

Redox interconversion between metal thiolate and disulfide compounds ${\sf Jiang},\,{\sf F}.$

Citation

Jiang, F. (2018, December 7). *Redox interconversion between metal thiolate and disulfide compounds*. Retrieved from https://hdl.handle.net/1887/68029

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/68029

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/68029</u> holds various files of this Leiden University dissertation.

Author: Jiang, F. Title: Redox interconversion between metal thiolate and disulfide compounds Issue Date: 2018-12-07

Appendix \mathbf{I}

Figure AI.1. ESI-MS spectrum of compound $\mathbf{1}_{C0}$ dissolved in acetonitrile. ESI-MS found (calcd) for [M–Cl]⁺ m/z 740.8 (740.9); for [M–Cl+MeCN+H₂O]⁺ m/z 798.1 (798.8).

Figure AI.2. ¹H NMR spectrum of compound 1_{Co} dissolved in dimethyl sulfoxide-d₆.

Figuare AI.3. ESI-MS spectrum of Fe^{II} disulfide compound 1_{Fe} dissolved in methanol. ESI-MS found (calcd) for $\frac{1}{4}$ [Fe^{II}₂(L¹SSO₂L¹)·4H₂O]⁴⁺, m/z 183.3 (183.1), $\frac{1}{2}$ [Fe^{II}(L¹SSL¹)·2H₂O]²⁺, m/z 304.2 (304.1) $\frac{1}{2}$ [Fe^{II}₂(L¹SSL¹)Cl₂]²⁺ m/z 349.1 (349.0), [L¹SSL¹+H]⁺ m/z 517.1 (517.2), [Fe^{II}(L¹SSL¹)Cl₂ + H]⁺ m/z 643.0 (643.1).

Figure AI.4. ESI-MS spectrum of compound **2** dissolved in acetonitrile. ESI-MS found (calcd) for $\frac{1}{2}[M-2(BF_4)+2MeCN]^{2+} m/z$ 199.8 (199.5).

Figure AI.5. ¹H NMR spectrum of compound **2** dissolved in acetonitrile-d₃.

Figure AI.6. ¹H NMR spectrum of compound **3** dissolved in acetonitrile-d₃.

Figure AI.7. ¹³C NMR spectrum of compound **3** dissolved in acetonitrile-d₃.

Figure AI.8. ESI-MS spectrum of compound **3** dissolved in acetonitrile. ESI-MS found (calcd) for $[M-NCS]^+ m/z$ 375.3 (375.4).

Figure AI.9. Raman spectra of ligand L^1SSL^1 (black line), compounds 1_{C0} (red line), and 2 (blue line). The diamonds represent the peaks arising from the S–S bond vibration.

Figure AI.10. Raman spectra of compound $\mathbf{1}_{Fe}$. The diamonds represent the peaks arising from the S–S bond vibration.

Figure AI.11. The cyclic voltammograms of compound $\mathbf{1}_{Co}$ (1 mM) in an acetonitrile solution containing 0.1 M NBu₄PF₆ as the supporting electrolyte and using a glassy carbon electrode at a scan rate of 100 mV s⁻¹. The potential is given vs. Ag/AgCl.

Figure AI.12. The cyclic voltammograms of compound **2** (2 mM) in an acetonitrile solution containing 0.1 M TBAPF₆ as the supporting electrolyte and using a glassy carbon electrode at a scan rate of 100 mV s⁻¹. The potential is given vs. Ag/AgCl.

Figure AI.13. The cyclic voltammograms of compound **3** (2 mM) in an acetonitrile solution containing 0.1 M NBu₄PF₆ as the supporting electrolyte and using a glassy carbon electrode at a scan rate of 100 mV s⁻¹. The potential is given vs. Ag/AgCl.

Figure AI.14. The cyclic voltammograms of (a) compound $\mathbf{1}_{Co}$ (1 mM), (b) compound $\mathbf{2}$ (2 mM), and (c) compound $\mathbf{3}$ (2 mM) in an acetonitrile solution containing 0.1 M NBu₄PF₆ as the supporting electrolyte and using a glassy carbon electrode at a scan rate of 100 mV s⁻¹. Potentials are given vs. Ag/AgCl.

