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3
TRIPLET COOPER PAIRS IN

MAGNETIC HYBRIDS

3.1. PROXIMITY EFFECT

P
ROXIMITY EFFECT is a general term used to describe the phenomena which oc-

cur at the interface between two different orders. We begin this section with

a basic example, where a conventional (singlet) superconductor (S) is shar-

ing an interface with a nonmagnetic normal metal (N), illustrated in Figure 3.1. At

the interface the superconducting condensate Ψ(R) extends into its adjacent layer,

making it superconducting by proxy. In other words, despite the absence of an at-

tractive interaction, there is still a finite probability of finding Cooper pairs in the

normal metal. One can therefore think of this as the “leakage” of Cooper pairs into

an adjacent medium.

As shown in Figure 3.1, deep within the superconductor the pair amplitude is at its

maximum Ψ(R → −∞) = Ψ0, while on the other side of the interface, in the nor-

mal metal, the condensate must ultimately drop to zero Ψ(R →+∞) = 0. Proximity

effect is concerned with the region in between, where |Ψ| falls as a function of dis-

tance. The characteristic length scale over which the order parameter can vary its

amplitude is called the coherence length ξ, which is a material property. At the inter-

face, Cooper pairs are depleted from the superconductor over a distance defined by

ξs(T ) ≈ ξ(0)(1/
p

T /T c −1), where ξ(0) corresponds to the coherence length of the su-

perconductor at T = 0 K. Depending on the material, the value of ξ(0) can vary from

a couple of nanometer (cuprates) up to over a micron (Aluminium).1

1 It is worth noting that Al is a rather extreme example. For most superconductors ξ(0) is less than 200 nm.

27



3

28 3. SPIN-TRIPLET COOPER PAIRS IN MAGNETIC HYBRIDS
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∣Ψ∣
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Figure 3.1: Proximity effect at the interface between a superconductor (S) and a normal metal (N). As the
condensateΨ spreads across the interface, its amplitude decays over the length scales ξs and ξn.

On the other side of the interface, the amplitude of Ψ falls over the characteristic

length of ξn. In a diffusive system (dirty limit), defined by ξn < l , where l is the mean

fee path of the electron, ξn is given as

ξn =
√

ħDn

kBT
(3.1)

where ħ is the Planck constant, Dn is the diffusion coefficient of the normal metal

and kB is the Boltzmann constant. For a transparent interface, this length scale is

typically 100s of nm. While ξs and ξn may correspond to widely different values,

the total condensate remains conserved. i.e. for every pair injected into the normal

metal, a pair is “drained” from the superconductor.

So far we have described the proximity effect in terms of a macroscopic order param-

eter. There is however an equivalent microscopic description which concerns An-

dreev reflections. In this process an incident electron (hole) from N, with an energy

below the superconducting gap, is retroreflected at the interface as a hole (electron)

with equal and opposite momentum. The Andreev reflected electrons and holes re-

sult in a phase-coherent transport in units of 2e, which is equivalent to transferring

Cooper pairs across the interface. Likewise, the electron-hole pairs can maintain

their phase-coherence in the normal metal over a characteristic distance which de-

pends on the energy of the electron (hole) with respect to the Fermi energy, but on

average, corresponds to ξn.2

2 For more details on Andreev process see Refs. [1, 2].
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3.1.1. SPIN-ACTIVE INTERFACES

Consider now replacing the normal metal with a ferromagnetic layer (F). The main

difference with a normal metal is the exchange field of the ferromagnet E ex, which

splits the electronic bands for up and down spins by shifting their energy by 2E ex.

The singlet Cooper pair consists of two electrons with equal and opposite spins (↑,↓)

and momenta (k f ,−k f ). This means a pair has a total spin and momentum of zero.

By splitting the Fermi surface, the exchange field introduces a shift in momenta for

spin up k f ↑ = k f +Q/2 and spin down k f ↓ = k f −Q/2 electrons (see Figure 3.2 a). In

the diffusive limit, the shift corresponds to Q = 2E ex/(ħv f ), where v f is the Fermi ve-

locity. This results in a finite momentum for |↑↓〉: k f ↑−k f ↓ = Q, and similarly for |↓↑〉:
k f ↓−k f ↑ =−Q. The singlet state is then transformed into the linear combination of

terms with different momenta

1p
2

(|↑↓〉− |↓↑〉) −→ 1p
2

(
|↑↓〉e i R.Q −|↓↑〉e−i R.Q

)
(3.2)

which can be simplified to

1p
2

[(
|↑↓〉− |↓↑〉

)
cos(R.Q) + i

(
|↑↓〉+ |↓↑〉

)
sin(R.Q)

]
. (3.3)

The first term is an oscillating singlet state |0,0〉 with zero spin (S = 0), while the

second term describes a triplet state |1,0〉 (S = 1), whose spin projection is zero (m =
0) with respect to the spin quantization axis, which is defined by the direction of

the exchange field of the ferromagnet. This spatially inhomogeneous singlet-triplet

mixture (shown in Figure 3.2 b) is the equivalent of the famous FFLO state3, which

was originally intended as a possibility for bulk ferromagnetic superconductors [3, 4].

These correlations however can only survive in the F layer within a finite length scale

from the interface. In a diffusive system (relevant to our structures) all pair ampli-

tudes decay exponentially over ξf, which is given by

ξf =
√

ħD

E ex
(3.4)

3 Also known as the LOFF state, it is named after Peter Fulde and Richard Ferrell [3], and Anatoly Larkin
and Yurii Ovchinnikov [4], who independently proposed the idea in connection with the coexistence
problem of superconductivity with ferromagnetism. More details on this can be found in Refs. [5, 6]



3

30 3. SPIN-TRIPLET COOPER PAIRS IN MAGNETIC HYBRIDS

↑

↑

k f↑
k f↓

2Eex

Eex

Eex

k f↑

E

k↓ k↑
k f↓

Ef

S F

∣↑↓⟩+∣↓↑⟩

∣↑↓⟩−∣↓↑⟩

a b

Figure 3.2: Cooper pairs at S-F interface: short-range proximity effect. a Spin polarization of the ferro-
magnet splits the bands for spin up (blue) and spin down (red) electrons by 2Eex at the Fermi surface E f ,
and leads to a shift in their momenta. This results in a finite momentum of the Cooper pair (k f ↑ 6= −k f ↓).
b singlet (blue)-triplet (red) mixing at the S-F interface. Spatially inhomogeneous singlet triplet mixture
in the F layer corresponds to the FFLO state. In a diffusive ferromagnet with strong spin polarization, the
correlations decay exponentially over ξf ≈ 1− 5 nm. The reflections from F layer cause spin-dependent
phase shifts on the other side of the interface, forming a singlet-triplet mixture in S.

