices and are inherently undermined by the 

simultaneous contrast effect [7–9] of the human visual system, which causes the 

reader to perceive the same image intensity value differently depending on 

surrounding background intensities. 

An automatic and quantitative approach to evaluating BME on MR scans 

could overcome the limitations of visual scoring by offering high-precision 

measurements derived directly from three-dimensional (3D) image data. It could 

alleviate the time burden of training and manual scoring for clinical researchers and 

could facilitate the use of MRI in drug evaluation studies, where employing a 

trained team of readers is costly.  

Several previous studies on BME quantification in the wrist joint [10–12] 

relied on a semi-automatic method proposed by Li et al. [13]. However, this 

technique requires an expert to manually delineate non-edema and edema regions 

of interest within every bone that needs to be evaluated. These studies were also 

limited to a small sample size of fewer than 20 subjects. One related study focuses 

on fully automatic BME quantification in the knee joint [14], but it is not directly 

clear how to extend the bone segmentation method [15] to a joint with more than 

two bones, as is the case in the wrist.  

In the work presented here, we developed an automatic framework for 

measuring the fraction of bone volume affected by BME in the eight carpal bones 

of the wrist joint. In contrast to previous methods, we used atlas-based 

segmentation to automatically locate and delineate the carpal bones. Our aim was 
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to investigate the feasibility of BME quantification through such atlas-based 

approach and assess the correlation between quantitative measurements and visual 

BME scores in a large cohort of early arthritis patients. 

Methods 
Patients 

A total of 573 early arthritis patients from the Leiden Early Arthritis Clinic (EAC) 

cohort [16] (mean age, 54.7 years; age range, 18.1–87.9 years) were studied: 354 

female (mean age, 53.0 years; age range, 18.7–85.3 years) and 219 male (mean 

age, 57.5 years; age range, 18.1–87.9 years) patients. Inclusion required clinically 

confirmed arthritis by physical examination in ≥ 1 joint and symptom duration of 

< 2 years. MR scans were obtained for the wrist joint of the most painful side (or 

the dominant side in cases of equally severe symptoms on both sides). The study 

was approved by the institutional medical ethics committee and all participants 

provided written informed consent. 

MRI sequences 

The wrist joint was scanned with an ONI MSK Extreme 1.5T extremity MR 

scanner (GE, Wisconsin, USA) with a 100 mm coil. Before contrast agent 

injection, T1-weighted fast spin-echo (FSE) sequence (T1) was acquired in the 

coronal plane with repetition time (TR) of 650 ms, echo time (TE) of 17 ms, 

acquisition matrix 388×288, echo train length (ETL) 2. After intravenous injection 

of Gd-chelate (gadoteric acid, Guerbet, Paris, France, standard dose of 0.1 

mmol/kg), T1-weighted FSE sequence with frequency-selective fat saturation (T1-

Gd) was obtained in the coronal plane (TR 650/TE 17, acquisition matrix 

364×224, ETL 2) and the axial plane (TR 570/TE 7, acquisition matrix 320×192, 

ETL 2). Coronal sequences were acquired with a slice thickness of 2 mm and a 

slice gap of 0.2 mm. Axial sequences were acquired with a slice thickness of 3 mm 

and a slice gap of 0.3 mm. The use of a T1-Gd sequence instead of a T2-weighted 

fat-saturated sequence is a validated modification that has been shown to perform 
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equally well in the depiction of BME and allows for a faster scanning protocol 

[17,18], which in turn reduces patient discomfort. Safety risk was minimized to the 

degree possible by the use of a macrocyclic contrast agent [19,20].  

Visual scoring of BME 

BME was assessed in line with the definitions proposed by RAMRIS [5] with 

validated modification of substituting T2-weighted fat-saturated sequence with T1-

Gd sequence [17,18]. BME was independently scored by two trained readers who 

were blinded to clinical data on a 0–3 scale based on the estimated fraction of 

affected bone volume: 0, no BME; 1, 1–33% of bone edematous; 2, 34–66%; 3, 

67–100%. The within-reader intra-class correlation coefficients (ICCs) for the total 

inflammation score were 0.98 and 0.93; the between-reader ICC was 0.95. The 

mean BME score of the two readers was considered.  

