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Activity-based protein profiling is a method to
study a subset of the enzymatically active pro-
teome. This method uses chemical probes that
covalently react with active enzymes. These
labelled proteins can subsequently be analysed
by means of a detection tag on the probe. A
diverse set of probes has been developed for
many enzyme classes, such as serine hydrolases,
proteases, glycosidases and kinases. Different
analytical techniques are currently available to
visualise, identify and quantify probe-labelled pro-
teins with high efficiency. Activity-based protein
profiling has well-developed applications in discov-
ering new drug targets and in profiling inhibitors
for potency and selectivity. Activity-based protein
profiling will, therefore, continue to aid research
both in fundamental biology and drug discovery.

Introduction

Activity-based protein profiling (ABPP) is a method to study
the abundance of active enzymes in complex proteomes. ABPP
uses chemical tools, termed activity-based probes (ABPs),
which covalently and irreversibly react with a nucleophile in the
active site of targeted proteins. Because only active enzymes
are labelled by a probe, ABPP measures the abundance of
active enzymes. This can differ from the total abundance of
an enzyme, considering the activity of enzymes is regulated
by posttranslational modifications See also: Proteins: Post-
synthetic Modification – Function and Physical Analysis.
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This makes ABPP a unique and powerful method. Increasingly,
ABPP is called activity-based or chemical proteomics (Simon
and Cravatt, 2010), complementing abundance-based proteomics
See also: Shotgun Proteomics. ABPP can be used to compare
activity of certain enzymes between different proteomes, for
example between healthy and diseased tissue, which enables
drug target discovery. Furthermore, ABPP can be applied to
characterise inhibitors and drug candidates for both potency and
selectivity in a native physiological context, aiding the selection
of therapeutically relevant compounds.

Every ABPP experiment consists of two parts: an
activity-dependent labelling part and an analytical part to
visualise and characterise this labelling event. This general view
of ABPP shows it is a multidisciplinary endeavour: organic
chemistry is needed to synthesise and characterise ABPs, analyt-
ical chemistry to provide the read-out of the labelling event, and
biology to understand the proteomes being studied.

In this article, we will start with the first part: the labelling
of active proteins using an ABP. The design of an ABP will
be explained and several examples of probes and their enzyme
targets will be discussed. In the second section, an overview is
provided of the analytical platforms available to visualise the
labelled proteome. Finally, in the third section, the applications
of ABPP will be reviewed, focussing on comparative ABPP and
competitive ABPP experiments.

Labelling

An ABP generally consists of three main parts (Figure 1a): the
first part is the trap, also called warhead, which is able to form
a covalent bond with the target enzyme. Usually, the trap is an
electrophilic group (Shannon and Weerapana, 2015), as is the
case for the fluorophosphonate probe shown in Figure 1a, which
forms a covalent bond with nucleophilic serine residues. The
second part is the linker, which can be changed to fine-tune chem-
ical properties of the probe such as cell permeability, solubility,
affinity and selectivity towards specific enzymes. The third part
of the probe is the tag, which enables the detection of enzyme(s)
labelled by the probe. This tag can be a fluorophore for visuali-
sation, an affinity tag (often biotin, as shown in Figure 1a) that
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Figure 1 Labelling enzymes with an activity-based probe. (a) General activity-based probe design, with fluorophosphonate-biotin as example. (b)
Probe labelling cartoon: two-step labelling using bioorthogonal chemistry (BOC) is optional for probes equipped with a suitable tag. (c) Mechanism of serine
hydrolase labelling: catalytic triad reacting with the fluorophosphonate trap.

is used to enrich or purify probe-labelled enzymes (pulldown),
a radioactive label or a ligation handle for a two-step labelling
procedure (Speers et al., 2003).

In the labelling part (Figure 1b), the ABP binds covalently to
the target enzyme. This labelling event can take place in lysates,
intact cells, tissues or living organisms (Blum et al., 2007). There
are two types of probes for the detection of active proteins (Figure
1b): (1) one-step probes make use of a compound with a detection
tag already installed and (2) two-step probes rely on a ligation
handle, which can be used to install the detection tag after the
probe has reacted with the protein. One-step labelling is fast and
efficient, but the large tag can decrease the affinity and selectiv-
ity of the probe for the target enzymes and/or may interfere with
cell permeability. Two-step probes may circumvent these issues,
but are less efficient in the workflow. Key is that the ligation han-
dle and the detection tag react in a bioorthogonal manner, which
means that the biological system does not interfere with the cou-
pling reaction (Willems et al., 2011). The most commonly used
bioorthogonal reaction is the ‘click’ reaction where an alkyne
moiety reacts with an azide moiety in a copper(I)-catalysed cycli-
sation (Tornøe et al., 2002). For an extensive review on different
types of bioorthogonal chemistry, see Patterson et al. (2014).