Unlike ξn, which was mostly determined by thermal processes, the value of ξf is dom-

inated by the exchange energy E ex. To gain some perspective, we can roughly trans-

late E ex to the Curie temperature, which is typically in the order of 100s of Kelvin.

This means that in strong ferromagnets like Co and Ni, all correlations die out within

3 − 5 nm from the interface— hence the name short-range proximity effect. The

stronger the spin-polarization, the more suppressed the FFLO state is in the ferro-

magnet. At the same time however, stronger spin-polarization would have a larger

impact on the superconducting side, where it induces an m = 0 triplet component

(see Figure 3.2 b). This triplet component is a product of spin-dependent scattering

phase shifts at the interface, which grow larger with the spin-polarization of F.

The exchange field results in different scattering phase delays for different spins

(φ↑,φ↓). The corresponding phase shift can be expressed in terms of a spin-mixing

angle, defined as θ = φ↑ −φ↓. In case of Cooper pairs, θ corresponds to the phase

difference between a spin-up electron with momentum k, and a spin-down with −k,

where k and −k point towards and away from the interface respectively. This results

in a phase shift of θ for |↑↓〉, and −θ for |↓↑〉. The singlet state is hence converted to
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1p
2

(|↑↓〉− |↓↑〉) −→ 1p
2

(
|↑↓〉e iθ−|↓↑〉e−iθ

)
(3.5)

and can be written as

1p
2

[(
|↑↓〉− |↓↑〉

)
cos(θ) + i

(
|↑↓〉+ |↓↑〉

)
sin(θ)

]
(3.6)

In analogy to the formation of the FFLO state, we again arrive at a mixture of sin-

glet |0,0〉 (first term) and triplet pairs |1,0〉 (second term) with no spin projection.

The distinction here is that, instead of a momentum, the pair acquires a phase shift

θ. The angle θ describes the rotation of the spin components perpendicular to the

quantization axis under reflection. More importantly, we can consider θ as a mea-

sure of singlet-triplet mixing, which is a crucial ingredient for generating long-range

triplet correlations.

3.1.2. LONG-RANGE TRIPLET CORRELATIONS

Given their capacity to generate m = 0 triplet correlations, it is natural to wonder if a

spin-active interface can also provide the other triplet states |↑↑〉 and |↓↓〉 (m = ±1).

Such correlations correspond to equal-spin pairing of the electrons, which puts them

in a particularly interesting position. The reason for this is that pairs with parallel

spin alignment are almost immune to the usual destructive influence of the exchange

field, and can therefore lead to long-range superconducting correlations which are

also spin-polarized. This provides an attractive prospect for spintronic applications,

where decoherence and dissipation can be substantially minimized.

In order to proceed, consider the case where F and S are separated by a magnetic

interface, whose magnetization vector Mi can vary with respect to that of the F layer

MF (see Figure 3.3). The thickness of the interface region is restricted to values close

to its ξf. For simplicity, we assume the interface and F are both highly spin-polarized,

and therefore refrain from including the damped FFLO state in the sketches.

When Mi ∥ MF (Figure 3.3 a), the system is practically equivalent to a single S-F inter-

face. Inside the ferromagnet, the FFLO state leads to a mixture of spatially oscillating

singlet and m = 0 triplet components. These correlations are faced with the problem

of populating spin-split Fermi surfaces, and therefore only last for atomically small

distances. However, there is also singlet-triplet mixing in the S layer, as a result of

spin-dependent phase shifts that occur during reflections from the F layer. Interest-

ingly, these correlations can reach up to 10s of nm, as their characteristic length scale
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ba

Mi

MF

Mi

MF

Figure 3.3: Generating equal-spin triplet pairs at S-F interface: long-range proximity effect. a, magnetiza-
tion of the interface Mi and that of the F layer MF are aligned with z. Spin quantization axis for triplet-
singlet mixing is z, and the correlations are suppressed in the F layer. b, if Mi ∥ x, the |↑↓〉x + |↓↑〉x triplet
has zero spin-projection along x, but can decompose into |↑↑〉z and |↓↓〉z as we switch the quantization
axis to z in F. The equal-spin pairs are not broken by the exchange field, leading to long-range proximity.

is defined by the size of the Cooper pairs i.e. the coherence length of the supercon-

ductor ξs. However, this triplet state cannot survive in the ferromagnet as it also has

zero spin-projection along z, and therefore suffers the same fate as the FFLO phase.

Let us now consider the case where Mi makes an angle with MF (shown in Figure 3.3

b). For simplicity, we assume MF to align with the z-axis within the F layer, while Mi

points along the x-axis. The spin-mixing that occurs in the S layer is therefore a result

of the exchange field in the x-direction. In contrast to Figure 3.3 a, the spin quantiza-

tion of the singlet-triplet mixture at the interface is now defined with respect to the

x-axis. While the triplet state |↑↓〉x +|↓↑〉x has zero spin-projection in x-direction, it

can decompose to |↑↑〉z and |↓↓〉z pairs in the F layer. Due to their equal spins, such

pairs do not “feel” the exchange field of the ferromagnet. These triplet correlations

can therefore spread through the ferromagnet, just as singlet pairs do in a normal

metal. By the same token, the characteristic decay length for equal-spin triplets is

given by

ξESP

f =
√

ħD f

kBT
(3.7)

which is equivalent to the expression for ξn (3.1). As a result, the typical length scale

for equal-spin triplet Cooper pairs in a ferromagnet can exceed far beyond the value

of ξf. For a strong ferromagnet such as Co, ξESP

f is in the order of 10s of nm, but it can

also reach values as large as a micron in case of the half-metallic ferromagnet CrO2.

Furthermore, the amplitude of equal-spin pairing is proportional to the magnetic
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non-collinearity at the interface. In the above example (Figure 3.3 b), we assumed

the magnetization of the interface to be perpendicular to that of the F layer. This

corresponds to the maximum amplitude of long-ranged triplets generated. Besides

amplitude, the orientation of the magnets also determines the phase of the triplet

correlations. This is discussed in Section 3.1.4 in connection withπ- andϕ-junctions.

Supercurrents (triplet as well as singlet) are generally studied in the context of a ba-

sic device known as the Josephson junction. It is therefore necessary to introduce

the general Josephson effect before proceeding further with the discussion on triplet

correlations in S-F hybrids.

