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2 
Computer-aided evaluation of inflammatory 

changes over time on MRI of the spine in 

patients with suspected axial spondyloarthritis: 

a feasibility study 
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O. Dzyubachyk, B.P.F. Lelieveldt, “Computer-aided evaluation of inflammatory 

changes over time on MRI of the spine in patients with suspected axial 

spondyloarthritis: a feasibility study,” BMC Medical Imaging, 17:55, 2017. 
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Abstract 

Purpose: Evaluating inflammatory changes over time on MR images of the spine 
in patients with suspected axial Spondyloarthritis (axSpA) can be a labor-intensive 
task, requiring readers to manually search for and perceptually align a set of 
vertebrae between two scans. The purpose of this study was to assess the feasibility 
of computer-aided (CA) evaluation of such inflammatory changes in a framework 
where scans from two time points are fused into a single color-encoded image 
integrated into an interactive scoring tool. 
 
Methods: For 30 patients from the SPondyloArthritis Caught Early (SPACE) 
cohort (back pain ≥ 3 months, ≤ 2 years, onset < 45 years), baseline and follow-up 
MR scans acquired 9–12 months apart were fused into a single color-encoded 
image through locally-rigid image registration to evaluate inflammatory changes in 
23 vertebral units (VUs). Scoring was performed by two expert readers on a (-2, 2) 
scale using an interactive scoring tool. For comparison of direction of change 
(increase/decrease) indicated by an existing reference, Berlin method scores ((-3, 3) 
scale) of the same MR scans from a different ongoing study were used. The 
distributions of VU-level differences between CA readers and between the CA and 
Berlin methods (sign of change scores) across patients were analyzed descriptively. 
Patient-level agreement between CA readers was assessed by intraclass correlation 
coefficient (ICC). 
 
Results: Five patients were excluded from evaluation due to failed vertebrae 
segmentation. Patient-level inter-reader agreement ICC was 0.56 (95% CI: 0.22 to 
0.78). Mean VU-level inter-reader differences across 25 patients ranged (-0.04, 
0.12) with SD range (0, 0.45). Across all VUs, inter-reader differences ranged (-1, 
1) in 573/575 VUs (99.7%). Mean VU-level inter-method differences across 
patients ranged (-0.04, 0.08) with SD range (0, 0.61). Across all VUs, inter-method 
differences ranged (-1, 1) in 572/575 VUs (99.5%). 
 
Conclusion: Fusion of MR scans of the spine from two time points into a single 
color-encoded image allows for direct visualization and measurement of 
inflammatory changes over time in patients with suspected axSpA. 
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Introduction 
Evaluating inflammatory changes over time on magnetic resonance (MR) images 

of the spine in patients with suspected axial Spondyloarthritis (axSpA) can be a 

labor-intensive task. Depending on the rheumatologic scoring method that is used, 

readers are often required to assess a set of vertebral units (VUs) in several slices 

[1,2], manually searching for and perceptually aligning the vertebrae between two 

scans. It would be of great benefit to have a computer-aided (CA) method capable 

of automatically localizing and labeling the VUs and spatially aligning scans from 

two time points, so voxel-wise intensity differences could be visualized in a single 

image. 

CA methods involving alignment between multiple images for voxel-wise 

analysis have been extensively applied in the fields of neuroimaging and radiation 

therapy. Examples include voxel-based morphometry for comparison of local 

concentration of gray matter between subjects [3], analysis of multi-subject 

diffusion data for studying brain connectivity [4], and adaptive radiotherapy [5]. 

These studies have demonstrated that CA alignment of medical images can aid 

clinicians with automated biomarker quantification and treatment replanning based 

on anatomical changes that occur over time.  

Spatial alignment of scans from two time points compensates for patient 

posture differences between scanning sessions and allows to overlay the two 

images for visual assessment of changes over time. This is done by computing a 

spatial coordinate mapping between corresponding locations in the two scans, a 

process known as image registration [6]. Generally, this mapping involves a 

geometrically non-rigid correspondence between voxels. This may cause 

physically implausible deformations in rigid anatomical structures, such as bones. 

An efficient solution to this problem was proposed by Dzyubachyk et al. [7] and 

applied to comparative visualization of whole-body MR scans in patients with 

multiple myeloma lesions. The highlight of this approach is that, following a global 

alignment of two time points, a locally rigid (rotation and translation only) 
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alignment is derived for selected regions of interest (ROIs) within bones. This 

ensures that bone rigidity is preserved in the final alignment.  

