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Abstract

We consider the question of when delay systems, which are intrinsically
infinite dimensional, can be represented by finite dimensional systems. Specif-
ically, we give conditions for when all the information about the solutions
of the delay system can be obtained from the solutions of a finite system of
ordinary differential equations. For linear autonomous systems and linear sys-
tems with time-dependent input we give necessary and sufficient conditions

1



and in the nonlinear case we give sufficient conditions. Most of our results for
linear renewal and delay differential equations are known in different guises.
The novelty lies in the approach which is tailored for applications to models
of physiologically structured populations. Our results on linear systems with
input and nonlinear systems are new.

Key words: Linear chain trick, delay-differential equation, renewal equation, Markov
chain, physiologically structured populations, epidemic models

MSC2000: 34K17, 93C23, 92D25

1 Introduction

A large class of both epidemic and physiologically structured population models with
a finite number of states at birth can be cast in the form of a coupled system of non-
linear renewal equations and differential delay equations (see Gyllenberg 1982,1983;
Calsina and Saldaña 1995; Diekmann et al. 2017, 2010):

b(t) = F1(Xt, Yt)bt, (1.1)

X(t) = F2(Xt, Yt)bt, (1.2)

d

dt
Y (t) = G (Y (t), F3(Xt, Yt)bt) . (1.3)

The subscript t of a function refers to the history of the function up to time t,
formally,

ft(θ) = f(t+ θ), θ ≤ 0.

In the system (1.1) – (1.3), b(t) is a vector, the jth component of which is the
rate at which individuals are born into the state at birth labeled by the number
j at time t. The components of the vectors X(t) and Y (t) are the environmental
interaction variables. Together they form a vector E(t) = (X(t) Y (t))T which we
call the environmental condition at time t. The difference between X and Y is not
conceptual, but in the description of the dynamics as embodied in (1.2) and (1.3),
respectively: X is determined directly by feedback while Y is determined by feedback
via a differential equation. Often the components of Y represent resources consumed
at the same time scale as the population dynamical events, while Equation (1.2) is
obtained as a quasi-steady-state approximation after a time scale separation.

Equation (1.1) describes how individuals born in the past have survived to and
give birth at the current time t. Similarly, Equation (1.2) describes the contribution
to the current X(t) by individuals born in the past (before time t) and Equation
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(1.3) describes how the rate of change of Y (t) depends on the current value of Y (t)
and the current population composition for instance by consuming resources. Note
that, as the notation indicates, the action on bt is linear on the right hand sides of
all the equations. The interpretation of this is that, if the history of the environmen-
tal interaction variables is known, the individuals are independent of one another
with regard to survival and reproduction as well as contribution to the environment.
An individual’s survival probability, reproductive success, satiation, etc. depend on
the environment it has experienced throughout its life. Therefore the linear opera-
tors Fi, i = 1, 2, 3, have to depend on the history of the environmental interaction
variables.

The equations (1.1) – (1.3) should hold for t > 0 and they should be supplemented
by appropriate initial conditions prescribing the history, that is, the values of the
unknowns for t ≤ 0.

If E(t) is independent of time t, the environmental condition is constant and
Equation (1.1) becomes a linear renewal equation

b(t) =

∫ ∞
0

K(a)b(t− a)da. (1.4)

If k is the number of possible states at birth, then b is a function taking on values
in Rk and the kernel K is a k × k-matrix valued function. The element Kij(a) is
the rate at which an individual of age a who was born with state j gives birth to
individuals with state i. Readers interested primarily in population dynamics may
wish to read the rather short Section 5 before they embark on the rest of the paper.

Although basic questions like analysing steady states (Diekmann et al. 2003)
and determining their local stability properties (Diekmann and Gyllenberg 2012)
have been settled for the infinite dimensional dynamical system generated by (1.1)
– (1.3), many important questions remain. For instance, in what manner does the
population state evolve with time and possibly reach a steady state? What is the
structure of the ω-limit sets? Does there exist a global attractor? Because of the
infinite dimensionality of the problem these questions are hard to answer in general.
In contrast, there is a highly developed qualitative theory for systems of ordinary
differential equations, where such questions can be treated. There are also highly
efficient packages for solving systems of ODEs numerically, whereas corresponding
methods for general structured population models are rare (but see de Roos 1988;
de Roos and Persson 2013; Breda et al. 2016).

Because of the arguments mentioned above, it is important to find necessary and
sufficient conditions for solutions of the system (1.1) – (1.3) to be representable in
terms of solutions of a system of ordinary differential equations. This is the main
purpose of the present paper.
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The representation in terms of ordinary differential equations of solutions of delay
equations in general, and structured population models in particular, has a long
pedigree. In their pioneering paper, Gurtin and MacCamy (1974) observed that if
in the age-structured model

∂

∂t
n(t, a) +

∂

∂a
n(t, a) = −µ(a,X(t))n(t, a), , a > 0, t > 0, (1.5)

n(t, 0) =

∫ ∞
0

β(a,X(t))n(t, a)da, t > 0, (1.6)

X(t) =

∫ ∞
0

n(t, a)da, (1.7)

n(0, a) = φ(a), a > 0, (1.8)

the death rate µ and the fecundity β are of the form

µ(a,X) = µ0(X), (1.9)

β(a,X) = αβ0(X)e−αa, (1.10)

then solving the system (1.5) – (1.8) reduces to solving the ODE system

dz1

dt
= (αβ0(z2)− α− µ0(z2)) z1, (1.11)

dz2

dt
= β0(z2)z1 − µ0(z2)z2, (1.12)

where

z1(t) = α

∫ ∞
0

e−αan(t, a)da, (1.13)

z2(t) = X(t). (1.14)

Once the system (1.11) – (1.12) has been solved with initial conditions

z1(0) = α

∫ ∞
0

e−αaφ(a)da, (1.15)

z2(0) =

∫ ∞
0

φ(a)da, (1.16)

the solution to the original problem is obtained from the formula

n(t, a) =

{
b(t− a)e−

∫ t
t−a µ0(X(s))ds, if t > a,

φ(a− t)e−
∫ t
0 µ0(X(s))ds, if t < a,

(1.17)
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where
b(t) := n(t, 0) = β0(z2(t))z1(t). (1.18)

The result above can easily be generalized. The system (1.5) – (1.8) reduces to
a system of ordinary differential equations if µ is independent of age and β is of the
form

β(a,X) = α

p∑
k=0

βk(X)
1

k!
(αa)ke−αa. (1.19)

For details, we refer to (Gyllenberg 2007).
The above result is related to a well-known fact in the theory of functional dif-

ferential equations. The scalar equation

dx(t)

dt
= f

(
x(t),

∫ t

−∞
K(t− s)x(s)ds

)
(1.20)

with distributed delay is equivalent to a system

dx(t)

dt
= f (x(t), zp(t)) ,

dz1(t)

dt
= α (x(t)− z1(t)) , (1.21)

dzk(t)

dt
= α (zk−1(t)− zk(t)) , k = 2, 3, . . . , p

of ordinary differential equations whenever the scalar kernel K equals the gamma
density

gα,k(a) :=
α

k!
(αa)ke−αa. (1.22)

This fact has been employed in the context of biological delay systems by MacDonald
(1978, 1989), who also seems to have coined the term ‘linear chain trick’. Notice the
linear chain structure x → z1 → z2 → · · · → zp in (1.21). The system can be
interpreted as a compartmental population model in which individuals in the last
compartment (zp) give birth to individuals in the x compartment and maturation
consists of recruitment to a compartment from the immediately preceding one.

The example above gives sufficient conditions for when the Gurtin-MacCamy
model has a finite dimensional state representation, or, as we shall say, is ODE-
reducible. In this paper we give sufficient and necessary conditions for ODE-re-
ducibility for a much larger class of physiologically structured population models.
Earlier work in this direction includes (Diekmann and Metz 1988 and Metz and
Diekmann 1991). In a companion paper (Diekmann et al. (in preparation)) we give
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necessary and sufficient conditions for ODE-reducibility in terms of how the basic
modelling ingredients, viz. the individual reproduction, death, and growth rates,
depend on the individual state and the environmental condition.

