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Ager-Wick E, Henkel CV, Haug TM, Weltzien FA. Using normal-
ization to resolve RNA-Seq biases caused by amplification from minimal
input. Physiol Genomics 46: 808–820, 2014. First published September
16, 2014; doi:10.1152/physiolgenomics.00196.2013.—RNA-Seq has
become a widely used method to study transcriptomes, and it is now
possible to perform RNA-Seq on almost any sample. Nevertheless,
samples obtained from small cell populations are particularly chal-
lenging, as biases associated with low amounts of input RNA can have
strong and detrimental effects on downstream analyses. Here we
compare different methods to normalize RNA-Seq data obtained from
minimal input material. Using RNA from isolated medaka pituitary
cells, we have amplified material from six samples before sequencing.
Both synthetic and real data are used to evaluate different normaliza-
tion methods to obtain a robust and reliable pipeline for analysis of
RNA-Seq data from samples with very limited input material. The
analysis outlined here shows that quantile normalization outperforms
other more commonly used normalization procedures when using
amplified RNA as input and will benefit researchers employing low
amounts of RNA in similar experiments.
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RNA-SEQ HAS BECOME THE LEADING tool for transcriptomics and
has advantages over microarrays that make it possible to
discover new genes and transcripts and reveal alternative splice
isoforms, in addition to providing information about gene
expression (6, 22, 23). The number of sequencing reads pro-
duced is a function of the abundance of each transcript, and
thus the read density is used to quantify gene expression (6, 17,
23). RNA-Seq obtained from small cell populations, rare tissue
samples, or even single cells is becoming increasingly feasible.
However, there is usually a need to amplify the material
obtained from such samples due to very small amounts of RNA
available for sequencing. Different amplification protocols ex-
ist (3, 26, 30, 35), which could conceivably affect the down-
stream gene expression results. To improve the reliability of
RNA-Seq data obtained from such amplified material, data
processing methods may need to be optimized.

Different features may be of importance depending on the
specific research project; some might be important for all studies,
while others only apply to certain settings. For instance, metrics
related to accuracy and biases in gene expression measurements
are of great importance for expression profiling projects. Samples
with low input for an RNA-Seq analysis may result in unexpected
biases in the data, for instance due to differences in library
complexity. If not noticed and left untreated, this could have
substantial effects on the subsequent biological interpretation.

Here, we investigate whether postsequencing computational
procedures could be applied to resolve bias associated with
amplification. In every RNA-Seq experiment, normalization is
required to make the gene expression values comparable be-
tween samples (5, 25). Usually, the only experimental effect
that is removed is the difference in sequencing depth between
samples, although methods have been developed to remove
additional, transcript-specific effects (8).

Using a transgenic line of the model fish medaka (Oryzias
latipes) where expression of green fluorescent protein (Gfp) is
under control of the endogenous luteinizing hormone beta (lhb)
promoter (9), we have isolated the lhb-expressing gonadotrope
cells and focused exclusively on the gene expression in these
cells as analyzed by RNA-Seq. This procedure results in very
small amounts of cell material, necessitating presequencing
amplification of mRNA. In the resulting sequencing data, we
detected biases that were conceivably the result of this ampli-
fication. In this study, we have attempted to reproduce these
effects by data simulation and demonstrate how computational
normalization procedures can ameliorate or worsen the ampli-
fication bias. This has resulted in a comprehensive and general
strategy that yields accurate and reproducible gene expression
results starting from minimal amounts of material.

MATERIALS AND METHODS

Animals. Japanese medaka (O. latipes) of the d-rR strain were used
for all experiments. The lhb:Gfp transgenic line used in this study is
homozygous for a Gfp cassette under the control of the endogenous
medaka lhb promoter (9). Medaka were housed in recirculating
systems with water temperature at 27–28°C and a light (L)-dark (D)
cycle of L14:D10. Fish were fed a combination of dry feed SDS
300–400 (Special Diets Services) and live brine shrimp (Artemia
franciscana) nauplii (Argent Chemical lab, Redmond, WA). All fish
used in these experiments were synchronized at the embryo stage,
such that all the fish in a sample were the same age. Handling and use
of fish were in accordance with approved regulations for the care and
welfare of research animals at the University of Oslo.

Genetic sex determination. We initially identified Juvenile and
adult female medaka on the basis of secondary sex characteristics (14)
and then anesthetized them in benzocaine (0.5 mg/ml) before cutting
off a small piece of the caudal fin. DNA was extracted from the fin
clip with the Wizard Genomic DNA Purification Kit (Promega,
Madison, WI). All samples were analyzed by PCR using Platinum
Taq polymerase (Invitrogen, Carlsbad, CA) according to product
specifications. The same primers were used for the autosomal gene
dmrt1a and the male sex-specific gene dmrt1bY (dmy): forward
5=�CCGGGTGCCCAAGTGCTCCCGCTG�3= and reverse 5=�GA-
TCGTCCCTCCACAGAGAAGAGA�3= primer (Eurofins MWG
Operon), as has been described previously (21). The cycling param-
eters included an initial step at 94°C for 2 min, followed by 40 cycles
comprising denaturation at 94°C for 15 s, annealing at 53°C for 15 s,
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and extension at 72°C for 70 s, followed by a final elongation step at
72°C for 5 min. Female and male control samples were included in
each run. Agarose gel electrophoresis of the PCR was run to evaluate
the initially phenotyped female medaka. Transverse sections of the
ovaries of approximately five juvenile and adult genotyped female
medaka from each sampling group were prepared and subjected to
standard hematoxylin-eosin staining to verify that the juvenile fish
were sexually immature and adult fish were sexually mature before
sampling.

Dispersed pituitary cell culture. The procedure for isolating indi-
vidual cells from the pituitary of medaka was established (32) and
optimized based on primary culture conditions for Atlantic cod (10).
Genotyped female medaka were anaesthetized in benzocaine (0.5
mg/ml) prior to dissection. The spinal cord was quickly severed before
the pituitary was collected under a dissecting microscope with fine
forceps and immediately immersed in ice-cold artificial extracellular
(EC) solution. The EC solution comprised 134 mM NaCl, 2.9 mM
KCl, 2.1 mM CaCl2, 1.2 mM MgCl2, 1.8 mM glucose, 10 mM
HEPES, and 1% BSA dissolved in dH2O. The EC solution was
adjusted to pH 7.75 with NaOH and osmolality to 280 mOsm/kg with
mannitol prior to sterile filtration. Pituitaries from �30 animals were
pooled for each sample, except for juvenile sample 1, which was
pooled from a larger amount of pituitaries (for details see Table 1).