	1 co	2 _{0x}	3	1 _{Fe}
Chemical formula	$\begin{array}{c} C_{28}H_{32}Cl_4Co_2N_6\\S_2{\boldsymbol{\cdot}}C_4H_{10}O\end{array}$	C ₁₈ H ₂₂ CoN ₅ O ₂ S •2(BF ₄)•2(C ₂ H ₃ N)	$\begin{array}{c} C_{16}H_{16}CoN_5\\ O_{0.18}S_3 \end{array}$	C ₂₈ H ₃₂ Cl ₄ Co ₂ N ₆ S ₂ ·2(CH ₄ O)
Formula Weight	850.49	687.12	436.33	834.30
Crystal system, space group	Triclinic, <i>P</i> –1	Triclinic, P–1	Orthorhombic, <i>Pbca</i>	Monoclinic, <i>Cc</i>
Temperature (K)	110	110	110	110
a, b, c (Å)	8.2673(2), 13.6866(4), 17.1779(7)	11.7231 (3), 13.1844 (3), 20.0200 (6)	11.0351(2), 16.5646(3), 19.6200(4)	28.6815(7), 9.11583(17), 15.3360(4)
α, β, γ (°)	90.875(3), 102.152(3), 92.315(2)	70.877 (2), 86.502 (2), 81.384 (2)	90, 90, 90	90, 116.791(3), 90
V (Å3)	1898.03(11)	2890.35 (14)	3586.38(12)	3579.27(17)
Ζ	2	4	8	4
Radiation type	Μο <i>Κ</i> α	Μο Κα	Μο Κα	Μο <i>Κ</i> α
μ (mm ⁻¹)	1.30	0.753	1.32	1.264
Crystal size (mm)	$0.35 \times 0.24 \times 0.07$	0.37 × 0.13 × 0.06	0.28 × 0.21 × 0.13	$\begin{array}{c} 0.31 \times 0.24 \times \\ 0.17 \end{array}$
Diffractometer	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas
T_{\min} , T_{\max}	0.755, 0.925	0.561, 1.000	0.436, 1.000	0.556, 0.729
No. of measured, independent and observed [I > 2σ (I)] reflections	29644, 8726, 6714	41812, 13267, 10130	52080, 4121, 3755	26618, 7654, 7433
$R_{ m int}$	0.047	0.040	0.036	0.0291
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.650	0.650	0.650	0.650
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.089, 1.03	0.043, 0.105, 1.04	0.028, 0.070, 1.09	0.022, 0.049, 1.03
No. of reflections	8726	13267	4121	7654
No. of parameters	426	817	236	423
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
Δρ _{max} , Δρ _{min} (e Å ⁻³)	0.83, -1.00	0.71, -0.46	0.85, -0.59	0.31, -0.20

Table AI.1. Crystallographic and structure refinement data of compounds $\mathbf{1}_{Co}, \mathbf{2}_{Ox}, \mathbf{3}$ and $\mathbf{1}_{Fe}.$

Figure AI.15. Displacement ellipsoid plot (50% probability level) of the cationic part of cobalt(III) sulfinate compound 2_{0x} .

Table AI.2. Selected bond distances (Å) and angles (°) for the crystal structure of compound $[Co^{III}(L^1SO_2)(MeCN)_2](BF_4)_2$ (**2**_{0x}).

	Distance (Å)		
Co1–N1A	1.9494(19)	Co1-S1A	2.1837(6)
Co1–N11A	1.944(2)	Co1-N11S	2.010(2)
Co1-N21A	1.9384(19)	Co1-N21S	1.916(2)
	Angles (°)		
N21S-Co1-N21A	95.38(8)	N11A-Co1-N11S	88.97(8)
N21S-Co1-N11A	96.49(8)	N1A-Co1-N11S	92.38(8)
N21A-Co1-N11A	168.11(8)	N21S-Co1-S1A	89.34(6)
N21S-Co1-N1A	179.06(8)	N21A-Co1-S1A	87.55(6)
N21A-Co1-N1A	85.13(8)	N11A-Co1-S1A	93.23(6)
N11A–Co1–N1A	83.01(8)	N1A-Co1-S1A	89.89(6)
N21S-Co1-N11S	88.40(8)	N11S-Co1-S1A	177.01(6)
N21A-Co1-N11S	90.72(8)		

Figure AI.16. Displacement ellipsoid plot (50% probability level) of the oxidized part of the compound **3** present with an occupancy factor of 0.178(5) at 110(2) K. All hydrogen atoms are omitted for clarity.

Figure AI.17. UV-vis spectrum of compound **1**_{C0} in the solid state.

Figure AI.18. UV-vis spectrum of compound **3** dissolved in acetonitrile. UV-vis spectra were recorded using solutions 1 mM in [Co] with a transmission dip probe path length of 1.4 mm.

Figure AI.19. UV-vis spectrum of compound 3 in solid state.

Figure AI.20. UV-vis spectrum of compound $\mathbf{1}_{Fe}$ dissolved in methanol. UV-vis spectra were recorded using solutions 1 mM in [Fe] with a transmission dip probe path length of 1.2 mm.