Often, as in the example above, the finite dimensional state representation of a
structured population model has a biological interpretation and the accompanying
ODE-system is a population model in its own right. This is not always the case. It
might for instance happen that the equivalent finite dimensional system is not posi-
tivity preserving. In this paper we will not consider the problem of when exactly the
reduced system is actually interpretable as a population model. However, population
dynamical interpretation will serve as motivation for formulating results concerning
the finite dimensional systems, in particular in Section 5.

In queueing theory the same idea of choosing (1.22) was introduced by Erlang and
is commonly called the method of stages. A customer has to pass through several
stages each having an exponentially distributed service time. The stages are served
one at a time and the service is completed when all stages have been served. For
details we refer to (Asmussen 1987; Section III.6).

Vogel (1965) (see also Fargue (1973)) studied the question of when the solution
x of a scalar nonlinear and non-autonomous Volterra integro-differential equation
satisfies a system of ordinary differential equations. His result applied to the linear
equation

x(t) =

∫ t

−∞
K(t, τ)x(τ)dτ (1.23)

is that x satisfies a system of ordinary differential equations if and only if the kernel
K satisfies a linear ordinary differential equation

∂nK

∂tn
+ an−1(t)

∂n−1K

∂tn−1
+ · · ·+ a1(t)

∂K

∂t
+ a0(t)K = 0 (1.24)

for some time dependent functions a0, a1, . . . , an−1.
We shall start by considering the linear renewal equation (1.4) in Sections 2

and 3 and continue by studying linear integro-differential equations in Section 4.
In Section 5 we show how the ODE system can be given an interpretation as a
population model in its own right. We also characterize the basic reproduction
number and the Malthusian parameter of the finite dimensional system and show
that they coincide, as they should, with the corresponding quantities of the original
model. In Section 6 we consider the question of minimality of the dimension of the
finite dimensional state representation. In Section 7 we extend our previous results
to linear renewal equations with input, which are one of the main building blocks of
structured population models. In Section 8 we use the results of Section 7 to study
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nonlinear problems by closing the feedback loop, that is, by feeding the output back
as input to the renewal equation. In Section 9 we consider examples of nonlinear
age-structured population models and epidemic models.

2 Linear Renewal Equations

In this paper we denote the space of all p× q-matrices, that is, matrices with p rows
and q columns, by Rp×q.

Consider the linear delay equation (renewal equation)

x(t) =

∫ ∞
0

K(τ)x(t− τ)dτ t > 0, (2.1)

with initial condition
x(t) = ϕ(t), t ≤ 0. (2.2)

or, equivalently,

x(t) =

∫ 0

−∞
K(t− τ)ϕ(τ)dτ +

∫ t

0

K(t− τ)x(τ)dτ, (2.3)

where K is a given locally integrable Rk×k-valued kernel and the unknown x and
the initial history ϕ take on values in Rk. Of course, one has to assume that∫∞

0
K(τ)ϕ(−τ)dτ converges.
The resolvent kernel R : R+ → Rk×k of K is, by definition, the solution of the

two equations

R(t) = K(t) +

∫ t

0

K(t− τ)R(τ)dτ, (2.4)

R(t) = K(t) +

∫ t

0

R(t− τ)K(τ)dτ, (2.5)

or,
R = K +K ∗R = K +R ∗K, (2.6)

where we have used the notation

(F ∗G) (t) =

∫ t

0

F (t− τ)G(τ)dτ. (2.7)

It is an easy exercise in algebra to show that whenever (A,+, ∗) is a ring and K ∈ A
is given, then the resolvent kernel is unique whenever it exists. For details, see
(Gripenberg et al. 1990, Section 9.3).
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The importance of the resolvent kernel stems from the fact that the unique solu-
tion of (2.3) is given by

x(t) =

∫ 0

−∞
K(t− τ)ϕ(τ)dτ +

∫ t

0

R(t− s)
∫ 0

−∞
K(s− τ)ϕ(τ)dτds. (2.8)

Roughly speaking, the renewal equation (2.3) is ODE-reducible if its solution x
can be fully recovered from the solution of a system of linear ordinary differential
equations. The purpose of this section is to make this statement mathematically
precise and to derive sufficient and necessary conditions for the equation (2.3) to be
ODE-reducible.

Because the resolvent kernel R contains all the information to construct the so-
lution x, it is natural to formulate the conditions of finite dimensional state repre-
sentation in terms of the resolvent kernel.

Definition 2.1. The renewal equation (2.3) has a state representation of finite di-
mension n ∈ N (or, for short, is ODE-reducible) if there exist matrices U, V ∈ Rn×k

and A ∈ Rn×n such that K has a resolvent kernel R given by

R(t) = UTZ(t), (2.9)

where Z : R+ → Rn×k is the solution of the initial value problem

d

dt
Z(t) = AZ(t), (2.10)

Z(0) = V. (2.11)

As a normalisation we always take the columns of V to be unit vectors with
respect to the l1-norm. In the special case k = n this means that, possibly after a
change of bases, V is the identity matrix.

To motivate the formulation of our first result, we observe that, by defining
H = A− V UT one can write (2.10) & (2.11) equivalently as

d

dt
Z(t) = V UTZ(t) +HZ(t), (2.12)

Z(0) = V. (2.13)

Theorem 2.2. The renewal equation (2.3) is ODE-reducible if and only if for some
positive integer n there are matrices U, V ∈ Rn×k and H ∈ Rn×n such that

K(t) = UT etHV. (2.14)
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Proof. To prove sufficiency, assume that K(t) = UT etHV . Then, by (2.4),

R(t) = UT etHV +

∫ t

0

UT e(t−s)HV R(s)ds

= UT

(
etHV +

∫ t

0

e(t−s)HV R(s)ds

)
(2.15)

= UTZ(t), (2.16)

where

Z(t) = etHV +

∫ t

0

e(t−s)HV R(s)ds. (2.17)

Direct verification shows that Z defined by (2.17) satisfies (2.12) & (2.13) and thus
sufficiency is proved.

Assume now that the resolvent kernel R of K is given by R(t) = UTZ(t), where
Z is the solution of (2.12) & (2.13). From the definition (2.6) of the resolvent kernel
we have

UTZ(t) = K(t) +

∫ t

0

K(t− τ)UTZ(τ)dτ (2.18)

and by applying the variation of constants formula to (2.12) & (2.13) we have

UTZ(t) = UT etHV +

∫ t

0

UT e(t−τ)HV UTZ(τ)dτ. (2.19)

Subtracting (2.19) from (2.18) we get that Q(t) = K(t)− UT etHV satisfies

Q(t) +

∫ t

0

Q(t− s)R(s)ds = 0,

which has a unique solution Q(t) = 0, t > 0. This shows that K(t) = UT etHV and
completes the necessity part of the proof.

When the renewal equation (2.3) is ODE-reducible one recovers the solution x
from the formula (2.8) with K and R given by (2.14) and (2.9), respectively. But
there is a quicker and perhaps more instructive way, which we now present.

Let the kernel K be given by (2.14). From (2.1) we then get

x(t) =

∫ ∞
0

UT esHV x(t− s)ds = UT z(t), (2.20)
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where

z(t) =

∫ ∞
0

esHV x(t− s)ds =

∫ t

−∞
e(t−s)HV x(s)ds. (2.21)

Differentiating (2.21) and taking (2.20) into account, one obtains

d

dt
z(t) =

(
V UT +H

)
z(t) (2.22)

and from (2.21) and (2.2) we infer that

z(0) =

∫ ∞
0

esHV ϕ(−s)ds. (2.23)

We conclude that whenever the renewal equation (2.3) is ODE-reducible its solu-
tion is obtained by first solving the ordinary differential equation (2.22) with initial
condition (2.23) and then defining

x(t) = UT z(t) (2.24)

for t > 0.

