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Abstract

Developing smart crops which yield more biomass to meet the increasing demand for plant

biomass has been an active area of research in last few decades. We investigated meta-

bolic alterations in two Arabidopsis thaliana mutants with enhanced growth characteristics

that were previously obtained from a collection of plant lines expressing artificial transcrip-

tion factors. The metabolic profiles were obtained directly from intact Arabidopsis leaves

using high-resolution magic angle spinning (HR-MAS) NMR. Multivariate analysis showed

significant alteration of metabolite levels between the mutants and the wild-type Col-0. Inter-

estingly, most of the metabolites that were reduced in the faster-growing mutants are gener-

ally involved in the defence against stress. These results suggest a growth-defence trade-

off in the phenotypically engineered mutants. Our results further corroborate the idea that

plant growth can be enhanced by suppressing defence pathways.

Introduction

During the last few decades, the demand for agricultural products has increased dramatically

[1–3]. In order to meet the actual food demand in 2050, a 70% increase of the food production

has to be realized in the coming three decades [4,5]. A possible way to meet this demand is to

develop smart crops, varieties which can give more yield with fewer inputs [5,6]. This would

also reduce the need for chemicals such as pesticides and fungicides.

New crop varieties with improved agronomic traits can be developed by traditional breed-

ing methods [7], recently aided by the use of new genome-editing technologies such as pro-

vided by site-specific nucleases as CRISPR/CAS [8,9]. Recently, we have explored genome

interrogation using zinc finger artificial transcription factors (ZF-ATFs) as a novel technique

to drastically modify genome-wide transcription patterns and to generate novel phenotypes of

interest in the model plant species Arabidopsis thaliana [9–12]. In these studies, arrays of three
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zinc fingers (3F) were fused to the transcriptional activation domain of the VP16 protein of

the herpes simplex virus [10]. Any 3F motif can recognize 9 base pairs of DNA, corresponding

to approximately 1000 recognition sites in the nuclear Arabidopsis genome. Expression of a

single 3F-VP16 fusion under control of the meristematic RPS5A promoter can thus lead to

transcriptional activation of a large number of genomic loci, and consequently to drastic meta-

bolic and phenotypic changes [9,11]. Previously, we have screened a population of transgenic

Arabidopsis plants harbouring 3F-VP16 encoding gene constructs using enhanced rosette sur-

face area (RSA) as a selection criterion for enhanced overall biomass accumulation [9,12].

From this phenotypic screen, we isolated two novel mutants designated VP16-02-003 and

VP16-05-014 with respectively a 55% and 33% significantly larger RSA compared to the wild-

type Col-0, each expressing a specific 3F-VP16 fusion protein. The growth differences did not

relate to a differential development in the mutants as compared to the wild-type Col-0 [12]. In

that previous study, a transcriptomics analysis was also performed to investigate the changes

in the gene expression patterns [12]. Interestingly, we observed an overlap in the transcrip-

tional changes in that correlated with the increase in RSA. Most notably, shared downregu-

lated genes were found to be involved in several defence processes, including response to

stress (GO:0006950), response to external stimulus (GO:0009605), response to wounding

(GO:0009611), response to endogenous stimulus (GO:0009719), response to jasmonic acid

(GO:0009753), response to stimulus (GO:0050896), defence response by cell wall thickening

(GO:0052482) and defence response by callose deposition in cell wall (GO:0052544) (S1 Table)

[12].

For a comprehensive understanding of newly developed plant genotypes, a systems biology

approach is indispensable. Using this approach, a plant is seen as a system of interacting units

that can be analysed as a whole rather than focusing on individual changes [6,13]. One of the

system biology approaches is the metabolomics approach, which aims to determine small mol-

ecules that are involved in various physiological functions, such as growth, productivity and

defence [14]. Directly examining the metabolic profiles of intact Arabidopsis leaves without

any extraction is important to understand the functional framework of metabolism in the

leaves. Recently, we have established high-resolution magic angle spinning nuclear magnetic

resonance (HR-MAS NMR) to obtain the metabolic profile directly from intact wild-type Ara-
bidopsis leaves [15].