Following sampling, the pituitaries were spun down in a tabletop
centrifuge and EC solution was removed. Before cell dispersion, a
solution comprising 0.1% trypsin type II-S (Sigma, St. Louis, MO)
and 0.2% collagenase type I (Merck, Darmstadt, Germany) freshly
prepared in ice-cold (Ca2�- and Mg2�-free) phosphate-buffered sa-
line (PBS) (Invitrogen), adjusted to pH 7.75 with NaOH and osmo-
lality to 280 mOsm/kg with NaCl, was added twice to wash the
pituitaries. After removal of the wash solution the pituitaries were
enzymatically digested with the trypsin-collagenase solution while
gently shaken in a water bath at 26°C for 30 min. The trypsin-
collagenase solution was replaced by 0.1% trypsin inhibitor type I-S
(Sigma) in modified PBS, supplemented with �2 �g/ml DNase I
(Sigma), and incubated for another 20 min at 26°C. Subsequently, the
tissue pieces were mechanically dissociated in ice-cold EC solution by
gentle pipetting with a glass pipette. Cells were centrifuged at 200 g
for 10 min, and the supernatant was replaced by 100 �l ice-cold EC
solution, wherein the samples were resuspended. The samples were
kept on ice until sorting, �30 min after dissociation.

Fluorescence-activated cell sorting of lhb-expressing gonadotropes.
Gfp-positive lhb-expressing gonadotropes of female medaka were
sorted from the dissociated pituitary cell suspension by fluorescence
activated cell sorting (FACS) on a FACS Aria Cell Sorter (BD
Pharmingen, San Jose, CA) and further analyzed with the BD FACS
DiVa Software v.5.0.2 (BD Pharmingen). Prior to sorting the instru-
ment was cleaned and calibrated with fluorescent beads to ensure that
the accuracy of sorting was �99%. To maintain the most optimal and
stable conditions for the dispersed pituitary cells, FACS sorting was
performed in EC solution (described in the previous section). To
exclude cells entering apoptosis as a result of the cell isolation

procedure, the cell suspension was incubated for 30 min with 5 �l
allophycocyanin (APC) conjugated Annexin V (BD Pharmingen),
which has the advantage of marking both early and late apoptotic
cells. The cell solution was filtrated through a 70 �m filter before
sorting to remove potential cell clusters.

The pulse of forward scatter (FSC) and side scatter (SSC) was
detected and used to gate cells such that debris and dead cells, as well
as healthy doublet cells (two or more cells that stick together), were
excluded from all samples. The cells exhibiting strong Gfp fluores-
cence (fluorescein isothiocyanate channel, FITC) upon excitation with
488 nm laser and low APC (Annexin V) fluorescence upon excitation
with 633 nm laser were collected in EC solution at 4°C. After being
sorted, the cells were centrifuged at 200 g for 10 min, followed by
careful removal of the supernatant. Cells were then lysed by vortexing
for 1 min in 500 �l Trizol (Invitrogen) and snap-frozen in liquid
nitrogen.

RNA isolation and cDNA synthesis. Different methods of RNA
isolation were tested to obtain as much RNA as possible from the
sorted lhb-expressing cells, including Trizol and different commercial
column-based protocols. Trizol was chosen as the method of RNA
isolation as it resulted in a higher yield and similar RNA integrity
compared with the column based protocols.

Total RNA was extracted from the Trizol lysed cells in line with
the manufacturer’s guidelines, with the exception of the use of smaller
volumes in all steps during Trizol isolation, as this was found to
improve the yield. The snap-freezing of the FACS sorted cells in
liquid nitrogen prior to RNA isolation resulted in considerably higher
amounts of RNA compared with direct isolation without including
this step. The RNA concentration was measured with the Qubit RNA
assay kit on a Qubit fluorometer (Invitrogen). RNA integrity was
assessed by Agilent 2100 Bioanalyzer on an RNA 6000 Pico chip
(Agilent Technologies, Santa Clara, CA) where all samples had an
RNA integrity number � 8. RNA was DNase-treated with TURBO
DNA-free (Ambion, Austin, TX) according to product specifications
and stored at �80°C until cDNA synthesis.

cDNA was synthesized and amplified from total RNA using the
Ovation RNA-Seq System V2 (NuGEN Technologies, San Carlos,
CA), according to the manufacturer’s instructions. After amplification
the cDNA was purified with MinElute Reaction Cleanup Kit (Qiagen),
and the yield was measured by NanoDrop (Thermo Fisher Scientific,
Waltham, MA). The purified cDNA was stored at �20°C until
sequencing.

Illumina library preparation and sequencing. Library preparation
and sequencing were performed at the Norwegian Sequencing Centre,
University of Oslo. The amplified cDNA produced by Ovation RNA-Seq
System V2 was fragmented on a Bioruptor sonicator (Diagenode, Den-
ville, NJ) for 12 min on low power to yield a modal fragment size of
�300 bp before continuing with Illumina’s protocol for library genera-
tion. Fragmented cDNA (500 ng) was then used as input on a SPRIworks
automated system (Beckman Coulter, Brea, CA), employing 10 cycles
of PCR with Phusion polymerase. Adapters and primers were
sourced from Bioo Scientific (Austin, TX). The RNA-Seq paired-

Table 1. Samples and sequencing data

Sample Juvenile 1 Juvenile 2 Juvenile 3 Adult 1 Adult 2 Adult 3

Year 2011 2012 2012 2011 2012 2012
Fish age, mo 3 2 2 8–10 8–10 8–10
Pituitaries 130 35 30 30 25 30
Sorted cells 13,000 1,000 1,000 40,000 33,000 37,000
Sorted cells of total, %* 14 6 4 23 17 28
RNA, ng 6.0 0.5 0.5 50 45 50
Raw sequencing data, Gb 13.71 17.73 17.74 16.22 17.61 18.27
Fragment size, mean � SD 175 � 45 225 � 63 233 � 74 172 � 44 215 � 63 228 � 74
Read pairs 68,535,934 88,660,600 88,706,345 81,119,072 88,048,386 91,341,897

*Percentage sorted healthy and single Gfp-expressing cells as a fraction of the total amount of single pituitary cells.
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end libraries were subjected to paired-end sequencing with a read
length of 100 nucleotides on an Illumina HiSeq2000 instrument
according to the manufacturer’s protocol. The image analysis and
base calling were performed by RTA (version 1.13: http://support.
illumina.com/sequencing/sequencing_software/real-time_analysis_
rta/downloads.ilmn), and the fastq files were generated and demulti-
plexed by CASAVA (version 1.8.2: http://support.illumina.com/
sequencing/sequencing_software/casava.ilmn).

