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When a swollen, thermoresponsive polymer gel is heated in a solvent bath, it expels solvent and deswells.
When this heating is slow, deswelling proceeds homogeneously, as observed in a toroid-shaped gel that changes
volume while maintaining its toroidal shape. By contrast, if the gel is heated quickly, an impermeable layer of
collapsed polymer forms and traps solvent within the gel, arresting the volume change. The ensuing evolution
of the gel then happens at fixed volume, leading to phase separation and the development of inhomogeneous
stress that deforms the toroidal shape. We observe that this stress can cause the torus to buckle out of the
plane, via a mechanism analogous to the bending of bimetallic strips upon heating. Our results demonstrate that
thermodynamic instabilities, i.e., phase transitions, can be used to actuate mechanical deformation in an extreme
thermodynamics of materials.

DOI: 10.1103/PhysRevE.98.020501

The term “extreme mechanics” is often used in reference to
mechanical structures with prescribed instabilities that enable
large deformations and configurations that are hard to achieve
by other means [1]. An example of this is Euler buckling,
which refers to the case of a straight, slender, homogeneous
elastic rod that is compressed at its ends by an applied
stress [Fig. 1(a)] [2]. Below a critical stress, τc, there is a
stable energy minimum corresponding to the deflectionless
equilibrium configuration of a straight rod [Fig. 1(b), dashed
curve]. In contrast, above τc, the energy minimum becomes a
maximum and the straight rod configuration becomes unstable,
with two new minima describing the stable, bent configuration
of the rod [Fig. 1(b), solid curve]; this deformed state is thus
achieved via a mechanical instability above τc.

Experimentally, shape actuation is often realized with poly-
meric materials, such as polymer gels, which are crosslinked
polymer networks immersed in a solvent [3]. These respond
to external stimuli by swelling or deswelling and equilibrate
when the total free energy, consisting of a polymer-solvent
mixing contribution and the entropic elasticity of the polymer
network, is minimized [4]. In a so-called thermoresponsive
gel, the interplay between these two contributions to the free
energy can be adjusted via temperature. Interestingly, if there
are inhomogeneities in the polymer distribution within the
gel, striking swelling patterns [5] can be achieved; these are
oftentimes similar to the topographical features observed in
soft tissues [6–8]. This strategy has also proven useful in
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the design of tunable surface patterns [9] and self-folding
origami [10]. Importantly, in all these instances, the gel swells
quasistatically and is thus equilibrated with the surrounding
solvent bath throughout the process.

However, polymer gels can also exhibit discontinuous
phase transitions between polymer-solvent mixed and segre-
gated phases, corresponding to swollen and deswollen states.
Furthermore, they can also exhibit phase coexistence where
different parts of the gel are either solvent-rich or solvent-
poor [3,11]. For thermoresponsive gels below a threshold
temperature, T ∗, the system is in an equilibrium swollen state,
where the free energy is minimum [Fig. 1(c), dashed curve].
In contrast, above T ∗, the gel can exhibit phase coexistence
and be characterized by a free energy with two minima
[Fig. 1(c), solid curve]. Importantly, due to the gel’s shear
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FIG. 1. (a) Elastic rod that is compressed at its ends by a tension
τ . Left: straight rod; right: two examples of buckled rods. (b) Total
energy E of a compressed rod as a function of deflection δ for values of
tension τ less than (dashed) and greater than (solid) a critical tension
τc. (c) Free-energy density of a polymer gel as a function of polymer
volume fraction φ for temperatures below a transition temperature
T ∗, where the gel is in the swollen phase at low φ, and above T ∗,
where it can be forced into a phase coexistent state.
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rigidity, this last equilibrium arrangement of coexistent phases
must additionally minimize the free-energy cost associated
with the inhomogeneous distribution of the polymer network.
Swelling equilibria thus depend on and influence the shape of
the gel; the order parameter associated to the phase transition
then couples to the shape, potentially affecting it in what we
could call an extreme thermodynamics of materials. Unlike the
mechanical case of Euler buckling, in this case, a thermody-
namic instability is exploited to achieve large-scale material
deformations.