In this study, we applied one- and two-dimensional HR-MAS NMR to obtain the metabolic

profile directly from the intact leaves of wild-type Columbia (Col-0) Arabidopsis plants, and of

the VP16-02-003 and VP16-05-014 mutants with enhanced growth characteristics and puta-

tively higher sensitivity to biotic stress based on transcriptomics data. Through metabolic pro-

filing in the native state in combination with multivariate analysis, we here provide novel

insights into the biochemical pathways correlated to the enhanced rosette surface area pheno-

type for both mutants.

Materials & methods

Plant materials

Arabidopsis thaliana plants were grown in soil and cultivated in a growth chamber maintained

at 293 K, 70% relative humidity and at a 12 h light (200 μmol m-2 s-1 photosynthetically active

radiation) and 12 h dark regime [15]. Experiments were performed using the Arabidopsis thali-
ana accession Columbia-0 (Col-0) as wild-type. The VP16-02-003 and the VP16-05-014

mutant (both T3 generation) with an increased rosette surface area were obtained by pheno-

typic screening of a population of transgenic Arabidopsis plants harbouring 3F-VP16

Growth-defense trade-off in Arabidopsis thaliana mutants
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encoding T-DNA constructs, as described previously [12]. The larger rosette surface area of

both mutants are confirmed using ImageJ [12].

Quantification of free amino acids, soluble sugars, proteins and starch

The soluble sugar content was determined using the phenol-sulphuric acid method at a wave-

length of 490 nm [16]. Glucose concentrations ranging from 0 to 250 μg/mL were used to

obtain a standard curve. The free amino acids content was determined using the ninhydrin

method as described previously [17]. Proteins were extracted from the leaves as described

before [18]. Protein content was quantified by a Bradford assay [19]. The starch content of the

leaves was measured by determining the glucose released with α-amylase and amyloglucosi-

dase as described by Smith and Zeeman [20].

Statistical analysis

The data for each independent experiment were subjected to the Student’s t-test. The Origi-

nPro 2016 software (Northampton, USA) was used to determine the differences between Col-

0 and the VP16-02-003 and VP16-05-014 mutants. Values are presented as means ± standard

error (SEM) and statistical significance was determined at p< 0.05.

HR-MAS NMR-based metabolic profiling

The leaves were harvested from the plants at 28 days after germination (dpg, growth stage

3.70–3.90), frozen immediately in liquid nitrogen and stored at -80˚C until use. A single

rosette leaf (0.0684 ± 0.0087 mg, 8 different plants for every genotype) was inserted into a 4

mm zirconium oxide (ZrO2) rotor. 10 μl of deuterated phosphate buffer (100 mM, pH 6) con-

taining 0.1% (w/v) 3-trimetylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) was added as a

lock solvent and NMR reference. 1H High-Resolution Magic Angle Spinning (HR-MAS)

NMR experiments were performed with a Bruker DMX 400 MHz spectrometer operating at a

resonance frequency of 399.427 MHz. The instrument is equipped with a 4 mm HR-MAS dual

inverse 1H/13C probe with a magic angle gradient. Data were collected with a spinning fre-

quency of 4 kHz at a temperature of 277 K.

The one-dimensional 1H HR-MAS NMR spectra were recorded using a rotor synchronized

Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence with water suppression [21]. Each one-

dimensional spectrum was acquired applying 256 transients, a spectral width of 8000 Hz, a

data size of 16 K points, an acquisition time of 2 seconds and a relaxation delay of 2 seconds.

The free induction decays (FIDs) were exponentially weighted with a line broadening of 1 Hz.

Spectra were phased manually and automatically baseline corrected using TOPSPIN 2.1 (Bru-

ker Analytische Messtechnik, Germany). A gradient-enhanced two-dimensional 1H-1H-COSY

sequence was applied in order to confirm signal assignments as described before [14].

