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1 � Background
In the early 1990s, the concept of circular economy was proposed by Pearce and Turner 
(1990) as a model to transform the traditional open-ended economy into an ongoing 
closed-loop system from a material perspective. Since then, several scholars and practi-
tioners have adopted multiple definitions for circularity (Winans et al. 2017). After con-
sidering 114 conceptual frameworks, Kirchherr et  al. (2017) define it as an economic 
system that substitutes product end-of-life with a set of circularity interventions.

Circularity interventions are actions or processes that preserve resources inside the 
economy (Lieder and Rashid 2016a; Bocken et al. 2017). Such actions are based on three 
principles (Ellen MacArthur Foundation 2013; Ghisellini et al. 2016):

Abstract 

Environmentally extended input–output analysis (EEIOA) can be applied to assess the 
economic and environmental implications of a transition towards a circular economy. 
In spite of the existence of several such applications, a systematic assessment of the 
opportunities and limitations of EEIOA to quantify the impacts of circularity strategies 
is currently missing. This article brings the current state of EEIOA-based studies for 
assessing circularity interventions up to date and is organised around four categories: 
residual waste management, closing supply chains, product lifetime extension, and 
resource efficiency. Our findings show that residual waste management can be mod‑
elled by increasing the amount of waste flows absorbed by the waste treatment sector. 
Closing supply chains can be modelled by adjusting input and output coefficients to 
reuse and recycling activities and specifying such actions in the EEIOA model if they are 
not explicitly presented. Product lifetime extension can be modelled by combining an 
adapted final demand with adjusted input coefficients in production. The impacts of 
resource efficiency can be modelled by lowering input coefficients for a given output. 
The major limitation we found was that most EEIOA studies are performed using mon‑
etary units, while circularity policies are usually defined in physical units. This problem 
affects all categories of circularity interventions, but is particularly relevant for residual 
waste management, due to the disconnect between the monetary and physical value 
of waste flows. For future research, we therefore suggest the incorporation of physical 
and hybrid tables in the assessment of circularity interventions when using EEIOA.

Keywords:  Circular economy, Input–output analysis, Waste management, Recycling, 
Closing loops, Resource efficiency, Product lifetime extension

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Aguilar‑Hernandez et al. Economic Structures  (2018) 7:14  
https://doi.org/10.1186/s40008-018-0113-3

*Correspondence:   
g.a.aguilar@cml.leidenuniv.nl 
Institute of Environmental 
Sciences (CML), Leiden 
University, Leiden, The 
Netherlands

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40008-018-0113-3&domain=pdf


Page 2 of 24Aguilar‑Hernandez et al. Economic Structures  (2018) 7:14 

• • Minimising waste disposal through the use of waste flows as inputs for other eco-
nomic activities;

• • Optimising material loops through the design of products and services that allows 
extending product lifetime, reuse and recycling materials at their end-of-life;

• • Promoting a restorative environment through the development of renewable energy 
that decreases material extraction and its environmental impacts.

Implementing circularity interventions has become a prominent topic in sustainability 
policies (McDowall et al. 2017). For instance, the European Commission presented an 
action plan for the circular economy in which interventions are related to the design 
of long-lasting products, material closed-loops at multiple supply chain levels, resource 
efficiency and sustainable waste management (EC 2015). Another example is that of 
the Chinese circular economy initiatives of the 1990s, which seek to prolong product 
lifetime and to enhance resource efficiency (Geng et  al. 2012, 2016). These and other 
governments have implemented circularity actions as mechanisms to achieve economic 
prosperity and environmental sustainability (Andersen 2007; Ghisellini et  al. 2016; 
Geissdoerfer et al. 2017).

In order to maximise the economic and environmental benefits of circularity inter-
ventions, it is important to assess their cost-effectiveness. This can be done through the 
application of analytical methods that assess the impact of particular policies (Elia et al. 
2017; Potting et  al. 2017). However, there is no recognised framework for measuring 
how effective a country is in making a transition to circularity (EEA 2016; Linder et al. 
2017). Such an approach needs to integrate indicators with a clear understanding of the 
circularity mechanism influencing multiple economic activities and their environmental 
performance (Lieder and Rashid 2016b; Pauliuk 2017).

The assessment of circularity interventions can be addressed by environmentally 
extended input–output analysis (EEIOA). In fact, as described further below, EEIOA has 
been used to evaluate the impacts of residual waste management, reusing and recycling 
activities, product lifetime extension, and resource efficiency (Duchin 1992; Iacovidou 
et al. 2017).

Assessing these interventions through EEIOA has in turn required adapting that same 
framework, leading to the development of new methods. For example, the study of the 
interdependency between production and waste generation led to the development of 
waste input–output models (Nakamura 1999b). In addition, the analysis of resource use 
and emissions at country level in relation to potential leakage on a global level (WEF 
2014; Rutherford and Böhringer 2015) resulted in the development of multiregional 
models for assessing the impacts embodied in international trade (Peters and Hertwich 
2009; Wiedmann 2009; Tukker and Dietzenbacher 2013). Finally, circularity interven-
tions are usually implemented using financial incentives such as subsidies and taxes 
that need to be endogenised to account for all impacts of the policy (Ferrão et al. 2014). 
The theoretical integration of financial incentives in the waste input-output model was 
achieved by Rodrigues et al. (2016). Such adaptations of EEIOA framework have been 
relevant to evaluate the potential impacts of current circular implementation.

To promote the further advancement and implementation of best practices in the 
use of EEIOA to assess the economic and environmental implications of circularity 
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interventions, it is important to critically evaluate existing studies. To the best of our 
knowledge, no such review has previously been compiled.

We fill this knowledge gap by offering a literature review of EEIOA-based circular-
ity interventions and suggest opportunities for improvement. The paper proceeds as fol-
lows. Section 2 describes the data and methods used in the literature survey. Section 3 
presents the actual literature review, describing how in the past circularity interventions 
have been addressed, organised around four categories: residual waste management, 
closing supply chains, product lifetime extension, and resource efficiency. Section 4 syn-
thesises the main methodological aspects of each intervention type. Section 5 then dis-
cusses the major contributions and limitations as well as opportunities for improvement 
and Sect. 6 closes with some final remarks.