Patients for which at least one reader marked one or more bones as 

unscorable (typically due to fat suppression issues) were excluded (𝑛𝑛 =11). 

Patients whose T1-Gd images suffered from incomplete fat suppression, but still 

considered scorable by readers based on T1 images showing low signal intensity in 

the matching areas with BME on T1-Gd were retained. 

Quantitative image analysis framework 

Our automatic framework consisted of three stages. First, super-resolution 

reconstruction was applied to fuse coronal and axial T1-Gd scans into a single 

high-resolution 3D image. Next, the carpal bones were located and delineated 

using atlas-based segmentation. Finally, the extent of BME within each bone was 

quantified by identifying image intensity values characteristic of BME by fuzzy 

clustering and measuring the fraction of voxels with these characteristic intensities 

within each bone. Note that since the super-resolution reconstruction step requires 

a coronal and axial scan of the same sequence as input, this stage, and therefore the 

entire framework, could only be applied to T1-Gd scans. Therefore, pre-contrast T1 
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images, which were acquired only in the coronal plane, were not used in the 

quantitative image analysis framework.  

Super-resolution reconstruction 
When readers evaluate BME visually, they make use of two complementary scans: 

one acquired in the coronal plane and the second in the axial plane. This is due to 

the fact that slice thickness in each of the scans (2 mm in coronal; 3 mm in axial) is 

much larger than the in-plane spacing between voxels (~0.2 mm). Therefore, one 

scan compensates for anatomical detail lost in the other scan, allowing the reader to 

perceptually form a more complete assessment of the anatomy. Naturally, this 

raises the question how to simulate such perceptual fusion of two images on the 

computer, in order to obtain a single 3D image with isotropic voxels and high 

resolution in all three viewing planes. This type of problem, reconstruction of a 

high-resolution image of an object from multiple low-resolution images of the 

same object, is commonly referred to as super-resolution reconstruction (SRR).  

A variety of SRR methods have been proposed for MRI [21–24]. In this 

study, we applied the method developed by Poot et al. [24]. This algorithm belongs 

to the family of spatial domain SRR methods, which construct a linear model of the 

image acquisition system and reconstruct the high-resolution image by solving a 

system of linear equations. This system is often underdetermined, as in our case, 

and is solved by applying regularization. We used Laplacian regularization with 

parameter 𝜆𝜆 = 0.05. This value was optimized in an experiment by two expert 

radiologists (MR and JLB) to provide satisfactory balance between image 

noise/artifacts and visual clarity of BME, synovial tissue, cartilage, and fluid 

around tendons. Prior to applying SRR, the axial scan was spatially aligned to the 

coronal scan using the Elastix software package [25,26], axial image intensity was 

linearly matched to the coronal image intensity, and the field of view of both 

images was restricted to the overlapping physical space between the two scans. 

Figure 1 shows an example of applying SRR to a pair of coronal and axial scans. 
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Figure 1. Coronal, axial, and super-resolution images (top to bottom rows, respectively) 
and their coronal, axial, and sagittal viewing planes (left to right columns, respectively). 
The original scans exhibit high resolution only in one plane, while the super-resolution 
image exhibits high resolution in all three planes. 

Segmentation of carpal bones 
The carpal bones were located and delineated using atlas-based segmentation 

(ABS) [27]. The atlas consisted of 13 early arthritis patients. For each atlas patient, 

the carpal bones were manually segmented in the coronal and axial T1-Gd images, 

yielding two segmentation images. The voxels of these manual segmentation 

images were assigned an integer bone label value ranging from 1 to 8 in locations 

corresponding to one of the eight carpal bones, or otherwise the value 0 in 

locations outside the bones. Then, separately for each bone, the two manual 

segmentation images were fused using SRR. Voxels with values above 78% of the 
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bone label value were assigned the bone label value, and the remaining voxels were 

zeroed to discard noise. The resulting eight images were superimposed to obtain 

the complete segmentation image in high-resolution space.  