Multivariate analysis

A bucket table was generated from the one-dimensional spectra using AMIX software (version

3.8.7, BrukerBioSpin). The region between 4.20–6.00 ppm was excluded from the analysis to

remove the large water signal. The one-dimensional CPMG spectra were normalized to the

total intensity and binned into buckets of 0.04 ppm. The data was mean centred and the Pareto

scaling method was used [22]. Unsupervised Principal Component Analysis (PCA) and super-

vised Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) were

performed on the bucket table using the SIMCA software package version 14.0 (Umetrics,

Umeå, Sweden). The quality of these models was evaluated by the R2X and R2Y, the goodness-
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of-fit parameters, and Q2, a measure of the quality of the model based on cross-validation

[23,24]. One sample from the VP16-05-014 dataset was removed as it was a significant outlier

defined as an observation located outside the 95% confidence region of the Hotelling’s T2

ellipse in the PCA scatter plot (see Supplementary S1 Fig) [25]. Further analysis was performed

without this outlier. OPLS-DA was used to determine the buckets which are different between

the mutants and the wild-type Col-0. In addition, two OPLS-DA models were constructed for

each mutant; Col-0 vs VP16-02-003 and Col-0 vs VP16-05-014 (S2 Fig). The shared and

unique structures between these two OPLS-DA models were investigated using a SUS (shared

and unique structures) plot [26].

Biomarker identification

The metabolites corresponding to the peaks of interest in the determined buckets were identi-

fied by the Biological Magnetic Resonance Data Bank (BMRB) (www.bmrb.wisc.edu/

metabolomics), Platform for RIKEN Metabolomics [27,28] and Chenomx NMR Suite 8.2

(Chenomx Inc., Edmonton, Alberta, Canada).

Quantification of metabolites

Chenomx NMR Suite 8.2 (Chenomx Inc., Edmonton, Alberta, Canada) was used for quantita-

tive NMR data analysis. The concentrations of the various metabolites in the spectra of the

leaves from wild-type and mutant Arabidopsis were determined by the known concentration

of the reference peak of TSP. All Student’s t-test analyses of the NMR quantification results

were performed with OriginPro 2016 (Northampton, USA), The t-test is used after multivari-

ate analysis (where correlation between metabolites was already taken into account).

Results and discussion

The larger rosette surface area phenotype of the VP16-02-003 and VP16-05-014 mutant was

confirmed by determining the rosette surface area (RSA) at 28 days post germination (Fig 1).

The VP16-02-003 and the VP16-05-014 mutant have respectively 53% and 31% larger RSA in

comparison to Col-0. This is in line with our earlier publication on these Arabidopsis mutants

[12].

Levels of free amino acids, soluble sugars, proteins and starch

Prior to metabolic profiling, the concentration of free amino acids, proteins, soluble sugars

and starch was determined for extracts of leaves from the VP16-02-003 and VP16-05-014

mutant and Col-0 to get a broader overview of amino acids, sugars, protein and starch. Inter-

estingly, an overall decline in free amino acids, soluble sugars, proteins, as well as starch con-

tent, was observed for the VP16-02-003 and VP16-05-014 mutants of Arabidopsis as compared

to Col-0 (Table 1).

Sulpice et al. observed a negative correlation between biomass and the levels of starch, total

protein and total free amino acids in Arabidopsis [29]. The level of soluble sugars such as

sucrose has also found to be negatively correlated with biomass [29]. Sugars, such as glucose

and sucrose are important products of photosynthesis and play an essential role in controlling

plant growth, development and defence [14]. The decline in the level of soluble sugars accom-

panied by an increase in overall biomass and no significant difference in development of the

two mutants indicates that sugar resources are likely diverted toward growth and storage prod-

ucts in these mutants, rather than defence-related processes.