2 � Methods
In order to facilitate the identification of EEIOA-based studies related to circular strate-
gies, we organised circularity interventions based on the resource flow framework pro-
posed by Ellen MacArthur Foundation (2013), Bocken et al. (2016), and Kirchherr et al. 
(2017). Given such framework, we then collected 13 keywords that are commonly used 
to identify circular strategies (Ghisellini et al. 2016; Bocken et al. 2017; den Hollander 
et al. 2017a). Table 1 shows the categories evaluated in this review as well as their defini-
tion and corresponding keywords.

We applied the keywords of Table 1 to query online databases of peer-reviewed sci-
entific publications in English (i.e. Web of Science and Scopus) and identified 163 
documents that combined ‘input–output analysis’ and at least one term related to cir-
cularity interventions when screening title, abstract and keywords. Afterwards we man-
ually examined the content of the documents, restricting our analysis to 47 relevant 

Table 1  Circularity intervention categories

Intervention category Description Based on Keywords

Residual waste manage‑
ment (RWM)

Related to post-consump‑
tion activities where the 
materials are disposed 
outside the economy

Ellen MacArthur Founda‑
tion (2013)

Kirchherr et al. (2017)

Landfill
Energy recovery
Waste treatment

Closing supply chains 
(CSC)

The re-integration of 
materials at different 
levels of the supply 
chain after being used, 
via for instance product 
reuse, component 
re-use, refurbishing, and 
recycling

Bocken et al. (2016)
Ellen MacArthur Founda‑

tion (2013)
Kirchherr et al. (2017)

Reuse
Redistribution
Refurbishment
Remanufacture
Recycle

Product lifetime extension 
(PLE)

Associated with slowing-
down the resource use 
as a consequence of 
extending lifetime of 
products, via for instance 
design for longevity and 
improved maintenance

Bocken et al. (2016)
Kirchherr et al. (2017)

Product lifetime Extension
Maintenance
Repair

Resource efficiency (RE) Processes or mecha‑
nisms which optimise 
resource flows by using 
less resources per unit 
produced

Bocken et al. (2016)
Kirchherr et al. (2017)

Resource efficiency
Material efficiency
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documents. We then developed a backwards/forwards snowballing process (Wohlin 
2014), identifying additional relevant literature from the citation network. In total we 
found 93 relevant documents.

In order to identify basic attributes of the selected publications, we collected data on 
the year of publication and number of citations, circularity intervention covered, and 
EEIOA model characteristics.

Figure 1 shows the number of articles published in each year and the number of yearly 
citations of all previously published papers. The figure shows that there has been a grad-
ual increase in the number of EEIOA-based studies that assess circularity, with 60% of 
all relevant literature published in the past 5 years. Figure 2 shows that the majority of 
studies are focused on the interaction between recycling and waste treatment systems 
(n[CSC + RWM] = 35). Moreover, residual waste management is the most common 
intervention, present in 68 study cases, followed by closing supply chains (n[CSC] = 54), 
product lifetime extension (n[PLE] = 17) and resource efficiency (n[RE] = 13).

Table 2 presents a characterisation of the top-10 most cited papers. Table 3 provides a 
technical characterisation of the type of model and/or approach used in different studies 
concerning the type of table, units, time and geographical scope. Most studies (88%) use 
harmonised input–output tables (IOTs), use hybrid units (53%), are focused on a specific 
year (85%) and are applied to a single country (75%). A detailed list of specific character-
istics of the reviewed publication is provided in the Additional file 1.

Although there are examples of circular intervention assessments at the macro-eco-
nomic level developed by governments and private institutions in the grey literature 
(for example, Bastein et al. 2013; Pratt and Lenaghan 2015; Rutherford and Böhringer 
2015; McKinsey&Company 2016), most of these studies apply bottom-up methods, 
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Fig. 1  Number of publications and citations per year (status on 11 June 2018)
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computable general equilibrium (CGE) models or other approaches rather than EEIOA 
(Winning et al. 2017). Apart from the fact that we wanted to focus primarily on the peer-
reviewed literature, this was an additional reason to exclude this type of studies to focus 
in the identification of novel methods and best practices in EEIOA-based cases.

3 � Results and Discussion
We now perform a methodological review of EEIOA-based studies which assess residual 
waste management, closing supply chains, product lifetime extension, and resource effi-
ciency. Each intervention differs in its approach to splitting and extending sectors in the 
input–output tables, adjusting technical and final demand coefficients, and incorporat-
ing hybrid-unit data.

3.1 � Residual waste management

Nakamura and Kondo (2002, 2009) introduced the harmonised waste input–output 
tables, which are used to determine the embodied waste of a certain consumption. The 
waste input–output analysis (WIOA) consists in a hybrid model constituted by eco-
nomic and physical units in which are represented explicitly the interaction between 
industries and waste treatment sectors. This model allows to expand EEIOA in relation 
to the interdependence between goods and waste disposal.

Several studies applied the WIOA model to measure the direct and indirect waste of 
consumption at national level, such as Taiwan, France, and UK (Jensen et al. 2013; Liao 
et al. 2015; Beylot et al. 2016b; Salemdeeb et al. 2016). In a study at sub-national scale, 
Tsukui et al. (2011, 2017) developed an interregional WIOA to quantify the embodied 
waste generated by consumption patterns in the city of Tokyo. These cases applied a 
traditional Leontief inverse matrix to estimate the embodied goods and waste of final 
demand.
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Table 2  Overview of  top-10 most cited articles related to  the  assessment of  circularity 
interventions (status on 11 June 2018)

References Intervention Region Sector IO approach Outcome Citations

Wiedmann 
et al. (2015)

RE Global Multisectoral MR EEIOA Identification 
of material 
footprint 
hotspots at 
global scale

218

Nakamura & 
Kondo (2002)

CSC
RWM

Japan Waste manage‑
ment

WIOA Evaluation of 
environmen‑
tal impacts 
of waste 
treatment 
policies

146

Ferrer & Ayres 
(2000)

PLE
CSC

France Remanufactur‑
ing

IOA Evaluation of 
economic 
impacts of 
remanufac‑
turing sector

78

Nakamura et al. 
(2007a)

CSC
RWM

Japan Metals WIO-MFA Development 
of framework 
for identify 
material 
paths along 
the supply 
chain

72

Duchin (1992) RWM United States Waste manage‑
ment

IOA Quantification 
of waste 
disposal 
and income 
changes for 
different 
scenarios

66

Takase et al. 
(2005)

RWM Japan Households WIOA Impacts of 
household 
consumption 
on CO2 and 
landfill use