Figure AI.21. UV-vis spectrum of the compound **1**_{Fe} in solid state.

Figure AI.22. UV-vis spectra recorded upon addition of $AgBF_4$ to a solution of the compound $\mathbf{1}_{Co}$. The spectra were recorded in at a concentration of 5 mM [Co] with a transmission dip probe path length of 1.8 mm.

Figure AI.23. UV-vis spectra recorded upon addition of 2 equiv. (red dotted line), and 4 equiv. (blue line) AgBF₄ to a solution of the compound $\mathbf{1}_{Fe}$. The spectra were recorded in at a concentration of 2 mM [Fe] with a transmission dip probe path length of 2.2 mm.

Table AI.3. The total energies (kcal/mol) of the compound 1_{Co} in the gas phase and in acetonitrile with different spin states (S = 1/2, 3/2).

1co	S = 3/2	S = 1/2	
Energy(gas)	-10456	-10440	
Gibbs energy(gas)	-10153	-10133	
Energy(solvated)	-10496	-10488	
Gibbs energy(solvated)	-10194	-10181	

Figure AI.24. The optimized structure of the compound $\mathbf{1}_{Co}$ with the two cobalt(II) centers in a high-spin state (*S* = 3/2) with COSMO model (acetonitrile).

Table AI.4. The total energies (kcal/mol) of the cationic part of the compou	nd 2 and
compound 3 under gas phase and in acetonitrile with different spin states ($S = 0$) and 2).

2	<i>S</i> = 2	S = 0
Energy(gas)	-6476	-6500
Gibbs Energy(gas)	-6280	-6299
Energy(solvated)	-6608	-6638
Gibbs Energy(solvated)	-6412	-6437
3	<i>S</i> = 2	S = 0
Energy(gas)	-6052	-6069
Gibbs Energy(gas)	-5898	-5911
Energy(solvated)	-6070	-6097
Gibbs Energy(solvated)	-5916	-5939

Figure AI.25. The optimized structures of the cationic part of compound **2** in different spin states with COSMO model (acetonitrile).

Figure AI.26. The optimized structure of compound 3 in different spin states with COSMO model (acetonitrile).

Table AI.5. The total energies (kcal/mol) of compound $\mathbf{1}_{Fe}$ under gas phase and solvent with different spin states.

(1 _{Fe})	<i>S</i> = 2, 2	S = 0, 0	S = 0, 2
Energy(gas)	-10515.7	-10488.9	-10502.8
Gibbs Energy(gas)	-10214.5	-10178.9	-10197.5
Energy(solvated)	-10564.6	-10542.9	-10559.3
Gibbs Energy(solvated)	-10263.5	-10232.9	-10253.9

Table AI.6. The total energies (kcal/mol) of the compound $\mathbf{1}_{Fe}$ under gas phase and solvent with different spin states and keeping the Fe1-S1 bond frozen.

(1 _{Fe})	<i>S</i> = 2, 2	S = 0, 0	S = 0, 2
Energy(gas)	-10513.6	-10476.9	-10497.2
Gibbs Energy(gas)	-10211.3	-10168.2	-10192.3
Energy(solvated)	-10564.8	-10528.0	-10544.7
Gibbs Energy(solvated)	-10262.6	-10219.3	-10239.8

Figure AI.27. The optimized structures of the compound $\mathbf{1}_{Fe}$ with a) high-spin states (S = 2 for both iron center), b) low-spin states (S = 0 for both iron centers), c) mixed-spin states (S = 0 for one iron center, and S = 2 for another iron center) with COSMO model (methanol).

Table AI.7. The total energies (kcal/mol) of acetonitrile, and the cobalt compounds **5** and **6** with different spin states and their related antiferromagnetically coupled species (AF(1,1) is the antiferromagnetically coupled species obtained from the compound **5** with two triplet-spin cobalt(III) centers, AF(2,2) is the antiferromagnetically coupled species obtained from the compound **5** with two high-spin cobalt(III) centers).

5	S = 0, 0	S = 1,1	AF(1,1)	S =2,2	AF(2,2)
Energy (gas)	-9345	-9346	-9318	-9316	-9286
Gibbs energy (gas)	-9033	-9035	-9007	-9008	-8979
Energy (solvated)	-9816	-9812	-9788	-9772	-9742
Gibbs energy (solvated)	-9504	-9501	-9477	-9464	-9435
6	S = 0, 0		S =2,2		
Energy (gas)	-11089		The		
Gibbs energy (gas)	-10721		structure		
Energy (solvated)	-11535		has been		
Gibbs energy (solvated)	-11167		broken		

Table AI.8. The total energies (kcal/mol) of acetonitrile, and the copper compounds **7** and **8** (AF(1/2, 1/2) is the antiferromagnetically coupled species obtained from the compound **8** with two doublet-spin copper(II) centers).