In Table 1, several examples of ABPs for different enzyme
classes are depicted. For a comprehensive overview, the reader is
referred to excellent reviews (Evans and Cravatt, 2006; Nodwell
and Sieber, 2012). Here, predominantly ABP design will be
discussed using enzyme class specific examples to explain the
different methods of probe design.

Serine hydrolases

Probe 1 (Table 1) is a broad-spectrum probe, which is designed to
react with any serine hydrolase. The hydrophobic linker between
the electrophilic trap and the biotin group does not contain any

side chains that can provide extra interactions with selected mem-
bers of the hydrolases, thus providing no specificity for a particu-
lar serine hydrolase. The mechanism of covalent bond formation
between a fluorophosphonate probe and the catalytic triad of a
serine hydrolase is depicted in Figure 1c (Liu et al., 1999). The
aspartic acid and histidine residues form a charge relay system
with the serine, increasing its nucleophilicity. The catalytically
active serine nucleophile of the hydrolase attacks the electrophilic
fluorophosphonate, which results in expulsion of a fluoride ion
and concurrent covalent binding of the enzyme with the probe.
The formed covalent bond is stable and the active site is occu-
pied, rendering the enzyme inactive. Probe 2 is an example of a
tailored probe, used for profiling of the lipase DAGL-α (diacyl-
glycerol lipase alpha) and other related proteins (Baggelaar et al.,
2013). The design of this probe is based on the anti-obesity drug
Orlistat, which has an irreversible covalent binding mechanism,
with a lactone as electrophilic trap. This example highlights one
method of ABP design: using a known covalent inhibitor as a
template. The tag used for probe 2 is a fluorophore.

Cysteine proteases
ABPs for the family of cysteine proteases have also been exten-
sively described (Kato et al., 2005). For example, Probes 3 and
4 are based on the natural substrates of their target enzymes
(a peptide for caspases and ubiquitin for the deubiquitinases)
and have an electrophilic trap. Cysteine proteases use a cat-
alytic cysteine residue, and owing to the soft nature of the
nucleophile, can be trapped by soft electrophiles. These traps
include reactive groups such as vinyl sulfones, iodoacetamides
and epoxides. Cysteine proteases ignore harder electrophilic traps
such as fluorophosphonates and sulfonyl fluorides. Caspases,
a subfamily of cysteine proteases, can be labelled selectively
and efficiently by using a low-reactive fluoromethylketone trap
(probe 3, Table 1). The peptidic linker element is required for
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Table 1 Enzyme classes and reported activity-based probes specific to that class (orange trap and blue tag as in Figure 1)

Entry Target enzymes Probe structure Reference
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selective caspase-specific recognition (Bedner et al., 2000). The
reaction of a terminal alkyne trap with the active site cysteines in
deubiquinating enzymes is an example of the importance of the
recognition element in the activity profile of an ABP (Ekkebus
et al., 2013). Normally, alkyne moieties are considered unreac-
tive towards nucleophiles, however, when attached to the protein
ubiquitin (Ub, probe 4, Table 1), the alkyne is able to function as
electrophilic trap.

Threonine proteases

In threonine proteases, an N-terminal threonine acts as the cat-
alytic nucleophile. The secondary alcohol of the threonine is
activated by the basic N-terminal amine, via an ordered water
molecule in the active site. The proteasome is a multisubunit
protein complex containing several active sites. The natural
product epoxomicin is a covalent inhibitor for each of these

eLS © 2018, John Wiley & Sons, Ltd. www.els.net 3



Activity-based Protein Profiling

subunits. Probe 5 (Table 1) is based on epoxomicin, containing an
epoxyketone electrophilic trap, which reacts with both the threo-
nine nucleophile and the N-terminal amine base in the active site.
Probe 5 is equipped with an alkyne tag, which can be used for
two-step labelling.

Kinases
Kinases comprise one of the largest enzyme families and are
a common target for cancer drugs as well. Generally, kinases
catalyse the phosphorylation of their substrate using ATP (adeno-
sine triphosphate). These enzymes lack a nucleophilic catalytic
residue and, therefore, development of probes for kinases has
been challenging. Recently, probe 6 (Table 1) was reported as
a broad-spectrum kinase ABP (Zhao et al., 2017). This probe
contains a sulfonyl fluoride trap that targets a conserved lysine
residue in the ATP-binding site of kinases.