65

Aye et al. (2012) PLE
CSC

Australia Buildings Hybrid IO-LCA Impacts of pre‑
fabricated

reusable build‑
ing modules 
on GHG 
emission and 
energy

56

Nakamura and 
Kondo (2006)

CSC
RWM

Japan Electrical home 
appliances

Hybrid IO-LCA 
& IO-LCC

Environmen‑
tal cost of 
end-of-life 
scenarios 
(landfill, 
recycling, 
design for 
disassembly, 
and lifetime 
extension)

39

Kondo and 
Nakamura 
(2004)

PLE
CSC
RWM

Japan Electrical home 
appliances

Hybrid IO-LCA Environmental 
impacts of 
end-of-life 
scenarios 
(landfill, 
recycling, 
design for 
disassembly, 
and lifetime 
extension)

37
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By applying monetary supply-use principles in the WIOA framework, Lenzen 
and Reynolds (2014) developed a method to construct waste supply-use tables. 
They considered that a supply-use approach has an advantage because it includes 
the allocation matrix from WIOA model into the accounting system, which enables 
the simultaneous generation of industry and commodities multipliers (Lenzen and 
Rueda-Cantuche 2012). In addition, a supply-use model can distinguish between mul-
tiple waste types and treatment methods. The researchers demonstrated that WIOA 
and WSUA multipliers were equivalents by employing Miyazawa’s partitioned inverse 
method. An application of WSUA was presented by Reynolds et al. (2014), in which 
the authors assessed the direct and indirect flows of waste generated by intermediate 
sectors of the Australian economy.

Fry et al. (2016) constructed multiregional waste supply-use tables by using Indus-
trial Ecology Virtual Laboratory as a computational platform (Lenzen et  al. 2014). 
They measured the waste footprint of Australian consumption considering the 
impacts of imports. The authors also focused on the impacts driven by consumption 
pattern in each Australian state and territory, which showed the waste footprint at 
sub-national level.

Similarly, Tisserant et al. (2017) developed a harmonised multiregional solid waste 
account using coefficients from physical and monetary values from EXIOBASE v2.2.0 

Table 2  (continued)

References Intervention Region Sector IO approach Outcome Citations

Nakamura 
(1999a)

CSC
RWM

Netherlands Waste man‑
agement & 
recycling

WIOA Effects of 
recycling, 
efficiency 
collection 
and efficiency 
technology 
recycling

36

Table 3  Summary of  EEIOA model characteristic by  type of  table, units, time 
and geographical dimensions

Model characteristic Number 
of publications

Table

 IOTs 82

 SUTs 11

Units

 Monetary 39

 Physical 5

 Hybrid 49

Time dimension

 Single year 79

 Time series 14

Geographical dimension

 Single region 70

 Multi region 23
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(Tukker et al. 2013; Wood et al. 2015). They collected the data from 35 waste treat-
ment services (measured in tonnes) that were used to calculate global waste footprint 
and identify the main sectors contributors per country. With the outcome of waste 
footprint, they evaluated the possibility of achieving targets for material recycling 
proposed by European Commission in the Circular Economy Package (EC 2018).

By extending satellites accounts, Li et  al. (2013) introduced a wastewater material 
composition vector that distinguishes the composition of wastewater flows. In addition, 
Court et al. (2015) incorporated an accounting system for hazards waste materials as an 
extension of EEIOA.

In a study of landfilling scenarios using waste input–output tables, Yokoyama et  al. 
(2006) created additional sectors of ‘landfill mining’ and ‘gasification’. These activities 
were evaluated in scenarios of increasing gasification industry demand and adopting 
new landfill infrastructure. The scenarios required the adaptation of technical coeffi-
cients, which imply positive and negative values depending on the interaction between 
industries. For the final demand, the authors assumed that consumption pattern is 
proportional to domestic population growth and, then, they fixed the respective final 
demand values. Their final outcome showed the impacts on CO2 emissions and waste 
generation under certain assumptions of sustainable waste management.

Duchin (1990, 1992) proposed an analysis of waste treatment scenarios by adapting 
technology matrix and final demand values in EEIOA framework. In her studies, the 
author computed numerical examples and identified waste disposal in final consumption 
by adjusting final demand values in a static model. This approach described an entire 
economy in terms of its sectors and their interrelationships, which account for the envi-
ronmental impacts.

By converting the monetary values of input–output tables into physical units, Naka-
mura et al. (2007b) proposed a material flow analysis (MFA) that uses monetary coef-
ficients to express inter-industrial physical flows. The waste input–output material flow 
analysis (WIO–MFA) was used to trace the final destination of materials and their spe-
cific elements through the supply chain (Nakamura and Nakajima 2005; Nakamura et al. 
2009; Nakajima et al. 2013; Ohno et al. 2014). For example, in an analysis of metal indus-
try, Ohno et al. (2016) applied the WIO–MFA to assess the material network of metals 
and alloying elements. For creating the network, they developed three steps: to disag-
gregate sectors and convert monetary to physical units; to calculate the technical coeffi-
cients; and to multiply the input coefficient matrix with two filtering matrices, which are 
physical flow filter as a binary matrix for excluding non-physical flows and the loss filter 
matrix that removes inputs that are related to process waste.

From a product-level perspective, Nakamura and Kondo (2006) evaluated the end-of-
life scenarios of electric home appliances, landfilling, shredding, recycling, and recycling 
with design for disassembly, by combining the WIOA framework and life cycle costing 
analysis. Reynolds et  al. (2016b) also demonstrated the use of waste input–output life 
cycle assessment (WIO–LCA) in the context of New Zealand food waste. They included 
mass values, economic cost, calories and resources wasted accounts as model inputs. In 
a recent study, Reutter et al. (2017) combined input–output multipliers with the Austral-
ian economic cost of food waste, which can be used to quantify the embodied net sur-
plus of wasted food.
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3.2 � Closing supply chains

To assess 3R’s economic activities (recycling, reuse and reduction), Huang et al. (1994) 
collected data to include these sectors in a supply-use framework. They applied a tra-
ditional Leontief approach in which each new industry produces a single economic 
commodity. By using such assumption, the authors allocated the monetary flows of recy-
cling and reuse sectors in a new supply-use table that allows to analyse policy initiatives 
related to closing supply chains.

Nakamura (1999a) applied a similar principle to create a harmonised industry-by-
industry framework that accounts for recycling activities. He represented the flow of 
goods and services, waste, and pollutants among five industries that include recycling 
sectors. Such activities were expressed by both physical and monetary units because, in 
many cases, the market value of waste was not represented in accounting system.