Read alignment and quantification. The quality of all sequencing
samples was examined with FASTQC (version 0.10.1: http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). We trimmed 10 nu-
cleotides from the start of every read with the FASTX-toolkit (version
0.0.13, http://hannonlab.cshl.edu/fastx_toolkit/download.html). Refer-
ence sequences and annotations for the medaka genome [MEDAKA1,
(12)] were obtained from Ensembl (release 67). This reference was
supplemented with the sequence of the Gfp cassette, as well as the part
of the fshb (follicle-stimulating hormone beta-subunit) transcript
(GenBank AB541981) missing from the assembly (11). The tshb
(thyroid-stimulating hormone beta-subunit) gene was annotated based
on its known transcript sequence (GenBank XM_004068796). Library
insert sizes were determined from alignments of subsets of data to
medaka cDNA sequences using Bowtie2 (version 2.0.0-beta6). Read
pairs were aligned to the medaka genome sequence using Tophat2
(version 2.0.4) (13), using Bowtie2 as the short read aligner at “very
sensitive” settings. The resulting BAM alignment files were inspected
with SAMtools version 0.1.18 (18), Picard tools (version 1.73: http://
picard.sourceforge.net/), and the Integrative Genomics Viewer ver-
sion 2.3 (27). Secondary alignments, i.e., alignments that meet
Tophat’s criteria but are less likely to be correct than simultaneously
reported primary alignments, were removed from the BAM files.
Global statistics of these alignments were gathered using the Picard
tools programs CollectRnaSeqMetrics, EstimateLibraryComplexity,
and CollectGcBiasMetrics. Fragment (read pair) alignment counts per
transcript were determined from SAM alignment files using the
Python package HTSeq-count (version 0.5.3p9: http://www-huber.
embl.de/users/anders/HTSeq/doc/overview.html), using the “strict” set-
tings to exclude reads aligning ambiguously with respect to annotated
gene structures. Counts were summarized at the level of Ensembl-
annotated genes.

As an alternative quantification procedure, we used RSEM (version
1.2.15) (16) using Bowtie2 as the short read aligner. The reference
was prepared from cDNAs predicted by Ensembl, using the –no-
polyA option. Counts and fragments per kilobase per million mapped
fragments (FPKM)-normalized expression were summarized at the
level of Ensembl genes.

The commands used for alignment and quantification are available
as Supplemental Material.1

Simulated data. Synthetic count datasets of different complexities
were generated based on the count data of the three adult samples.
These values were scaled to fragments per 10 million, pooled, and
divided by 3. This way, all rare transcripts detected in only one of the
samples are included in the synthetic transcriptome, albeit at very low
“concentrations” (all artificial concentrations can be interpreted as
transcript molecules per volume). Of this initial sample, a series of
serial dilutions was made by dividing by the square root of 10,
resulting in 10-fold dilution every second step. Artificial concentra-
tions in the most complex sample (undiluted) ranged from 0.28 to
133900, summing up to a total of 107; in the least complex sample
(1,000� diluted) concentrations ranged from 0.00028 to 133.9, sum-
ming up to 10,000.

Prior to simulated sequencing, these samples were amplified to a
uniform total artificial RNA amount of 107 (i.e., no amplification was
performed for the undiluted sample). Transcripts were amplified at
rates depending on their concentration. The rates (v) were approxi-

mated by assuming Michaelis-Menten kinetics for the rate-limiting
steps:

vi �
�transcript xi�

�transcript xi� � Km

Amplification was either linear or exponential. In linear amplifica-
tion, the same template is used iteratively to produce new strands that
can themselves not act as new templates. The reaction rates are then
dependent only on the initial concentration of each transcript. In
exponential amplification (PCR), new templates are formed at every
cycle, affecting the reaction rates in the next cycle.

Finally, amplified samples were converted to counts by sampling a
specified number of fragments from the concentrations assuming a
Poisson process. For each transcript, this yields an integer value from
a distribution with mean and variance equal to its concentration. This
adds an amount of sampling noise to the amplified samples that is
consistent with perfect technical replication (20) [but much lower than
is usually observed for biological replicates (5, 25, 31)].

The effects of normalization procedures on the simulated data were
quantified by taking the mean of the relative deviation for each gene
expression value xij from the overall mean for that gene:

deviation�xij� �
�xij � mean�xi��

mean�xi�
for each gene i and sample j

overall deviation

�
�i�0

n � j�0
m deviation�xij�

nm
for n genes and m samples

Data analysis. Raw count data per gene were transformed to
normalized gene expression values using scaling by the (estimated)
library size and the annotated mean transcript length in kilobases (22).
For library size calculation, the number of aligned fragments counted
by HTSeq, as well as estimates [DESeq-like robust scaling factor,
trimmed mean of M-values (TMM), and upper quartile (UQ)] from
the R package edgeR (version 3.2.4) (28) were used.

Alternative normalization was performed with the R package cqn
(conditional quantile normalization, version 1.6.0) (8), using the mean
length of annotated transcripts per gene, and the GC% of these, as
explanatory variables. In cases where quantile normalization assigned
a small nonzero expression value to genes without aligning reads, the
expression value was reset to zero. Quantile normalization replaces
the original expression values by a common value for each expression
rank (4). It may therefore occur that genes with the same expression
rank in multiple samples are assigned exactly the same normalized
expression value. To avoid these ties, the expression values of genes
with the same rank x in two samples were adjusted upward or
downward based on original fragment alignment counts per million, to
values belonging to the ranks x � 0.33 and x � 0.33. Expression
values belonging to partial ranks were calculated by interpolation
along a spline curve connecting all expression values and ranks. If
more than two samples were affected, the expression values were
distributed evenly along the x � 0.33 interval.