In this Rapid Communication, we explore this idea using
thermoresponsive gels made of poly-N -isopropylacrilamide
(pNIPAM) and shaped as a toroid. First, we demonstrate the
actuation of volume changes at fixed toroid shape. Next, we
discuss our observations that after rapid heating, the toroid
undergoes large shape changes and buckles out of the plane.
We find that the toroid undergoes internal phase separation at
constant volume, leading to a polarized arrangement of solvent
and polymer within its cross section that results in a substantial
internal stress difference. Through simulation and analytical
modeling, we demonstrate that the observed arrangement is
responsible for the toroid’s buckling, confirming the notion
of extreme thermodynamics as a means to achieve shape
actuation.

We fabricate toroidal gels by first forming toroidal droplets
of a precursor NIPAM solution, which is then UV polymerized
[12–14]. When heated past the lower critical solution temper-
ature (LCST), pNIPAM gels enter a deswollen, polymer-rich
phase, characterized by a small volume. Snapshots of the
quasistatic evolution of a toroidal gel are shown in Fig. 2(a).
Both the ring radius, R, and the tube radius, a, decrease
with increasing temperature, as shown in Fig. 2(b). The rate
of decrease is highest at 32.5 ◦C, which corresponds to the
LCST of pNIPAM [15]. Above this temperature, both R and
a remain essentially constant, as also shown in Fig. 2(b); at
these temperatures the gel is deswollen and optically opaque,
as seen in the rightmost image in Fig. 2(a).

Since the gel remains isotropic and homogeneous during
the quasistatic heating process, any change in the polymer
matrix brought about by changes in φ must occur uniformly
throughout the gel. Thus, all macroscopic lengths are expected
to rescale by the same amount, implying that the aspect ratio
of the torus, ξ ≡ R/a, remains unchanged. To test this, we

plot R as a function of a for all tori as they deswell, and find
that they are linearly related, as shown for three representative
examples in Fig. 2(c). We also find there is a one-to-one
correspondence between the slopes, m, obtained from the
linear fits of the data, and the aspect ratio of the tori measured
before deswelling. This is shown in Fig. 2(d), and confirms our
expectations. We also perform dissipative particle dynamics
(DPD) computer simulations to further test our results [12].
Representative snapshots of a simulated gel as it deswells are
shown in Fig. 2(e). Consistent with the experimental results,
R is linearly related to a, with a slope that corresponds to the
aspect ratio before deswelling; the associated data points are
shown in Fig. 2(d) with closed symbols.