Cytochrome P450s
Cytochrome P450s are a family of enzymes that metabolise a
wide variety of substrates, including drug molecules. For this
enzyme family alkyne-containing probes have been developed
(probe 7, Table 1) (Wright and Cravatt, 2007). P450 enzymes
oxidise the alkyne to a highly reactive ketene species, which
forms a covalent bond in the active site. Interestingly, probe 7
contains two alkynes, and the enzyme will only oxidise the
conjugated alkyne group, leaving the other alkyne group available
as a ligation handle.

Glycosidases
Glycosidases catalyse the hydrolysis of glycosidic bonds and
thereby this enzyme family degrades a wide variety of substrates:
saccharides, glycolipids and glycoproteins.

For glycosidases, ABPs have been developed based on the
natural product cyclophellitol, an irreversible inhibitor with
an epoxide electrophilic trap. Probe 8 is an example of these
cyclophellitol-inspired probes, with an aziridine trap and an
alkyne tag and is used to profile the retaining β-exoglucosidase
subfamily of glycosidases (Kallemeijn et al., 2012).

Photoaffinity probes
Not all enzymes have a suitable nucleophile in the active site that
can be targeted with an electrophilic trap. These enzymes can
sometimes be labelled with probes bearing a photoreactive trap

(Geurink et al., 2012). These photoaffinity probes form covalent
bonds by UV (ultraviolet) irradiation of the photoreactive group.
For example, metallohydrolases have been targeted using probe 9
(Table 1) (Saghatelian et al., 2004). A metal ion in the active site
is chelated to the hydroxamine group of the probe and covalent
linkage is induced upon UV irradiation of the benzophenone as
photoreactive group.

In summary, both the choice of trap and the linker determine
the type of enzymes that will be labelled by the probe. The
nature of the tag determines the means of detection, which will
be discussed in the following sections.

Analytical Platforms

The purpose of the second analytical part of an ABPP experi-
ment is to visualise the labelling event (Sieber and Cravatt, 2006).
Of note, ABPP does not measure catalytic activity, meaning the
turnover of substrate(s) to product(s) in a certain amount of time.
Instead, ABPP measures the amount of available active sites
of a certain enzyme and thereby reports on the functional state
of this protein. In general, the tag of the probe determines the
read-out technology to be used (Tables 2 and 3). Sodium dode-
cyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
liquid chromatography-mass spectrometry (LC-MS) are the most
used analytical orthogonal platforms. In the following section, the
advantages and disadvantages of these analytical platforms will
be discussed (Figure 2).

In gel-based experiments, the labelled proteins are sepa-
rated and characterised by molecular weight. First, proteins
are denatured using the detergent SDS, loaded on a polyacry-
lamide gel and subsequently separated using gel electrophoresis
(SDS-PAGE). Proteins labelled by one-step fluorescent ABPs are
visualised with in-gel fluorescence scanning. Alternatively, ABPs
with a biotin can be visualised using streptavidin-horseradish
peroxidase (HRP) in a western blot experiment. This technique
is robust, simple, has a high throughput and can be performed
directly using lysates. To assign the identity of the fluores-
cently labelled proteins, specific inhibitors or genetic deletion
of the gene is required. Disadvantages of the gel-based ABPP
include a limited resolution and sensitivity. Also, the identity of
the measured proteins sometimes remains ambiguous and the
possibility for automation is limited (Patricelli et al., 2001).

For LC-MS-based ABPP experiments, proteins are labelled
with a biotinylated ABP, enriched using (strept)avidin chro-
matography (pulldown) and digested with a protease. The

Table 2 Comparison of ABPP analytical platforms

Analytical platform Protein (μg)/measurement Throughput Sensitivity Identification Site of labelling Native proteome

SDS-PAGE 10 + − − − +
LC-MS 100 −−− + + + +
CE-LIF 0.1 ++ ++ − − +
FluoPol 0.1 +++ − − − −
EnPlex 0.001 ++++ + − − −
Microarray 1 ++ + + − +

4 eLS © 2018, John Wiley & Sons, Ltd. www.els.net



Activity-based Protein Profiling

Table 3 Main advantages and disadvantages of each ABPP analytical platform

Analytical platform Advantages Disadvantages

SDS-PAGE Robust, simple, low sample requirements Limited resolution, sensitivity, no identification,
no automation