In the work presented here, we applied the framework of Dzyubachyk et al. 

[7] to comparative visualization of MR images of the spine in patients with 

suspected axSpA. The aim of our study was to assess the feasibility of CA 

evaluation of axSpA inflammatory changes in the spine. This included fusion of 

scans from two time points into a single color-encoded image vividly 

distinguishing areas of increase versus decrease in inflammation over time, 

automatic labeling of VUs, and an interactive scoring module whose entry fields 

are activated/deactivated in synchronization with the VU selected by the reader in 

the image. 

Methods 
Patients 

A total of 30 patients from the SPondyloArthitis Caught Early (SPACE) cohort 

were included in this feasibility study. The SPACE cohort has been described 

extensively before [8]. In short, the SPACE cohort is an ongoing cohort started in 

January 2009, including patients aged 16 years and older with chronic back pain 

(duration ≥ 3 months, ≤ 2 years, onset < 45 years). All patients underwent a 

diagnostic work-up at baseline, consisting of history taking, physical examination, 

laboratory tests, and imaging (MR imaging (MRI) and plain radiographs). Patients 

fulfilling the Assessment of SpondyloArthritis (ASAS) axSpA criteria [9,10] and 

patients with possible axSpA were included for follow-up visits after 3 and 12 

months (including MRI). Possible axSpA was defined as the presence of at least 

one specific SpA-feature with a high positive likelihood ratio (LR+ above 6) or at 

least two less specific SpA-features (LR+ below 6), but not fulfilling the ASAS 

axSpA criteria [10,11]. 
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MRI sequences 

Patients underwent MRI of the complete spine in two stages (upper and lower 

spine) on a 1.5T MR system (Philips Medical Systems, The Netherlands). The 

acquired sequences were Short Tau Inversion Recovery (STIR) with repetition time 

(TR) 2500 ms, echo time (TE) 60 ms, inversion time 165 ms, acquisition matrix 

304×300, echo train length (ETL) 25, number of averages 3 and T1-weighted 

Turbo Spin-Echo (TR 550/TE 10, acquisition matrix 512×305, ETL 5, number of 

averages 3). Imaging was performed in the sagittal plane with a field of view of 

380×380 mm, slice thickness of 4 mm, and a slice gap of 0.4 mm.  

Vertebrae localization/segmentation/labeling 

For each patient, 23 VUs were automatically localized, segmented, and labeled. A 

VU is defined as the region between the mid-points of two adjacent vertebral 

bodies. For example, VU1 consists of the lower endplate of vertebra C2 and the 

upper endplate of vertebra C3. Hence, VU levels 1–23 cover 24 vertebral bodies 

(C2–S1). Localization and segmentation were carried out using atlas-based 

segmentation [12]. The atlas set consisted of 11 patients from the SPACE cohort 

(no overlap with patients included in evaluation). For each atlas patient, 24 

vertebral bodies (C2 to S1) were manually outlined in the slice closest to the mid-

sagittal plane and the two adjacent slices (a total of three slices). The procedure 

was carried out separately for upper and lower spine images, producing a total of 

two manually segmented images per atlas patient. We chose to approximate each 

vertebral body with a simple polygonal region within the vertebral borders, taking 

the cortex as an anatomical boundary. This choice was motivated by the fact that 

for successful locally rigid alignment of two time points it is preferable to have a 

ROI estimate that under-segments the bone, rather than an estimate that spills over 

into inherently non-rigid neighboring soft tissue. 

The first phase of atlas-based segmentation consisted of image registration 

between each of the 11 atlas patients and the target patient being segmented. Image 

registration was performed using the Elastix software package [13,14]. After 
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spatially mapping vertebrae ROIs from every atlas image onto the target image, a 

majority vote was applied across all mappings to determine whether a voxel was 

part of the background or of one of the vertebrae.  

Labeling of vertebrae voxels in the upper spine image was done sequentially 

from top to bottom, over connected components, with the top-most connected 

component receiving the label “C2,” the following “C3,” etc. Similarly, labeling in 

the lower spine image was done sequentially from bottom to top, with the bottom-

most connected component receiving the label “S1,” the following “L5,” etc. We 

used a 26-connected neighborhood definition for connectivity in 3D. Connected 

components less than 20 voxels in size were considered to be noise and were 

removed. 