3.1.3. JOSEPHSON EFFECT

The Josephson effect is concerned with the overlap of two macroscopic wavefunc-

tions that are separated by some form of weak link. The concept is illustrated in

Figure 3.4a, which shows two superconducting electrodes, each corresponding to a

distinct wavefunction described by Ψl ,r = ne iφl ,r . Here n is the density of Cooper

pairs, which we assume to be the same for the left (l ) and right (r ) electrodes, and

φl ,r corresponds to the macroscopic quantum phase of individual condensates. The

two wavefunctions can extend over the weak link and couple with each other through

proximity effect. On the other hand,Ψl andΨr can have different phases, and in or-

der to transfer Cooper pairs between the electrodes, phase coherence must be main-

tained. Josephson showed that the supercurrent across a junction is determined by

this phase difference through

I = I c sin
(
ϕ

)
(3.8)

where ϕ=φl −φr , and I c is the maximum amount of supercurrent the junction can

sustain. Below this value transport is dissipationless, and characterised with zero

voltage V (i.e. resistance). The nonlinear current-voltage characteristic of a typical

junction is shown in Figure 3.4b, where the system is biased with a d.c. current. The

Josephson relation 3.8 also demonstrates an important distinction between super-

conductors and normal conductors. Conventional electronics are governed by the

Ohm’s law, which states that electrical current is driven by the voltage (I ∝ V ). In

a superconducting circuit however, there is no potential difference (V = 0). Instead,

the current is driven by the phase difference ϕ. What makes the macroscopic phase

of fundamental importance is that it means electrical transport in a superconductor

has a wave-like nature. This can be confirmed by the behaviour of a single Joseph-

son junction in presence of a magnetic field. As shown in Figure 3.4 c, I c(B) follows

a Fraunhofer "diffraction pattern”, similar to that of a wave passing through a nar-

row slit. In analogy with optics, the total supercurrent that can flow in one direction

is modulated by the spatial variations of the phase. The difference is that here the
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Figure 3.4: Josephson effect. a, schematic of a Josephson junction. A weak link (yellow) is proximized by
the overlapping wavefunctions Ψl ,r of the superconducting electrodes. b, typical I −V characteristic of
Josephson junction. The plateau corresponds to the zero resistance (i.e. static phase). c, Fraunhofer pat-
tern (simulated), representing the basic relation between critical current (normalised) and applied mag-
netic flux in a standard Josephson junction.

phase variation is introduced by the magnetic flux threading the junction Φ. Since

flux can only enter a superconductor in quantised units, the supercurrent diffraction

is described by

Ic(B) = I max

c

∣∣∣∣∣∣
sin

(
πΦ
Φ0

)
πΦ
Φ0

∣∣∣∣∣∣ (3.9)

where Φ0 = ħ/2e is the magnetic flux quantum (fluxoid), and I max
c is the maximum

critical current of the junction.

In the same way ξ is the characteristic length for the amplitude of the order param-

eter, a characteristic length (λ) can be assigned to the phase of the order parameter.

Hence, generally speaking, λ can be described as the length scale over which φ can

vary. This definition of can be applied to any superconducting system, and is not

limited to Josephson junctions.4 Given that supercurrent is driven by the phase dif-

ference, λ is also the characteristic length for supercurrent amplitude. For instance,

under an external magnetic field, the circulating currents inside a superconductor

are restricted to a finite range. As the supercurrent amplitude decays over λ, so does

the magnetic field, which is the reason for referring to λ as the penetration depth.

4 Not to be confused with the λJ , which is specific to Josephson junctions.
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There are however multiple variations of λ, each applicable to a different system i.e.

a bulk superconductor would correspond to a different λ than the one for a thin film

or a Josephson barrier. The bottom line here is that the phase of the order parameter

can only vary over a finite length scale, which is determined by λ. Also, as we de-

scribe in later chapters, external magnetic fields are not the only means of creating a

phase difference.

3.1.4. LONG-RANGE TRIPLET SUPERCURRENTS

The theoretical developments on long-range proximity effects began by a series of

consecutive papers in the beginning of 2000s [7–9]. In their pioneering work, Se-

bastián Bergeret, Anatoly Volkov and Konstantin Efetov studied S-F structures where

the magnetization rotates near the interface. They showed such systems can pro-

duce equal-spin triplet amplitudes which can extend over long distances in the fer-

romagnet. More surprisingly however, was that they found these triplet correlations

to have even-parity (s-wave) and odd-frequency. This was the same pairing state

that Berezinskĭı [10] had proposed in 1974 for superfluid 3He, which later was found

to be p-wave (even-frequency). This rather unexpected development had important

symmetry implications. The realization of equal-spin pairing with s-wave symmetry

meant the order parameter is robust against elastic scattering from non-magnetic

impurities. Therefore, spin-polarized supercurrents can propagate through ordinary

ferromagnetic films, even when transport is diffusive. This is to be distinguished

from p-wave triplets (even frequency), which are restricted to clean materials [11].

A crucial aspect of the theory of the odd-frequency triplets was that it relied strongly

on the presence of a certain type of magnetic inhomogeneity at the interface. It

was clear that without this, spin-mixing could not produce the s-wave triplet cor-

relations. This led to an on-going series of theoretical proposals for generating, and

controlling, long-range triplet correlations in various S-F hybrid systems. The early

theoretical studies considered the use of domain walls [7, 12–16] and spiral magnetic

structures [17–20] as possible candidates for triplet spin-mixing. Sosnin et al. at-

tempted to realise these ideas using the intrinsic helical magnetic phase of holmium

[21]. The authors applied Andreev interferometry to investigate transport through

a Ho wire (50− 150 nm long) contacted by superconducting electrodes. They ob-

served Φ0-periodic conductance oscillations, which indicated phase-coherent su-

perconducting transport through the Ho wire. A Josephson current however was

not detected. The wires maintained appreciable resistance which, below a certain

point, did not seem to decrease by lowering the temperature— indicating the junc-

tions were most likely not fully proximized.