Differential expression between juvenile and adult samples was
determined using the R packages edgeR and NOISeq (version 2.0.0)
(33, 34) with the NOISeqBIO option of handling biological replicates.
As an expression threshold for testing, a gene was required to have at
least 10 aligning fragments per million read pairs in at least two
samples.

All analyses on count data were performed in R (version 3.0.1)
with Bioconductor (version 2.12). The R code used for normalization
and simulated amplification is available as Supplemental Material. All
diagnostic plots were generated using the R package ggplot2 (version
0.9.3.1) (38).

Data availability. The data used in this study are publically available
at Sequence Read Archive at the National Center for Biotechnology1The online version of this article contains supplemental material.
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Information with the following accession numbers: SRX641220,
SRX641221, SRX641222, SRX641223, SRX641225, and SRX641226.

RESULTS

Cell selection, RNA isolation, and sequencing. Specific lhb-
expressing gonadotrope cells were isolated for RNA-Seq uti-
lizing a transgenic line of medaka (lhb:Gfp), and only female
fish were included in this study. Females were selected based
on phenotypic characteristics and subsequently subjected to a
genotypic sex verification assay. The presence or absence of
the male sex-determining gene, a DM-domain gene on the Y
chromosome named dmrt1bY (dmy), determines the testicular
or ovarian pathway of gonad development, respectively (21,
24). While 100% of the adult fish that were sorted as females
based on phenotypic differences were genotyped as females,
the number decreased to �80% for the juveniles.

The dissection of pituitaries exhibiting Gfp fluorescence in
the lhb-expressing gonadotropes was performed as depicted in
Fig. 1. FACS was employed to isolate populations of lhb-
expressing gonadotrope cells. Intact cells were separated from

debris based on the FSC, a measure of cell size (Fig. 2A). SSC
gauges cell granularity or intracellular complexity and was
used to separate single cells from doublets and clumps of cells
(Fig. 2B). Finally, cells exhibiting high Gfp fluorescence and
low Annexin V APC fluorescence were selected (Fig. 2C). Gfp
fluorescence was very intense, possibly indicating very high
levels of gfp gene expression. In adult medaka, 17–28% of the
of the total number of single pituitary cells were healthy singlet
Gfp-expressing lhb-gonadotropes and were thus sorted and
used for further analysis. The number was dramatically de-
creased for juveniles, where 4–14% of the cells were sorted
(Table 1).

The limited amount of total RNA isolated from the samples
(especially from juvenile medaka pituitaries) was insufficient
to meet Illumina’s recommendations for library preparation
and sequencing. We therefore decided to use the Ovation
RNA-Seq System V2 as an alternative method for preparing
cDNA libraries. The Ovation system is based on Ribo-SPIA
technology and provides a fast and simple method for prepar-
ing linearly amplified cDNA from total RNA. Single primer

A B C

Fig. 1. Pituitary dissection from adult lhb:Gfp transgenic medaka. Fish were anaesthetized prior to dissection. A: head of medaka exposing the top of the brain
after removal of skull roof. B: the brain flipped over after severing the medulla oblongata, exposing the pituitary (white arrowhead). C: the pituitary displaying
Gfp fluorescence from the lhb-expressing gonadotropes can be collected using fine forceps (overlay of light- and fluorescent micrographs). Scale bars represent
500 �m.

Fig. 2. Fluorescence-activated cell sorting (FACS) of individual lhb-expressing gonadotrope cells following enzymatic dispersion of pituitaries from adult lhb:Gfp
transgenic medaka. A: gating was performed to remove dead cells and debris prior to sorting (defined as cells appearing on the left side of the red dotted line).
Forward scatter A (area) measures cell size; side scatter A detects intracellular complexity. B: of the proportion selected as live cells, gating was further used
to remove doublets [2 or more cells sticking together, defined as cells appearing above the red dotted line, as measured by side scatter W (width), such that only
single cells were selected]. C: parameters for sorting were adjusted such that cells exhibiting strong FITC (Gfp) fluorescence (�700) and low APC (Annexin
V) fluorescence (	200), i.e., healthy, individual, lhb-expressing gonadotropes, were selected for further studies (green cell population in the bottom right corner
of the dot plot). In all panels, green dots represent the Gfp-positive lhb-expressing gonadotropes. Marginal gradients indicate the relative density of cells in the
plot along the axes, with dark colors indicating more cells.
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isothermal amplification (SPIA) is a DNA amplification pro-
cess that uses a DNA/RNA chimeric primer, DNA polymerase,
and RNase H in a homogeneous isothermal assay, providing
highly efficient amplification of DNA sequences (15). The
amplified samples were sequenced at 100 nt paired end and
generated between 69 and 91 million read pairs (see Table 1).
Analysis using FASTQC did not reveal any problems with
sequencing in specific samples; however, the first 10 nucleo-
tides of reads displayed reduced quality in all samples and were
therefore not included in further analyses.

Quantification and structural biases. The long read pairs
obtained in this work are suitable for RNA-Seq quantification
with a reference genome, using a splicing-aware alignment
program such as Tophat (36). This approach yields rich infor-
mation on the transcriptome composition (e.g., transcript iso-
forms). Spliced alignment of the 11–100 bp parts of the reads
to the entire medaka genome resulted in alignment efficiencies
of 67–79% for the different samples (Table 2). Of the aligned
bases, 15.7–19.5% mapped to annotated transcripts (coding
sequences and untranslated regions). All samples exhibited a
distinct coverage bias towards the 3=-ends of transcripts (Table
2). A detailed analysis of the average coverage along the 1,000
most highly expressed transcripts revealed that this effect is not
identical for all samples, with especially adult sample 2 show-
ing higher coverage at the 3=-ends of these transcripts and less
at the 5=-ends (Fig. 3A).

For each sample and each annotated gene, the number of
fragments (read pairs) aligning to that gene was counted. Of
20,425 annotated genes in the medaka genome, 17,617 had at
least one aligning read in at least one sample. The number of

detected genes (at least one read per gene) varied considerably
between samples, ranging from 11,855 in juvenile sample 3 to
16,812 in adult sample 1 but was generally higher in the adult
samples (Table 2). If a small threshold is added to exclude
sequencing and alignment noise, the pattern remains the same
(the set of genes in which 99% of fragments aligns, Table 2).
The distributions of count values also vary considerably be-
tween samples (Fig. 3B), indicating the need for a computa-
tional normalization procedure to make samples comparable.
As in every RNA-Seq experiment, raw counts need to be
corrected for the total sequencing depth (i.e., the total number
of aligning fragments) (22), which may differ between samples
(Tables 1 and 2). In addition, juvenile samples 2 and 3 deviate
from the common distribution pattern, which could be an
indication of intrinsically noncomparable samples.