LC-MS High information content, high resolution and
sensitivity

High sample requirements, cost of instrument

CE-LIF High resolution, sensitivity, automation possible No identification
FluoPol High throughput, kinetics In vitro, enzyme amount required
EnPlex High throughput, multiplexed Requires immobilised purified enzymes
Microarray Identification, sensitivity, throughput Dependent on high quality antibodies

resulting peptides are separated with liquid chromatography and
measured using mass spectrometry (Li et al., 2013). The mea-
sured peptides will allow the identification of the labelled pro-
teins. The peptides are sequenced using MS/MS experiments, and
these peptide sequences are searched against a database of protein
sequences. If a cleavable linker is used, the site of modification
can be identified by releasing the probe-labelled peptide from
the avidin bead and measuring the specific probe-peptide conju-
gate (Weerapana et al., 2007; Yang et al., 2013). This provides
direct evidence that a probe has covalently labelled a protein.
LC-MS-based ABPP has high resolution, sensitivity and informa-
tion content. However, the throughput is low, elaborate sample
preparation is needed and pulldown experiments commonly
suffer from high background of abundant unlabelled proteins.

To improve the resolution, sensitivity and automation pos-
sibilities for SDS-PAGE, capillary electrophoresis coupled to
laser-induced fluorescence scanning (CE-LIF) has been devel-
oped (Okerberg et al., 2005). Proteomes labelled with a fluores-
cent probe are digested with a protease and the resulting peptides
separated using capillary electrophoresis. The fluorescence signal
arising from probe-labelled peptides is measured. This distin-
guishes proteins with similar molecular weight, which comigrate
on an SDS-PAGE gel.

Fluorescence polarisation (FluoPol)-ABPP has been developed
to perform high-throughput screens and to assess inhibitor kinet-
ics (Bachovchin et al., 2009; Lahav et al., 2017). FluoPol mea-
sures the apparent size of a molecule, because a small fluorescent
probe rotates quickly in solution resulting in low polarisation of
light, while a large probe-protein adduct rotates slowly giving
rise to a high polarisation signal. The advantage of FluoPol com-
pared to substrate assays is that it can be used to find inhibitors for
poorly characterised enzymes of which the substrate is unknown.
Recently, FluoPol has also been applied in cellular imaging where
free and bound probe could be distinguished, thereby separat-
ing the background signal from free fluorescent probes (Dubach
et al., 2014). Interestingly, FluoPol can also be performed with
noncovalent probes. A potential disadvantage of FluoPol is the
requirement of purified or overexpressed enzyme. Typically, Flu-
oPol assays only measure the potency of inhibitors against one
enzyme. Recently, EnPlex was developed, a technique that makes
it possible to assess both potency and selectivity of inhibitors
(Bachovchin et al., 2014). Multiple purified enzymes are immo-
bilised on coloured Luminex beads, with a different colour for
each enzyme. These beads are mixed, incubated with inhibitor

and subsequently labelled with a biotinylated ABP, which is
stained with coloured streptavidin. The bead mixture is mea-
sured by flow cytometry, detecting both the identity (bead colour)
and activity (streptavidin colour) of each enzyme. Owing to the
requirement of multiple purified enzymes, this platform is elabo-
rate to set up, but once available has the highest throughput.

A technique that has the identification advantage of LC-MS
but with higher throughput is microarray ABPP (Sieber et al.,
2004). The probe-labelled proteome is incubated with an
antibody microarray and a fluorescence signal is measured for
the probe-labelled proteins. This technique is dependent on
high-quality antibodies and prior knowledge of the probe targets
is required (there is no discovery possibility as with LC-MS).

Figure 2 and Tables 2 and 3 summarise the analytical platforms
that can be coupled to ABPP. Various techniques can be combined
with each other, such as SDS-PAGE and CE-LIF, which can be
coupled to LC-MS to identify the tagged proteins (Bachovchin
et al., 2010). In short, protein bands from SDS-PAGE can be
excised and digested with a protease or using an in-gel diges-
tion and the resulting peptides will be measured by LC-MS. The
probe-labelled peptides from CE-LIF can be enriched using anti-
fluorophore antibodies and also identified with LC-MS.

Applications

Over the last two decades, ABPP has been developed into a
mature method. The labelling methods and analytical platforms
have become well established. Therefore, ABPP is increasingly
applied to answer biological questions by exploiting the unique
ability of ABPP to directly report on enzyme activity in living
biological systems. Two types of experimental setups have been
widely used: comparative and competitive ABPP (Cravatt et al.,
2008).