In an analysis of electronics waste recycling, Choi et al. (2011) constructed an EEIOA 
model that collects data for recyclable end-of-life products and related economic sec-
tors. They considered e-waste values in a satellite account that is connected to recycling 
sectors in a similar way as primary materials are linked to mining industries. The authors 
then included a new industry and product categories for recycling activities as well as 
the adjustment of environmental extension to represent the e-waste flows through the 
supply chain.

For assessing the economic impact of product recovery and remanufacturing in 
France, Ferrer and Ayres (2000) incorporated the remanufacturing sector in a harmo-
nised industry-by-industry matrix. This harmonised system was adjusted to consider 
different demands in labour, energy, primary materials, and inputs from others eco-
nomic sectors. They assumed that the manufacturing and remanufacturing final demand 
in physical values were equivalent; however, remanufacturing products have a lower 
price value. They quantified the impacts of the new sector in terms of market share and 
labour increase.

Beylot et al. (2016b) studied the potential contribution of waste management policies 
to reduce carbon emissions and resources use. The authors used WIOA obtaining physi-
cal units from the French physical supply-use tables. These physical values were used 
to calculate technological requirement matrices related to waste flows. By considering 
changes in final demand coefficients, they established scenarios to increase recycling 
rates and to adopt available best technologies for waste incineration. The scenarios of 
closing supply chains were extrapolated to evaluate the short-term impacts of recycling 
policies.

Focusing on the case of Australian consumption, Reynolds et  al. (2015) evaluated 
the effects of non-profit organizations on reducing food waste. In a waste supply-use 
table, they created a new ‘food charity’ sector, and extrapolated food waste data from 
government and industry reports by using a top-down estimation method. According 
to Reynolds et  al. (2016a), this technique allows to estimate waste flow per industry 
simultaneously but separately in which each waste flow has a unique composition that is 
defined by the direct production inputs. Such a relationship is provided by the technol-
ogy matrix, which is also connected to available waste data to construct the new inter-
mediate sector.
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In a study investigating the impact of Portuguese packaging waste management, Fer-
rão et  al. (2014) analysed the effects of municipal waste and recycling strategies on 
economic added value and job creation. They described four basic types of recycling 
materials: paper and wood, plastic, glass and metals. For each material type, they con-
sidered that the magnitude of recycling sector relative to the respective non-recycling 
activity is brought by the ratio of the net payback value to the total amount of intra-
sectoral transactions. The researchers adjusted the ratio of recycling and non-recycling 
materials in order to evaluate waste management scenarios for packaging alternatives.

In an analysis of tire industry, Rodrigues et  al. (2016) modified a waste supply-
use model to recognise the effects of policies related to closing supply chains, such as 
extended producers responsibility. In this scheme, waste management is financed by 
compensation that is represented as producers’ fees in terms of waste volume processed. 
The researchers modelled the flow of compensation fees by introducing the financial 
requirements of waste management under the adapted waste supply-use table. They 
also adjusted the coefficients of waste treatment intermediate industries in the technical 
matrix and introduced an exogenous stimulus that is used to compare a reference sce-
nario and the alternative strategy.

To explore the optimal structure of end-of-life treatment and recycling strategies, 
Kondo and Nakamura (2005) introduced a model that integrates WIOA into a linear 
programming analysis (WIO-LP). The researchers replaced the fixed constant values of 
waste input–output tables with an adaptable allocation matrix that can respond to spe-
cific constrains. This approach is generally defined as a minimisation problem. For exam-
ple, Lin (2011) applied the WIO–LP model to analyse the optimal system configuration 
for reducing environmental loads, such as CO2 emissions from wastewater treatment. 
The researcher considered a set of constraints to reduce the amount of a certain type of 
environmental impacts generated by both producing and waste treatment sectors.

In a recent study, Ohno et al. (2017) evaluated the optimal scenarios of steel recycling 
for end-of-life vehicles in Japan through the integration of linear programming into a 
waste input–output material flow analysis. They considered quality-oriented scrap recy-
cling and identified which scenarios can contribute to obtain the maximal potential of 
recovery for alloying elements.

By using industrial accounts for the Taiwanese economy, Chen and Ma (2015) assessed 
the linkages of industrial material and waste flows at national level. They rearranged the 
structure of the accounting system to adopt a framework that resembles the WIOA. This 
accounting system enables us to identify eco-industrial network patterns, for example, 
by examining the potential of by-products as inputs for other industries.

3.3 � Product lifetime extension

In an assessment of the Japanese automobile industry, Kagawa et al. (2008) studied the 
implications of changing passenger vehicle lifetime. They applied a cumulative product 
lifetime model that is used to describe the patterns of final consumption. This approach 
is used to adjust the final demand for the scenarios of extending automobile lifetime. The 
authors then developed a structural decomposition analysis (SDA) with the new scenar-
ios in order to quantify the drivers of end-of-life automobile between certain periods.



Page 11 of 24Aguilar‑Hernandez et al. Economic Structures  (2018) 7:14 

Takase et al. (2005) extended the Japanese household final demand in the WIOA for 
assessing waste reduction scenarios based on sharing transport services and long-lasting 
products. These schemes were analysed by adjusting final demand coefficients. In shar-
ing transportation, for example, the authors explored a scenario in which users replace 
private cars for the use of train. This scenario was expressed by increasing goods in pub-
lic transport services and decreasing car industry outputs. They changed the coefficient 
in each scenario and compared the embodied waste disposal and CO2 emissions. In 
addition, they incorporated potential rebound effects, by assuming a fixed budget for 
final demand and allocating proportionally the remaining budget to all goods in the new 
consumption portofolio.

In a further study, Kagawa et al. (2015) adapted WIOA framework to the lifetime dis-
tribution model, which is used to forecast secondary material flows demand and supply. 
They incorporated a stationary stock variable in the lifetime distribution analysis and 
expressed stocks, discarded and newly purchased products in function of time. These 
variables were inserted in the final demand, which implies a dynamic function that can 
be used to predict future demand. In a similar way, secondary supply flows were pre-
dicted by the disposal of scraps materials at end-of-life.

Shortly after, Nishijima (2017) used an EEIOA integrated to lifetime distribution anal-
ysis for quantifying the effect of extending air conditioners lifetime on CO2 emissions. 
He calculated the new final demand for household air conditioners by multiplying the 
production price per air conditioner unit and the number of new air conditioners sold. 
By adjusting final demand, he performed a structural decomposition analysis to assess 
the effects of changes final demand, technical and direct CO2 emissions confidents in air 
conditioners sectors.