Locally rigid inter-time point alignment 

In what follows, let us consider a pair of MR scans of a single patient and, without 

loss of generality, refer to one of the scans as “Time Point 1 (TP1)” and the second 

scan as “Time Point 2 (TP2).” According to the framework proposed by 

Dzyubachyk et al. [7], locally rigid alignment of two images is derived from a 

global non-rigid alignment of this image pair. We used the Elastix software 

package [13,14] to globally align TP2 to TP1. The registration yielded a 

deformation field specifying for each physical position in TP1 the corresponding 

physical position in TP2. Next, for each VU, the landmark transform [15] was used 

to estimate a locally rigid alignment between the VU region in TP1 (specified by 

the atlas-based segmentation result) and the corresponding physical region in TP2 

(specified by the deformation field) [7]. This ensured that spatial correspondence 

between voxels within the VU in TP1 and TP2 was restricted to translation and 

rotation, preserving bone rigidity.  

It is important to note that the described method can be equivalently applied 

in the reverse direction, by globally aligning TP1 to TP2, and subsequently using 

VU segmentations from TP2. Thus, in order to align two scans in a locally rigid 

manner, it is sufficient to segment and label vertebrae in one of the two scans.  
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Color-encoded fusion of time points 

After locally aligning two time points on the VU level, differences in intensity (e.g. 

inflammation) between corresponding voxels were visualized through color-

encoded fusion of the two scans. First, intensity values of TP1 were color-mapped 

to orange color space (RGB triple {255,128,0}), and intensity values of TP2 were 

color-mapped to light blue color space (RGB triple {0,127,255}). The fusion image 

was then obtained by voxel-wise superposition of the two color-mapped images 

[7]. Since orange and light blue are complementary colors, areas where no changes 

occurred between the two time points (TP2 intensity = TP1 intensity) are displayed 

in shades of gray. On the other hand, an increase in inflammation over time (TP2 

intensity > TP1 intensity) is displayed in shades of light blue (Figure 1). In the 

opposite case, a decrease in inflammation over time (TP2 intensity < TP1 intensity) 

is displayed in shades of orange. In addition to its complementary nature, the 

choice of orange and light blue is motivated by the fact that these two colors can be 

perceived even by readers with color vision deficiency [7]. No intensity 

standardization was applied to original images prior to color-encoded fusion. 

Evaluation of inflammatory changes 

Two experienced readers (RvdB and ZEZ) independently evaluated inflammatory 

changes between MR scans of the spine (STIR only), acquired 9–12 months apart, 

directly from the color-encoded fusion image. The choice of using only STIR 

images for CA scoring was motivated by our focus on inflammatory lesions and 

the fact that automatic alignment of T1 images to STIR images requires additional 

image registration steps, which would introduce additional sources of error. The 

readers were blinded to the original images and their time order, as well as patient 

and clinical characteristics. Each VU was assigned a score ranging from -2 

(dramatic decrease of inflammation), via 0 (no change), to +2 (dramatic increase of 

inflammation), reflecting net change in the degree of inflammation within the VU. 

Navigation through the images and evaluation were carried out using an interactive 

software tool that we implemented in MeVisLab 2.7.1 (MeVis Medical Solutions,  
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Figure 1. Color-encoded fusion of two MR scans of the same subject acquired at two 
different time points. Inflammation increase (blue arrow) in VU21 and decrease (orange 
arrow) in VU22 in the second time point (c) compared to first time point (b) are displayed 
in blue and orange, respectively, in the color-encoded fusion image (a). In this example, the 
locally rigid alignment is applied to VU21, indicated by the yellow line in (a). 

Germany) [16]. The tool consists of two windows: the comparative visualization 

module (Figure 2) and the scoring module (Figure 3). 

For comparison of direction of change (increase/decrease) indicated by an 

existing reference, Berlin method [1] scores of the same pair of MR scans from a 

different ongoing SPACE cohort study at our institution were used. The MR scans 

(STIR and T1) were independently evaluated by two experts (MdH and PACB) 

according to the Berlin method [1], yielding status scores for each of the time 

points. Each VU was assigned a score ranging from 0 to 3 reflecting the fraction of 

bone volume affected by bone marrow edema: 0, normal; 1, < 25% VU edematous; 

2, 25–50%; 3, > 50%. The readers were blinded to the time order of the images, as 

well as patient and clinical characteristics. Changes in inflammation over time were 

calculated as differences in status scores after de-blinding the time order of the MR 

scans. 
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Figure 2. Comparative visualization module. The module displays the color-encoded 
fusion image and allows the user to specify the VU of interest in the VU selection field at 
the bottom left of the window, which will trigger locally rigid alignment of two time points 
for that VU. A visual indication for the position of the VU in the image is provided to aid 
navigation (yellow line next to VU 21). 

