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Abstract. During covariate modeling in pharmacometrics, computational time can be
reduced by using a fast preselection tool to identify a subset of promising covariates that are
to be tested with the more computationally demanding likelihood ratio test (LRT), which is
considered to be the standard for covariate selection. There is however a lack of knowledge
on best practices for covariate (pre)selection in pharmacometric repeated time-to-event
(RTTE) models. Therefore, we aimed to systematically evaluate the performance of three
covariate (pre)selection tools for RTTE models: the likelihood ratio test (LRT), the empirical
Bayes estimates (EBE) test, and a novel Schoenfeld-like residual test. This was done in
simulated datasets with and without a Btrue^ time-constant covariate, and both in the
presence and absence of high EBE shrinkage. In scenarios with a Btrue^ covariate effect, all
tools had comparable power to detect this effect. In scenarios without a Btrue^ covariate
effect, the false positive rates of the LRT and the Schoenfeld-like residual test were slightly
inflated to 5.7% and 7.2% respectively, while the EBE test had no inflated false positive rate.
The presence of high EBE shrinkage (> 40%) did not affect the performance of any of the
covariate (pre)selection tools. We found the EBE test to be a fast and accurate tool for
covariate preselection in RTTE models. The novel Schoenfeld-like residual test proposed
here had a similar performance in the tested scenarios and might be applied more readily to
time-varying covariates, such as drug concentration and dynamic biomarkers.

KEY WORDS: covariate model building; empirical Bayes estimate; non-linear mixed effects modeling;
repeated time-to-event.

INTRODUCTION

Repeated time-to-event (RTTE) models characterize the
hazard or event rate of clinically relevant events, such as
rescue analgesia events, emetic episodes, and bone events in
Gaucher’s disease (1–3). An important part of RTTE
modeling is the search for predictors of this hazard. These
predictors, also known as covariates, help us understand and
predict differences in the observed events between individ-
uals (4). Despite the importance of covariates, there is limited
literature available on how to develop the covariate submodel
in RTTE models (2).

Whether or not the inclusion of a particular covariate
significantly improves the RTTE model is commonly tested
with the likelihood ratio test (LRT), which tests the difference
in likelihood of a model with and without inclusion of a
covariate relationship for statistical significance (5,6). How-
ever, the performance of LRT as a method for covariate
selection in RTTE models has only been evaluated for binary
covariates (2). Additionally, covariate selection using LRT is
time-consuming, as it requires a separate model to be fitted
for each tested covariate relationship at each step of the
forward inclusion procedure (7). Therefore, it can be helpful
to use techniques for the preselection of promising covariates,
which are later formally tested for significance using LRT
(Fig. 1). By only applying the LRT to the most promising
covariates, the overall computational time required for
covariate modeling is reduced.

Preselection of covariates in pharmacometric modeling is
commonly done by evaluating the association between
covariates and the empirical Bayesian estimates (EBE) of
subjects’ deviations from the population parameters (8). The
EBEs are dependent on the level of subject-specific informa-
tion and shrink towards zero if this information is sparse or
absent. It has been suggested that with levels of EBE
shrinkage above 20–30%, the EBEs are less suitable for
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covariate selection (9), although recent publications have
argued against this (5,10). However, the performance of the
EBE test and the impact of EBE shrinkage on this test are
unknown for RTTE modeling, as this test has yet to be
evaluated as a covariate preselection technique for these
models.

Considering the potential shrinkage-related issues with
the EBE test, we developed a Schoenfeld-like residual test, as
a novel covariate preselection technique for pharmacometric
RTTE models. The Schoenfeld-like residual is the difference
between the observed and expected covariate value of a given
event at a given time (11,12). Because it considers covariate
values at the time of each event, the residual does not require
covariates to be time-constant. The Schoenfeld-like residual
used here is adapted from a similar residual proposed by
Wileyto et al. for parametric time-to-cure models (12).

Here, we aimed to systematically evaluate the perfor-
mance of three covariate (pre)selection techniques for
RTTE models: the likelihood ratio test (LRT), the empirical
Bayes estimates (EBE) test, and a novel Schoenfeld-like
residual test. The performance of the three techniques was
evaluated head-to-head by quantifying the false positive
rate (Type I error), and the true positive rate or statistical
power in various simulation scenarios. Based on our
findings, we provide practical guidance on covariate model-
ing in RTTE models.