In addition to spliced alignment with Tophat, we also quan-
tified fragment counts per gene with RSEM, using predicted
cDNAs instead of the annotated genome as a reference. Count
patterns were very similar (Pearson correlation 0.96–0.97 for
the same samples quantified by either method), including the
deviation of juvenile samples 2 and 3 (data not shown).

Amplification bias reproduction in synthetic data. Since the
deviation is limited to the samples that were generated from the
lowest amounts of input RNA (Table 1) and exhibit the lowest
transcriptome complexity (Table 2), we suspected that it could
be an artifact of RNA amplification. At extremely low RNA
concentrations, amplification has been found to be less efficient
than at moderate to high concentrations (3). Such a bias could
conceivably lead to the patterns observed in Fig. 3B: highly

Table 2. Alignment information

Sample Juvenile 1 Juvenile 2 Juvenile 3 Adult 1 Adult 2 Adult 3

Reads aligned to genome, % 77.0 72.0 66.6 79.2 69.5 71.5
Of these, aligned to coding regions, % 14.4 16.4 13.8 17.7 14.7 15.5
. . . aligned to UTRs, % 1.7 2.7 1.9 1.8 2.5 2.1
. . . aligned to introns, % 18.4 20.7 19.5 20.1 20.8 19.7
. . . aligned to intergenic regions, % 65.4 60.1 64.8 60.4 62.0 62.7
Read pairs counted, % 11.6 12.6 9.8 14.5 11.4 11.6
3=/5= coverage bias, � 3.77 4.89 3.92 3.31 6.63 4.00
Median GC content % (IQR%) 45 (11) 46 (14) 46 (13) 45 (11) 43 (12) 45 (13)
Detected genes 14364 12421 11855 16812 15618 16176
Genes in which 99% of fragments align 8876 7596 7146 10144 9157 9657

UTR, untranslated regions; IQR, interquartile range.
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clear bias in detection efficiency toward the 3=-
end of transcripts. The bias is more prominent in
some replicates (adult sample 2, blue line). B: the
distribution of gene expression values in raw
counts per sample demonstrates the need for nor-
malization between samples. In these raw counts,
the effective sequencing depth is the most domi-
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ample, at higher count values, there is on average
a 7-fold difference between juvenile sample 1
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pattern is very different in juvenile samples 2
(yellow) and 3 (green).
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abundant transcripts are unaffected, but moderately to lowly
expressed genes are depleted.

To test this hypothesis, we generated simulated data based
on the adult medaka samples (see MATERIALS AND METHODS). We
used both in silico linear amplification (Fig. 4, A and B) and
exponential amplification (Fig. 4B) to mimic the bias observed
in the real samples (Fig. 3B). A number of artificial concen-
trations of the synthetic data were generated by serial dilutions,
and the two methods produced very different distribution
patterns of the simulated count values at different levels of
severity (Fig. 4B). Both the “mild linear” and “mild exponen-
tial” protocols produced count value distributions similar to
those observed for the affected juvenile medaka samples. For
further analysis, we used a combination of mild linear simu-
lated samples (Fig. 4C) that includes random variation in
sequencing depth and to a large degree resembles the pattern
we observed in the real samples (Fig. 3B).

Normalization and bias correction in synthetic data. We
subsequently investigated whether postsequencing computa-
tional procedures, specifically, normalization procedures in-
tended to make samples comparable, are still valid in the
presence of amplification bias. The most straightforward nor-
malization procedure scales all fragment counts by the exact
determined sequencing depth. In addition, we evaluated several
estimators by which to scale the counts. These approximations
of the effective sequencing depth are less affected by the high
expression of just a few genes than the actual quantified total
number of fragments (5, 25). Subsequently, fragment counts
are often divided by gene length, such that final quantifications
reflect transcript numbers rather than transcript weight (nucle-
otide numbers). In addition to dividing by sequencing depth
and transcript length, we also evaluated quantile normalization,

which forces the count distributions for each sample towards a
common averaged distribution (4, 8).

The effects of the different normalization procedures on the
simulated data of Fig. 4C are shown in Fig. 5, A–F. In the
distribution plots in Fig. 5A raw counts have been divided by
the empirically determined number of aligning fragments per
sample (in millions), as well as by the transcript length (in
kilobases), yielding FPKM normalized values. At high expres-
sion levels, this results in better alignment of the distributions
than in the realistic simulated data (Fig. 4C). Using a robust
estimator of the sequencing depth (in this case, the DESeq
library size estimate), similarly shaped distributions overlap
slightly worse than with FPKM, especially at the highest
dilutions (Fig. 5B). Finally, quantile normalization dramati-
cally alters the distributions to yield almost perfect alignment
at high expression values, but poor alignment at low expression
(Fig. 5C).

Figure 5, D–F, offers an alternative view of the effects of
normalization on the simulated data, showing that some bias
still remains in the data after normalization. The magnitude of
this bias can be quantified by taking the mean absolute devi-
ation for all samples and genes (see MATERIALS AND METHODS).
Since the simulated data are intended to reflect perfect techni-
cal replicates, the theoretical lower limit and desired result of
this measure is 0 (corresponding to horizontal straight lines at
deviation 0 in Fig. 5, D–F). If all detected transcripts are taken
into consideration, the mean overall deviation is 0.21, 0.19, or
0.10 for FPKM, robust, and quantile normalization, respec-
tively. If only the top 1,000 genes by expression are consid-
ered, the overall deviations are 0.02, 0.19, and 0.03, respec-
tively, reflecting the good alignment of FPKM and quantile
trend curves with the deviation 
 0 line at high expression and

Fig. 4. Replication of distribution bias using synthetic data. A: in silico linear amplification and sequencing of samples diluted up to 1,000� recapitulates the
count distribution pattern observed for the real data (Fig. 3B). These samples were processed assuming a mild bias (Km 
 1). B: exponential amplification with
a mild bias, as well as linear amplification with a stronger bias (Km 
 10) produced similarly shaped distributions. Exponential amplification assuming a strong
bias (Km 
 10) produces a very different distribution pattern (yellow dotted line). C: realistic counts, based on linear amplification with a mild bias, for 6 samples:
2 undiluted, 2 diluted 10�, and 2 diluted 100�. In addition, the sequencing depth was varied randomly between 0.8 and 1.2 � 107 fragments.
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the poor alignment for robust normalization (right sides of Fig.
5, D–F).