An important experimental evidence of long-range triplet supercurrent came in

2006, where Keizer et al. reported supercurrents through the half-metallic ferromag-
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Figure 3.5: Generating long-range triplet current with a magnetic trilayer. a Schematic of an S/F’/F/F”/S
junction. Arrows indicate the magnetic orientation of each layer. Magnetization of the middle F layer
(thickness = d) is fixed along z, while F’ and F” (thicknesses dL and dR ) can rotate their magnetizations
by ϕL and ϕR respectively. b Normalised Ic as a function of layer thickness dL (dR ), plotted for various
orientations of ϕR , while fixing ϕL = π/2. Ic amplitude is maximum for ϕR = ±π/2 i.e. if F’ and F” mag-
netizations are both perpendicular to the magnetization in F . Negative (positive) Ic corresponds to the π
(zero) state. Taken from Ref. [30].

net CrO2 [22]. They observed a finite supercurrent between NbTiN electrodes that

were separated by over 300 nm on a CrO2 film. Given the fully spin-polarized na-

ture of CrO2 (only one spin type has a conduction band, and the other is insulating)

[23–28], this was a strong evidence of a long-range triplet component with equal-

spin pairing of electrons. Their experiments however could not provide any infor-

mation about the frequency of orbital symmetry of the correlations. As transport in

the CrO2 film may still be in the clean limit, where an odd-parity order parameter

could survive, it was therefore not possible to determine whether the triplet pairing

was of odd-frequency (s-wave) or odd-parity (p-wave) type. Furthermore, the results

of Keizer et al. proved rather difficult to reproduce. It was only in 2010 that Anwar et

al. succeeded in reproducing the effect using MoGe electrodes separated by 700 nm

on CrO2 film [29]. This was partly due to the difficulties in making transparent in-

terfaces with CrO2, which is metastable and reduces to Cr2O3 at room temperature.

This forms an insulating layer, which needs to be carefully removed from the sur-

face of CrO2 before depositing any electrical contacts. The other difficulty however

was the lack of control over magnetization at the interface with the CrO2 films. As

described in section 3.1.2, the presence of a certain magnetic inhomogeneity at the

interface is crucial for generating long-range odd-frequency triplet pairing. However,

the source of magnetic inhomogeneity in the early CrO2 devices was rather ambigu-

ous and difficult to control.

A major breakthrough was made in 2007 by Houzet and Buzdin who proposed a de-

vice structure to generate (and potentially control) triplet supercurrents in multilayer

systems [30]. Their proposal was based on a Josephson junction where the weak link

consisted of a ferromagnetic trilayer (S/F/’F/F”/S), where the magnetization of F’
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and F” could be rotated with respect to F (see Figure 3.5 a). They showed that the

amplitude of long-range triplet supercurrent is maximum if F’ and F” are magne-

tized perpendicular to F, and vanishes if they are collinear (i.e. when F’ and F” are

either parallel or antiparallel to F). Equally important was that the relative alignment

of the F’ and F” also determined if the junction is in a 0 or π state. They showed

that if the F’ and F” are parallel, the junction has an intrinsic phase of ϕ = π (i.e. is

a π-junction), while in the antiparallel configuration ϕ= 0 (see Figure 3.5 b). Hence,

in addition to controlling the amplitude of supercurrent, the magnetic orientation

of the layers can be used to realise both 0 and π states in the same device. This was

recently demonstrated in Ref. [31], where the phase of a triplet junction, with a mul-

tilayer weak link, could be switched between 0 and π by turning the magnetization

of one layer by 180◦.

Note that even before the emergence of long-range triplet devices, π-junctions had

been realized by short-range proximity effect in thin (< 10 nm) and weakly spin-

polarized ferromagnets. In such systems the crossover between 0 and π was usually

achieved by carefully varying the thickness of the ferromagnet or, under very specific

circumstances, by varying the temperature [5, 32]. In terms of device applications,

neither of these options could match the robustness of a triplet junction, such as the

one depicted in Figure 3.5. This led to a growing interest in the use of magnetic mul-

tilayers for singlet to triplet conversion. Shortly after, a series of experimental efforts

succeeded in realizing this, and long-range triplet currents were found in a number

of multilayer junctions — using different materials and device configurations.

As shown in Figure 3.5 singlet to triplet conversion with a multilayer requires non-

collinear magnetization of the ferromagnets. In practice however, realising such

magnetic configuration is by no means a trivial task. The difficulties arise from the

fact that local interlayer coupling tends to favour parallel or antiparallel alignment of

the magnetizations 5. While interlayer exchange interactions can be regulated with

nonmagnetic spacers, interlayer dipolar (magnetostatic) coupling has proven to be

rather problematic. This has been a major hurdle for the controlled generation of

triplet correlations, and has been the focus of intensive studies [33–37]

The individual groups which succeeded in generating long-range triplet currents,

each had a distinct method to overcome this issue. Robinson et al. implemented the

conical magnetic configuration of holmium to create non-collinearity with cobalt

magnetization in Nb-Ho-Co-Ho-Nb nano-pillar junctions (see Figure 3.6 a,b) [38].

Meanwhile Khaire et al. developed a different approach using a synthetic antifer-

romagnetic interlayer (SAF) made of a Co-Ru-Co trilayer [39]. In this case, the ex-

change coupling through Ru leads to antiparallel alignment of magnetic domains in

the adjacent Co layers, thereby suppressing their demagnetising fields. The SAF de-

couples the Co magnetization from the other ferromagnets in a S-F’-N-SAF-N-F’-S

5 More on this in Section 3.2 where we examine multilayer systems with micromagnetic simulations
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stack used in their devices (See Figure 3.6 c,d), allowing a magnetic non-collinearity

to be present between Co and F’ layers. The multilayer convertor was also imple-

mented by Anwar et al. , where they extended their work on CrO2 junctions [40].

Using MoGe-Ni(1.5 nm)-Cu(5 nm) electrodes, deposited on a CrO2 film, they found

critical currents that were about two orders of magnitude higher than their previous

works. This was a strong indication of spin-mixing by magnetic misalignment, and

consistent with the behaviour of odd-frequency triplets.

Figure 3.6: a, configuration of the Ho/Co/Ho trilayer used in Ref. [38], where the conical magnetic struc-
ture of Ho was used to inject long-range triplet correlations into Co. Magnetic moments of Ho (red arrows)
rotate by θ = 30◦ per atomic layer, leading to a spiral with a period of λ ≈ 3.4 nm. b, normalised Ic as a
function of Co thickness. The oscillating curve is the simulated behaviour for short-range proximity, where
Ic would be rapidly suppressed. Instead, the the measured Ic falls as if the Co barrier was nonmagnetic.
Taken from Ref. [38]. c, schematic of the magnetic multilayer used for generating long-range triplet cur-
rent in Ref [39]. Here, the magnetic “trilayer” consists of one (Co/Ru/Co) and two separate PdNi (4 nm)
layers, shown here as F’. d, Ic as function of Co thickness for junction with (red circle) and without (black
square) the F’ layers. For the full trilayer, there is no appreciable decay of Ic for Co thicknesses up to 30 nm.
Taken from Ref. [34].