Duchin and Levine (2010) introduced an EEIOA framework for estimating the aver-
age number of times that a resource passes through each supply chain stage. They 
established the principles of transforming input–output tables to an absorbing Markov 
chain (AMC) model based on their mathematical characteristics. For instance, both 
approaches are matrix-based and are able to represent transaction flows through dif-
ferent economic activities. The monetary flows from the input–output framework are 
analogous to the AMC’s transition states, which represent the probability of a resource 
to move throughout sectors.

A key study evaluating AMC attributes is that of Eckelman et  al. (2012), in which 
they argued that the AMC approach lays the first stone from the resource extraction as 
downstream perspective, instead of the upstream consumption-based approach that it is 
considered in a traditional EEIOA framework.

In a follow-up research, Duchin and Levine (2013) integrated the AMC into a linear 
programming model that distinguishes key sections of resource-specific network. This 
integrated model brought detailed insights about the structure of global resource inter-
action. Furthermore, the model constrained multiregional factors that were adapted to 
minimise global resource use to satisfy specified final demand.

In a study investigating the distribution of metals over time along the supply chain, 
Nakamura et  al. (2014) established a IO-based dynamic MFA model that considers 
open-loop recycling and explicitly takes into account scrap quality and losses at pro-
duction stage. This approach was constructed by converting the monetary coefficients 
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of input–output tables into physical representation for the MFA model. Their work on 
MaTrace model was complemented by Takeyama et al. (2016) study of alloying steel ele-
ments in Japan. They applied MaTrace framework to demonstrate the potential reduc-
tion in alloying elements dissipation.

More recently, Pauliuk et  al. (2017) developed the dynamic approach in a multire-
gional context, which was used to determine regional distribution and losses of steel 
production throughout multiple lifetime stages. They described their ‘MaTrace’ model 
as a supply-driven approach that traces down specific materials in life cycles of multi-
ples products and complement the life cycle perspective, which is compared with other 
techniques, such as AMC and Ghosh inverse matrix. The researches also introduced a 
material-based circularity indicator by considering the cumulative mass of material pre-
sent in the system over a certain time interval in terms of an ideal reference case.

3.4 � Resource efficiency

In an analysis of material use for Japanese household consumption, Shigetomi et  al. 
(2015) decomposed the household final demand into the consumption expenditures 
by householder age bracket. The disaggregated expenditures were used to quantify the 
material intensity of each household group, which represented the material hotspots of 
final demand. The authors identified the major contributors to the material footprint 
and projected future consumption trend based on a linear regression model. This analy-
sis assumed that future household size will be proportional to the predicted population 
growth.

Skelton and Allwood (2013) explored the impacts of material efficiency on key steel-
using industries by the application of multiregional input–output (MRIO) approach. 
They focused on an upstream perspective to seek opportunities through the supply 
chain of steel. A diagonal final demand vector was applied to identify the final destina-
tion of steel output from each sector. They assessed the major contributors to the foot-
print in terms of their potential incentives to implement material efficiency strategies. 
They measured such incentives in a supply-side approach based on the Ghosh inverse 
matrix (Miller and Blair 2009). This method allows to quantify the effects of changing 
the value added. The researchers performed price changes assuming that carbon tax sce-
narios are implemented. The fixed prices were applied to the system in order to meas-
ure the variation in the share of input expenditure that goes on the steel sector, which 
expresses the incentives of each industry for incorporating material efficiency practices.

Giljum et  al. (2015) analysed geographical trade patterns identifying the embed-
ded materials on a bilateral basis. They extended the MRIO model by adding material 
extraction data. This dataset was grouped into four broad types: metals, minerals, fossil 
fuels and biomass. Each classification was used to calculate the domestic material con-
sumption and raw material consumption per country. In the same way, Wiedmann et al. 
(2015) calculated material footprint time series that were used to represent the changes 
of resource productivity at global level. They presented a multivariate regression analysis 
for countries to understand the driving forces of national material footprints. A broader 
perspective has been adopted by Tukker et al. (2016) who estimated resource footprint 
considering the indicator dashboard of resource efficiency, which includes carbon, water, 
energy and land metrics (EC 2011). The authors correlated each resource footprint with 
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quality life indicators, namely human development index and happy development index, 
bringing a social dimension to resource efficiency measures.

4 � Synthesis of EEIOA frameworks on the assessment of circularity 
interventions

In the following section, we synthetise the findings from the literature review in terms of 
the current application of EEIOA in a circular economy context. To illustrate the further 
development and best practices of such methods, we consider a simplified waste supply-
use analysis (WSUA) based on Rodrigues et  al. (2016). Although we found the appli-
cation of traditional EEIOA and other hybrid models, we use the waste input–output 
approach because it shows a suitable framework for creating end-of-life scenarios, which 
are usually linked to the basis of circular strategies (Kirchherr et al. 2017).

The majority of the studies suggested that WIOA can be applied to measure effectively 
the resource flows of circularity interventions. In addition, WIOA can benefit from a 
supply-use approach which can express the interaction of products and industries in a 
higher level of detail (Lenzen and Reynolds 2014).

Figure  3 shows a basic waste supply-use table that contains three main parts: final 
demand vector ( y ), technology matrix ( A ) and intensity vector ( b′ ). The y-vector is sub-
divided into final consumption of products ( yP ) and final waste generation ( yW  ). The A
-matrix is comprised of a set of submatrices that account for the direct requirements of 
products or services ( P ), sectors or industries ( S ), waste ( W  ), and waste treatment or 
recycling sectors ( T  ). The b′-vector shows the element of direct impact coefficients that 
correspond to the production intensities of the S and T  sectors ( eS and eT , respectively).
We can assess the effects of incorporating circularity interventions by adjusting final 

P S W T

P APS APT yP

S ASP

W AWS AWT yW

T ATW

eS eT

Fig. 3  Simplified waste supply-use table. y = final demand vector; A = technology matrix; b′ = intensity 
vector. P = product or service, S = sector or industry, W = waste, T = waste treatment or recycling activity. 
yP elements are monetary values (M.EURO). yW elements are physical units (tonnes). APS and ASP elements 
are coefficients from monetary units (M.EUR/M.EUR). AWS elements are coefficients from physical and 
monetary units (tonnes/M.EUR). ATW and AWT elements are coefficients from physical units (tonnes/tonnes). 
APT elements are coefficients from monetary and physical units (M.EUR/tonnes). eS elements represent 
coefficients from physical values, depending on the environmental pressure, and monetary units (e.g. CO2 
tonnes/M.EUR). eT  elements represent coefficients from physical values, depending on the environmental 
pressure, and physical units (e.g. CO2 tonnes/tonnes). Empty cells contain zeros
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demand and technology coefficients. Several authors applied changes in y-vector and A
-matrix to explore the scenarios of enhancing waste treatment and recycling activities 
(for example, Yokoyama et al. 2006; Beylot et al. 2016a, 2018). In many cases, represent-
ing these sectors would require the extension of intermediate demand to account explic-
itly for the specific flows of each circular strategy.