3 Construction of the matrices H, U and V from

a given kernel

It is well-known in the theory of ordinary differential equations that the entries of
the matrix exponential etH contain scalar exponentials etλ` multiplied by powers of
t. Thus the kernel K = UT etHV giving rise to an ODE-reducible renewal equation
is necessarily of the form

K(t) =
r∑
`=1

p`−1∑
j=0

β`j
tj

j!
eλ`t, (3.1)

where the coefficients β`j are k × k matrices.
In this section we consider the converse problem: Given a kernel of the form (3.1),

construct the matrices H, U and V such that

UT etHV = K(t). (3.2)
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3.1 The case of a scalar kernel

We first consider the case of a scalar kernel, in which the coefficients β`j are scalars
and U and V are column vectors of the same length. The general case then follows
easily.

Taking the Laplace transform of (3.2) with K given by (3.1) one obtains

UT (λI −H)−1 V =
r∑
`=1

p`−1∑
j=0

β`j(λ− λ`)−(j+1). (3.3)

Let P` be the identity matrix of dimension p` × p` and let N` be the shift operator
(ones on the first subdiagonal, zeros everywhere else) of dimension p` × p`. Let P
and N be the (p1 + · · ·+ pr)× (p1 + · · ·+ pr) dimensional block matrices

P =


P1 0 · · · 0
0 P2 0
...

. . .
...

0 · · · 0 Pr

 , N =


N1 0 · · · 0
0 N2 0
...

. . .
...

0 · · · 0 Nr

 . (3.4)

Abusing symbols, we also use P` and N` to denote the (p1 + · · ·+pr)× (p1 + · · ·+pr)
dimensional matrices obtained by putting Pj = 0 and Nj = 0 for j 6= ` in (3.4). We
then have

I = P1 + P2 + · · ·+ Pr, (3.5)

N = N1 +N2 + · · ·+Nr. (3.6)

Define

H =
n∑
`=1

(λ`P` +N`) . (3.7)

Note that H is almost the Jordan normal form of a (p1 + · · ·+pr)× (p1 + · · ·+pr)
dimensional matrix with n distinct eigenvalues λ` of multiplicity p`. The standard
Jordan form has ones on the diagonal immediately above the main diagonal, whereas
H has ones on the first subdiagonal. The reason for this unorthodox choice is that
in applications to population dynamics H can be interpreted as the state-transition
matrix for the process of survival and i-state development (see Section 5). Often an
individual progresses through the different states in a particular order during its life
and it is natural to number the states in the same order. This leads to a matrix with
non-zero elements only on the main diagonal and first subdiagonal and it is natural
to keep this structure for the Jordan normal form, too.
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The resolvent of H is given by

(λI −H)−1 =
r∑
`=1

(
(λ− λ`)−1P` +

p`−1∑
j=0

(λ− λ`)−(j+1)N j
`

)
. (3.8)

Inserting (3.8) into (3.3) we find that we have to determine U and V such that the
following equations are satisfied.

UTP`V = β`0, ` = 1, 2, . . . , r, (3.9)

UTN j
` V = β`j, ` = 1, 2, . . . , r, j = 0, 1, . . . , p` − 1. (3.10)

We now fix the (p1 + · · · + pr) dimensional vector V with components vk by
defining

v1 = vp1+1 = vp1+p2+1 = · · · = vp1+p2+···+pr−1+1 = 1 (3.11)

and
vk = 0 (3.12)

for all other indices k. With this choice of V we can solve the system (3.9)–(3.10)
for the components of U obtaining

u1 = β10

u2 = β11
...

up1 = β1,p1−1

up1+1 = β20

up1+2 = β21
...

up1+p2 = β2,p2−1

up1+···+pr−1+1 = βr0
up1+···+pr−1+2 = βr1

...
up1+···+pr−1+pn = βr,pr−1

(3.13)

We have thus solved the problem.
The biological interpretation is as follows: There are p1 + · · ·+ pr discrete states

(compartments). The matrix H is the transition matrix describing movement be-
tween these states. Newborns enter r of the states (states numbered 1, p1 + 1, p1 +
p2 +1, . . . , p1 +p2 + · · ·+pr−1 +1). For ` = 1, 2, . . . , r, j = 0, 1, . . . , p`−1 the number
β`,p`−j−1 is the rate at which individuals in state p1+· · ·+p`−j give birth to offspring
(distributed uniformly over the states 1, p1 +1, p1 +p2 +1, . . . , p1 +p2 + · · ·+pr−1 +1).

The solution presented above is of course not unique. The choice of V made in
(3.11)–(3.12) was made for mathematical convenience. A different choice of V is
often more appropriate from the point of view of biological interpretation. Let Ṽ be
any non-zero (p1 + · · · + pr) dimensional vector and choose an invertible matrix Q
such that

QṼ = V,
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where V is the vector chosen in (3.11)–(3.12). Then

UT etHV = UTQQ−1etHQQ−1V = UTQetQ
−1HQQ−1V = UTQetQ

−1HQṼ . (3.14)

So a different choice of V is compensated by a similarity transformation of H.
Because the given kernel K is a scalar valued function, there is essentially only

one state-at-birth represented by a fixed linear combination of states as determined
by Ṽ . The choice Ṽ = (1 0 0 . . . 0)T is therefore rather natural.

Example: Let
K(t) = β10e

λ1t + (β20 + β21t) e
λ2t.

According to the solution above, we have

H =

 λ1 0 0
0 λ2 0
0 1 λ2

 , V =

 1
1
0

 , U =

 β10

β20

β21


The ODE

dx

dt
= Hx

is easy to solve and yields

etH =

 eλ1t 0 0
0 eλ2t 0
0 teλ2t eλ2t


Direct verification shows that

UT etHV = K(t)

as it should.
Finally we consider the case Ṽ = (1 0 0)T . The invertible matrix

Q =

 1 0 0
1 1 0
0 0 1


maps Ṽ to V . One has

Q−1HQ =

 λ1 0 0
−λ1 + λ2 λ2 0

1 1 λ2

 , UTQ = (β10 + β20 β20 β21).

The biological interpretation going with this finite state representation is that every-
one is born in state 1, individuals are recruited to state 2 from state 1 and to state
3 from state 2 and also directly from state 1. The vector UTQ gives the fecundity
rates in the different states.
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3.2 The general case

In the general case the kernel K(t) is a k × k matrix of the form (3.1), where the
coefficients β`j are k × k matrices. The construction of Section 3.1 works mutatis
mutandis. The main change is that the non-zero components vk in (3.11) are no
longer the scalar 1, but the k × k identity matrix, while the zero components in
(3.12) are the k×k zero matrix. The matrix V is built up by these blocks of identity
and zero matrices and has dimension k × k(p1 + · · ·+ pr).

4 Linear delay differential equations

In this section we consider the linear delay differential equation

ẏ(t) =

∫ ∞
0

dL(s)y(t− s), t > 0 (4.1)

with initial condition
y(t) = ψ(t), t ≤ 0. (4.2)

As in (Diekmann and Gyllenberg 2012; see the references therein for earlier work)
we work with continuous functions ψ with values in Rk and require θ 7→ e%θψ(θ) to
be continuous and to vanish at −∞ for some % > 0. The kernel L is a k × k
matrix-valued function defined on R+, the entries of which are normalized functions
of bounded variation such that

e%tV (t)

is bounded (here V is the total variation function, see (Diekmann et al. 1995)).
Normalization is done such that L(0) = 0 and L is continuous from the right on the
open interval (0,∞).