The first phase of the ABS routine consisted of image registration between 

each of the 13 atlas images and the target image being segmented. Image 

registration (using Elastix [25]) was done in two stages [28]: first, a similarity 

mapping to account for global translation, rotation, and scaling, followed by a B-

spline mapping to account for local deformations. After spatially mapping carpal 

bone segmentations from every atlas image onto the target image, a majority vote 

was applied across all mappings, determining whether a voxel was labeled as 

background or as one of the carpal bones.  

It should be noted that all atlas images contained the right wrist joint. For 

segmentation of the left wrist, atlas images were horizontally mirrored prior to 

registration. In order to avoid biased measurements, patients that were part of the 

ABS atlas were excluded from optimization and validation phases. 

Assessment of segmentation accuracy 
To assess the accuracy of ABS, a leave-one-out cross-validation was performed. In 

each of the 13 runs, 12 out of 13 atlas images would constitute the atlas set, and the 

remaining image would be used as the target image to be segmented. The result 

was validated against manual segmentation of the coronal T1-Gd image. 

Segmentation accuracy was evaluated by computing precision and recall rates for 

each carpal bone. Here, precision rate refers to the fraction of voxels segmented by 

ABS that overlap with the manual bone segmentation, while recall rate refers to the 

fraction of voxels within the manual bone segmentation that were correctly 

segmented by ABS. 

BME quantification 
BME is characterized by high signal intensity on T1-Gd images due to contrast 

enhancement and the suppressed normal fatty bone marrow. The precise intensity 

values vary per acquisition, depending on the strength of contrast enhancement and 
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fat suppression. The variation of these values is further broadened by inherent 

magnetic field inhomogeneities of the MR scanner. To account for these 

acquisition-specific intensity ranges of edematous vs. non-edematous bone 

marrow, fuzzy C-means clustering [29,30] was applied to the intensity values of all 

voxels in each image, assuming two clusters. This yields two probability map 

images (one per cluster) where each voxel contains the probability of that voxel 

belonging to the respective cluster. Let C2 be the cluster whose center value is the 

higher of the two computed cluster centers. As Figure 2 illustrates, high 

probabilities (bright voxels) within the C2 probability map correspond to locations 

of high fluid content, such as BME and synovium. 

For each carpal bone, the fraction of bone affected by BME was estimated as 

the fraction of voxels (out of the total number of voxels within the bone’s 

segmentation) whose probability of belonging to C2 was higher than the threshold 

value 𝑇𝑇𝐶𝐶2 (numeric value optimized below). The resulting quantitative BME 

measurement (BME-QM) takes any fractional values between 0 and 1. 

Optimization 

In order to optimize the 𝑇𝑇𝐶𝐶2 threshold parameter based on correlation with visual 

BME scores, a training set of patients was defined. The number of patients with 

low-moderate BME in our cohort is much larger than the number of patients with 

severe BME. Therefore, random sampling of the cohort does not guarantee 

inclusion of patients with severe BME in the population sample. To ensure that 

patients with high degree of BME were represented in the training set, we 

categorized a set of 468 patients by the maximum visual BME score (𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥) across 

the carpal bones. Four sampling categories were defined corresponding to four 

intervals within 𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥 range. Table 1 lists the defined categories and the number of 

patients that fall into each category. Next, 15 patients were randomly selected from 

each category to form a training set of 60 patients.  
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Table 1. Training set sampling categories 

Patient category index 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎 interval Number of patients 

0 𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥 = 0 189 

1 0 < 𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 1 208 

2 1 < 𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 2 42 

3 2 < 𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 3 29 

Note: Random sampling across all categories would form a training set that mainly consists 
of patients with 𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 1. In contrast, randomly selecting 15 patients from category 3, for 
example, guarantees that the training set will include 15 patients in which at least one bone 
received a visual BME score greater than 2. Thus, random sampling from individual 
categories helps ensure 𝑇𝑇𝐶𝐶2 is optimized with respect to the entire range of the visual BME 
score. 
 