Besides non-collinear multilayers, there is a growing number of proposals for gen-

erating and controlling triplet correlations which remain unexplored. A number of

these ideas revolve around the use of spin ”texture”. This corresponds to systems

where two; or all three components of magnetization (mx ,my ,mz ) vary spatially in

at least two dimensions. The spatial variation of the magnetization needs to take

place over a certain length scale that is comparable to ξf. These conditions can be

realised in the magnetic ordering of certain mesoscopic ferromagnets and magnetic

domain walls.
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3.2. MICROMAGNETIC SIMULATIONS

3.2.1. MICROMAGNETIC THEORY

The magnetic state of any given structure can be modelled by finding the state that

corresponds to lowest free energy. The magnetic energy however consists of a num-

ber of discrete components. In systems described here, the most relevant energy

terms are the exchange, anisotropy, demagnetizing (also called magnetostatic en-

ergy) and Zeeman. The total energy is then determined by the sum of all energy

densities, integrated over the volume of a system.

Etot =
∫

V

(
εex +εanis +εdemag +εz

)
dV (3.10)

Consider calculating this for the relatively simple 3-dimentional system shown in

Figure 3.7 b. On the atomic scale the exchange interaction aligns the neighbouring

magnetic moments, while on a larger scale the demagnetizing term forces the mag-

netic moments to align with the sample boundaries to minimize stray fields. Never-

theless, depending on the exact geometry, there will be a presence of demagnetizing

fields which results in dipole interactions between the adjacent ferromagnets. In ad-

dition to these, there are also the contributions from magnetic anisotropy, which can

be different for each material, and external magnetic fields.

There is no doubt that an analytical approach to this problem would be overwhelm-

ingly complex and tedious. Fortunately however, the micromagnetic theory allows us

to implement numerical methods that are far more effective. Instead of considering

individual magnetic moments, the micromagnetic theory postulates that magneti-

zation (i.e. magnetic moments per unit volume) is a spatially continuous function

M(r) [41]. Based on this approximation a system can be divided into discrete units

Figure 3.7: a Precession (red) and damping (blue) of magnetization vector M under an effective magnetic
field Heff, as described by LLG 3.12. b Micromagnetic theory applied to a magnetic multilayer. System
is divided into discrete cells, where each unit can be assigned with a magnetization vector m, which is
subject to a local effective field. This also includes stray fields, which lead to interlayer dipolar coupling
(shown as solid lines connecting the layers).
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of finite dimensions. Each segment is described by a unit magnetization vector, and

experiences a local effective field Heff(r) given by

εtot = −
∫
µ0Heff(r).M(r)d 3r

Heff(r) = − 1

µ0
∇Mεtot (3.11)

Hence, all the components of magnetic energy are now elegantly represented by sin-

gle magnetic field. This enables us to obtain the dynamic magnetization of each cell

by solving the time-dependent Landau-Lifshitz-Gilbert (LLG) equation

dM

d t
= γµ0M×H− α

Ms
M× dM

d t
(3.12)

where γ is the gyromagnetic ratio and α is the Gilbert damping parameter. Here, the

first term describes the procession of M in a local effective field, while the second

term corresponds to dissipation (see Figure 3.7 a). Solving the LLG for every cell, one

by one, over the entire system, and in many iterations, allows each unit of magneti-

zation to interact with its neighbouring cells and reconfigure its direction over time.

The overall magnetization therefore "evolves” by minimizing its total energy, until

the system relaxes into a minimum in the free energy landscape.

3.2.2. SIMULATIONS

The simulations are carried out using the object-oriented micromagnetic framework

(OOMMF) software package [42], which applies finite element techniques to the dif-

ferential LLG equation 3.12. It works discretising a given object over a small mesh,

where at each point LLG is solved and integrated using Runge-Kutta algorithms [43]

to calculate the magnetization. It is possible to define the anisotropy and initial mag-

netization of individual cells, and vary an applied field over the entire object. It also

calculates the demagnetizing fields using Fast-Fourier-transformations [44, 45].

The equilibrium state can be found by monitoring the rate at which magnetization

changes its direction. In the Runge-Kutta evolver this is represented by the param-

eter |dm/d t |max, which has units of degrees per nanosecond, where m is the unit

magnetization direction. Preferably, the value of dm/d t should be as small as pos-

sible. Depending on the individual system, we set |dm/d t |max < 0.1, which means

the simulation will stop if the maximum magnetization derivative of each cell is less

than 0.1 degrees per nanosecond. A typical simulation can take somewhere between
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105 to 106 iterations and, in some cases, may not converge at all. Even with the high-

performance clusters of 48 - 64 cores, this could correspond to days, and sometimes

weeks, of computational time. It is therefore critical to choose our computational

parameters carefully, and monitor the evolution of magnetization at every stage to

ensure the simulation is progressing in consistent manner.

The mesh size is one of the crucial parameter which should be chosen carefully. In

most cases, but not always, a smaller cell size provides a more realistic represen-

tation of a given object. One the other hand, increasing the number of cells could

overwhelmingly slow down the simulation. As a rule, this value needs to be of the

order of the exchange length, given by

lex =
√

2A

µ0M 2
s

(3.13)

where A is the exchange stiffness in units of J/m. In general, lex can be described as

the characteristic length scale over which the magnetic moments can change their

alignment in presence of an exchange field. For strong ferromagnets this value is in

the order of 5 nm, which is also the standard mesh size used in our simulations. An-

other important parameter for convergence is the damping constant α in LLG 3.12.

This can be interpreted as a measure of how quickly the field and magnetization align

(see Figure 3.7 a). As we are mainly interested in the equilibrium state, we set α= 0.5

for rapid convergence. Using smaller values would substantially increase the simu-

lation time and hardly affect the equilibrium state.

As stated earlier, OOMMF allows defining the magnetic anisotropy of the individual

cells. This can be set to represent the appropriate magnetocrystalline anisotropies

(e.g. uniaxial for cobalt and cubic for nickel etc.). However, with the exception of

CrO2, the ferromagnetic films used in this work are prepared by sputter deposition

on amorphous SiO2 substrates. To represent the polycrystalline nature of these films,

where each grain has an arbitrary orientation, we use a random vector field to set the

principal axes of each unit cell. Since magnetocrystalline anisotropy is now smeared

out in all directions, shape anisotropy (the minimization of the stray fields) becomes

the dominant factor. For the sputtered films of Co and Ni used here, this leads to

an in-plane magnetisation with no specific easy axes. This anisotropy was also con-

firmed by our ferromagnetic resonance (FMR) and SQUID magnetometry [46].

Crystallinity and geometry however are not the only factors which can result in

a magnetic anisotropy. In some cases, certain deposition conditions can also re-

sult in a preferred magnetic direction. An example of this is the permalloy (Py)

films deposited in presence of a finite magnetic field, which can develop an out-of-

plane anisotropy [47]. In this case, experiments were necessary to determine the
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anisotropy, which we could then use as input in our simulations — and model the

individual domain structures found in the patterned Py films.