Exactly as in the finite delay case treated by Diekmann et al. (1995; Section I.2)
one shows that the solution of (4.1) & (4.2) coincides for t ≥ 0 with the solution of
the linear renewal equation

y(t) =

∫ t

0

L(s)y(t− s)ds+ f(t), (4.3)

where

f(t) = ψ(0) +

∫ ∞
0

(L(t+ σ)− L(σ))ψ(−σ)dσ. (4.4)

Therefore, as in the case of (2.1) & (2.2), all the information of the solution of (4.1)
& (4.2) is contained in the resolvent kernel R of L and we define ODE-reducibility of
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(4.1) & (4.2) by Definition 2.1 (with L instead of K). As an immediate consequence
we get the following theorem:

Theorem 4.1. The problem (4.1) & (4.2) is ODE-reducible if and only if there are
matrices U, V ∈ Rn×k and H ∈ Rn×n such that

L(t) =

{
0, t = 0,

UT etHV, t > 0.
(4.5)

As in the preceding section, we close by showing how one recovers the solution y
of an ODE-reducible delay differential equation (4.1). To this end, assume that L is
given by (4.5). Equation (4.1) is then equivalent to

d

dt
y(t) = UTV y(t) + UTHz(t), (4.6)

where

z(t) =

∫ ∞
0

esHV y(t− s)ds =

∫ t

−∞
e(t−s)HV y(s)ds. (4.7)

Differentiating (4.7) one obtains

d

dt
z(t) = V y(t) +Hz(t). (4.8)

The solution y of an ODE-reducible delay differential equation (4.1) is thus obtained
by solving the system (4.6) & (4.8) with initial condition

y(0) = ψ(0), (4.9)

z(0) =

∫ ∞
0

esHψ(−s)ds. (4.10)

However, we can go one step further to arrive at an ODE system in z only,
which is almost identical to the corresponding system (2.22) for the case of a renewal
equation.

It follows from (4.6) and (4.8) that

d

dt
y(t) = UT d

dt
z(t)

and hence that

y(t)− UT z(t) = y(0)− UT z(0) = ψ(0)− UT

∫ ∞
0

esHV ψ(−s)ds
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for all t ≥ 0. We can therefore rewrite (4.8) as

d

dt
z(t) = V y(t) +Hz(t) =

(
V UT +H

)
z(t) + V c,

where c is the constant vector

c = ψ(0)− UT

∫ ∞
0

esHV ψ(−s)ds. (4.11)

The solution y of a linear ODE-reducible delay differential equation (4.1) can thus
alternatively be obtained by solving the initial value problem

d

dt
z(t) =

(
V UT +H

)
z(t) + V c, (4.12)

z(0) =

∫ ∞
0

esHV ψ(−s)ds (4.13)

and then defining
y(t) = UT z(t) + c. (4.14)

Note that the only difference between the initial value problem (4.12) & (4.13) with
output (4.14) and the corresponding system (2.22) – (2.24) for the renewal equation
is manifested in the constant vector c. When c = 0 the two systems coincide.

5 Markov chain population models with finitely

many individual states

In the previous sections we gave necessary and sufficient conditions for when solving
a renewal equation or a delay differential equation can be reduced to solving a system
of ordinary differential equations, but we neither fully interpreted the resulting ODE
system biologically nor considered whether it was the most economical reduction.
Structured populations with a finite number n of individual states (i-states for short)
can be modelled directly as a system of ODEs

d

dt
N(t) = (B +H)N(t), (5.1)

where the unknown N takes on values in Rn. The jth component of N(t) represents
the density of individuals with i-state j. The n× n matrix H generates the process
of survival and i-state development: for i 6= j, Hij is the rate at which an individual

16



with i-state j jumps to i-state i, while −Hjj is the rate at which an individual with
i-state j either changes state or dies. The n × n matrix B represents reproduction.
The component Bij is the rate at which an individual with i-state j gives birth to
an individual with i-state i.

In this section we will relate the system (5.1) to a linear ODE-reducible renewal
equation and characterize the next generation matrix, the basic reproduction number
and the Malthusian parameter.

In many (perhaps most) population models the possible states at birth form a
proper subset of all i-states. This means that the dimension k of the range R(B)
of B is usually less than n and in any case k ≤ n. Moreover, it may happen that
individuals produce offspring of different i-states, but in a fixed proportion. When
this is the case the dimension of R(B) will be further reduced (see also (Diekmann
et al. 2010)). To take advantage of this, we let V ∈ Rn×k be a matrix, the columns
of which are unit vectors (with respect to the l1-norm) that form a basis for the
range of B. Because V is an injection, there is a unique matrix U ∈ Rn×k such that
B = V UT . The system (5.1) is now of the same form as (2.22):

d

dt
N(t) = (V UT +H)N(t). (5.2)

Define the birth rate vector b(t) ∈ Rk at time t by

b(t) = UTN(t). (5.3)

Equation (5.2) can now be written as

d

dt
N(t) = V b(t) +HN(t). (5.4)

The definition of H implies that all its eigenvalues have negative real part and so

lim
t→−∞

e−tH = 0. (5.5)

We make the biologically obvious assumption that the population vector N(t) re-
mains bounded as t → −∞ after which (5.5) and an application of the variation of
constants formula yields

N(t) =

∫ t

−∞
e(t−s)HV b(s)ds. (5.6)

Substituting (5.6) into (5.3) one finds that b satisfies the renewal equation

b(t) =

∫ t

−∞
UT e(t−s)HV b(s)ds, (5.7)
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which is simply equation (2.1) with the ODE-reducible kernel (2.14).
Recall from the introduction that the entry Kij(a) of the kernel in the renewal

equation (1.1) is the rate at which an individual of age a who was born with i-state
j produces offspring of i-state i. The life time contribution of a set of individuals
with i-state distribution at birth given by the vector b ∈ Rk to the next generation
is therefore

Λb :=

∫ ∞
0

K(a) b da. (5.8)

The matrix

Λ =

∫ ∞
0

K(a)da (5.9)

is called the next generation matrix. The basic reproduction number R0 is, by defi-
nition, the spectral radius of Λ. In population problems Λ is a positive matrix and
the spectral radius is an eigenvalue.

The Malthusian parameter r is the exponential growth rate of the population
(and hence of the birth rate b). It is the real λ = r such that the matrix∫ ∞

0

e−λaK(a)da (5.10)

has dominant eigenvalue 1.
Let us now return to the equation (5.1). Because of the biological interpretation

we assume that the transition matrix H has positive off-diagonal elements (thus
etH is a positive matrix for all t) and that B is positive. Because H involves the
death rates (which by assumption are not all equal to zero) it is plain that all the
eigenvalues of H have negative real part. Therefore H is invertible. Again from
the interpretation, eaHφ is the (defective) probability distribution over the different
i-states of a cohort of age a who had i-state distribution φ at birth, that is, at a = 0.
So the next generation matrix is

Λ =

∫ ∞
0

BeaHda = −BH−1.

To find R0 we have to solve the eigenvalue problem

−BH−1ξ = λξ

for λ > 0 and ξ ∈ Rn
+. Obviously ξ has to belong to the range of B and by

construction of V there is a unique η ∈ Rk such that

ξ = V η.
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Remembering that B = V UT , we get the eigenvalue problem

−V UTH−1V η = λV η,

which, because V is injective, reduces to

−UTH−1V η = λη. (5.11)

On the other hand, if the renewal equation is ODE-reducible, then K(t) = UT etHV
and the next generation matrix is

Λ =

∫ ∞
0

UT etHV dt = −UTH−1V. (5.12)

We conclude that the problem (5.11) of finding R0 for the model (5.1) is the same
as finding R0 for the ODE-reducible renewal equation model.

The Malthusian parameter of the model (5.1) is the positive eigenvalue of the
matrix B +H. So we consider

(B +H)ξ = λξ.

This can be written as
V UT ξ = (λI −H)ξ.

Put
η = UT ξ.

Then, if λ is not an eigenvalue of H,

ξ = (λI −H)−1 V η

and hence
UT (λI −H)−1V η = η,

which says that UT (λI−H)−1V has eigenvalue 1. Notice that for an ODE-reducible
kernel K we have∫ ∞

0

e−λtK(t)dt =

∫ ∞
0

e−λtUT etHV dt = UT (λI −H)−1V,

which shows that finding the Malthusian parameter for (5.1) and for an ODE-
reducible renewal equation amount to the same thing.
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6 Minimality of the finite dimensional state space

representation

When we in the last section built a structured population model directly in terms of
ODEs, positivity of the resulting dynamical system was automatic. We now return
to our general framework in which we do not pay attention to positivity.