Considering a reference scenario ( y,A, b′ ), it is possible to adapt the intermediate 
flows and final demand coefficients to represent the changes of new circularity actions 
( yalt,Aalt, b′alt ). We then can calculate the embodied impacts of the reference scenario 
( m ) and the alternative circular strategy ( malt ) by a traditional Leontief inverse (Miller 
and Blair 2009), as is shown in Eq. (1)–(2):

The net effect of circularity interventions  ( �m ) can be quantified by the difference of 
m and malt (see Eq. 3). This net impact could represent a measure for the potential effect 
of a specific circularity scenario. For example, if we analysed the implications of a certain 
circularity action on carbon footprint and the net effect would be a positive value (i.e. 
�m > 0 ), it means that the alternative circularity scenario has less impact than the refer-
ence stage on the embodied carbon emissions. Such avoided impact from the applica-
tion of a circularity intervention could be used as point of comparison between different 
scenarios.

We can synthetise the lessons from the literature to determine which are the best prac-
tices for constructing an alternative final demand ( yalt ), technology matrix ( Aalt ), and 
intensity ( b′alt ) that determine the effects of each circularity intervention. Based on the 
literature review, we then deduce the causality sequence of adapting scenarios for resid-
ual waste management, closing supply chains, product lifetime extension, and resource 
efficiency. The following sub-sections can be used as a reference point for analysing spe-
cific scenarios of circularity transition.

We now focus on the description of primary and secondary sequences for each cir-
cularity action. Primary sequence refers to the first element of an EEIOA that can be 
adapted in order to represent the implementation of a circularity intervention. Follow-
ing a causality chain, the secondary sequence denotes the first order of indirect impacts 
in response to the primary stimulus. We schematise such sequences in order to dem-
onstrate the adjustment of waste supply-use tables for modelling each circularity alter-
native. Figure 4 indicates casual links as follows: primary sequence (green square, solid 
line border ‘–’), secondary sequence (red square, dashed line border ‘‐‐‐’), the up arrow 
(‘↑’) represents a relative increment of the technical coefficients on A-matrix, the down 
arrow (‘↓’) indicates a relative reduction in the technical coefficients on A-matrix, and 
the up-down arrows (‘↑↓’) represents sequences in which technical coefficients can be 
increasing or decreasing in different sectors or industries due to the same causal link. 

(1)m = b′(I − A)−1y;

(2)malt
= b′alt

(

I − Aalt
)

−1

yalt.

(3)�m =

(

m−malt
)

.



Page 15 of 24Aguilar‑Hernandez et al. Economic Structures  (2018) 7:14 

As in Nakamura and Kondo (2002), the A-matrix might contain negative values that 
show the causality sequence of waste flows thought economic activities. For instance, 
the inputs of recycling activities can be expressed as negative inputs of treatment sectors 
that would be required if recycling processes were not available (Nakamura and Kondo 
2002).

4.1 � Modelling residual waste management

Residual waste management can be modelled by adjusting the amounts of waste treated 
by specific waste treatment sectors. Several authors created new waste treatment with 
improved technology (for example, Nakamura and Kondo 2009; Liao et al. 2015; Beylot 
et al. 2016b), which could be added to a waste supply-use table. These activities would 
require to augment their inputs from the rest of the economy in order to process the 
quantity of waste established in a specific circularity scenario (Yokoyama et al. 2006).

Figure 4a shows the causality sequence of changing the A-matrix for reducing waste 
scenarios. As primary sequence, wasted materials require to be absorbed by waste 

Residual waste management 

a

Closing supply chains

b

Product life�me extension 

c

Resource efficiency

d

P S W T

P ↑

S

W

T ↑

P S W T

P ↑↓

S

W

T ↑↓

P S W T

P ↓

S

W

T ↑↓

P S W T

P ↑↓ ↓

S

W

T

Fig. 4  Modelling causality sequence of a residual waste management, b closing supply chains, c product 
lifetime extension, and d resource efficiency. y = final demand vector, A = technology matrix, b′ = intensity 
vector. P = product or service, S = sector or industry, W = waste, T = waste treatment or recycling activity. 
Green square with solid line border (‘―’) indicates primary sequence, and red square with dash line border 
(‘‐‐‐’) represents secondary sequence. ‘↑’ indicates a relative increase in A-matrix coefficients, ’↓’ indicates 
a relative decrease in A-matrix coefficients, ‘↑↓’ indicates a simultaneous change in different sectors or 
industries caused by the same causal link
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treatment sectors (↑ in ATW elements). A secondary effect of such action is an increase 
on the direct requirements of waste treatment sectors in order to satisfy the new inter-
mediate demand (↑ in APT coefficients). As a consequence of rising production, waste 
disposal from waste treatment activities and their suppliers are expected to increase 
(↑ in ATW and AWS elements). This sequence appears to create an ongoing loop where 
absorbing waste would lead to increase waste disposal in order to process the new 
residuals. However, disposal would need to be constrained by the processing capacity 
of waste treatment sectors. In our present framework, we do not focus on how capacity 
constraints should be modelled explicitly; nevertheless, we consider it to be an impor-
tant aspect for future studies.

It is important to notice that, in some cases, the causality sequence could not be repre-
sented by changes in the A-matrix block. For example, increasing ATW coefficients might 
not lead to an increment of APT coefficients directly. Instead, a secondary sequence can 
be observed in changes on the intermediate demand block of waste treatment inputs.

4.2 � Modelling closing supply chains

Closing supply chains can be modelled by changing input and output coefficients to 
closed-loop activities, such as reuse and recycling sectors. These sectors can be repre-
sented as new end-of-life systems that would use waste outputs from industries as inputs 
to generate a usable product for the economy (Nakamura and Kondo 2006; Chen and 
Ma 2015). In many cases, such new activities would be added to EEIOA in order to 
model specific material recycling (for example, Ferrer and Ayres 2000; Choi et al. 2011; 
Reynolds et al. 2015).