Statistical analysis 

For each of the 23 VU levels, the distributions of VU-level inter-reader and inter-

method differences across patients were analyzed descriptively. For inter-reader 

differences, the VU-level difference was computed between change scores 

assigned to the VU by the two CA readers. For inter-method differences, the focus 

was on the direction of change indicated by each method, and therefore, VU-level 

difference was computed between the sign of the CA change score (mean of two 

readers) and the sign of the Berlin change score (mean of two readers), where the 

sign function takes the value -1 in case of negative change, +1 in case of positive 

change, and 0 in case of no change.  

Agreement between CA readers was assessed on the patient level (change 

summed across VUs of each patient) by computing intraclass correlation 

coefficient (ICC, two-way mixed, single measures, absolute agreement definition). 
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The statistics were computed using MATLAB R2015b (The MathWorks, Inc., 

USA) and IBM SPSS Statistics 23 (IBM Corporation, USA). 

 

Figure 3. Scoring module. The module acts as an interactive scoring sheet, consisting of 23 
panels representing the VUs. Every panel contains a group of option buttons (only one of 
the options can be selected) through which the reader assigns a change score to the VU, as 
well as a checkbox to indicate the presence of inflammation in cases of no net change. Only 
one VU panel is active at any given moment. The choice of VU in the comparative 
visualization module activates the corresponding panel in the scoring module, while 
deactivating panels of the remaining 22 VUs. This ensures that one VU is not mistaken for 
another while filling out the interactive scoring sheet. 

Results 
In 18/30 patients, atlas-based segmentation provided satisfactory segmentation and 

correct labeling of all 23 VUs in at least one of the time points (as explained above, 

in order to align two scans in a locally rigid manner, it is sufficient to segment and 

label vertebrae in one of the two scans). In seven patients, failure to segment the 

lowest vertebra in the upper spine image and/or the highest vertebra in the lower 

spine image, resulted in lack of segmentation for one VU (frequently 

corresponding to the levels Th9–Th11). The segmentations for these VUs were 

added by manual correction. Five patients were excluded from further evaluation 

due to inaccurate alignment with atlas images that led to missing vertebrae 

segmentations and incorrect labeling of VUs. Thus, a total of 25 patients (and 
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hence 575 VUs) were evaluated. Baseline patient characteristics and descriptive 

statistics of Berlin and CA scores at baseline and over time are presented in Table 

1. As demonstrated by baseline characteristics, it should be pointed out that most 

patients had low levels of inflammation. 

Table 1. Baseline patient characteristics and descriptive statistics of Berlin and CA scores 

of the 25 patients evaluated in the study 

Baseline patient characteristics   

Characteristic 

 

Patients (𝒏𝒏 = 25)  

Age at inclusion in years, mean (SD) 31.7 (8.3)  

Male, n (%) 12 (48)  

Duration of back pain in months, mean (SD) 14.4 (8.0)  

IBP, n (%) 19 (76)  

HLA-B27 positivity, n (%) 15 (60)  

Elevated CRP, n (%) 6 (24)  

Sacroiliitis on MRI (ASAS definition), n (%) 8 (32)  

Sacroiliitis on radiograph, n (%) 3 (12)  

Positive MRI (ASAS definition), n (%) 2 (8)  

ASAS classification positive, n (%) 14 (56)  

   

Berlin and CA scores descriptive statistics   

Variable 

 

Berlin method 

(reader 1 / reader 2) 

CA method 

(reader 1 / reader 2) 

VU-level score at baseline, median (range) 0 (0,1) / 0 (0,1) NA 

VU-level score at follow-up, median (range) 0 (0,1) / 0 (0,1) NA 

Patient-level score at baseline, median (range) 0 (0,5) / 0 (0,3) NA 

Patient-level score at follow-up, median (range) 1 (0,5) / 0 (0,4) NA 

Change in VU-level score, median (range) 0 (-1,1) / 0 (-1,1) 0 (-1,2) / 0 (-2,2) 

Change in patient-level score, median (range) 0 (-2,3) / 0 (-1,2) 0 (-3,3) / 0 (-11,5) 
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Inter-reader differences between CA readers 

VU-level differences between CA readers’ change scores are shown in Figure 4a. 