As already noticed in Section 3, the matrices U, V and H in the representation
K(t) = UT etHV are not unique as a similarity transformation of H together with
corresponding transformations of UT and V does not change the kernel K, see (3.14).
Neither is the dimension n of the reduced state space unique. This is obvious because
adding an arbitrary number of zero rows and columns to H and the same number of
arbitrary rows to U and V will not have any effect on K. It is of course desirable to
choose the finite dimensional state space as economically as possible. So we want to
eliminate extra dimensions that do not contribute to the kernel K. In this section we
consider the problem of minimality in the case of a scalar renewal equation (k = 1)
which in a population dynamical context corresponds to the assumption of only one
individual state at birth. The general case can be treated similarly.

As explained in Section 5 the vector V corresponds to the state at birth and UT

gives the rates at which individuals in different states produce offspring. If a state
cannot be reached from the state at birth, then this state is, from the point of view
of renewal, superfluous. Our first requirement of minimality is thus:

(M1) The set
{
etHV : t ≥ 0

}
spans the whole space Rn of column vectors.

Assume now that the set
{
UT etH : t ≥ 0

}
does not span the whole space Rn (of

row vectors). This would mean that there are states such that individuals in these
states will never reproduce, neither at the current time nor in the future (when they
might have moved to another state). Such states do not affect the renewal process
and should be removed. We are thus led to our second condition of minimality, which
is dual to the first one.

(M2) The set
{
UT etH : t ≥ 0

}
spans the whole space Rn of row vectors.

Definition 6.1. A finite dimensional state space representation defined by U, V and
H is said to be minimal if conditions (M1) and (M2) hold.

The terminology of Definition 6.1 is justified by the following theorem.

Theorem 6.2. Let H and H̃ be n by n and ñ by ñ matrices, respectively. If

K(t) = UT etHV = ŨT etH̃ Ṽ
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for all t ≥ 0 and if the finite dimensional state space representation defined by U, V
and H is minimal, then ñ ≥ n.

The basic idea of the proof is the following: The generalized eigenspaces corre-
sponding to an eigenvalue λ of H are the nullspaces of (H−λI)k and hence they are
naturally ordered by the power k. One can eliminate the span of a generalized eigen-
vector corresponding to the highest rank without affecting subspaces correspond-
ing to lower powers. But if one eliminates the span of a generalized eigenvector
corresponding to some lower rank, automatically additional directions in subspaces
corresponding to higher values of k are eliminated too. Therefore minimality is char-
acterized by the requirement that the generalized eigenvectors of highest rank cannot
be missed.

Instead of giving a formal proof of Theorem 6.2 we verify it in the case where H
is a 3× 3 matrix with only one eigenvalue of algebraic multiplicity 3. In the general
case each Jordan block can be treated separately in te same way. Recall from Section
3 that we use a slightly unorthodox representation of Jordan blocks.

Let H have the following Jordan normal form:

H =

 λ1 0 0
1 λ1 0
0 1 λ1

 .

Then

etH =

 eλ1t 0 0
teλ1t eλ1t 0

1
2
t2eλ1t teλ1t eλ1t

 . (6.1)

From (6.1) it is obvious that condition (M1) holds if and only if v1 6= 0. The general
condition is that the inner product of V and all (true) eigenvectors must not vanish.

Next we investigate the implications of condition (M2). By (6.1) we have

UT etH =

 u1e
λ1t + u2te

λ1t + u3
1
2
t2eλ1t

u2e
λ1t + u3te

λ1t

u3e
λ1t

T

, (6.2)

from which it is immediate that condition (M2) holds if and only if u3 6= 0.
We finally examine the way the conditions (M1) and (M2) influence the kernel

K. From (6.2) we get

K(t) = UT etHV = (u1v1 + u2v2 + u3v3)eλ1t + (u2v1 + u3v2)teλ1t + u3v1
1

2
t2eλ1t.

21



It is now clear that if either (M1) or (M2) (or both) are violated, the dimension of
the system can be reduced. If u3 = 0 or v1 = 0, then the direction of the generalized
eigenvector of rank 3 corresponding to the eigenvalue λ1 can be removed without
affecting the kernel K. If u2v1 + u3v2 = 0, but u3v1 6= 0 then one cannot remove the
direction of the generalized eigenvector of rank 2.

It is also clear that if conditions (M1) and (M2) hold, then any other represen-
tation producing the same kernel must have at least dimension 3, so the conditions
indeed define minimality.

7 Finite dimensional state representation of re-

newal equations with input

In this section we consider linear renewal equations with an Rm valued function E
of time as input.

Assume that to every given function E : R → Rm there corresponds a two
parameter matrix valued kernel KE(t, s). The corresponding linear renewal equation
with input is

x(t) =

∫ t

−∞
KE(t, s)x(s)ds, t > 0 (7.1)

with initial condition
x(t) = ϕ(t), t ≤ 0, (7.2)

or, equivalently

x(t) =

∫ 0

−∞
KE(t, τ)ϕ(τ)dτ +

∫ t

0

KE(t, τ)x(τ)dτ. (7.3)

The resolvent kernel RE is now a two parameter kernel satisfying

RE(t, s) = KE(t, s) +

∫ t

s

KE(t, τ)RE(τ, s)dτ = KE(t, s) +

∫ t

s

RE(t, τ)KE(τ, s)dτ.

(7.4)
Equation (7.4) is of the form (2.6) with the product ∗ in the ring of two parameter
families of matrices defined by

(F ∗G) (t, s) =

∫ t

s

F (t, τ)G(τ, s)dτ. (7.5)
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Definition 7.1. The renewal equation (7.3) with input E has a state representation
of finite dimension n ∈ N ( is ODE-reducible) if there are functions U : Rm → Rn×k,
V : Rm → Rn×k and H : Rm → Rn×n, such that

RE(t, s) = U(E(t))TΨE(t, s)V (E(s)), (7.6)

where ΨE(t, s) is the fundamental matrix solution for the linear non-autonomous
system of ordinary differential equations

d

dt
Z(t) =

(
V (E(t))U(E(t))T +H(E(t))

)
Z(t), (7.7)

Note that in Definition 7.1 we assume that n is independent of E, but allow the
normalised columns of V to depend on E. In the setting of Section 5 this corresponds
to the range of B(E) having fixed dimension, but the basis for this range being E-
dependent. In the examples that we know of, one can actually choose one and the
same V for all E. So we are inclined to conclude that, as a rule, V does not depend
on E.

Theorem 7.2. The renewal equation (7.3) with input E is ODE-reducible if and
only if there are functions U : Rm → Rn×k, V : Rm → Rn×k and H : Rm → Rn×n,
such that

KE(t, s) = U(E(t))TΦE(t, s)V (E(s)), (7.8)

where ΦE(t, s) is the fundamental matrix solution of the linear non-autonomous sys-
tem

d

dt
Z(t) = H(E(t))Z(t). (7.9)

Proof. Let KE(t, s) have the form (7.8) for some matrices U(E(t)), V (E(t)) and
H(E(t)) and let ΨE(t, s) be the fundamental matrix solution corresponding to the
system (7.7). By the variation of constants formula

ΨE(t, s)V (E(s)) = ΦE(t, s)V (E(s))+

∫ t

s

ΦE(t, σ)V (E(σ))U(E(σ))TΨE(σ, s)V (E(s))dσ.

(7.10)
Multiplying (7.10) from the left by U(E(t))T one obtains

U(E(t))TΨE(t, s)V (E(s)) = (7.11)

U(E(t))TΦE(t, s)V (E(s)) +

∫ t

s

U(E(t))TΦE(t, σ)V (E(σ))U(E(σ))TΨE(σ, s)V (E(s))dσ,
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or, equivalently,

U(E(t))TΨE(t, s)V (E(s)) = (7.12)

KE(t, s) +

∫ t

s

KE(t, σ)U(E(σ))TΨE(σ, s)V (E(s))dσ,

Thus U(E(t))TΨE(t, s)V (E(s)) satisfies the first equation in (7.4). It follows by the
uniqueness of the resolvent that RE(t, s) is given by (7.6) and hence that (7.3) is
ODE-reducible.