	Acetonitrile	7	8	AF(1/2,1/2)
Gibbs energy (gas)	-837	-5525	-9368	-9363
Energy (gas)	-850	-5696	-9676	-9671
Gibbs energy (solvated)	-844	-5569	-9487	-9483
Energy (solvated)	-857	-5740	-9795	-9791

Figure AI.28. Plots showing the character of the HOMOs of compounds 2, 3, and the hypothetical compounds 2a, 3a and 4.

Figure AI.29. The optimized structures of compound **5** in different spin states with COSMO model (acetonitrile).

Figure AI.30. The optimized structures of compound 6 in different spin states with COSMO model (acetonitrile).

Appendix **II**

Figure AII.1. Displacement ellipsoid plot (50% probability level) of the compound $[Co^{II}_2(L^7SSL^7)(PO_2F_2)_2](PF_6)_2$ at 110(2) K. The lattice solvent molecule and hydrogen atoms are omitted for clarity.

Compounds	$[Co^{II}_2(L^1SSL^1)(NO_3)_4]$	$[Co^{II}_{2}(L^{1}SSL^{1})(PO_{2}F_{2})_{2}](PF_{6})_{2}$
Chemical formula	$C_{28}H_{32}Co_2N_{10}O_{12}S_2$	$\begin{array}{c} C_{28}H_{32}Co_{2}F_{4}N_{6}O_{4}P_{2}S_{2}{\boldsymbol{\cdot}}2(F_{6}P){\boldsymbol{\cdot}}3.338(CH_{2}\\CI_{2}) \end{array}$
$M_{ m r}$	882.61	1409.92
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, P-1
Temperature (K)	110	110
a, b, c (Å)	8.1948 (2), 33.1859 (13), 13.6066 (8)	12.9871 (2), 13.7863 (3), 15.2272 (3)
β (°)	105.678 (3)	83.4006 (16)
V (Å ³)	3562.7 (3)	2616.93 (9)
Ζ	4	2
Radiation type	Μο Κα	Μο <i>Κ</i> α
μ (mm ⁻¹)	1.12	1.28
Crystal size (mm)	$0.18 \times 0.12 \times 0.06$	$0.37 \times 0.26 \times 0.16$
Diffractometer	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas
T_{\min}, T_{\max}	0.806, 1.000	0.473, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22306, 8369, 6063	40131, 11994, 10992
$R_{ m int}$	0.032	0.021
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.623	0.650
$R[F^2>2\sigma(F^2)],wR(F^2),S$	0.040, 0.081, 0.90	0.030, 0.071, 1.04
No. of reflections	8369	11994
No. of parameters	501	844
No. of restraints	145	922
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	1.14, -0.77	1.22, -0.55

Table All.1. Experimental details for compounds $[Co^{II}_2(L^1SSL^1)(NO_3)_4]$ and $[Co^{II}_2(L^1SSL^1)(PO_2F_2)_2](PF_6)_2$.

Figure AII.2. ¹H NMR spectrum of $[Co^{III}(L^1S)(MeCN)_2]^{2+}$, obtained upon dissolution of the compound $[Co^{II}_2(L^1SSL^1)(PO_2F_2)_2](PF_6)_2$ in acetonitrile-d*3*.

Figure AII.3. ¹H NMR spectrum of [Co^{II}₂(L¹SSL¹)(PO₂F₂)₂](PF₆)₂ in methanol-d₄.

Figure AII.4. ¹H NMR spectrum of [Co^{II}₂(L¹SSL¹)(PO₂F₂)₂](PF₆)₂ in dichloromethane-d₂.

Figure AII 5. UV-vis spectra of $[Co^{II}_2(L^1SSL^1)(PO_2F_2)_2](PF_6)_2$ dissolved in 4.2 mL acetonitrile with variable amounts of dichloromethane added at 1.1 mM [Co] concentration recorded with a transmission dip probe at a path length of 1.8 mm.

Figure AII 6. UV-vis spectra of the different ratios of acetonitrile and dichloromethane solution of $[CoII_2(L^1SSL^1)(PO_2F_2)_2](PF_6)_2$ in 10 mL at 1.1 mM [Co] concentration recorded with a transmission dip probe at a path length of 1.8 mm.

Figure AII.7. ESI-MS spectrum of $[Co^{II}_2(L^1SSL^1)(PO_2F_2)_2](PF_6)_2$ dissolved in acetonitrile. ESI-MS combined with simulated spectrum found (calcd) for $\frac{1}{2}[Co(L^1S) + 2MeCN]^{2+} m/z$ 199.5 (195.5); $[Co(L^1S) + PO_2F_2]^+ m/z$ 418.2 (418.1); $[Co(L^1S) + PO_2F_2 + MeCN]^+$ 459.2 (459.1).