In striking contrast with these observations, when we
rapidly raise the temperature from the swollen phase at ∼10 ◦C
to the deswollen phase at 40.0 ◦C, the gel buckles, adopting
a “PringleTM”-like shape, as shown for a torus with ξ = 3.3
in Figs. 3(a) and 3(b). This state persists over timescales
from minutes to hours, depending on the overall dimensions
of the torus, and eventually evolves while developing other
characteristic features, as shown in Figs. 3(c) and 3(d). In
spherical and cylindrical pNIPAM gels subjected to abrupt
temperature changes, there is a “plateau period” over which
the gel retains its original volume, followed by the formation
of surface patterns [16] that are reminiscent of those we observe
for tori at long times [Figs. 3(c) and 3(d)]. The origin of
this nonquasistatic evolution is the formation of a deswollen,
collapsed-polymer layer, leading to extremely slow deswelling
of the bulk of the gel, which, as a result, essentially maintains
a constant volume [17,18]. The long-time patterns seen in our
toroidal gels suggest that a similar situation occurs in our
case and that the evolution we observe after rapid heating
essentially happens at constant volume; this is supported by the
observation that the time over which the toroid buckles is much
shorter than the plateau period. Hence, after rapid heating, the
gel is out of equilibrium with the solvent bath and is thus not
constrained to maintain a constant osmotic pressure �bath, but
rather a constant volume. In this situation, a swollen gel is not
allowed to change its total polymer volume fraction. However,
since the swollen gel is brought to a temperature above the
LCST of pNIPAM, the homogeneously mixed state of the
gel is susceptible to separation into solvent-rich and solvent-
poor regions. We then postulate that the shape transformation
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FIG. 2. (a) Quasistatic deswelling of a toroidal gel equilibrated at 25.1, 30.7, and 33.5 ◦C. Scale bar: 1 mm. (b) Temperature dependence
of the ring radius, R, and the tube radius, a, for a torus of initial aspect ratio (R/a)i = 3.0. (c) R vs a for tori with an (R/a)i of (�) 1.6, (�)
3.0, and (•) 5.9 undergoing quasistatic deswelling. The solid lines are linear fits to the data. The intercepts of the fits are, from top to bottom:
(0.02 ± 0.06), (−0.037 ± 0.015), and (0.042 ± 0.011) mm; these are all close to zero, consistent with deswelling happening at constant ξ . The
slopes m of these fits are shown in (d) as a function of (R/a)i . The closed symbols are the results obtained in computer simulations. The solid
line corresponds to m = (R/a)i . (e) Simulation snapshots of a toroidal gel that is deswelling quasistatically.
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FIG. 3. Evolution of toroidal gels after rapid heating. The experimental image pairs (a,b), (g,h), and (k,l) are taken (a,g,k) 0 s, (b) 104 s,
(h) 158 s, and (l) 201 s after heating. Pairs (e,f), (i,j), and (m,n) are simulations for gel shells; images on the left correspond to the initial state,
while images on the right correspond to the final state. The initial aspect ratios of the tori are (a) 3.3, (e) 3.0, (g) 4.8, (i) 5.3, (k) 1.7, and (m)
2.4. Images (c) and (d) correspond to the long-time evolution of the toroidal gel in (a) and (b). (c) is 3 min and (d) is 10 min after the abrupt
temperature change. Scale bars: 1 mm.

observed in experiment is due to this phase separation at
constant volume.

As the boundary of the torus already consists of a collapsed-
polymer layer, we expect that the solvent-poor region grows
from this layer inward into the bulk, in a manner akin
to heterogeneous nucleation. Furthermore, since a gel is a
contiguous medium, the interface between solvent-rich and
solvent-poor regions is laminated. This interface frustrates the
homogeneity of the polymer matrix and leads to a residual
stress. We therefore expect that the phase-coexistent state
adopted by the gel will tend to minimize this inhomogeneity.
In the case of a sphere, the result is a solvent-poor skin of
uniform thickness over the surface. The nonconstant curvature
of the toroidal surface, however, leads to a skin of nonuniform
thickness. Since the toroidal gel has higher ring curvature
on its interior surface than on its exterior, we expect that a
thicker polymer layer will form near the axis of revolution
of the torus, as illustrated in the rightmost schematic in
Fig. 4(a). This is indeed seen in experiment and is partic-
ularly clear at long times, where the solvent-poor skin has
clearly thickened and appears opaque, as shown in Figs. 3(c)
and 3(d).

To confirm our interpretations, we consider that, within the
torus, a fraction f of the gel is solvent-poor and undergoes
a volume change relative to its initial volume, up < 0. The
remaining fraction (1 − f ) of the gel is solvent-rich and
increases its volume by a factor ur > 0. The total volume
constraint yields a “lever rule” f up + (1 − f )ur = 0, which
is a general feature in phase separation with a conserved order
parameter [19,20]. Using the Flory-Rehner theory of poly-
mer gels [12] and considering a cylindrical geometry, which
amounts to neglecting ring curvature for now, we can determine
equilibrium values for the strain ur and up and the fraction f ;
from this, we confirm that phase-coexistent equilibria exist
for temperatures T above the LCST at constant volume and
that the polymer volume fraction for the solvent-poor region is
much larger than that of the solvent-rich region [12]. We then
incorporate perturbatively the toroid’s ring curvature on the
phase coexistence and find that it is favorable for the solvent-
poor region to be thicker near the axis of revolution of the torus
and thinner away from the axis [12], further confirming our
previous assertions. Interestingly, the resultant configuration
is reminiscent of a bimetallic strip composed of two metals