Conversely, assume that the resolvent RE(t, s) of KE(t, s) has the form (7.6) and
define

QE(t, s) = KE(t, s)− U(E(t))TΦE(t, s)V (E(s))

Subtracting (7.11) from the first equation in (7.4) one obtains

0 = QE(t, s) +

∫ t

s

QE(t, σ)RE(σ, s)ds,

which has the unique solutionQE = 0. This shows thatKE(t, s) = U(E(t))TΦE(t, s)V (E(s))
and completes the proof.

It is of practical importance to be able to determine, directly from a given kernel,
whether the system is ODE reducible or not. The result by Vogel (1965) expressed
in (1.24) yields an algorithm for checking this. Given a kernel K(t, s), differentiate
it with respect to time t and check whether K and ∂K/∂t are linearly dependent,
that is, whether there exist functions a0 and a1 such that

a1(t)
∂K(t, s)

∂t
+ a0(t)K(t, s) = 0. (7.13)

If they are, we are done and conclude that the system is ODE-reducible. If not, we
differentiate K once more and check, whether K, ∂K/∂t and ∂2K/∂t2 are linearly
dependent, and so on. If this process stops after a finite number of steps the system
is ODE-reducible, otherwise not.

Remark 7.3. In Definition 7.1 we allowed the matrix V to depend on the value of the
input. As a matter of fact, if the renewal equation (7.1) or, equivalently (7.3), is ODE-
reducible in the sense of Definition 7.1., then its solution can always be recovered
from the solution of an other renewal equation, possibly of higher dimension, that is
ODE-reducible with V = I.
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To see this, assume that (7.1) is ODE-reducible. Then, according to Theorem
7.2.,

x(t) =

∫ t

−∞
U(E(t))TΦE(t, s)V (E(s))x(s)ds. (7.14)

Define
x̃(t) = V (E(t))x(t) (7.15)

and multiply Equation (7.14) from the left by V (E(t)) to obtain

x̃(t) =

∫ t

−∞
V (E(t))U(E(t))TΦE(t, s)x̃(s)ds, (7.16)

Applying Theorem 7.2 once again, we see that Equation (7.16) is ODE-reducible
with U(E)V (E)T playing the role of U(E) and the identity matrix that of V (E).
Once x̃ has been solved, we recover the solution x of the original problem from

x(t) =

∫ t

−∞
U(E(t))TΦE(t, s)x̃(s)ds. (7.17)

8 Closing the feedback loop

In this section we consider the nonlinear problem (1.1) – (1.3), or

b(t) =

∫ t

−∞
K

(1)
E (t, s)b(s)ds, t > 0, (8.1)

X(t) =

∫ t

−∞
K

(2)
E (t, s)b(s)ds t > 0, (8.2)

d

dt
Y (t) = G

(
Y (t),

∫ t

−∞
K

(3)
E (t, s)b(s)ds

)
, t > 0, (8.3)

E(t) = (X(t), Y (t))T . (8.4)

The unknowns b, X and Y take on values in Rk, Rm1 and Rm2 , respectively. Thus
E takes on values in Rm with m = m1 + m2. Therefore we have to assume that
K

(1)
E (t, s) ∈ Rk×k, K

(2)
E (t, s) ∈ Rk×m1 , K

(3)
E (t, s) ∈ Rk×m3 and that the nonlinear

function G maps Rm2 × Rm3 into Rm2 for some integer m3. Note that the kernels
K

(i)
E (t, s) depend on the history of E. Therefore we need to prescribe the initial

history of the unknowns for t ≤ 0:

b(t) = ϕ1(t), (8.5)

X(t) = ϕ2(t), (8.6)

Y (t) = ϕ3(t). (8.7)
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As explained by Diekmann and Gyllenberg (2012), it is natural, both from a mathe-
matical and from a biological point of view, to choose a weighted L1-space of functions
on R− as state space for b, whereas Y should be taken continuous. The undifferenti-
ated equation (1.2) or (8.2) is often obtained by a quasi-steady-state approximation
in an equation of the differentiated type (1.3) or (8.3). Ideally the state space should
not be affected by this approximation and so X should be continuous. But expe-
rience shows that jump discontinuities may develop, so we should be prepared to
enlarge, if necessary, the state space to the space of bounded measurable functions
(and giving up on strong continuity of the semigroup of solution operators). Yet the
initial condition (8.6) specifies the history of X pointwise exactly as (8.7) specifies
the history of Y , whereas the initial condition (8.5) for b cares only about integrals.

The distinctive feature of equation (8.1) is that it is linear in b and that the
nonlinearity enters only through feedback via the environmental condition E. In
particular, if the environmental condition is a given function of time, then equation
(8.1) for b is a linear renewal equation with input of the type considered in Section 7.

Theorem 7.2 gives necessary and sufficient conditions on the kernel K
(1)
E (t, s) for this

renewal equation to be ODE-reducible. In this section we refrain from seeking neces-
sary and sufficient conditions for the full system (8.1) – (8.4) to be ODE-reducible or
even giving an exact definition of ODE-reducibility. Instead we notice that because
the action on b has the same form in all three equations, it is plausible that if the
kernels K

(i)
E (t, s), i = 1, 2, 3 have the same form as the kernel KE(t, s) in Theorem

7.2, a reduction to a finite dimensional system should be possible. In this section we
show that this is indeed the case.

We assume that for i = 1, 2, 3, there are integers ni and functions Ui : Rm →
Rni×k, Vi : Rm → Rni×k and Hi : Rm → Rni×ni , such that

K
(i)
E (t, s) = Ui(E(t))TΦ

(i)
E (t, s)Vi(E(s)), (8.8)

where Φ
(i)
E (t, s) is the fundamental matrix solution of the linear non-autonomous

system
d

dt
Z(t) = Hi(E(t))Z(t). (8.9)

Substituting (8.8) into (8.1) – (8.3) and defining

zi(t) =

∫ t

−∞
Φ

(i)
E (t, s)Vi(E(s))b(s)ds, i = 1, 2, 3, (8.10)
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one obtains

d

dt
zi(t) = Vi(X(t), Y (t))U1(X(t), Y (t))T z1(t) +Hi(X(t), Y (t))zi(t), (8.11)

i = 1, 2, 3,

X(t) = U2(X(t), Y (t))T z2(t), (8.12)

d

dt
Y (t) = G

(
Y (t), U3(X(t), Y (t))T z3(t)

)
. (8.13)

The system (8.11) – (8.13) is a semi-explicit system of differential-algebraic equa-
tions (Kunkel and Mehrmann 2006). In addition to the n1 + n2 + n3 + m2 scalar
differential equations given by (8.11) & (8.13) there are m1 undifferentiated or “al-
gebraic” equations given by (8.12). If X can be solved explicitly in terms of z2 and
Y from equation (8.12), then this solution can be substituted into (8.11) and (8.13)
and the system can be reduced to a system of n1 + n2 + n3 + m2 scalar differential
equations.

If the matrix-valued function U2 is continuously differentiable, then

dX

dt
=

(
∂

∂X
U2(X, Y )T

dX

dt

)
z2 +

(
∂

∂Y
U2(X, Y )T

dY

dt

)
z2 + U2(X, Y )

dz2

dt
. (8.14)

If, in addition, the map Λ(X, Y, z2) : ξ 7→ ξ −
(
∂
∂X
U2(X, Y )T ξ

)
z2 is invertible, then

(8.14) can be solved for dX/dt in terms of X, Y, z2, dz2/dt, dY/dt and the system
(8.11) – (8.13) can be transformed into a system of n1 +n2 +n3 +m scalar differential
equations.