Figure AII.8. UV-vis spectrum for the solid sample of $[Co^{II}_2(L^1SSL^1)(PO_2F_2)_2](PF_6)_2$ obtained from a dichloromethane solution.

Figure AII.9. ¹H NMR spectrum of the compound $[CoII_2(L^7SSL^7)(PO_2F_2)_2](PF_6)_2$ in acetonitrile-d₃.

Figure AII.10. UV-vis spectrum of the compound $[Co^{II}_2(L^7SSL^7)(PO_2F_2)_2](PF_6)_2$ in acetonitrile. UV-vis spectra in solution were recorded using a solution 2 mM in [Co] with a transmission dip probe path length of 1.2 mm. The inset shows the solution 4 mM in [Co].

Figure AII.11. ESI-MS spectrum of $[Co^{II}_2(L^7SSL^7)(PO_2F_2)_2](PF_6)_2$ dissolved in acetonitrile. ESI-MS found (calcd) for $[Co^{II}_2(L^7SSL^7)(PO_2F_2)_2]^2 + m/z$ 432.3 (432.1).

Figure AII.12. UV-vis spectrum for the solid sample of [Co^{II}₂(L⁷SSL⁷)(PO₂F₂)₂](PF₆)₂.

Figure AII.13. ¹H NMR spectrum of compound $[Co^{II}_2(L^1SSL^1)(NO_3)_4]$ dissolved in acetonitrile-d₃.

Figure AII.14. ¹H NMR spectrum of compound $[Co^{II}_2(L^1SSL^1)(NO_3)_4]$ dissolved in methanol-d₄.

Figure AII.15. UV-vis spectra of the compound $[CoII_2(L_1SSL_1)(NO_3)_4]$ in methanol (red line) and in acetonitrile (black line). UV-vis spectra were recorded using solutions 1 mM in [Co] with a transmission dip probe path length of 1.4 mm. The inset shows the UV-vis spectra of 2 mM [Co] in acetonitrile (black) with a path length of 1.4 mm and 2 mM [Co] in methanol (red) with a path length of 1.8 mm.

Figure AII.16. ESI-MS spectrum of the compound $[Co^{11}_2(L^1SSL^1)(NO_3)_4]$ in acetonitrile, ESI-MS found (calcd) for $\frac{1}{2}$ $[M - 2 NO_3]^{2+}$ m/z 379.4 (379.3); $\frac{1}{2}$ $[M - 4 NO_3 + 2HCO_2]^{2+}$ m/z 362.5 (362.1).

Figure AII.17. UV-vis spectrum of the compound [Co^{II}₂(L¹SSL¹)(NO₃)₄] in the solid state.

Figure AII.18. UV-vis spectra of the compound $[Co^{III}(L^1S)(NCS)_2]$ in the solid state obtained from acetonitrile (black line), methanol (red line), and acetone (green line).

Appendix III

Figure AIII.1. ESI-MS spectrum of the Fe(III) compound **2** dissolved in methanol. ESI-MS found (calcd) for $\frac{1}{2}$ [Fe(L¹SO₃)(H₂O)]²⁺ m/z 189.2 (190.0).

Figure AIII.2. EPR spectrum of the compound **2** dissolved in DMSO. The experiment was performed at 20 K.

Figure AIII.3. ESI-MS spectrum of the Co(III) compound **4** dissolved in acetonitrile. ESI-MS found (calcd) for $[Co^{III}(L^1SO_2)CI]^+ m/z$ 384.4 (384.0); $[Co^{III}(L^1SO_2)CI + MeCN]^+ m/z$ 425.5 (425.1).

Figure AIII.4. NMR spectrum of compound 4 dissolved in DMSO-d₆.

Figure AIII.5. UV-vis spectrum of compound **2** dissolved in methanol. UV-Vis spectra in solution were recorded using a solution 1 mM in [Fe] with a transmission dip probe path length of 1.8 mm.

Figure AIII.6. The change of UV-vis spectra upon addition of H_2O_2 (0.2 mmol, 40 equivalents to the compound **1**) to compound **1** in methanolic solution in the first two minutes under room temperature. UV-vis spectra were recorded using a solution 2 mM in [Fe] (5 mL) with a transmission dip probe path length of 2.8 mm. Spectra recorded every 1 second over a period of 5 minutes.