A common assumption is that closing supply chains would drive the reduction in 
extracting virgin materials as a consequence of their replacement with secondary circu-
lar flows (Ferrer and Ayres 2000). This substitutional approach can be modelled by the 
replacement of specific commodities in the use matrix of industries by secondary mate-
rials, components, etc. (i.e. ↑↓ in APS coefficients).

Figure 4b presents the causality sequence of closing supply chain scenarios. The pri-
mary sequence of closed-loop strategies would imply to adapt the use matrix of a spe-
cific industry. Assuming that industry (S) would replace a primary product ( P′ ) for a 
secondary material from a recycling activity ( P′′ ), then the coefficients of the APS-matrix 
would decrease for the virgin materials (↓ for aP′s ). Likewise, the direct requirements 
of S would rise for the input of secondary goods (↑ for aP′′s ). A proportional exchange 
between P′ and P′′ can be expressed by monetary terms, if the prices of both products 
are fixed, as well as by direct substitution in physical units (Ferrer and Ayres 2000; Fer-
rão et al. 2014). Following the secondary sequence, we observe the adjustment of waste 
fractions treated by waste treatment industries (↑↓ in ATW elements). Such an effect is 
considered because the replacement of P′ for P′′ could adapt as well the waste generated 
by industry S, and, then, changing direct requirements from waste treatment sectors in 
order to dispose the new fractions of waste.

4.3 � Modelling product lifetime extension

The scenarios of extending product lifetime can be modelled by combining an adjusted 
final demand and the input coefficients in production sectors, next to probably a higher 



Page 17 of 24Aguilar‑Hernandez et al. Economic Structures  (2018) 7:14 

input of maintenance activities. In general, it is expected that the extension of product 
lifetime would decrease the quantity of goods consumed by final demand (Kagawa et al. 
2009; Nishijima 2017). Therefore, a primary effect of prolonging product lifetime would 
involve a reduction in final consumption on a certain product ( yPi ).

Figure 4c illustrates the causality chain of product lifetime extension. Assuming that a 
product i is designed to maximise its durability, the demand of such good would expect 
to decrease (↓ for yPi  ). Although this effect might imply an improvement of environmen-
tal performance from reducing the consumption of product i , the potential economic 
savings could be expended in other goods or services thus obtaining a rebound (Zink 
and Geyer 2017).

A possible approach to account for these rebound effects is proposed by Takase et al. 
(2005). They suggested that the total expenditure of new final demand ( xP ) would remain 
the same as total consumption in the reference scenario ( x ). By applying their assump-
tion, we can distribute a leftover budget proportionally to the rest of goods and then 
include a quick estimation for the rebound effect in the alternative final demand ( yP∗ ), as 
is shown in Eq. (4):

As a secondary effect, it is possible that extending product lifetime could potentially 
require the adjustment of the production recipe, which leads to change in the input 
requirements of industries (Bakker et  al. 2014; den Hollander et  al. 2017b). However, 
there are only limited opportunities for consumers to prolong their product’s lifetime 
when the product design is unchanged.

Depending on the product design, some industries might require to increase their 
material inputs in order to manufacture a more durable product (Murray et al. 2015). 
This operational adjustment is expressed in Fig. 4c by the simultaneous increment and 
reduction in technology matrix coefficients (in APS ). For example, if a change of the pro-
duction recipe for obtaining a durable good would require to reduce the input of com-
modity i and to increase the input of product k , then we can model such adjustments on 
the APS-matrix (by ↑ for aPSk ,j and ↓ for aPSi,j ).

4.4 � Modelling resource efficiency

In comparison with the previous interventions, resource efficiency is the least studied of 
circularity actions from an EEIOA perspective (see Fig. 2), and it can be one of the most 
interesting in terms of future development of EEIOA method. We found that studies 
related to resource efficiency are mostly focused on the calculation of resource footprint 
as an aggregated value (for example, Giljum et al. 2015; Wiedmann et al. 2015; Tukker 
et al. 2016). However, resource footprint by itself does not capture if resource efficiency 
policies would be beneficial for reducing the extraction material from the environ-
ment or if it would contribute to minimise waste disposal. For assessing the impacts of 
resource efficiency measures, we can consider the effects of such intervention by lower-
ing input coefficients at the same output.

Figure 4d presents the casual links of resource efficiency actions. In terms of primary 
sequence, it is possible that the application of material efficiency can lead to reduce 

(4)yP
∗

= yP
( x

xP

)

.
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the input requirements of economic activities where such intervention is implemented 
(↓ in APS coefficients). In a similar sequence as in modelling closing supply chain (see 
Sect. 4.2), a secondary implication of changes in APS can be expected in the operational 
changes of waste treatment, in which the technical coefficients of waste treatment sec-
tors can be adapted as a response of variations in waste disposal (↑↓ in ATW elements). 
To compare different scenarios, it is important to consider an accounting system in 
which the APS-matrix is expressed in physical terms because the use of monetary units 
as proxy can misrepresent physical reality (Dietzenbacher 2005).

5 � Discussion
In this review, our purpose was to critically evaluate the current application of EEIOA 
on the assessment of circularity interventions. We now focus on the main contributions 
and limitations of EEIOA in order to bring a possible direction for the development of 
such method in the assessment of circular strategies.

From the reviewed studies, we found a common agreement on how the assessment of 
circularity can be benefit from the development of EEIOA in which end-of-life scenarios 
are integrated. Such models usually are comprised of hybrid units in which secondary 
and waste flows can be considered (for example, Nakamura and Kondo 2009; Lenzen 
and Reynolds 2014). In addition, identifying these flows at multiregional scale has led to 
a better understanding of the impacts of international trade on resource and waste foot-
prints in specific countries (as in Duchin and Levine 2013; Wiedmann et al. 2015; Fry 
et al. 2016; Tukker et al. 2016; Tisserant et al. 2017).

On the other hand, we observed that a major aspect to develop is the representation 
of flows as economic transactions. The monetary values of input–output tables could 
not address effectively the allocation of resource flows because the monetary values per 
physical units can differ significantly in several supply chains (Weisz and Duchin 2006). 
This variation is caused by the assumption of an average price for materials with diverse 
physical properties and qualities (Tukker et al. 2016).