Growth-defense trade-off in Arabidopsis thaliana mutants
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Metabolic profiling of the VP16-02-003 and VP16-05-014 mutant

In order to identify metabolites and biochemical pathways responsible for the increased rosette

surface area shared phenotype of the VP16-02-003 and VP16-05-014 mutant, their metabolic

profiles have been analysed for intact leaves using HR-MAS NMR. In Fig 2, representative

one-dimensional 1H NMR spectra of Col-0, VP16-02-003 and VP16-05-014 are shown. Two-

dimensional homonuclear correlation spectroscopy (1H-1H COSY) enabled confirmation of

metabolites by their spin systems. In addition, the 2D 1H-1H COSY data can be used to vali-

date changes observed in the 1D spectral envelope for the mutants as compared to Col-0. The

signals of various metabolites were assigned with the help of literature data from the Biological

Magnetic Resonance Data Bank (BMRB) [30,31]. S2 Table shows a list of identified

metabolites.

Identification of the increased rosette surface area shared phenotype

To probe if Arabidopsis thaliana Col-0, VP16-02-003 and VP16-05-014 can be discriminated

from each other based on their metabolic profiles, multivariate analysis was applied to the

HR-MAS spectra from both mutants and Col-0. Unsupervised PCA was performed which

Fig 1. Representative overview of the rosette phenotypes of Arabidopsis Col-0, VP16-02-003 and VP16-05-014 at 28 days post germination. Data of

average rosette surface area is shown below each images as mean ± SEM (n = 18).

https://doi.org/10.1371/journal.pone.0209695.g001

Table 1. Total free amino acids, protein, soluble sugar and starch content in mg/g fresh weight for leaves of Arabidopsis thaliana Col-0, VP16-02-003 and VP16-05-

014.

Content (mg/g FW) Col-0 VP16-02-003 VP16-05-014

Free amino acids 1.48 ± 0.05 1.17 ± 0.05 � 1.04 ± 0.01 �

Protein 1.57 ± 0.06 1.34 ± 0.08 � 0.98 ± 0.01 �

Soluble sugar 0.18 ± 0.01 0.11 ± 0.01 � 0.13 ± 0.01 �

Starch 0.57 ± 0.02 0.23 ± 0.01 � 0.31 ± 0.02 �

Data is expressed as mean ± SEM (n = 5).

� p < 0.05 compared with Col-0

https://doi.org/10.1371/journal.pone.0209695.t001
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explained 76.1% of the variation by a three-component model (see Fig 3A), which shows a

clear group separation of VP16-05-014 from the Col-0 and VP16-02-003. In contrast, there

was no clear group separation between Col-0 and VP16-02-003 in the PCA score plot. Super-

vised OPLS-DA was applied to further understand the separation between the wild-type Col-0,

VP16-02-003 and VP16-05-014 and to identify crucial candidates biomarkers involved in the

increased rosette surface area phenotype. Fig 3B shows the score plot of the OPLS-DA. The

R2X, R2Y and Q2 were 0.849, 0.942 and 0.603, respectively. The OPLS-DA model was found to

Fig 2. Representative one-dimensional 1H HR-MAS NMR spectra collected from intact leaves of Arabidopsis thaliana Col-0 (bottom panels), VP16-02-003

(middle panels) and VP16-05-014 (top panels) grown in a 12h-light/12h-dark regime. The intact leaves were harvested 28 dpg at t = 6 hours (6 hours after the

beginning of the light period) for the measurement. The signals from the assigned metabolites have been shown in the spectra (see S2 Table for assignment).

https://doi.org/10.1371/journal.pone.0209695.g002
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be of good quality and has an accurate prediction. The score plot also shows that the biological

variation for the VP16-02-003 or VP16-05-014 is less than for the wild-type Arabidopsis Col-0.