Figure AIII.7. The change of UV-vis spectra upon addition of H_2O_2 (0.8 mmol, 80 equivalents to the compound **1**) to compound **1** in methanolic solution in the first two minutes under room temperature. UV-vis spectra were recorded using a solution 4 mM in [Fe] (5 mL) with a transmission dip probe path length of 2.8 mm. Spectra recorded every 1 second over a period of 3 minutes.

Figure AIII.8. ESI-MS spectrum of reaction mixture of the compound **1** with excess 35% H_2O_2 (80 equivalents to the compound **1**) in methanol at -78 °C. ESI-MS found (calcd) for [Fe^{III}(L¹SO₂)Cl]⁺ m/z 381.1 (381.0); [Fe^{III}(L¹SO₃)Cl]⁺ m/z 397.1 (397.0), [Fe^{III}(L¹SO₃)Cl + CH₃OH]⁺ m/z 429.2 (429.1).

Figure AIII.9. The change in UV-vis when H_2O_2 (5 µL/each time) was titrated into a solution of compound **1** in methanol at room temperature. UV-vis spectra were recorded using a solution 2 mM in [Fe] (10 mL) with a transmission dip probe path length of 0.9 mm.

Figure AIII.10. The change of UV-vis spectral when ^tBuOOH (0.2 mmol, 40 equivalents to the compound **1**) was added to compound **1** dissolved in methanol. UV-vis specctra were recorded using a solution 2 mM in [Fe] (5 mL) with a transmission dip probe path length of 0.9 mm at -41 °C. Spectra recorded every 30 seconds over a period of 3 minutes, and then recorded every 3 seconds over a period of 20 minutes.

Figure AIII.11. UV-vis spectrum of compound **4** dissolved in acetonitrile. The UV-vis spectrum was recorded using the solution 1 mM in [Co] with a transmission dip probe path length of 1.6 mm at room temperature. The inset shows the amplified part of UV-vis spectra from 450 nm to 850 nm.

Figure AIII.12. The change in UV-vis spectra when H_2O_2 (5 μ L/each time) was titrated into a solution of compound **3** in acetonitrile at room temperature. UV-vis spectra were recorded using a solution 2 mM in [Co] (10 mL) with a transmission dip probe path length of 1.3 mm.

Figure AIII.13. ESI-MS spectrum of the reaction mixture of **3** with H_2O_2 after the first one hour. ESI-MS found (calcd) for $[Co^{III}(L^1SO)CI]^+ m/z$ 368.1 (368.0); $[Co^{III}(L^1SO_2)CI + MeCN]^+ m/z$ 425.1 (425.0).

	2	4
Chemical formula	2(C14H16Cl2EeN2O2S)+C2H7NO	\mathbf{T}
Formula Weight	939 31	474 23
Crystal System	monoclinic	monoclinic
Space Group	$P2_1/c$	$P2_1/n$
a(Å)	14.059(4)	8.3845(3)
$h(\mathbf{A})$	22.0371(6)	14.5303(4)
c(Å)	12.5600 (3)	15.1848(5)
$\alpha(^{\circ})$	90	90
β(°)	100.192(2)	91.740(3)
$\gamma(\circ)$	90	90
$V(A^3)$	3829.96(18)	1849.10(10)
Z	4	4
$D_{calc}(g.cm^3)$	1.629	1.703
$T_{\min} - T_{\max}$	0.449, 1.000	0.642,1.000
Crystal Size(mm)	0.60 x 0.28 x 0.10	0.36 x 0.21 0.12
u (mm ⁻¹)	1.201	1.362
No. of Reflections	35704	14470
No. of unique	0700	4242
reflections	8788	
No. of reflections	7510	3698
observed $[I > 2\sigma(I)]$	/513	
No. of parameters	480	260
$R1/WR2 [I > 2\sigma(I)]$	0.0301, 0.0650	0.0288,0.0699
R1/WR2 [all	0.0200.0.0606	0.0346, 0.0736
reflections]	0.0390, 0.0696	
Goodness of fit	1 0 6 3	1 045
(GOF)	1.005	1.045
Residual electron		
density (e Å−3)	0.49/-0.40	0.49/-0.37

 Table AIII.1. Crystallographic and structures refinement data for compounds 2 and 4.