 
Figure 2. SRR image of the wrist (a), its C2 probability map image (b), and C2 image with 
carpal bone segmentation overlay from ABS (c). 
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To minimize the influence of acquisition artifacts and segmentation errors on 

threshold optimization, three patients whose MR scans suffered from incomplete 

fat suppression and one patient for which ABS failed were excluded from the 

obtained training set. This brought the final training set size to 56 patients. The 

optimal value of 𝑇𝑇𝐶𝐶2 was found by maximizing the Pearson correlation coefficient 

𝑟𝑟 between the sum of visual BME scores across all carpal bones and the sum of 

BME-QM across all carpal bones. 

Validation 

After optimizing and locking the value of 𝑇𝑇𝐶𝐶2, the method was validated on 502 

patients that were not part of the training set. 

Statistical analysis 

The Pearson correlation coefficient 𝑟𝑟 between the sum of visual BME scores across 

all carpal bones and the sum of BME-QM across all carpal bones was evaluated. 𝑃𝑃-

values below 0.05 were indicative of statistical significance. MR scans that 

suffered from incomplete fat suppression were noted and excluded from the 

correlation computation. Scans with other acquisition artifacts, such as noise 

patterns and incomplete field of view were excluded from the analysis. Patients in 

which one or more bones were not segmented by ABS yielded undefined values for 

BME-QM. Since undefined values cannot be included in the correlation 

computation, these patients were excluded from statistical analysis. The statistics 

were computed using MATLAB R2015b (MathWorks, Inc.). 

Results 
Assessment of segmentation accuracy 

The mean bone-level recall and precision rates of ABS with respect to manual 

segmentations across 13 patients are shown in Figure 3. Recall rates were lowest in 

the pisiform (mean of 0.58 ± 0.09 SD) and highest in the capitate (mean of 0.82 ± 

0.03 SD). Precision rates were high in all bones, with mean values ranging from 

0.92 to 0.96 and SD values ranging from 0.02 to 0.05. 
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Figure 3. Mean (± SD) bone-level recall and precision rates of ABS with respect to manual 
segmentations across 13 patients. 

Optimization 

The maximum Pearson correlation (𝑟𝑟 = 0.86, 𝑃𝑃 < 0.001), over 56 training set 

patients, between the sum of visual BME scores across all carpal bones and the 

sum of BME-QM across all carpal bones was achieved at threshold value 𝑇𝑇𝐶𝐶2 = 

0.83 (Figure 4). The scatter plot of the data is shown in Figure 5.  

 
Figure 4. Pearson correlation coefficient 𝑟𝑟, over 56 training set patients, between the sum 
of visual BME scores across all carpal bones and the sum of BME-QM across all carpal 
bones, as a function of 𝑇𝑇𝐶𝐶2. 
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Figure 5. Scatter plot of sum of BME-QM across all carpal bones vs. sum of visual BME 
scores across all carpal bones for 56 training set patients. Each data point represents a 
single patient. 𝑟𝑟 = 0.86, 𝑃𝑃 < 0.001, 𝑇𝑇𝐶𝐶2 = 0.83. Dashed black line represents linear 
regression fit. 

Validation 

Out of 502 patients, BME-QM was undefined in six patients due to failed 

segmentation. Three patients were excluded due to noise artifacts (𝑛𝑛 = 2) and 

incomplete field of view (𝑛𝑛 = 1) in their images. MR scans of eight patients 

suffered from incomplete fat suppression. For the remaining 485 patients, the 

Pearson correlation between the sum of visual BME scores across all carpal bones 

and the sum of BME-QM across all carpal bones was 𝑟𝑟 = 0.83, 𝑃𝑃 < 0.001. The 

scatter plot of the data is shown in Figure 6. Most patients formed clusters of 

steadily increasing BME-QM values, as the visual score value increased. Some 

outliers from this general trend were clearly visible for visual score value of 0 and 

BME-QM values between 1 and 2. These high quantitative values were due to 
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inaccurate segmentation of the carpal bones. Several patients whose images 

suffered from incomplete fat suppression produced BME-QM values that were 

largely deviating from the observed regression fit. 