In comparative ABPP, the active enzyme levels in (at least) two
different proteomes are analysed. These different proteomes can
for instance be of two samples of a tissue in which one is in a
healthy and the other is in a diseased state (Figure 3a). Alter-
natively, comparative ABPP can be used to study the effects of
pharmacological intervention on the enzyme activity. The goal
of comparative ABPP is to highlight any differences or similari-
ties in active protein levels between different biological samples.
This information can be used to identify metabolic pathways that
are affected in disease states. This may lead to the identification
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of potential new drug targets. For example, monoacylglycerol
lipase was found to more active in aggressive versus nonaggres-
sive human cancer cell lines, thereby nominating this enzyme as
a potential pharmacological target for cancer therapy (Nomura
et al., 2010a,b). Comparative ABPP has been used in many bio-
logical processes, such as host–virus interactions (Blais et al.,
2010, 2012), microbial virulence factors (Puri et al., 2010) and
diet-induced obesity (Sadler et al., 2012). Furthermore, ABPP
can be used to identify novel enzymes, such as PLA2G4E as a
calcium-dependent N-acyltransferase (Ogura et al., 2016).

Inhibitor potency and selectivity can be simultaneously eval-
uated in a competitive ABPP experiment using broad-spectrum
ABPs (Figure 3b) (Leung et al., 2003). ABPP efficiently guides
the hit and lead optimisation process, thereby shortening the
drug discovery process. Interestingly, there is also a chance for
serendipitous discoveries, such as identifying novel hits for other

enzymes. In competitive ABPP a sample is pretreated with an
inhibitor before the ABP is added to label residual enzyme activ-
ities. A decrease in fluorescence intensity of the bands will indi-
cate whether the compound interacted with a protein. Competitive
ABPP is also an excellent way to confirm target engagement of
an enzyme in a cellular or animal model. For example, probe 1
(Table 1) was used to screen a library of compounds against a
library of enzymes to identify inhibitors for a diverse set of ser-
ine hydrolases (Bachovchin et al., 2010). Competitive ABPP was
also used to guide the discovery and optimisation of CNS (cen-
tral nervous system)-active DAGL inhibitors (Ogasawara et al.,
PNAS, 2016). Recently, ABPP was used to profile the protein
interaction landscape in human brain and cortical neurons of BIA
10-2474, an experimental drug that caused the death of volun-
teer in a phase 1 clinical trial (van Esbroeck et al., 2017). It
was found that BIA 10-2474 inhibited several lipase off-targets,
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which were not identified by the classical selectivity screening
assays. It is, therefore, recommended that preclinical drug dis-
covery should include (competitive) ABPP to profile the drug
candidate on human tissues and cells.

Competitive ABPP is, however, restricted to profiling enzyme
activities identified by the probe. For an ideal drug target pro-
filing study, the drug candidate itself should be converted into
an ABP (Kallemeijn et al., 2012). This is, however, difficult to
realise if the inhibitor does not contain a protein reactive func-
tionality. A combination of broad-spectrum ABPs targeting var-
ious enzyme families would therefore be ideal to get a broad
overview of the selectivity profile of the drug candidate. Other

chemical proteomics techniques such as cellular thermal shift
assays (CETSA) (Reinhard et al., 2015) and drug affinity respon-
sive target stability (DARTS) (Lomenick et al., 2009) are used
to get a proteome-wide selectivity profile; however, these are not
necessarily activity-based and should be used only as comple-
mentary techniques.

Future Prospects

ABPP is a powerful method to study enzyme function in a native
biological setting. In the future, novel probes will be required

eLS © 2018, John Wiley & Sons, Ltd. www.els.net 7
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to enable further exploration of the enzymatically active subset
of the proteome. Furthermore, new analytical platforms should
be developed to enhance the sensitivity and resolution of the
ABPP technique to detect low abundant enzymes and to study the
effects of posttranslational modifications on the proteins. Increas-
ing the throughput of ABPP experiments by using automation is
another desired feature. Organic chemists should develop novel
probes to target novel enzyme classes and further develop cleav-
able linkers to identify the site of modification with novel frag-
mentation techniques such as electron transfer dissociation (Syka
et al., 2004). Importantly, biologists could benefit a lot from
the current ABPP toolbox. Recent examples of online, search-
able databases, such as chemicalprobes.org and probes-drugs.org
(Skuta et al., 2017; Arrowsmith et al., 2015), aid scientists in
selecting the optimal probes. The ABPP-field could benefit from
adding the best probes to these open data resources and making
well-characterised probes available. ABPP will continue to play
an important role in elucidating the function of proteins and the
discovery and development of novel drugs.

Glossary

Covalent bond A bond that is based on the sharing of electrons
and forms a stable chemical linkage.

Enzyme A protein that catalyses a chemical reaction in a
biological setting.

Inhibitor A compound that blocks the activity of an enzyme.
Pulldown Assay to pull certain proteins out of a solution.
Proteome All the proteins expressed in a cell at a certain

moment in time.
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