A Shared and Unique Structures (SUS) plot can be a powerful method to identify potential

biomarkers for the enhanced growth characteristics for both mutants [26]. To obtain a SUS

plot, two separate OPLS-DA models (Col-0 versus VP16-02-003 and Col-0 versus VP16-05-

014) were generated from the metabolic profiles (S2 Fig). The correlation coefficients of the

Fig 3. Multivariate analysis of 1H HR-MAS NMR metabolic data collected from Arabidopsis thaliana Col-0 (•), VP16-02-003 (■) and VP16-05-014 (▲). (A) PCA

score plot with R2X = 0.761 and Q2 = 0.611. The dark circle shows the 95% confidence interval using Hotelling T2 statistics. (B) OPLS-DA score plot with R2X = 0.849,

R2Y = 0.942, Q2 = 0.603, which indicates separation between the Col-0, VP16-02-003 and VP16-05-014 Arabidopsis plants based on their metabolic profile. The dark

circle represents the Hotelling T2 interval with 95% confidence. (C) SUS plot represents biomarkers responsible for the separation in the score plot. 1. Fumaric acid; 2.

Malic acid; 3. Lactic acid; 4. Fructose; 5. Glucose; 6. Myo-inositol; 7. Choline; 8. Betaine; 9. L-alanine; 10. β-alanine; 11. L-asparagine; 12. L-aspartic acid; 13. L-glutamic

acid; 14. L-glutamine; 15. L-glycine; 16. L-lysine; 17. L-phenylalanine; 18. L-tyrosine.

https://doi.org/10.1371/journal.pone.0209695.g003

Fig 4. Metabolic alterations in the leaf of Arabidopsis thaliana VP16-02-003 and VP16-05-014 plants as compared to Col-0 plants grown in a 12h-light/12h-dark

regime by 1H HR-MAS NMR. (A) Relative levels of organic acids, sugars, sugar alcohol, precursor of cell wall components and organic osmolyte in leaves of VP16-02-

003 and VP16-05-014 plants in comparison to the level in Col-0. (B) Relative levels of free amino acids in leaves of VP16-02-003 and VP16-05-014 plants in comparison

to Col-0. Concentrations are represented by the mean ± SEM averaged over n = 8 samples. The asterisks (�) indicate significant differences between concentrations for

Col-0 and mutants, calculated with Student’s t-test (p< 0.05).

https://doi.org/10.1371/journal.pone.0209695.g004
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predictive component p(corr) for both models are plotted against each other in Fig 3C. Con-

centrations of metabolites plotted in the upper right corner of the SUS-plot increased and

those plotted in the lower left corner decreased in both mutants as compared to Col-0. The

upper left corner and lower right corner of the SUS-plot contain metabolites with anticorre-

lated concentrations in the two mutants in comparison to Col-0. Eighteen biomarkers were

determined from the SUS plot which show variation between Col-0, VP16-02-003 and VP16-

05-014 mutants, including organic acids (fumaric acid, malic acid, lactic acid), sugars (fruc-

tose, glucose), a sugar alcohol (myo-inositol), precursor of cell wall components (choline), an

organic osmolyte (betaine) and free amino acids (L-alanine, β-alanine, L-asparagine, L-aspar-

tic acid, L-glutamic acid, L-glutamine, L-glycine, L-lysine, L-phenylalanine and L-tyrosine).

Most of the identified biomarkers are primary metabolites directly involved in essential pro-

cesses as growth, development and defence [32,33]. This provides evidence that the larger

rosette surface area phenotype of both mutants involves re-allocation of primary resources.

Metabolic evidence for altered growth-defence trade-off in the VP16-02-

003 and VP16-05-014 mutants

The quantitative analysis of the metabolites that show significant variation between Col-0,

VP16-02-003 and VP16-05-014 plants is shown in Fig 4.

Organic acids, like fumaric acid and malic acid, play an important role in the major carbon

metabolism involving glycolysis, the tricarboxylic acid (TCA) cycle, and the photorespiration

cycle [34,35]. The fumaric acid level was significantly elevated by 19.5% in the VP16-02-003

mutant and by 295.8% in the VP16-05-014 mutant (Fig 4A). The primary metabolite fumaric

acid participates in multiple pathways in plant metabolism and is considered to be one of the

major forms of fixed carbon in some C3 plants, including Arabidopsis [15,36]. In particular,

fumaric acid can accumulate to levels of several milligrams per gram fresh weight in Arabidop-
sis leaves, often exceeding concentrations of starch and soluble sugars [36].