 
Figure 6. Scatter plot of sum of BME-QM across all carpal bones vs. sum of visual BME 
scores across all carpal bones for 493 validation set patients. Each data point represents a 
single patient. Linear regression fit (dashed black line) and Pearson correlation 𝑟𝑟 were 
computed over 485 patients whose MR scans did not suffer from incomplete fat 
suppression (circular data points): 𝑟𝑟 = 0.83, 𝑃𝑃 < 0.001, 𝑇𝑇𝐶𝐶2 = 0.83. 

Discussion 
In this study, we investigated the feasibility of automatic quantification of BME on 

MRI of the wrist in patients with early arthritis through an atlas-based approach. 

We chose to focus on the carpal bones, since they provide a complex multi-object 

scenario for exploring the feasibility of an atlas-based quantification framework. 

The advantage of this framework is that it can be straightforwardly expanded to 

other areas of the wrist and other joints by adding these areas of interest to the 

atlas. Validation results across 485 early arthritis patients indicated good 
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correlation between BME-QM and visual BME scores. It should be noted that 

perfect correlation is inherently not achievable because of the coarse grading scale 

of the visual score and the fine grading scale of BME-QM.  

Our training strategy helped ensure that during validation BME-QM 

correlated well across the entire range of the visual BME score. The fact that the 

correlation curve in Figure 4 is relatively flat for 𝑇𝑇𝐶𝐶2 values between 0.75 and 0.9 

suggests that there is a range of 𝑇𝑇𝐶𝐶2 values in this interval that result in good 

agreement between quantitative and visual scores. Furthermore, since BME-QM 

measures the fraction of voxels with C2 probability above 𝑇𝑇𝐶𝐶2, this seems to 

indicate that locations considered as BME in visual scoring often result in C2 

probability values around 0.9. We also examined the effect of a smaller training set 

on 𝑇𝑇𝐶𝐶2 optimization (data not shown), with five patients randomly selected from 

each 𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥 category forming a training set of 20 patients. We observed a similarly 

stable high correlation for 𝑇𝑇𝐶𝐶2 values between 0.75 and 0.9, suggesting that the 

optimization step is not overly sensitive to training set size, as long as patients from 

all categories of BME severity (𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥) are represented in the training data. 

The time required to execute the BME-QM framework for one patient on an 

Intel® Xeon® E5-1620 v3 CPU was ~58 min (SRR, ~20 min; ABS, ~35 min; 

BME quantification ~3 min). ABS is the most time-consuming step, but it can be 

accelerated 10-fold by running image registrations between all atlas images and the 

target image in parallel. Since registrations are independent of each other, this can 

be easily achieved given sufficient computing power. However, in large cohort 

studies, where evaluation of image data is often carried out days or weeks after the 

image is acquired, such acceleration may be irrelevant; an automatic framework 

can be executed immediately after image acquisition in an integrated fashion, thus 

ensuring quantitative results are available by the time a research project enters the 

evaluation phase. 

ABS provided satisfactory segmentation for the vast majority of patients. In 

practice, failed segmentation cases will require manual adjustment by an expert in 

order for BME-QM to be computed. Over-segmentation of bones or shifted 
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segmentations that include synovium voxels increase the value of BME-QM due to 

contrast enhancement in the synovium. It is preferable to slightly under-segment 

the bone to ensure the exclusion of synovium while retaining most of the bone 

marrow within the segmentation. That said, significant under-segmentation may 

lead to an upward bias in BME-QM. Quantitative assessment of ABS accuracy in 

13 patients revealed the tendency of ABS to under-segment bones (mid-range 

recall rates and high precision rates). Therefore, the current framework may raise 