We quantified the effects of normalization for several addi-
tional combinations of samples (Fig. 6), ranging from no
amplification bias at all to a scenario involving extreme expo-
nential amplification bias (see Fig. 4B). If no bias is present,
only the effects of sequencing depth need to be mitigated by
normalization, and the residual deviation is very low for every
procedure (it is not zero because of the Poisson sampling noise
added to each sample). If moderate to severe bias is present, the
five methods evaluated produce very different results, with
FPKM generally very poor at low expression levels (all genes)
but surprisingly best if only the highest expressed genes are
considered. In contrast, robust estimators (DESeq-like, TMM,
and UQ) perform poorly especially for the most abundant
transcripts. Quantile normalization results in the least overall
residual bias, and only slightly more bias than FPKM at high
expression levels.

Normalization and bias correction on real data. Figure 7
illustrates the effects of the different normalization procedures
on the real samples. The distribution plots of Fig. 7A demon-

strates better alignment of FPKM normalized samples at high
expression levels than we observed in the raw data (Fig. 3B),
similar to the situation observed for the simulated data (Fig.
5A). Using a robust estimator of the sequencing depth results in
similarly shaped distributions (Fig. 7B). However, the align-
ment of juvenile samples 2 and 3 with the other samples is
poor. As well as for the synthetic data, quantile normalization
dramatically alters the distributions to yield perfect alignment
at high expression values for the real samples, but no alignment
at low expression (Fig. 7C). Two additional normalization
procedures, scaling by the TMM and UQ estimates of library
size, yielded results very similar to robust normalization (data
not shown). Figure 7, D–F, provides an alternative view of the
effects of normalization and resembles the bias pattern ob-
served for the simulated data (Fig. 5, D–F). We obtained
essentially the same results when using the alternative (RSEM)
fragment counts as input for normalization (not shown).

The variation in expression values between FPKM and
quantile normalization can largely be explained by the different
methods of correcting for transcript length (Fig. 8). With
quantile normalization, longer genes tend to get higher expres-

Fig. 5. The effect of different normalization procedures on the simulated data of Fig. 4C. Distribution of expression values using fragments per kilobase per
million mapped fragments (FPKM) normalization (A), robust normalization (B), and quantile normalization (C). All procedures remove the effects of sequencing
depth to some extent. Some bias remains, as shown in D–F. Here, for all samples and all genes, the deviation from the mean expression value of all 6 samples
is plotted (black dots, with transparency added to reduce overplotting artifacts). Deviation is defined as expression in a specific dilution divided by mean
expression in all samples. The trend of deviation vs. expression level is highly dependent on the dilution, as shown by local regression (loess) lines for each
sample. These plots indicate that normalization may introduce, rather than remove, sample-specific biases, resulting in reduced reproducibility. Normalization
methods used are FPKM (D), robust DESeq-like (E), and quantile (F).
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sion values than with FPKM normalization, while this effect is
reversed for shorter genes (Fig. 8B). This is the result of the
entire conditional quantile normalization procedure (8), which
has been designed to remove length bias (as well as GC% bias)
from the count data by fitting smoothing functions to the
observed relationship between count numbers and quantifiable
biases. The resulting corrected count values are then subjected
to quantile normalization.

Differential gene expression. To determine which transcripts
are significantly more or less abundant in either of the two
stages (juvenile or adult), we subjected normalized counts of
expressed genes to two methods for assessing differential
expression. We evaluated the methods edgeR (a parametric
method, which assumes a negative binomial distribution of
variance for each gene) and NOISeqBIO (a nonparametric
method, relying on an empirical model of the variance). We
tested 8,501 genes above an expression threshold for differen-
tial expression (these genes are responsible for �99% of
quantified fragments, see Table 2).

Figure 9 presents the results of the tests using the data from
the three normalization procedures described above (FPKM,
robust, and quantile). In Fig. 9A, the biases remaining or
introduced after normalization are summarized for each ex-
pression level and each stage (cf. Fig. 7, D–F). Figure 9, B and
C, shows the fraction of genes called differentially expressed
(P 	 0.05) by edgeR and NOISeqBIO, respectively. In total,
for FPKM, robust, and quantile normalized data, respectively,
edgeR found 933, 1,113, and 1,113 genes differentially ex-
pressed (with a 10% Benjamini-Hochberg false discovery rate:
154, 304, and 328 genes), where NOISeqBIO found 497, 742,
and 743 genes differentially expressed. [No further multiple
testing correction was applied to the NOISeqBIO data, as it is
not clear whether this is possible or necessary (7, 33).]

Figure 9, D and E, shows how the numbers of differentially
expressed genes differ and overlap between the different meth-
ods. The methods mostly find the same genes, with the excep-
tion that robust normalization finds far fewer genes that are
higher in adults than in juveniles. When FPKM or quantile

normalization is used, structural biases at low expression levels
translate directly to high amounts of apparent differential
expression. When robust scaling normalization (as well as
using TMM or UQ scaling normalization, data not shown) is
used, biases are also present at medium to high expression
levels. This results in a high percentage of genes categorized as
significantly higher expressed in juveniles than in adults, with
very few genes higher in adults.

DISCUSSION

In the current study, we have utilized a transgenic line of
medaka where expression of Gfp is under control of the lhb
promoter (9) to isolate pure and healthy populations of lhb-
expressing gonadotropes for RNA-Seq. In all samples, the
expression levels for gfp and lhb rank firmly among the most
highly expressed genes, indicating that cell selection was
invariably successful (shown in Fig. 8A). The very high gfp
expression is consistent with the excessive levels of fluores-
cence observed for selected cells (Fig. 2C). In turn, lhb also
exhibits similarly high expression levels and demonstrates that
this cell population does indeed allocate considerable resources
to hormone production.

The samples studied here are atypical input for an RNA-Seq
analysis. Both the low amounts of RNA and the nature of
endocrine tissue (certain hormone encoding transcripts are
assumed to be overrepresented) may result in unexpected
biases in the data, which, if not noticed, may have substantial
effects on the subsequent biological interpretation. We there-
fore analyzed the resulting data in detail and attempted to
correct any technical artifacts and biological biases with care-
ful application of bioinformatics normalization procedures.
These are intended to make expression values comparable both
between samples and between genes (within samples).