In addition to anisotropy, simulations also require the exchange stiffness A and satu-

ration magnetization Ms . These values are provided in the OOMMF database (com-

monly used in literature). We found the reported values for Ms to be in close agree-

ment with the ones obtained from our FMR and SQUID measurements.

3.2.3. MULTILAYER PLANAR JUNCTIONS

In this section we describe how micromagnetic simulations can be applied to multi-

layers to design optimal planar junctions with long-range triplet current (see Figure

3.8). Ideally we need a stable magnetic non-collinearity (MNC) between F and F’ lay-

ers, which can also be modified and controlled by applying external magnetic fields.

For our devices, we will be using Ni (1.5nm) and Co (50-60 nm) as the F and F’ re-

spectively. The ferromagnets are separated by a Cu(5 nm) layer to avoid interlayer

exchange coupling. The thickness of the Ni layer was found to be optimal for triplet

generation in similar multilayer systems [34, 48].

We begin by examining a bar-shaped device, which is the standard configuration of

planar Josephson junctions. This is typically realised a rectangular multilayer strip,

where the superconducting layer can in some way be discontinued to create a weak

link. In our devices, this would mean opening a gap in the top Nb-Ni-Cu layers,

leaving only Co in the weak link.

Figure 3.9 a shows the plane view of Co and Ni magnetizations at zero field, ob-

tained from 3-D OOMMF simulations. The pixel colour scheme, red-white-blue,

scales with the magnetization along x. In order to estimate the MNC, for each cell

at the top of the Co layer we determine the angle θ between its magnetization vector

and that of the Ni cell above (see Figure 3.9 b). From this we can extract a MNC pro-

file over the entire structure, shown in Figure 3.9 c. We observe a pronounced cou-

Figure 3.8: Schematic representation of a planar multilayer junction. To generate long-range triplet cur-
rent, F and F’ layers must have non-collinear magnetizations.
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Figure 3.9: a, Plane view magnetization of Co(45 nm) and Ni (2 nm) at zero applied field, obtained from 3D
OOMMF simulations. The gap in Ni corresponds to the location of weak link is. The pixel colour scheme,
red-white-blue, scales with the magnetization along x. b represents our method to obtain the MNC profile
shown in c. For each cell at the top of the Co layer, θ is determined by the angle between the magnetization
vector of Co and that of the Ni cell above. < sin(θ) > is defined as the absolute value of the outer product
between the Co and Ni magnetization vectors (note that the colour scheme is different from a).

pling between the ferromagnets, with an antiparallel configuration being the mag-

netic ground state. This has a detrimental effect on the MNC in the junction, which

is clearly visible in Figure 3.9 c.

To better understand the nature of the interlayer interactions we performed film

dependent simulations, where the magnetizations are reversed by sweeping an in-

plane field. An example of this is shown in Figure 3.10. Initially, both Co and Ni are

fully magnetized by a large magnetic field applied in −x direction. As we sweep the

field towards zero, the Co magnetization remains relatively unchanged. Meanwhile,

Ni begins to reverse its magnetization around −100 mT — which switches its direc-

tion to +x already at µ0H = −15 mT. This is a result of local dipole fields from Co,

which begin to dominate the effective field acting on Ni when the applied field is not

substantial. The antiparallel configuration continues up to µ0H = 65 mT, at which

point Co reverses its magnetization to +x. While we observe some adjustments in

the Ni magnetization, for the most part it remains along +x, and parallel to Co.

We found the interlayer dipole coupling to be consistently present in all bar-shaped

junctions studied, even when the boundaries were extended to reduce the effects of

stray fields Figure 3.9 c. In such systems only the parallel and antiparallel magnetic

configurations are stable, both equally undesirable for generating triplet currents.



3

44 3. SPIN-TRIPLET COOPER PAIRS IN MAGNETIC HYBRIDS

Figure 3.10: Simulation of the magnetization reversal in a bar-shaped Co(45 nm) / Ni(1.5 nm) bilayer. The
field is swept from −1 T to 1 T, taking 5 mT field steps within ±− 200 mT. Individual magnetizations of
Co (blue squares) and Ni (green circles) layers are plotted separately. The insets show snap-shots of Co
(bottom) and Ni (top) at different stages of magnetization reversal.

Even if the ferromagnets could somehow be decoupled and form a non-collinear

state, their stray fields could still be a serious issue for the junction. Most SFS junc-

tions are known to suffer from stochastic self-fields which lead to distorted and/or

shifted interference patterns, and other unwanted irregularities [33–37].

In order to resolve these issues altogether, we implemented a disk-shaped design to

create a vortex magnetization in the Co layer. As shown in Figure 3.11, the curled

structure of a ferromagnetic vortex is highly effective in minimizing stray fields. Fur-

thermore, the vortex magnetization is fully in-plane except for the core, where it

sharply turns out of plane. The core has a local magnetization of µ0Ms ≈ 1.8 T. De-

spite its large value, due to the small radius of the core (5− 10 nm) [49], this field

corresponds to a relatively small flux ≈ 10−20 %Φ0.

Figure 3.11: Ferromagnetic vortex. Simulated magnetic pattern of a 50 nm thick Co disk with 1 µm diam-
eter. At the vortex core the magnetic moments turn sharply out-of-plane (blue pixels).
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The position of the core can be varied in a coherent manner using in-plane magnetic

fields. Moreover, the magnetic anomaly at the core is expected to suppress long-

range triplet correlations [50]. We therefore can utilize the core as the means to gain

dynamic control over the distribution of triplet current. This concept is described in

detail in Chapters 4 and 5.

3.3. CrO2 NANOWIRES

In this section we present an alternative to the S/F’/F/F”/S trilayer, the conventional

device configuration for generating triplet supercurrent. This is realised by imple-

menting the domain structure of mesoscopic CrO2 crystals. We begin by describing

the micromagnetic pattern of various CrO2 nanowires.

3.3.1. MAGNETIC PATTERNS

The magnetic structure of a crystalline CrO2 wire is a product of magnetocrystalline

and shape anisotropies. The former is a uniaxial anisotropy which favours the mag-

netization to align with the [001] axis of the crystal, while the latter serves to minimise

the demagnetizing energy by aligning the magnetic moments along the wire (i.e. the

long side of the structure). These two terms can be exploited to obtain widely differ-

ent magnetic states in CrO2. We realise this with the help of selective area growth,

where a SiOx mask, deposited on a TiO (100) substrate, can be used to define the

shape and orientation of individual CrO2 crystals (see Figure 3.12 a). Sample prepra-

tion and the growth of crystalline CrO2 wires are described in Ref. [51].