of differing thermal expansion coefficients that are laminated
together, as illustrated in the leftmost schematic in Fig. 4(a);
under heating, the strip bends, increasing curvature due to the
torque that results from the differing thermal stresses in the two
metals [21]. In our case, the laminated coexistent phases of the
gel have a similar stress differential. We then focus on the ring
shape of the gel, ignore fine details of the cross section, and
develop a long-wavelength elastic model where the polymer
matrix in the two laminated coexistent gel regions are each
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FIG. 4. (a) Schematic of a bimetallic strip before (top left) and
after (bottom left) heating. A slice through the cross section of a
phase-separated toroid is shown on the right with centerline (dashed
red), cross-sectional radius a, polarized arrangement of solvent-rich
(blue) and solvent-poor (orange) regions with corresponding strains
ur and up , and the swelling moment M. (b) Prediction of instability
from linear stability analysis in terms of dimensionless measures of
the swelling moment, M/(B κ), and the ring rigidity, C/B. The inset
schematically shows the Frenet-Serret frame in an unperturbed ring,
as well as the “Pringling” and the next-two-lowest-order modes. Note
that for uniform incompressible tori with a circular cross section,
elasticity theory dictates that C/B ≈ 2/3.
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at fixed polymer volume fractions. Within this coarse-grained
view of the gel, the net compressive stress, σ , exerted by
the outer, solvent-poor shell on the inner, solvent-rich region
is σ = E(ur − up), where E is the gel’s effective Young’s
modulus.

To describe buckling, we balance the stress σ against the
rigidity of the torus. In general, toroidal bending is described
by three-dimensional elasticity. However, in our simplified
model we treat the torus as an elastic rod defined by a circular
centerline of length L. This centerline is characterized at each
point by its curvature κ and torsion τ , which are determined
by the rotation rate of the Frenet-Serret frame [see inset in
Fig. 4(b)]. We consider an effective inextensible rod elastic
free-energy H [2], in which the centerline degrees of freedom
are encoded in changes in curvature 	κ and changes in torsion
	τ at fixed length:

H =
∫ L

0
ds

(
1

2
B	κ2 + 1

2
C	τ 2 + 	κb̂ · M

)
. (1)

The first two terms in Eq. (1) represent a rod with a Hookean
response to bending (with bending rigidity B) and twisting
(with torsional rigidity C). The third term in Eq. (1) is
associated to the swelling torque M acting on the centerline.
This model becomes strictly applicable in the limit ξ � 1.
However, since the extensile rigidity remains much larger than
the bending or torsional rigidities for significantly smaller ξ

[22], it still applies down to the experimental values of ξ where
buckling is observed.

Right away, we see that our simple model indicates that
the torus experiences swelling stresses that act to increase the
ring curvature, reminiscent of the thermal stresses that bend
bimetallic strips. Owing to the relatively high energy cost
of length changes, the torus is unable to attain a uniformly
increased curvature while remaining planar, because any de-
formation that preserves both the length and winding number
of a closed planar loop also leaves the integrated curvature for
that loop unchanged [23]. To overcome this, the torus buckles
out of the plane, which is what we observe experimentally.

To find the buckling threshold and modes, we perform
a linear stability analysis [12,24] of Eq. (1). This analysis
depends on two dimensionless numbers: the rigidity ratio C/B

and the stress ratio M/(Bκ), where M ≡ |M|. We find that the
torus is unstable to buckling above a threshold value ofM/(Bκ)
at fixed C/B, as shown in Fig. 4(b). This is seen in experiments,
where tori with ξ � 3 do not buckle [see Figs. 3(k) and 3(l) for
a representative example. Note that “Pringling” is the first of
the buckling modes that is accessible upon increasing M/(Bκ)
at fixed C/B. For even larger M/(Bκ), higher modes become
unstable [Fig. 4(b)].