In contrast to fumaric acid, the malic acid level is reduced for both mutants (Fig 4A). Malic

acid is involved in various physiological functions in the plant cells, such as supplying NADH

for nitrate reduction and carbon skeletons and delivering NADPH for fatty acid biosynthesis

[37]. The observed reduced malic acid level for both mutants can be a consequence of its

enhanced utilization in downstream pathways involved in the growth promoting phenotype

[38]. The role of lactic acid in the leaves of Arabidopsis thaliana is not very clear. It has been

reported to play a role in plant defence against pathogens [38]. Also, a growth promoting effect

of lactic acid has been reported earlier [39,40]. In our study, no common trend was observed

in the levels of lactic acid in two mutants. The lactic acid concentration was elevated by 49.1%

in the VP16-02-003 mutant (p< 0.05), and reduced by 33.2% in the VP16-05-014 mutant

(p< 0.05) (Fig 4A). Thus no growth promoting effect of lactic acid can be generalized from

our study.

Primary sugars in plants such as glucose, fructose, and sucrose, are produced during photo-

synthesis, provide the primary energy supply and serve as storage metabolites in plants. These

sugars have a regulatory role in photosynthesis, growth and development and as a signalling

molecule to modulate gene expression [41]. The levels of fructose and glucose were in both the

VP16-02-003 and the VP16-05-014 mutants significantly decreased in comparison to Col-0

(Fig 4A). Decrease in glucose level is also in line with downregulation of glucan 1,3-beta-gluco-

sidase (AT1G64760) seen in transcriptome data of these two mutant (S1 Table) [12]. Glucan

endo-1,3-beta-glucosidase is involved in carbohydrate metabolism and has been shown to be

linked with plant defence to fungus and nematodes [42]. Although the stress response is a very

dynamic process and differs for every stress type, soluble sugar concentrations are altered

Growth-defense trade-off in Arabidopsis thaliana mutants
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during defence and strongly decrease in response to different forms of abiotic stress, as energy

is needed to operate defence mechanisms. In general low sugar concentrations lead to an

impaired abiotic and biotic stress response [41,43].

Myo-inositol is a signalling metabolite in Arabidopsis thaliana [44]. It is involved in stress

response, regulation of cell death and cell wall biosynthesis [45,46]. The concentration of myo-

inositol was reduced by 28.3% (p< 0.05) in the VP16-02-003 mutant and by 51.7% in the

VP16-05-014 mutant (p< 0.05) (Fig 4A). A reduced pool of myo-inositol in the VP16-02-003

and VP16-05-014 mutant may reflect an impaired defence pathway regulation in these

mutants. For instance, in a previous study, the reduced level of myo-inositol was observed in

the mips1 mutant, a mutant which shows increased sensitivity to reactive oxygen species stress

[45].

Choline is an important precursor for membrane phospholipids in plants. Choline can be

oxidized in a 2-step reaction via betaine aldehyde to betaine (glycine betaine, N,N,N-trimethyl-

glycine). Accumulation of betaine in Arabidopsis thaliana leads to a higher tolerance for abi-

otic stress [47,48]. The choline and betaine levels in the VP16-02-003 and the VP16-05-014

mutant were both significantly reduced in comparison to the wild-type Col-0 (Fig 4A). This is

in line with less available resources for stress resistance and defence and low concentrations of

the soluble primary carriers malic acid, fructose and glucose, as well as more storage in the

form of fumaric acid.