If grown along [001], the wire would be aligned with the magnetic easy axis of the

crystal. In this case both anisotropies favour the magnetization to lie parallel to the

wire. When a wire is sufficiently narrow (w . 2 µm), it would have a highly uni-

form magnetization where M ∥ [001]. In such systems, domain walls are typically

scarce, since a transverse component of magnetization would be unfavourable by

both anisotropies. This uniform magnetic structure has been utilized in some of our

wire CrO2 wire junctions to create a non-collinear magnetization with a Ni layer at

the interface with the superconducting electrodes, which were deposited on the wire

(perpendicular to its axis) [51].

If a is wire grown along [010], which is the hard axis of CrO2, its magnetic structure

will be entirely different. In this case, shape anisotropy prefers the magnetization

to lie along the wire (M ∥ [010]), while the magnetocrystalline anisotropy favours

* The work presented in this section is to be submitted for publication.

Author contributions: samples were prepared by Amrita Singh. Kaveh Lahabi and Louis Maduro did
the micromagnetic simulations. Transport measurements were carried out by Amrita Singh and Kaveh
Lahabi. Jan Aarts supervised the project.
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Figure 3.12: Magnetic patterns of CrO2 crystals: a Magnetic force microscopy images of CrO2 bars, grown
along various directions [51]. b, c and d show the micromagnetic simulations for the 2 µm, 0.5 nm and
200 nm wide wires, respectively, grown along [010]. The pixel colour scheme, red-white-blue, scales with
the (positive-zero-negative) magnetization along the easy axis of the crystal, which is transverse to the
wire. Note that b, c and d correspond to different magnifications (wires in c and d are enlarged for clarity).
In all simulations presented here, we set the wires to be 10 µm long and 104 nm thick. The cell size is
(8 nm× 8 nm× 8 nm) for the 2 µm wide wire, and (5 nm× 5 nm× 5 nm) for the rest.

the magnetization to be perpendicular to it. The resulting magnetic pattern would

then be a compromise, corresponding to their relative energies. While the crystalline

anisotropy maintains a fixed value (2.7×104 J/m3), the shape anisotropy can be tuned

by varying the lateral dimensions of the bar.

Figure 3.12 b-d present the simulated magnetizations for bars of various widths,

grown along the hard axis of CrO2. In the 2 µ m wide bar (3.12 b), we observe stripe-

like domains where magnetization alternates transverse to wire. Within each domain

the magnetization is relatively uniform except for the regions near the edges of the

wire, where magnetic moments are rotated to reverse the magnetization between

adjacent domains. This spatially continuous rotation of magnetization is a conse-

quence of the shape anisotropy, whose role to minimize dipole (stray) fields by turn-

ing the magnetic moments parallel to the surface of the bar. The shape anisotropy

becomes more dominant by reducing the width of the bar. This leads to the emer-

gence of an array of magnetic vortices in the 500 nm and 200 nm wide wires.

A vortex is characterised by two independent parameters: chirality, defined by the in-

plane winding of magnetization (left or right), and polarity, set by the out-of-plane

magnetization (up or down) located of the vortex core. Usually the vortices in fer-

romagnetic nanowires are isolated or, in certain circumstances, apear as pairs (see

for example Refs. [52, 53] ). More importantly, in almost every case they are a form
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Figure 3.13: Simulated magnetic pattern of a 200 nm wide CrO2 wire grown along [010]. The pixel colour
scheme, red-white-blue, scales with the out-of-plane magnetization. The wire hosts a series of magnetic
vortices with well-defined cores. The adjacent vortices have opposite chiralities.

of domain wall: separating two larger segments with uniform magnetizations. Inter-

estingly however, here we observe a continuous array of adjacent vortices (see Figure

3.13). Unlike the stripe domains in the 2 µm wide bar (Figure 3.12 b), there is no clear

distinction between a domain and a domain wall.6

This unusual state leads to a particular type of magnetization reversal which, to the

best of our knowledge, has so far has been exclusive to magnetic disks 7. These sys-

tems are characterized by a vortex core that can be displaced in a highly coherent

and reversible manner, with no remnant magnetization. This results in a peculiar

type of hysteresis loop, as shown in Figure 3.14.

The simulations in Figure 3.14 describe the magnetization reversal of a 5µm×200 nm

CrO2 bar, grown along the hard magnetic axis of the crystal. It also illustrates the

magnetization patterns at various stages of the reversal. We begin by magnetizing the

sample with a large magnetic field, applied in the −y direction, which is transverse

to the wire, and parallel to the easy axis of CrO2 (y ∥ [001]). At A the wire is uniformly

magnetized by the applied field. As we reduce the field, magnetic moments begin to

align themselves with the sides of the wire, and magnetization begins to buckle. This

trend continues up to B, after which point the pattern breaks down into a series of

vortices distributed along the wire. At zero field (C) we find the vortices to be uni-

formly spaced. This results in zero remnant magnetization, since my has the same

magnitude in ±y . As we switch the field direction (D), a +y magnetization begins

to develop by displacing vortices along the wire (perpendicular to the applied field).

By increasing the field, one or two vortices are driven out from the ends of the wire.

The rest however end up as pairs, and are locked in to each other. This is because

of the opposite chirality of adjacent vortices, which drives in them in different di-

rections under the applied field. The motion of each vortex is therefore blocked by

one of its neighbours, travelling in the opposite direction. As magnetization grows,

vortex displacement begins to halt as the pairs are pushed against each other. This

trend continues until they cannot get any closer to each other (E), at which point they

vanish by spontaneously switching their magnetization.

6 Note that we also found no vortex cores in the 2 µm wide bar.

7 Here, we have also included the wires where multiple vortices can be stacked on top of each other [54,
55].
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Figure 3.14: The simulated M −H loop of a 200 nm wide wire, together with the magnetization patterns at
various stages of vortex revesal.

As we magnetize the wire along+y and bring the field back to zero, the magnetization

goes through the equivalents of A and B. Lastly, at F we see a similar pattern as C.

Even though the system was fully magnetized in the opposite direction, there is no

sign of a remnant magnetization when we compare F with C.

In a magnetic disk, the field would push the vortex core (in a perpendicular direction)

to one side of the disk, where it begins to slow down as it approaches the edge. This

continues until the vortex cannot get any closer to the edge and vanishes in a single

transition. Hence, vortex displacement is restricted solely by the geometry of the disk

and its physical boundaries. In a wire however, there are no geometrical restrictions

to stop a vortex from moving along its axis, which is why (domain wall) vortices in a

typical ferromagnetic wire yield an entirely different type of magnetization reversal.