Mean VU-level differences across patients ranged from -0.04 to 0.12 with standard 

deviation (SD) range (0, 0.45). Most differences were observed in the lower 

thoracic spine and the lumbar spine. In 21/23 VU levels, differences ranged 

between -1 and 1 across all patients. In 2/23 VU levels, a difference of 2 was 

observed in one patient. In total, across all patients, VU-level differences ranged (-

1, 1) in 573/575 VUs (99.7%). On the patient level, the ICC between the two CA 

readers was 0.56 (95% confidence interval (CI): 0.22 to 0.78), indicating moderate 

agreement between readers. 

 
Figure 4. VU-level difference between CA readers’ change scores (a) and VU-level 
difference between sign of CA and Berlin change scores (b). Exact difference values are 
shown in blue (size of bubble data points is proportional to the occurrence of the difference 
value across 25 patients). Mean VU-level differences across 25 patients are shown in red. 
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Inter-method differences between CA and Berlin methods 

VU-level differences between the direction of change indicated by the CA and 

Berlin methods are shown in Figure 4b. Mean VU-level differences across patients 

ranged from -0.04 to 0.08 with SD range (0, 0.61). Most differences were observed 

in the lower thoracic spine and the lumbar spine. In 21/23 VU levels, differences 

ranged between -1 and 1 across all patients. In 1/23 VU levels, a difference of 2 

(positive Berlin change, negative CA change) was observed in one patient. In 1/23 

VU levels, a difference of -2 (negative Berlin change, positive CA change) was 

observed in one patient. In total, across all patients, VU-level differences ranged (-

1, 1) in 572/575 VUs (99.5%). Differences of precisely -1 or 1 (change detected 

only by one of the two methods) were observed in 40/575 VUs, and among those in 

33/40 VUs the change was detected by the CA method while Berlin score indicated 

zero change. Figure 5 shows examples of VU-level differences between the two 

methods.  

 

Figure 5. Examples of VU-level inter-method differences. Top row: lesion area (orange 
arrow) received a CA change score of −1, but a Berlin change score of 0, because of being 
considered a degenerative lesion (status scores = 0). Bottom row: lesion area (blue arrow) 
received a CA change score of 1, but a Berlin change score of 0, because of zero Berlin 
status scores. 
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Discussion 
In this study, we assessed the feasibility of CA evaluation of inflammatory changes 

on MR scans of the spine in patients with suspected axSpA. Readers agreed that a 

key advantage of CA evaluation is that fusion of two scans acquired at different 

time points into a single color-encoded image allows for direct visualization and 

measurement of inflammatory changes, as opposed to derivation of change scores 

from status scores that measure presence and extent of lesions separately for each 

time point. The results indicate that in nearly all VUs of all patients, VU-level 

differences between CA readers and between the CA and Berlin methods were 

bounded between -1 and 1, ensuring that scores do not offer opposing opinions on 

the direction of inflammatory change (increase versus decrease). The fact that most 

differences occurred in the lower thoracic spine and the lumbar spine is consistent 

with the observation that most inflammatory activity in the spine of early disease 

patients takes place in these regions [17,18]. The majority of non-zero differences 

between the CA and Berlin scores were observed when change was detected by the 

CA method while zero change was indicated by the Berlin method. These 

quantitative results support our qualitative observation that small gradual changes 

in an existing lesion are often not reflected in Berlin status scores, but can be 

readily visualized and measured by the CA method.  

The moderate inter-reader patient-level agreement and difference in the 

range of readers’ scores suggest that the CA grading scale may be defined too 

loosely with respect to affected bone volume, making the score more susceptible to 

subjective interpretation of the degree of change. Readers pointed out that a 

challenging aspect of the CA method is estimation of net inflammatory change in 

VUs with multiple inflammatory lesions. For example, one such VU exhibited 

increase in one quadrant, while exhibiting decrease in another quadrant. The two 

readers had different opinions as to which change was stronger, resulting in 

opposing scores and thus a mean change of zero. One way to overcome such 

discrepancies would be to score change separately for each of the four quadrants, 
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akin to scoring in the Spondyloarthritis Research Consortium of Canada 

(SPARCC) method [2].  