As in the linear cases we can recover the solution (b,X, Y ) from the solution of the
finite dimensional system as we now proceed to show. It follows from the definition
(8.10) and the initial conditions (8.5) – (8.7) that

zi(0) =

∫ 0

−∞
Φ

(i)
(ϕ2,ϕ3)(0, s)Vi(ϕ2(s), ϕ3(s))ϕ1(s)ds (8.15)

and
Y (0) = ϕ3(0). (8.16)

Once the system (8.11) – (8.13) has been solved with the initial conditions (8.15)
and (8.16), one obtains b from the formula

b(t) = U1(X(t), Y (t))T z1(t), t > 0. (8.17)

We collect our findings into a theorem
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Theorem 8.1. Assume that for i = 1, 2, 3, there are integers ni and functions Ui :
Rm → Rni×k, Vi : Rm → Rni×k and Hi : Rm → Rni×ni, such that

K
(i)
E (t, s) = Ui(E(t))TΦ

(i)
E (t, s)Vi(E(s)),

where Φ
(i)
E (t, s) is the fundamental matrix solution of the linear non-autonomous

system
d

dt
Z(t) = Hi(E(t))Z(t).

Then the nonlinear system (8.1) – (8.7) is equivalent with the finite dimensional
differential-algebraic system (8.11) – (8.13), (8.15), (8.16) in the sense that if (b,X, Y )
satisfies the former system, then (z1, z2, z3, X, Y ) satisfies the latter system and vice
versa, where the correspondence between b and z1, z2, z3 is given by (8.10) in one
direction and by (8.17) in the other.

9 Examples of nonlinear models with finite di-

mensional state representation

9.1 The Gurtin-MacCamy model

We illustrate the reduction to a finite dimensional system by applying it to the
Gurtin-MacCamy model (1.5) – (1.8) mentioned in the introduction. The delay
formulation (8.1) & (8.2) of the Gurtin-MacCamy model is

b(t) =

∫ t

−∞
β(t− s,X(t))e−

∫ t
s µ(τ−s,X(τ))dτb(s)ds, (9.1)

X(t) =

∫ t

−∞
e−

∫ t
s µ(τ−s,X(τ))dτb(s)ds, (9.2)

which with the choice (1.9) and (1.10) for µ and β, respectively, becomes

b(t) = β0(X(t))

∫ t

−∞
e−

∫ t
s (α+µ0(X(τ)))dταb(s)ds, (9.3)

X(t) =

∫ t

−∞
e−

∫ t
s µ0(X(τ))dτb(s)ds. (9.4)

From this we infer that

U1(X) = β0(X), V1 = α, H1(X) = −(α + µ0(X)),
U2 = 1, V2 = 1, H2(X) = −µ0(X).

(9.5)
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According to (8.10), z1 and z2 should be defined by

z1(t) =

∫ t

−∞
e−

∫ t
s (α+µ0(X(τ)))dταb(s)ds, (9.6)

z2(t) =

∫ t

−∞
e−

∫ t
s µ0(X(τ))dτb(s)ds (9.7)

and the equations (8.11) become

dz1

dt
= (αβ0(z2)− α− µ0(z2)) z1, (9.8)

dz2

dt
= β0(z2)z1 − µ0(z2)z2, (9.9)

which are precisely the equations (1.11) & (1.12). Equation (8.12) simply reduces to

X(t) = z2(t).

9.2 Age-structured growth in a chemostat

Consider a chemostat with dilution rate D in which an age-structured consumer with
birth rate b feeds on an unstructured substrate S. We neglect mortality other than
that caused by washout from the chemostat. The model for such a system is

b(t) =

∫ t

−∞
β(t− s, St)e−D(t−s)b(s)ds, (9.10)

d

dt
S(t) = D

(
S0 − S(t)

)
−
∫ t

−∞
γ(t− s, St)e−D(t−s)b(s)ds. (9.11)

Here β(a, St) and γ(a, St) are the age-specific per capita fecundity and consumption
rate, respectively, given the history St of the substrate.

Assume that consumers are either juvenile or adult, that only adults produce
offspring at an otherwise age-independent rate β0(S) and that juveniles and adults
have different consumption rates γJ(S) and γA(S), respectively. Assume further that
juveniles are recruited to the adult stage at a rate α(S). The probability that an
individual born at time s is still alive and in the juvenile stage at time t is

e−D(t−s)e−
∫ t
s α(S(σ))dσ,

while the probability that it is in the adult stage is

e−D(t−s)
(

1− e−
∫ t
s α(S(σ))dσ

)
.
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As a consequence, the equations become

b(t) =

∫ t

−∞
β0(S(t))

(
1− e−

∫ t
s α(S(σ))dσ

)
e−D(t−s)b(s)ds, (9.12)

d

dt
S(t) = D

(
S0 − S(t)

)
(9.13)

−
∫ t

−∞

(
γJ(S(t))e−

∫ t
s α(S(σ))dσ + γA(S(t))

(
1− e−

∫ t
s α(S(σ))dσ

))
e−D(t−s)b(s)ds,

which is simply (9.10) – (9.11) with

β(a, St) = β0(S(t))
(

1− e−
∫ t
s α(S(σ))dσ

)
,

γ(a, St) = γJ(S(t))e−
∫ t
s α(S(σ))dσ + γA(S(t))

(
1− e−

∫ t
s α(S(σ))dσ

)
.

The kernel in (9.12) is of the form

K
(1)
S (t, s) = U1(S(t))TΦS(t, s)V (S(s)),

with
U1(S) = (0 β0(S)T , V = (1 0)T

and ΦS(t, s) the fundamental matrix solution corresponding to the matrix

H(S) =

(
−(α(S) +D) 0

α(S) −D

)
.

The kernel K
(3)
S (t, s) in (9.13) is almost the same as K

(1)
S (t, s), the only difference

being that U1(S) is replaced by

U3(S) = (γJ(S) γA(S))T .

Because V1 and V3 are the same (and denoted simply by V ) it follows from (8.10)
that also z1 and z3 coincide. The components of this variable correspond to the
densities of juveniles and adults, respectively, so we denote z1 = z3 = (J A)T . The
finite dimensional representation of (9.12) – (9.13) is thus

dJ

dt
= β0(S)A− (D + α(S))J, (9.14)

dA

dt
= α(S)J −DA, (9.15)

dS

dt
= D

(
S0 − S

)
− γJ(S)J − γA(S)A, (9.16)

exactly as one would obtain when formulating the model right from the beginning
in terms of J and A.
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9.3 Epidemic models

In their 1927 classic, Kermack and McKendrick (1927) introduced as their key mod-
elling ingredient

K(τ) := expected contribution to the force of infection by an individual that
was itself infected τ units of time ago

Let

F (t) := force of infection at time t,
S(t) := density (= number per unit area) of susceptibles at time t.

Then the incidence b(t) (= number of new cases per unit of time and area) is given
by

b(t) = F (t)S(t)

and the interpretation of K(τ) translates into the equation

F (t) =

∫ t

−∞
K(t− τ)b(τ)dτ

Now suppose K is of the form (2.14) for k = 1. Define

Z(t) =

∫ t

−∞
e(t−τ)HV b(τ)dτ.

Then

dZ

dt
= HZ + V b,

F = UTZ,

b = FS

so
dZ

dt
= HZ + SV UTZ

and if we add a differential equation for S like

dS

dt
= −FS = −SUTZ

(closed population, i.e., no demographic turnover) or

dS

dt
= g(S)− FS = g(S)− SUTZ
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(births and deaths incorporated in g; beware that K, too, has now to incorporate
the possibility of death) we have a closed nonlinear ODE system for (S,Z).

Note that for fixed S one has a linear system for Z and the discussion about R0

and r presented in Section 5 carries over verbatim.
In the standard SIR compartmental model an individual becomes infectious im-

mediately upon becoming infected and stays infectious for an exponentially dis-
tributed amount of time with rate parameter α, i.e., the mean of the infectious
period is α−1. During the infectious period it produces new cases at rate βS. This
corresponds to n = 1, H = −α, U = β, V = 1 and the relabeling Z = I. Beware
that the symbol I now refers to “infectious” and not to “identity”.