Due to the small amounts of RNA isolated from the lhb-
expressing gonadotropes, a sensitive RNA amplification method
for RNA-Seq from small amounts of total RNA was utilized to
obtain sufficient material for sequencing. This enrichment and

Fig. 6. Quantification of the residual deviation after normalization. Shown are data from scenarios with 6 nonamplified samples (A); 2 undiluted, 2 10� diluted
and 2 100� diluted, amplified with a mild linear bias (similar to Figs. 4C and 5, A–F) (B); the same but with mild exponential amplification (C); 3 undiluted
and 3 100� diluted, amplified with strong linear bias (see Fig. 4B) (D); and the same but with strongly biased exponential amplification (E). All data shown
are the means of 10 independent simulation runs, each with independent random sampling noise and sequencing depth (between 0.8 and 1.2 � 107). For each
simulation scenario, the residual deviation in all detected genes, as well as in the top 5,000 and 1,000 by expression is given. Error bars are not shown, as standard
deviations were at most 0.01 in all cases. TMM, trimmed mean of M-values.
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amplification method, the Ovation RNA-Seq amplification sys-
tem, has been shown to perform equally well or even better
than other amplification systems (1). Although the Ovation
system provides high reproducibility and generates relatively
few ribosomal RNA reads (1, 19, 35, 37), it does still yield
substantially larger fractions of reads of nongenic origin
[�60% of total aligned reads, (19, 35) and Table 2]. This is
presumably caused by the Ovation RNA-Seq protocol that does
not select for polyadenylated RNA, and consequently the
majority of the reads originate from other sources than mRNA.
However, the “intergenic” fraction of the transcriptome may
also be exaggerated by expression from nonannotated parts of
the genome. For instance, 7.0–16.1% of all aligned reads map
to a single scaffold (scaffold2480), predominantly next to
annotated mitochondrial genes. The effect of “extragenic” read
alignment is compensated for by the vast amounts of reads
produced by Illumina sequencing (Table 1).

Observations of reduced quality encountered in the first 10
nucleotides of the reads are also likely to have been introduced
by the Ovation RNA-Seq amplification procedure and were
removed from further analysis. Similar observations have also
been reported by others that described the presence of Ovation
RNA-Seq SPIA primer in the beginning of the reads (19).

Examination of the average coverage along the transcripts
revealed that the samples showed a higher coverage toward the
3=-end of the transcript (Fig. 3A). Other studies have also
reported that the Ovation RNA-Seq system produces a bias
toward an increased coverage at the 3=-end, and it has been
suggested that this bias could be due to the use of oligo(dT)
primers in addition to random primers during first-strand
cDNA synthesis (1, 29, 35). In an earlier pilot experiment with
regular Illumina library preparation without amplification, we
did not observe this effect (data not shown), suggesting that the
bias is a technical artifact associated with the Ovation system,
rather than the product of biological influences or sample
handling procedures. In addition, the magnitude of the effect
differs between samples, while no straightforward correlation
can be observed with other sequencing or alignment statistics
(Tables 1 and 2), with the possible exception of GC nucleotide
content of aligned sequences. If left uncorrected, this bias will
lead to overestimation of the abundance of very short tran-
scripts and underestimation of the abundance of long tran-
scripts. We have applied a procedure (R package cqn) that
attempts to correct for this bias by establishing an empirical
relationship between annotated transcript length and expres-
sion level. Compared with noncorrected data, this results in

Fig. 7. The effects of normalization on juvenile and adult medaka pituitary samples. Postnormalization density distributions (A–C) and deviation plots (D–F) are
analogous to Fig. 5, with the effects of FPKM (A, D), robust (B, E) and quantile (C, F) shown. In D–F, deviation is plotted relative to the condition mean (juvenile
or adult), rather than to the overall mean.
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higher expression levels for longer transcripts (Fig. 8, B–D),
although a structural bias toward lower expression remains
(Fig. 8D). More importantly, however, the magnitude of the
bias appears to be equalized between samples. Depending on
downstream normalization procedures, in noncorrected data,
the outlier sample (adult 2) receives consistently deviating
expression values (Fig. 7). The cqn procedure always includes
quantile normalization (8), and therefore the correction was not
applied in combination with scaling normalization.

A possible concern when sequencing from very small
amounts of RNA is the uniqueness of the resulting amplified
fragments. If the original RNA pool contained a small number
of molecules relative to the number that have eventually been
sequenced, this will distort expression values. Final library
complexity may be further impaired by preferential amplifica-
tion of highly abundant species. As a result, at low input
complexity, rare transcripts (from genes with low expression)
may be missing from the amplified library altogether. As a
measure of this complexity, we have counted the number of
genes that was detected in every sample (Table 2). Especially
juvenile samples 2 and 3 appear to be less complex than the
adult samples. This is likely caused by the extremely low
amounts of input RNA in these two samples, which also show
an aberrant distribution of fragment counts (Fig. 3B).

To exclude that these patterns are the result of the particular
bioinformatics procedures used up to this point, we performed
the alignment and quantification in duplicate, using two inde-
pendent methods: alignment to a genomic reference using
Tophat followed by counting using HTSeq, as well as align-

ment to a reference transcriptome and subsequent counting
using RSEM. In both cases, we counted fragments (read pairs)
rather than reads and used the total fragment count as the
library size during all subsequent normalization procedures.
This choice results in expression values that are robust in the
presence of low-quality second reads. Both quantification
methods yielded very similar results, demonstrating that the
choice of quantification method did not have a major influence.