Appendix IV

$[Fe^{11}_4(L^1SSL^1)_2F_6(MeCN)_2](BF_4)_2$			
chemical formula	$C_{60}H_{70}F_{6}Fe_{4}N_{14}S_{4}\cdot 4(BF_{4})$		
$M_{ m r}$	1800.18		
crystal system, space group	Monoclinic, C2/c		
Temperature (K)	110		
a, b, c (Å)	15.0882(6), 19.6485(8), 25.1426(9)		
β (°)	101.306(4)		
$V(\text{\AA}^3)$	7309.1(5)		
Z	4		
Radiation type	Μο Κα		
μ (mm ⁻¹)	1.00		
Crystal size (mm)	$0.21 \times 0.20 \times 0.08$		
Diffractometer	SuperNova, Dual, Cu at zero, Atlas		
	diffractometer		
T_{\min} , T_{\max}	0.852, 0.944		
No. of measured,			
independent and	28835, 8397, 6664		
observed $[I > 2\sigma(I)]$			
reflections			
Rint	0.034		
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.650		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.107, 1.04		
No. of reflections	8397		
No. of parameters	909		
No. of restraints	1943		
	$w = 1/[\sigma^2(F_o^2) + (0.0439P)^2 + 14.6984P]$		
	where $P = (F_0^2 + 2F_c^2)/3$		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.77, -0.53		

Figure AIV.1. UV-vis spectrum of the complex $[Fe^{II}_4(L^1SSL^1)_2F_6(MeCN)_2](BF_4)_2$ in acetonitrile at room temperature. 1 mM [Fe] with a transmission dip probe path length of 0.31 cm.

Figure AIV.2. ESI-MS spectrum of compound $[Fe^{11}_4(L^1SSL^1)_2F_6(MeCN)_2](BF_4)_2$ in acetonitrile.

Figure AIV.3. ¹H NMR spectrum of the complex $[Fe^{II}_4(L^1SSL^1)_2F_6(MeCN)_2](BF_4)_2$ in acetonitrile-d₃ at room temperature.

Figure AIV.4. ¹⁹F NMR spectrum of complex $[Fe^{II}_4(L^1SSL^1)_2F_6(MeCN)_2](BF_4)_2$ in acetonitrile-d₃ at room temperature.

Appendix V

Figure AV.1. UV-vis spectrum of the compound $[Co^{II}(L^1SCH_3)Cl_2]$ dissolved in acetonitrile, recorded using solution 1 mM in [Co] with a transmission dip probe path length of 1.3 mm. The inset shows the UV-vis spectrum recorded of a solution 2 mM in [Co].

Figure AV.2. ESI-MS spectrum of the compound $[Co^{II}(L^1SCH_3)Cl_2]$ dissolved in acetonitrile. ESI-MS found (calcd) for $[M-Cl]^+ m/z$ 367.2 (367.1).

Figure AV.3. UV-vis spectrum of the compound $[Co^{II}(L^1SCH_3)Cl_2]$ in the solid state.

Figure AV.4. UV-vis spectrum of the compound $[Fe^{II}(L^1SCH_3)Cl_2]$ dissolved in methanol, recorded using a solution 1 mM in [Fe] with a transmission dip probe path length of 1.3 mm.

Figure AV.5. ESI-MS spectrum of the compound [Fe^{II}(L¹SCH₃)Cl₂] dissolved in methanol. ESI-MS found (calcd) for $[M-Cl]^+ m/z$ 364.5 (364.1).

Figure AV.6. UV-vis spectrum of the compound [Fe^{II}(L¹SCH₃)Cl₂] in the solid state.

Figure AV.7. UV-vis spectrum of the compound [Mn^{II}(L¹SCH₃)Cl₂] dissolved in acetonitrile, recorded using a solution 1 mM in [Mn] with a transmission dip probe path length of 1.2 mm.

Figure AV.8. ESI-MS spectrum of the compound $[Mn^{II}(L^1SCH_3)Cl_2]$ in the methanol. ESI-MS found (calcd) for $[M-Cl]^+ m/z$ 363.0 (363.1).

Figure AV.9. UV-vis spectrum of the compound [Mn^{II}(L¹SCH₃)Cl₂] in the solid state.

Figure AV.10. UV-vis spectrum of the compound $[Cu^{II}(L^1SCH_3)Cl_2]$ dissolved in acetonitrile, recorded using a solution 1 mM in [Cu] with a transmission dip probe path length of 1.2 mm. The inset shows the UV-vis spectrum of a solution 2 mM in [Cu].

Figure AV.11. ESI-MS spectrum of the compound $[Cu^{II}(L_1SCH_3)Cl_2]$ in the methanol. ESI-MS found (calcd) for $[M-Cl]^+ m/z$ 371.0 (371.0).

Figure AV.12. UV-vis spectrum of the compound [Cu^{II}(L¹SCH₃)Cl₂] in the solid state.

Figure AV.13. UV-vis spectrum of the compound $[Cu^{II}_2(L^1SSL^1)Cl_4]$ dissolved in methanol, recorded using a solution 5 mM in [Cu] with a transmission dip probe path length of 0.9 mm.