Similarly the SEIR model (where individuals are ‘exposed’ for an exponentially
distributed amount of time, with rate parameter γ, before becoming infectious) cor-
responds to n = 2,

H =

(
−γ 0
γ −α

)
, V = (1 0)T , U = (0 β)T

and relabelling Z1 = E and Z2 = I. Beware that the symbol E now refers to
“exposed” and not to “environment”.

Currently network models are en vogue in infectious disease epidemiology, so let
us have a brief look at one of those. A key feature is that individuals have repeated
contacts with the same partner(s). For static configuration networks a nonlinear
renewal equation is informally derived by Leung and Diekmann (2017); see (Barbour
and Reinert 2013) for a rigorous derivation. It reads

x(t) = F(∞)−
∫ t

−∞
g(x(σ))F ′(t− σ)dσ (9.17)

where F(τ) is the probability that transmission of the infectious agent to a partner
has not (yet) occurred at disease-age τ and

g(x) =

∑∞
k=1 kpkx

k−1∑∞
k=1 kpk

with pk the probability that an individual has k partners/neighbours, i.e., has degree
k. The kernel F is rather similar to the Kermack-McKendrick kernel K in the
sense that it captures the progress of disease, in particular infectiousness, within an
individual, but it also takes into account that any partner can be infected at most
once.
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Consequently we should consider a Markov process that describes both progress
of the disease in an infected individual and the status, in terms of susceptible versus
infected, of a partner. For example, consider the modified standard SIR model where
during the infectious period any susceptible partner is infected with probability per
unit of time β. At τ = 0 we start with an (I,S)-couple. The transition (I,S) →
(I,I) occurs at rate β and the transition (I,S) → (R,S) at rate α. So the probability
PIS that the state is still (I,S) at disease-age τ equals e−(α+β)τ . Since F(0) = 1 and
F ′(τ) = −βPIS(τ) we find

F(τ) = 1− β
∫ τ

0

e−(α+β)σdσ =
α

α + β
+

β

α + β
e−(α+β)τ

For this choice of F differentiation of (9.17) yields the ODE

dx

dt
= βg(x)− (α + β)x+ α

see (Miller 2011).
The generalization

F(τ) = 1− βT
∫ τ

0

e(H−diagβ)σdσV

involves n-vectors β and V and an n× n-matrix H and derives from

dP

dt
= (H − diagβ)P, P (0) = V,

dF
dt

= −βTP, F(0) = 1.

If we define

Z(t) =

∫ t

−∞
g(x(σ))e(H−diagβ)(t−σ)dσV

then
dZ

dt
= g(x)V + (H − diagβ)Z

and since (9.17) amounts to x = F(∞)− βTZ this is, in fact, a closed ODE system
for Z. As a particular example, we mention the SEI1I2R system defined by n = 3
and

V = (1 0 0)T , β = (0 β1 β2)T , H =

 −γ 0 0
γ −α1 0
0 α1 −α2


We conclude that by an appropriate modification the Markov approach of Section 5
extends to models of the spread of infection over static configuration networks. In
particular many of the ODEs derived by Miller and Volz (2013) follow from (9.17)
by a choice of two n-vectors β and V and an n× n-matrix H.
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10 Conclusions

In this paper we have considered finite dimensional state representations of a class
of both linear and nonlinear infinite dimensional systems corresponding to delay-
equations. Most of the results for linear renewal and delay differential equations are
known, in particular to researchers in systems and/or control theory. They are either
part of the folklore or presented in slightly different guises in works such as (Vogel
1965; Zadeh and Desoer 1963; Zadeh and Polak 1969; Fargue 1973). The novelty of
our presentation lies in the approach which is tailored for applications to models of
physiologically structured populations. Our results on linear systems with input and
nonlinear systems are new.

When applied to population dynamics the unknown b(t) in (1.1) represents the
birth rate. There are relevant population models in which the reproduction process
cannot fully be described by rates. One example is when individuals reproduce
exactly upon reaching a certain fixed size. For this reason we considered in the
paper (Diekmann et al. 2001) the cumulative number of births in the following
manner: Instead of a kernel KE in the form of a matrix valued function, our basic
ingredient was a kernel ΛE with the interpretation that ΛE(t, s)(ξ, ω) is the expected
number of offspring, with state-at-birth in the measurable subset ω of the individual
state space Ω, produced by an individual with i-state ξ at time s, within the time
interval [s, t), given the course of the environmental condition E on the interval [s, t).
The resolvent equation then became

Λc
E = ΛE + (Λ ∗ Λc)E = ΛE + (Λc ∗ Λ)E , (10.1)

where the ∗ stands for a convolution-like product involving Stieltjes integrals with
respect to time. In the present paper we have defined ODE-reducibility by requiring
that the resolvent (Λc

E in (10.1)) should be (a linear operator applied to) the solu-
tion of a finite dimensional system of ODEs. But such a solution is continuously
differentiable and hence we can differentiate (10.1) obtaining an equation which in
full detail reads as follows:

λcE(t, s)(ξ, ω) = λE(t, s)(ξ, ω) +

∫ t

s

∫
Ω

λE(t, τ)(η, ω)λcE(τ, s)(ξ, dη)dτ

(10.2)

= λE(t, s)(ξ, ω) +

∫ t

s

∫
Ω

λcE(t, τ)(η, ω)λE(τ, s)(ξ, dη)dτ.

In this equation, which is an analogue of (7.4), the kernel λE(t, s)(ξ, ω) is the rate
at which an individual, which had i-state ξ at time s, produces offspring in the set
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ω at time t, given the environment E. The convolution-like product does no longer
contain Stieltjes integrals. This shows that for the problem of finding conditions for
ODE-reducibility there was no loss of generality in abandoning cumulative outputs
and Stieltjes integrals.

The equations from Section 8 exemplify how people generally build community
dynamical models, to wit by combining single populations models in a lego-like
fashion, taking population outputs as inputs for other populations or for similarly
represented inanimate resources. The “community equation” from Section 8 is of
the simplest possible type, with X the effect of the population on the condition of
instantaneously reacting resources, like the density of occupied nestboxes (supposing
that b refers to the birth rate of, say, great tits), and Y the densities of dynamically
reacting resources like nitrogen availability (supposing that b refers to the birth rate

of, say, planktonic algae). K
(1)
E then depends on the density of occupied nest boxes

xi through the intervening variable n−xi, where n is the total density of nest boxes,
affecting the stochastic dynamics of a binary i-state component — have or have-not
— which in turn affects an individual’s metabolism, death rate and reproduction,
while K

(2)
E tells how nest boxes are monopolised by individuals born some time ago,

with a similar story in the case of nitrogen availability affecting algae.
From this “lego point of view” the models of Section 7 are prospective building

blocks for the construction of community models. If all building blocks of a commu-
nity model are ODE-reducible, then so is the full model. This is the gist of Section 7.
In general the converse need not be true, as the coupling of the populations imposes
constraints on the inputs, while the reasoning in Section 8 implicitly assumed the
absence of such constraints. However, the lego point of view offers an alternative
formulation for a converse: suppose that our lego set is so rich that by changing the
community embedding of our focal population we can produce a sufficiently diverse
variety of inputs from its output, and moreover all other building blocks are ODE-
reducible, then for all these communities to be ODE-reducible, our focal population
should satisfy the conditions put forward in Section 7, with K extended to include
the output generating kernels (the analogues of K(2) and K(3) of Section 8). This
heuristic phrasing leaves open the following difficult problems: What sets of inputs
“vary sufficiently” (all inputs considered in Theorem 7.2 certainly suffice but maybe
we can do with less)? How to test whether a set of building blocks when coupled in
various combinations and fed with the population output, together produce such a
sufficiently variying set?

In the other direction, but within the same model building spirit, we want to know
how the ingredients making up our building blocks relate to their ODE-reducibility.
In a follow-up paper (Diekmann et al. in preparation) we will take Equation (10.2) as
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starting point and obtain necessary and sufficient conditions, in terms of individual
birth, death and growth rates, for a population model to be representable by a finite
system of ordinary differential equations.
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