Remarkably, here we find vortex chirality to play the role of sample boundary: the

motion of a vortex is stopped by one of its adjacent vortices, as it would have been by

the edge of a disk.

Note also that there is no particular relation between the polarity and/or the chi-

rality of vortices in F and C. This is because the symmetries of the reversal process

described above; do not favour a particular chirality or polarity over the other. The

two parameters are therefore nondeterministic during a magnetization reversal.
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Figure 3.15: a, schematic of a transverse junction where the magnetic barrier consists of a single 2µm wide
CrO2 bar with stripe domains. The pixel colour scheme, red-white-blue, scales with magnetization along
[001]. b, scanning force microscopy image of the junction used in transport measurements of Figure 3.16.
The superconducting MoGe electrodes contact the CrO2 wire on both sides.

3.3.2. GENERATING LONG-RANGE TRIPLETS WITH MAGNETIC PATTERN

In addition to non-collinear multilayers, it has been proposed that long-range triplet

correlations can also be generated by the magnetic pattern of a single ferromagnet

[50, 56]. We demonstrate this in planar Josephson junctions, where the supercon-

ducting electrodes (MoGe) are deposited on the sides of a 2µm CrO2 nanowire, as

shown in Figure 3.15. Note that in this configuration; the transport direction is per-

pendicular to the axis of the wire. Here, the triplet correlations are generated by the

exchange field gradient present on the sides of the wire with stripe domains. Al-

though the contacts are separated by ≈ 500 nm, we a observe substantial critical cur-

rent. At 2 K the supercurrent density is close to 4×109 A/m2, see Figure 3.16 a.

At zero field, the system is in equilibrium. The stripes are about 500 nm wide and

equally spaced, and the supercurrent is at its maximum. For the 2 µm wide bar how-

ever, our simulations indicate that the stripes can be modified by applying a relatively

small in-plane field along the easy axis of CrO2 (µ0H ∥ [001]). They show that as we

sweep the field from zero, the domains that are aligned with field direction (i.e. red

stripes when the field is positive and blue stripes for negative fields) begin to increase

in size, while the opposite domains shrink (see Figure 3.16 a). Taking field steps of

2 mT in our simulation, we find all domains to be magnetized by the field at 26 mT.

This state corresponds to a relatively uniform magnetization with substantially less

exchange field gradient, corresponding to minimum triplet generation. This is also

supported by the transport measurements where we find no critical current above

20 mT. The reason for supercurrent vanishing even below the switching field is ad-

dressed below. First however, we make a note that the junction is relatively robust

against out-of-plane fields. Even at fields as high as 600 mT the critical current main-

tains a finite value. This is because the stripe domains continue to be present until

the bar is magnetized out-of-plane, and that requires substantially higher fields.
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Figure 3.16: a, Ic measured as a function magnetic field, applied in the [001] direction i.e. along the stripe
domains (H ∥ I ). b , micromagnetic simulations for different applied fields, showing the magnetic pattern
at the edge of the 2 µm-wide bar (full width shown in Figure 3.12 b), where the superconducting MoGe
electrodes make contact with the CrO2 wire. Red and blue correspond to parallel and antiparallel magne-
tizations, with respect to the direction of applied field.

It is evident that the junction transport strongly depends on the magnetic inhomo-

geneity – which is a key ingredient in generating long-range triplet correlations. For

junctions with a single ferromagnetic barrier, spin-mixing is commonly associated

with the exchange field gradient that is present at the magnetic domain walls (DWs).

In our system however, the rotation of magnetization near the edges of the wire are

arguably just as relevant (if not more) than the actual DWs.

The simulations show that magnetizing the sample would increase the size of one

domain type over the other (e.g. red over blue or vice versa in Figure 3.16 b). The ac-

tual number of DWs however remains constant over a 3 µm-long segment of the wire

(corresponding to the length of superconducting electrodes) up to 22 mT, where the

minority domains begin to vanish by abruptly switching their magnetization from

parallel to antiparallel to the field. Similarly, for small fields, there are no drastic

changes in the overall magnetic texture of the wire. As shown in Figure 3.16 b), in-

creasing the field to 10 mT barely changes the rotating magnetization pattern that

appears near the edges. Hence, the rapid suppression of critical current cannot be

entirely due to the lack of magnetic inhomogeneity for triplet generation. To appre-

ciate the full picture, we consider what happens when we break the symmetry of

parallel and antiparallel domains.

Unlike the 500 nm and 200 nm wide bars shown in Figure 3.12 b, the 2 µm bar does

not contain magnetic vortices. While the stripe domains have may have chirality,

there are no vortex cores with out-of-plane magnetization. Instead, we observe in-

plane magnetic dipoles that form near the edge, in between the DWS. In equilibrium,

the adjacent domains produce equal and opposite dipole fields, which cancel each

other out over a few microns. However, applying a relatively small in-plane field can

tip this balance by making one type of domain slightly larger than the other one. This
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leads to an effective local field which induces additional screening currents in the

superconducting electrodes, which in turn lead to the suppression of critical current.

The upshot here is that micromagnetic simulations can be implemented to design

a wide range of magnetic hybrids which can generate and control long-range triplet

supercurrent. In the above example, the simulations were used to obtain detailed

description of the local magnetization texture in a variety of CrO2 structures. We

showed that by making basic adjustments to the dimensions of a simple wire bar we

can extract widely different magnetic states. Subsequently, the well-defined stripe

domains of a 2 µm wide bar were used to inject high supercurrent densities in CrO2,

without the need for extra magnetic layers. Reducing the problem to a single ferro-

magnet plays a significant role in our ability to control the triplet current. Utilizing

the robust nature of magnetization reversal in for these particular dimensions en-

ables us to switch off all supercurrent with only a few mTs — which is a highly prac-

tical field range for device applications. It is also worth noting that the coercive field

of the CrO2 nanowires could be significantly enhanced by reducing their width.

We note that a vortex pattern, such as the one shown in Figure 3.13 should also be

capable of generating triplet currents [50, 56]. This is the focus of Chapter 5, where

we demonstrate how the exchange field gradient in a ferromagnetic disk can induce

long-range triplet correlations in cobalt. Combining the exceptionally high super-

current densities in crystalline CrO2 wires with the coherent motion of magnetic vor-

tices would offer a rich platform to study triplet Coopers in the nonequilibrium set-

ting, which is necessary for magnetization dynamics and spin-transfer torque. This

system becomes even more intersting if we consider the possibility of storing infor-

mation (bits) with the polarity and chirality of individual vortices.
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