Let us now estimate the quantities in Eq. (1) and fur-
ther compare to experiments. The swelling torque M =
−f xπa2σ b̂ can be estimated as the cross product of the lever
arm f x n̂ with force πa2σ t̂. Here, f is a good approximation of
the fraction of the cross-sectional area occupied by the solvent-
poor region, and x is the center-of-area of the surface skin
within the cross section, which measures the imbalance of skin
thickness due to surface curvature. Note that x > 0 because the
shell is thicker closer to the axis of revolution of the torus. To
estimate the rigidities we consider that a uniform rod of circular

cross-section radius a has B ≈ 1
4πa4E and C/B ≈ (1 + ν)−1,

with ν the Poisson ratio. Crucially, since the gel is in the plateau
period where the volume remains constant, we may regard it
as rubberlike and hence incompressible; thus we take ν ≈ 1/2
and C/B ≈ 2/3. We then find that M/(Bκ) ≈ 4f ξ , where we
have used x ≈ a, due to the highly polymer-dense region at
the toroidal surface, and |up| ≈ 1, since this region contains
very little solvent [12]. Theoretically, the buckling threshold
for C/B = 2/3 is M/(Bκ) ≈ 1.4. Considering that buckling
is seen above ξ ≈ 3, this implies that f ≈ 0.1. We can test this
expectation by considering the ratio of deswollen to swollen
gel volumes in the quasistatic experiments (see Fig. 2); in
all cases, we obtain f ≈ 0.1, consistent with the theoretical
expectations. Moreover, as M/(Bκ) ∼ ξ , the theoretical pre-
dictions of the buckling modes shown in Fig. 4(b) relate well
to the experiments. Specifically, increasing ξ in the experi-
ments results in a transition from tori that are stable against
buckling to ones that “Pringle,” and subsequently to tori that
deform via more complicated shapes, which are reminiscent
of the higher buckling modes predicted by the linear-stability
analysis.

To further confirm that a swollen interior surrounded by a
dense shell that is thicker near the axis of revolution results
in buckling, we perform DPD simulations of toroidal shells
having a nearly constant volume. Since we model the toroidal
shell by a four-coordinated mesh of harmonic bonds [12],
the curvature of the shell ensures that the effective rigidity
of the portion closer to the axis of revolution is greater than the
portion away from the axis, simulating the variable thickness
observed in experiments. Remarkably, the simulations repro-
duce the PringleTM-like shape seen experimentally, as shown
for a torus with ξ = 3.0 in Figs. 3(e) and 3(f). Furthermore, the
data can be fit to the hyperbolic paraboloid shape characteristic
of Pringles [12]. Our simulations confirm that buckling is
indeed related to the heterogeneous structure of our gels,
in which a solvent-poor layer is forced to coexist with a
solvent-rich bulk, and that in the process the volume of the
gel remains essentially constant. We also note that we also find
modes other than “Pringling.” These are seen for higher values
of ξ ; an example is shown in Figs. 3(i) and 3(j), which compares
well with the experimental result shown in Figs. 3(g) and 3(h).
In addition, for sufficiently small ξ , no buckling is observed,
consistent also with our experiments and theory, and buckling
occurs only for ξ � 3, also consistent with our experimental
findings.

We have shown that rapidly heated tori composed of
polymer gel can undergo constrained phase separation to
form solvent-rich and solvent-poor regions and that the po-
larized arrangement of these regions within the torus can
result in out-of-plane deformations. Our theoretical analy-
sis also predicts that thin, curved pNIPAM gel rods would
buckle when f � 0.35 ξ−1, where in general f is the volume
fraction of solvent-poor gel and ξ−1 = κa is the product
of rod curvature κ and the tube radius. While the shapes
attained in our experiments are typical for rings that buckle
due to mechanical instability, we emphasize that our results
are entirely due to a thermodynamic instability. Thus, our
work is suggestive of an “extreme thermodynamics” where
shape actuation is achieved by passage through a phase
transition.
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