For the purpose of this feasibility study, we made a deliberate decision to 

measure change based only on the color-fused image, while blinding readers to the 

original images. However, the readers noted that in daily practice it would be 

helpful to have the original images (STIR and T1) available next to the color-fused 

image, as this would contribute to a more informative scoring decision. The color-

fused image could then be used as a map that directs the reader’s attention to 

locations of potential inflammatory changes, while the original images would be 

used to make the final judgement about the type and degree of observed change. 

The reader would still benefit from locally rigid alignment between the two time 

points while assessing original images, since the two scans will be aligned such 

that the VU of interest has identical viewing points in both images. Another feature 

that would enhance user experience is stitching of upper and lower spine images 

into a single image. This would offer a more natural workflow, without the need to 

load two separate images for every patient. A simultaneous view of the complete 

spine would also facilitate a more holistic assessment of disease activity.  

This study has several important limitations. The SPACE cohort consists 

only of early disease patients with low levels of inflammation, making it harder to 

study inflammatory changes, since changes were infrequent. Another limitation is 

that it was not possible to provide patient-level inter-method agreement statistics, 

as the scoring methodology and scale range are different, and this would result in 

uninterpretable results. However, the CA method was not designed with the aim of 

replicating the Berlin method, but rather as an independent scoring framework. It is 

of interest to compare the responsiveness of the two methods by quantifying 

sensitivity to change in a population with treatment and placebo patient groups, as 

was previously done for other scoring methods [19]. Assessing responsiveness 

after an effective intervention could provide information on differences in the 

psychometric characteristics of the two scoring methods. This could be addressed 

in a follow-up study. The definition of the CA change score should also provide 
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clear guidelines for the case of degenerative lesions to avoid discrepancies with 

existing methods that do not score these lesions (Figure 5). The lack of intensity 

standardization prior to color-encoded fusion is a potential source of error. 

However, we should note that standardization is also not applied in the long-

established procedure of Berlin method scoring. We sought to explore the 

feasibility of color-encoded fusion without additional image post-processing steps 

that are not present in the Berlin method workflow. Future studies should indeed 

investigate the effect of intensity standardization on change scores of both 

methods. An additional limitation is that CA scoring was performed only using 

STIR images. This differs from the common clinical approach of confirming 

inflammatory lesions observed in STIR images as low intensity areas in T1 images. 

Inclusion of T1 images may improve the robustness of the scoring method. 

Furthermore, it might allow visualization of changes in structural lesions, such as 

fatty lesions. Finally, it should be recognized that since 5/30 patients had to be 

excluded due to failed segmentation and 7/30 segmentations had to be manually 

adjusted, the method is not yet sufficiently robust to be used in practice. We should 

stress, however, that this study did not attempt to solve the problem of vertebrae 

segmentation in MRI. Our goal was to explore the prospect of CA assessment of 

patients with suspected axSpA and thereby provide yet another stimulus for 

development of robust vertebrae segmentation methods for MRI. 

Although this study does not focus on the topic of vertebrae segmentation, 

we can note potential directions for improving the atlas-based segmentation 

framework used in this study. To ensure the applicability of this segmentation 

framework to a variety of MRI acquisition protocols and scanners, it would be 

helpful to construct an atlas consisting of sub-atlases of MR images acquired under 

similar echo/repetition times and magnetic field strengths. Then, prior to 

segmenting a target image, the system would automatically identify the most 

appropriate sub-atlas based on acquisition parameters recorded in the image’s 

DICOM data. Additional improvement in segmentation might be achieved by 

operating with stitched images of the spine, as opposed to separate upper/lower 
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spine images. We have observed that in some cases segmentation was successful in 

one part of the upper/lower pair but failed in the other. Therefore, we hypothesize 

that the more easily matched spine region can “pull” the second spine region into 

its correct position in the target image when stitched. 

Conclusion 
This feasibility study has demonstrated that fusion of MR scans of the spine from 

two time points into a single color-encoded image allows for direct visualization 

and measurement of inflammatory changes over time in patients with suspected 

axSpA. A future study, with similar design to that of Lukas et al. [19], should 

assess the performance of the CA method in patients with a wide range of activity 

at baseline and follow-up, quantifying inter-reader reliability, sensitivity to change, 

and time needed to score each set of MR images. This would also provide a 

comprehensive comparison of the CA method to the Berlin and SPARCC methods.  
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