false alarms when bone volume is under-estimated in the presence of moderate 

BME. The mid-range recall rates also suggest unwanted variability in BME-QM 

due to incomplete bone segmentation. The fact that the lowest recall rates were 

observed in the pisiform while the highest in the capitate, is likely due to the fact 

that the pisiform is the smallest of the carpal bones while the capitate is the largest 

of the carpal bones. An additional challenge during registration is the varied 

intensity and pattern of BME across patients. It is therefore advisable to avoid 

using very fine grid spacing during the B-spline registration step, since alignment 

between images on a coarser scale should be less sensitive to these local variations. 

Another potential pitfall is inclusion of erosions in the segmentation result. 

Erosions may contain high intensities that will mistakenly contribute to the value of 

BME-QM. To address these possible pitfalls and improve bone-level recall rates, 

an automatic refinement step should follow ABS in the future. In addition, to 

ensure robustness of the atlas to variations in MRI acquisition protocols and 

scanners at different sites, it may be necessary to form a larger atlas set consisting 

of sub-atlases of wrist scans acquired under different echo/repetition times and 

magnetic field strengths. The most suitable sub-atlas can then be automatically 

identified based on the acquisition parameters of a specific target image. 

Incomplete fat suppression during acquisition of MR scans has an adverse 

effect on the accuracy of BME-QM. Bone marrow fat signal that is not properly 

suppressed results in high intensities that are mistaken for edema voxels by the 

clustering algorithm. Fat suppression quality requirements for BME-QM are higher 

compared to visual scoring. This is due to the availability of pre-contrast image 
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data in visual scoring and pattern recognition during visual assessment of increased 

signal intensity secondary to insufficient fat suppression. Although fat suppression 

issues are relatively rare, they must be identified prior to applying BME-QM to 

reduce false positives. The possibility of identifying and compensating fat 

suppression issues automatically should be investigated. In addition, more robust 

fat suppression techniques that are less sensitive to bulk susceptibility, such as 

Dixon techniques, may be beneficial when BME-QM is used. 

A limitation of the current study is that the quality of carpal bone 

segmentation in training and validation set patients was judged subjectively. 

Quantitative assessment of segmentation accuracy was not possible, since no 

ground truth, manual segmentations were available for these patients. 

Quantification of segmentation accuracy would allow to supplement the BME 

measurement with a confidence measure. Another limitation is that pre-contrast 

image data could not be included in the framework, since pre-contrast T1 scans 

were acquired only in the coronal plane, while SRR requires a coronal and axial 

scan of the same sequence as input. Therefore, a straightforward voxel-to-voxel 

comparison between SRR T1-Gd images and pre-contrast T1 images was not 

possible. Inclusion of pre-contrast data would allow to explore a subtraction 

methodology as means of quantifying BME and could also facilitate the detection 

of fat suppression issues.  

Recently, another framework aimed at automatically quantifying RA-related 

biomarkers, called quantitative RAMRIS (RAMRIQ), was proposed by Bowes et 

al. [31,32] and employed in a treatment effects study by Conaghan et al. [33]. 

These studies focus on measuring change over time, demonstrating higher 

sensitivity of quantitative measurements compared to RAMRIS. In contrast, we 

focused on validation of quantitative measurements at a single time point. In the 

future, it would be interesting to employ BME-QM for measuring change over time 

and evaluate its sensitivity.  
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Conclusion 
We conclude that BME-QM has potential to provide a feasible alternative to visual 

scoring of BME on MRI of the wrist in patients with early arthritis. Complete 

automation requires further refinement of carpal bone segmentation and automatic 

detection and compensation of acquisition artifacts. Future work should also add 

more locations of interest relevant to RA to the atlas and extend this framework to 

other types of inflammation, such as synovitis and tenosynovitis. These 

developments can save time and manual effort for clinical researchers and help 

assess the value of MRI both for diagnosing RA and monitoring its treatment.  
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