Amino acids are essential precursors for a wide range of cellular components like proteins,

nucleotides, chlorophylls and nitrogen-containing compounds [49,50]. Fig 4B shows the con-

centrations of free amino acids in the VP16-02-003 and the VP16-05-014 mutant in compari-

son to Arabidopsis Col-0. In both VP16-02-003 and VP16-05-014 mutants, levels of L-

glutamic acid, L-glycine and L-tyrosine were decreased relative to Col-0. This decline is consis-

tent with overall decrease in total free amino acids shown in Table 1. The pattern of decline in

these amino acids may be associated with decrease in the level of sugars. From earlier studies,

it is known that a decreased level of sugar leads to the inhibition of amino acid biosynthesis

[49]. Since, amino acid metabolism plays a regulatory role in the response to stress [50][51], a

decline in the levels of these free amino acids for both mutants may reflects their reduced

investments to defence responses against stress. A decline in glycine in both mutants may be

linked with downregulation of Glycine-rich RNA binding proteins observed in transcriptome

data of these mutants. Glycine-rich proteins are known to be involved in plant stress responses

[52]. Downregulation of Glycine-rich RNA binding proteins together with low glycine levels

thus signify low defence response of VP16-02-003 and VP16-05-014 mutant. The levels of

other free amino acids such as L-asparagine, L-aspartic acid, L-glutamine, L-lysine and L-phe-

nylalanine were also lower in VP16-02-003 mutant in contrast to Col-0. However, their levels

either did not change or increased in VP16-02-003 mutant with respect to Col-0. The reason

for the differences in some of the amino acid pattern in two mutants is presently not under-

stood. Interestingly the levels of L-alanine and β-alanine were significantly higher in the VP16-

02-003 mutant in comparison to the wild-type Col-0. An increase in alanine under sulphur

limitation has been reported earlier [53]. Transcriptome analysis of this mutant has revealed

downregulation of sulphate metabolism genes [12]. High levels of alanine in the VP16-02-003

mutant may thus be connected to reduced sulphur fixation.

The changes of metabolic profiles for the VP16-02-003 and the VP16-05-014 mutant that

share a larger rosette surface area phenotype are mostly associated with the response to stress.

These results are in line with our earlier transcriptome analysis, which shows that many genes

that are downregulated in both mutants are involved in defence processes [12]. Recently,

Fusari et al. [54] have investigated the genetic architecture of central metabolism by mapping

metabolite quantitative trait loci (QTL). The results of genome-wide associated mapping
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clearly revealed a well-defined trade-off between growth and defence in Arabidopsis which

involve a fine-tuning of central metabolism. Thus, adaptation of the physiological function in

Arabidopsis thaliana requires balancing of primary metabolites [55]. The trade-off between

plant growth and defence implies that both are negatively correlated [55–57]. Hence the

growth will improve when the defence system is less active in plants. Our results show that the

VP16-02-003 and the VP16-05-014 mutants have a reduced defence response against stress

(Fig 5), which shifts the balance toward enhanced growth which involves changes in metabo-

lism. Some of the recent leaf and apical damage studies, show mixed results on whether a

trade-off exist between growth, tolerance and defence [57–61]. Thus, future studies on dam-

aged and undamaged states of VP16-02-003 and VP16-05-014 mutants will be important to

dissect out the mechanistic insight into growth-defence conflict.

The fundamental understanding about linking the gene regulatory network to the physio-

logical response obtained in this work paves the way for further investigations. In particular, it

is known that physiological functions in Arabidopsis are regulated by the circadian cycle

[62,63] and analysis of rhythmic patterns of the biomarkers in the VP16-02-003 and the VP16-

05-014 mutants may help to resolve the underlying mechanisms involved in growth-defence

trade-off.

Conclusion

In this study, the metabolic profiles of the Arabidopsis thaliana mutant lines VP16-02-003 and

VP16-05-014 with a larger rosette surface were further phenotyped and also investigated with

the HR-MAS NMR-based metabolomics approach. The results provide converging evidence

that the alteration of the metabolic profile of both mutants is due to lower defence responses

against stress. Growth-defence trade-offs will thus have to be acknowledged for when trying to

generate crops with improved growth characteristics.
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