Figure AV.14. ESI-MS spectrum of the compound $[Cu^{II}_2(L^1SSL^1)Cl_4]$ dissolved in methanol. ESI-MS found (calcd) for $\frac{1}{2} [Cu^{II}(L^1SSL^1)Cl_4-2Cl]^+ m/z$ 357.1 (357.4), $[Cu^{II}(L^1SSL^1)Cl_4-Cl]^+$; m/z 747.0 (747.0).

Figure AV.15. UV-vis spectrum of the compound $[Cu_2^{II}(L^1SSL^1)Cl_4]$ in the solid state.

	[Co ^{II} (L ¹ SCH ₃)Cl ₂]	[Fe ^{II} (L ¹ SCH ₃)Cl ₂]	[Mn ^{II} (L ¹ SCH ₃)Cl ₂]
Chemical formula	$C_{15}H_{19}Cl_2CoN_3S$	$C_{15}H_{19}Cl_2FeN_3S$	$C_{15}H_{19}Cl_2MnN_3S$
$M_{ m r}$	403.22	400.14	399.23
Crystal system, space group	Monoclinic, Cc	Monoclinic, P2 ₁ /c	Monoclinic, <i>P</i> 2 ₁ / <i>c</i>
Temperature (K)	110	110	110
a, b, c (Å)	11.2309 (3), 11.5965 (3), 13.6869 (3)	13.9394 (4), 8.3480 (2), 14.9559 (5)	14.0971 (3), 8.41155 (19), 14.9411 (3)
β (°)	101.207 (3)	90.723 (3)	91.435 (2)
V (Å3)	1748.58 (8)	1740.22 (9)	1771.14 (7)
Ζ	4	4	4
Radiation type	Μο Κα	Μο <i>Κ</i> α	Μο Κα
μ (mm ⁻¹)	1.41	1.29	1.16
Crystal size (mm)	0.35 × 0.18 × 0.15	$0.40\times0.38\times0.23$	$0.50 \times 0.32 \times 0.22$
Diffractometer	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas
T_{\min} , T_{\max}	0.556, 1.000	0.463, 1.000	0.360, 1.000
No. of measured, independent and observed [<i>I</i> > 2σ(<i>I</i>)] reflections	13203, 4062, 3977	13654, 3988, 3525	16904, 4064, 3752
$R_{ m int}$	0.023	0.030	0.023
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.653	0.650	0.650
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.020, 0.044, 1.04	0.029, 0.072, 1.05	0.022, 0.053, 1.03
No. of reflections	4062	3988	4064
No. of parameters	200	200	200
No. of restraints	2	-	-
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å-3)	0.23, -0.19	0.56, -0.36	0.30, -0.24
Absolute structure parameter	0.011 (5)	n/a	n/a

Table AV.1. Crystallographic and structure refinement data of compounds $[Co^{II}(L^1SCH_3)Cl_2]$, $[Fe^{II}(L^1SCH_3)Cl_2]$ and $[Mn^{II}(L^1SCH_3)Cl_2]$.

	$[Cu^{II}_{2}(L^{1}SSL^{1})Cl_{4}]$	$[Cu^{II}(L^1SCH_3)Cl_2]$
Chemical formula	$C_{28}H_{32}Cl_4Cu_2N_6S_2\\$	$C_{15}H_{19}Cl_2CuN_3S$
$M_{ m r}$	785.59	407.83
Crystal system, space group	Monoclinic, <i>P</i> 2 ₁	Monoclinic, $P2_1/c$
Temperature (K)	110	110
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.28859 (17), 23.6394 (4), 14.6113 (2)	13.3848 (3), 8.60982 (16), 14.9420 (3)
β (°)	90.0369 (15)	90.3062 (18)
$V(\text{\AA}^3)$	3208.30 (9)	1721.90 (6)
Ζ	4	4
Radiation type	Cu Ka	Μο Κα
μ (mm ⁻¹)	6.16	1.70
Crystal size (mm)	$0.29 \times 0.11 \times 0.05$	$0.56 \times 0.37 \times 0.23$
Diffractometer	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas
T_{\min}, T_{\max}	0.373, 0.776	0.449, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22043, 10533, 10107	23663, 3959, 3762
$R_{ m int}$	0.028	0.024
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.616	0.650
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.083, 1.02	0.019, 0.049, 1.06
No. of reflections	10533	3959
No. of parameters	804	200
No. of restraints	131	
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \ (e \ \text{\AA}^{-3})$	0.74, -0.58	0.36, -0.27

Table AV.2. Crystallographic and structure refinement data of compounds $[Cu^{II}_{2}(L^{1}SSL^{1})Cl_{4}]$ and $[Cu^{II}(L^{1}SCH_{3})Cl_{2}]$.