It is not immediately clear that juvenile samples 2 and 3 can
actually be compared with the other samples. We therefore
investigated whether residual structural bias exists at the gene
level after each normalization procedure. If samples are intrin-
sically comparable, it is expected that on average this bias is
close to zero (i.e., expression of specific genes will differ little
between replicates). The effects of the different normalization
procedures on the simulated data (Fig. 5) displays a similar
expression pattern to the observed pattern in the real samples
(Fig. 7). FPKM normalization results in better alignment of the
distributions than in the synthetic and real raw count data,
while robust normalization has a slightly worse effect on the
distributions than FPKM. Quantile normalization outperforms
all other normalization methods both for the simulated and the
real data. Here, the distributions are dramatically altered to
yield close to perfect alignment at high expression values, at
the expense of poor alignment at low expression (Figs. 5C and
7C). In Fig. 7, D–F, for each sample, the local regression line
illustrates the trend of deviation of gene expression values from
the condition mean. Except at very low expression values,
variation is not higher for juvenile samples 2 and 3, demon-

Fig. 8. The effect of transcript length on final
expression values. A: scatter plot of gene ex-
pression values (mean over all six samples)
obtained by either FPKM or quantile normal-
ization. The loess regression line (cyan) shows
good overall agreement of the methods. Orange
and green dots represent the expression values
of lhb and gfp, respectively. B: the same scat-
terplot, but with genes colored by transcript
length, suggests that the remaining differences
in expression values between the 2 methods
can be largely explained by differences in nor-
malizing for length. Longer genes tend to re-
ceive higher expression values using condi-
tional quantile normalization (cqn) than using
FPKM normalization. For shorter genes, this
effect is reversed. The 2.5% of transcripts with
the most extreme lengths have been omitted
from the color scale to avoid obscuring the
effect by these generally lowly expressed genes
[e.g., the 78 Kb titin (ttn) transcript, and genes
shorter than the sequencing read length]. C, D:
illustration of the effect of transcript length on
expression values for the top 1,000 highly ex-
pressed genes (again ignoring very short and
long genes). Loess regression lines for each
sample show that expression values for short
transcripts (�300 bp) are on average much
higher than for long genes (�3,000 bp). This
effect is larger in FPKM-normalized data (C)
than in cqn/quantile-normalized data (D), and
more prominent in FPKM-normalized adult
sample 2 (with the strongest 3=-5= count bias,
see Fig. 3A).
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strating that all juvenile samples are indeed bona fide biolog-
ical replicates and do not reflect fundamentally different tran-
scriptomic states.

Interestingly, the scaling normalization procedures that
make the explicit assumption that samples are comparable
(robust DESeq-like, Fig. 7, B and E) result in the strongest
residual biases. TMM and UQ scaling estimates yielded results

very similar to robust scaling (Fig. 6). FPKM is vulnerable to
the presence of a few very highly expressed genes (5, 25),
which may be expected in endocrine tissue (2), but it outper-
forms all other scaling estimates (Fig. 6). On the real data,
quantile normalization performs best at medium to high ex-
pression values, but worst at low expression (Fig. 7, C and F).
However, using simulated data and additional scenarios, we

Fig. 9. The effect of biases on differential expression. Every normalization procedure handles sample biases differently, which ultimately affects differential
expression. From left to right, the effect and results of FPKM, robust, and quantile normalization are shown. All plots share a common x-axis (expression values).
A: deviation plots indicate that sample-specific biases result in reduced reproducibility. For both conditions, the deviation trend from the mean expression value
is shown (computed by loess local regression). Here, deviation is defined as the mean expression for a gene in a condition divided by its mean expression over
all samples. Shaded areas indicate 95% confidence intervals. Differential expression between juveniles and adults, as determined by edgeR (B) or NOISeq (C).
Shaded areas represent the fraction on genes at a certain expression level called differentially expressed at P 	 0.05. In red, genes significantly higher expressed
in juvenile; in cyan, genes significantly higher expressed in adults. Venn diagrams showing differentially expressed genes found by egdeR (D) and NOISeq (E)
for the 3 different normalization methods (FPKM, robust, and quantile). Genes exhibiting higher expression in adults than in juveniles are upregulated (cyan),
while lower expressed genes in adults than in juveniles are considered downregulated (red).
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find that quantile normalization often performs much better
than any other procedure, with the exception of FPKM for high
expression levels (Fig. 6). The resulting expression values after
each procedure are analogous to FPKM, where an FPKM of
1–3 has been shown to very approximately correspond to one
transcript per cell for specific cell types (22).

The good performance of quantile normalization on simu-
lated biased data can be explained by the nature of the ampli-
fication bias. If the bias is assumed to be the result of lower
amplification efficiencies for rare transcript species (3), the net
effect will be lower count values for these species, but no
change in expression rank. Quantile normalization, in turn, acts
on these ranks and assumes that the same rank belongs to the
same expression level for every sample. In the case of ampli-
fication bias, the net result is similar to scaling by a different
factor for every expression level, instead of by a single factor
for all transcripts.

Finally, we evaluated two fundamentally different methods of
determining whether genes are differentially expressed between
conditions (Fig. 9). We only tested the 8,501 genes with expres-
sion levels above a threshold (see MATERIALS AND METHODS), which
approximately translates to the set of genes in which 99% of
fragments align (Table 2). This threshold is still too liberal, as
differential gene expression is strongly influenced by structural
biases that emerge below expression levels of �5–10 (Fig. 9).
Below these levels, therefore, quantified gene expression
should be interpreted with caution, and qualitative rather than
quantitative (e.g., “detected” instead of “higher than”). At
higher expression levels, both differential expression methods
find modest amounts of differential expression. edgeR appears
less affected by the expression level, whereas NOISeq clearly
detect more differential expression at high expression levels
(Fig. 9C). The juvenile/adult symmetry in differential expres-
sion is more even with NOISeq, as edgeR has a strong
preference for either stage at different expression levels (Fig. 9,
B–E). Due to very limited sample availability it was not yet
possible for us to verify any differentially expressed genes by
qPCR. Care should therefore be taken when interpreting bio-
logical significance of the differentially expressed genes be-
tween the different methods.

In summary, this study reveals that the biases associated
with low amounts of input RNA can have a strong and
detrimental effect on downstream analyses. A very common
RNA-Seq pipeline includes robust normalization and edgeR
differential expression analysis, a combination that on our data
yields improbable results (Fig. 9B, middle panel). However,
using both synthetic and real data we demonstrate that quantile
normalization, a procedure standard for microarrays but not
common for RNA-Seq, is an effective remedy that compen-
sates for the effects of large differences in sequencing library
complexity. Following normalization, we found that differen-
tial expression testing was most optimal with NOISeq. The
strategy outlined here to examine specific cells by RNA-Seq
from low input yields highly reproducible results, which is
essential for their use in differential expression studies. These
technical optimizations provide a solid basis for further de-
tailed study focusing on the regulatory processes in these cells.
Furthermore, this specific computational pipeline will be ben-
eficial for other researchers working with low input material
for RNA-Seq.
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