Price variation could become a critical factor in EEIOA with high sectorial and prod-
uct aggregation (Wiedmann et al. 2015). It is likely to be a limitation for adequately trac-
ing specific resource flows. For instance, if we assessed the recycling and reuse flows of 
a specific material such as ‘recovered aluminium’, input–output tables with broad clas-
sification of materials and industries (e.g. ‘metal products’ and ‘mining sector’) would 
assume that the price per physical value of ‘recovered aluminium’ is equivalent to the 
value of aggregated ‘metal products’. This example shows that a highly aggregated EEIOA 
could in many cases be too limited to model specific material flows.

To avoid the deficiency in resolution of some EEIOA models, a reasonable approach 
could be to disaggregate products and sectors in more detailed categories. The new clas-
sification may contribute to monitor specific resource flows in a circular economy model 
(as shown by Choi et al. 2011; Li et al. 2013). However, disaggregating sectors in EEIOA 
presents a challenge by itself because sectoral data may not be available at the required 
level of detail. This is particularly the case in waste input–output frameworks, in which 
many studies show a limited dataset to split and link waste treatment sectors to the rest 
of the economy (Salemdeeb et al. 2016).
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According to the studies, a lack of data sets for waste and material recovery could rep-
resent an issue in terms of waste valuation. Several authors recognised a deficiency for 
accounting the economic value of waste as this could be lower or absent in the EEIOA 
model (Nakamura 1999a; Liao et  al. 2015). The lack of economic valuation renders 
input–output accounts incomplete and, in some cases, leads to the underestimation of 
the embodied waste generated by final demand. For example, in the study of the Aus-
tralian waste footprint by Fry et al. (2016), waste flows related to overseas production 
could not be considered due to the lack of waste values in other regions. This led to an 
underestimation of waste footprint resulting from Australian consumption by at least 
1.5 million tonnes.

Underestimating waste generation may be caused by three aspects (Tisserant et  al. 
2017). First, some waste treatment sectors might not be included in the EEIOA model. 
Second, a standard EEIOA does not consider informal or illegal activities that could 
affect the estimation of waste footprint. Finally, EEIOA might not capture some of the 
flows that are not linked to monetary or physical transactions between sectors (i.e. direct 
reuse flows). In general, these aspects have an impact on the quality of waste data avail-
ability in many countries, which can be a significant source of uncertainty.

To address the lack of specific-sectoral data, proxies that can be used to integrate the 
values of circular strategies into the EEIOA framework could be estimated. For instance, 
to identify the patterns of industrial waste disposal, Reynolds et  al. (2016b) suggested 
that the shares of waste generation in New Zealand presented the same trend as others 
developed economies (e.g. UK and Australia) and, then, used a proxy for the estimation 
of waste generation. In many cases, this type of assumption introduces uncertainties that 
may affect the analysis reliability (Ohno et al. 2016). Although the importance of uncer-
tainties is considered in the literature (Wiedmann 2009), most of the reviewed studies 
mention the level of uncertainty without addressing it in much detail, and it brings a 
recurrent issue about data reliability of analysing circular economy interventions with 
EEIOA.

In terms of modelling circularity scenarios, EEIOA may be of limited use when assess-
ing environmental implications in the future (de Koning 2018). For example, by fixing 
technical coefficients of a circular economy scenario, EEIOA cannot capture the volume 
effects on prices as well as price effects on the use of certain products. Without addi-
tional model components (see, for example, Gibon et al. 2015), EEIOA has also limited 
opportunities to represent changes of energy systems in the future with environmen-
tal impacts that are different from the current way of production. Moreover, there is no 
direct feedback effect from nature to the economy in standard EEIOA, which restricts 
the assessment of different circularity gains.

6 � Conclusions
This article presented a review of EEIOA-based studies that assessed the economic and 
environmental implications of residual waste management, closing supply chains, product 
lifetime extension, and resource efficiency interventions. We evaluated the selected articles 
based on their methodological characteristics in order to synthetise the main EEIOA-based 
frameworks used to analyse each circularity intervention. Furthermore, our results led 
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to a point of reference for modelling future circular strategies at macro-scale by applying 
EEIOA.

By considering a simplified waste supply-use model, we explained the causality sequence 
of modelling circularity interventions. For residual waste management, a waste treatment 
action can be modelled by augmenting the values of waste absorbed by a certain waste 
treatment sector, which in turn requires more inputs from the rest of the economy in order 
to process the new amount of waste disposal.

Closing supply chains can be assessed by adjusting input and output coefficients for 
industries that adopt closed-loop strategies, which are related to the replacements of virgin 
materials with secondary circular flows. In addition, these interventions require to specify 
new sectors in the EEIOA model if the circular activities are not explicitly expressed.

Product lifetime extension can be modelled by adapting the final demand coefficients by 
expecting a reduction in final consumption. However, it is important to consider a potential 
rebound effect of prolonging product lifetime caused by the expenditures on other product 
or service categories from the savings on final demand. Furthermore, modelling product 
lifetime extension might involve accounting for potential changes of the production recipe 
of durable goods.

Resource efficiency intervention can be analysed by reducing input coefficients while 
maintaining the output. Such action could minimise the input requirements of economic 
activities in which the intervention is applied, and it can be used to model the structural 
changes in a technology matrix caused by resource efficiency strategies.

We observe that the development of waste input–output analysis (WIOA) will dominate 
the assessment of circularity transition, because it is the most suitable framework to link 
the flows of waste and the rest of the economy in an EEIOA system. However, WIOA is 
constrained by the monetary flows in EEIOA (Nakamura and Kondo 2009), which can be 
considered a major limitation for the analysis of circular strategies, especially in the case of 
residual waste management, due to the lack of valuing waste. This challenge can be avoided 
by future applications of physical and hybrid tables that can be used to analyse the potential 
impacts of material efficiency and secondary flows more accurately (Tisserant et al. 2017).

The recent development of hybrid-unit input–output and supply-use tables, in which 
tangible products and waste types are expressed in physical units (i.e. mass) and service 
sectors in monetary units (for example, Merciai and Schmidt 2018), will advance the 
modelling of circularity interventions in a consistent framework. In addition, detailed 
sectoral data could enable the assessment of circular strategies such as re-use, reman-
ufacturing, and refurbishment (Ellen MacArthur Foundation  2013). Combining both 
aspects, hybrid tables and detailed production data, would allow an improvement of 
current EEIOA models for assessing the economic and environmental implications of a 
circularity transition.
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