METHODS

RTTE Simulation and Model

In this study, RTTE datasets were simulated using
models with or without a true effect of a covariate on the
hazard rate. These datasets were used to evaluate whether
the (pre)selection techniques are able to correctly identify the
presence or absence of a true covariate effect. Table I
provides an overview of all simulated scenarios.

In R, simulation input datasets were generated with a
single binary or continuous covariate. The binary covariate
was coded as either a 0 or a 1, with each value occurring with
a 50% frequency in the population. The continuous covariate
for each individual in the dataset was sampled from a
standard normal distribution (mean of 0, standard deviation
of unity). RTTE trials with these patient cohorts were then
simulated in NONMEM 7.3 using the MTIME method
proposed by Nyberg et al. (13,14). Follow-up time was kept
constant at 125 h, with no dropout. A constant hazard model,
also known as exponential survival model in the context of
time-to-event modeling, was used to characterize the instan-
taneous hazard or event rate of each individual subject. The
impact of the binary and continuous covariate on the hazard
was modeled according to Eqs. 1 and 2, respectively.

Fig. 1. Schematic representation of how stepwise forward inclusion of covariates with
a covariate preselection tool is generally used in practice. The use of a preselection
tool is performed to limit the number of covariate effects that are tested for statistical
significance using the time-consuming LRT. During the stepwise forward selection,
covariates are added to the model one by one, until none of the preselected
covariates result in a statistical significant improved model and the stepwise forward
inclusion is finished. ΔOFV = difference in objective function value after inclusion of
a particular covariate in the model

11 Page 2 of 8 The AAPS Journal (2019) 21: 11



HAZTV ið Þ ¼ hpop � 1þ covi � Effectcovð Þ ð1Þ

HAZTV ið Þ ¼ hpop � e covi�Ef f ectcovð Þ ð2Þ

where HAZTV(i) is the typical hazard of the ith subject with
the given covariate value, hpop is the time-constant population
hazard for the event of interest of a subject with a covariate
value of zero, covi is the value of the covariate in subject i,
and Effectcov is the parameter that represents the covariate
effect on the hazard. Both hpop and the value of the covariates
did not vary over time in this study.

In pharmacometric RTTE models, the (unexplained)
between-subject variability of the hazard rate (or frailty) is
typically modeled as a log-normally distributed term describ-
ing the deviations of individual subjects from the population
hazard, as shown in Eq. 3.

h ið Þ ¼ HAZTV ið Þ � eηi ð3Þ

where h(i) represents the individual hazard of the ith
subject and eηi represents the empirical Bayesian estimate
(EBE) of the hazard of the ith subject relative to HAZTV. The
degree of between-subject variability was set to a coefficient
of variation of 75% in all scenarios, which corresponds with a
variance of η of 0.45. hpop was set to either 0.05 or 0.005 h−1,

to simulate scenarios with either a relatively high or low
number of events per subject, respectively. These values are
expected to result in a low or high degree of shrinkage of the
EBEs, as we have previously shown shrinkage to be
associated to the amount of events per subject, likely
because a lower amounts of events in an individual yields
less information on an individual level (15).

In simulated scenarios without a true covariate effect
(Effectcov = 0), the false positive rate was quantified as the
percentage of datasets for which a significant association
(p < 0.05) between the covariate and the hazard is reported
by the covariate (pre)selection technique. We generated
500 datasets for each of eight different scenarios without a
true covariate effect, in which each scenario had a unique
combination of hpop value (0.05 or 0.005 h−1), number of
subjects (150 or 50), and type of covariate (binary or
continuous). In 16 different simulated scenarios with a true
covariate effect, the power of the techniques to detect this
covariate effect was quantified. Two hundred fifty datasets
with 150 subjects each were generated for each of the 16
scenarios. These 16 scenarios differed from each other by
hpop values (0.05 or 0.005 h−1), type of covariate (binary or
continuous), and Effectcov (0.25, 0.35, 0.5, and 0.8 for
binary covariate; 0.1, 0.15, 0.25, 0.5 for continuous
covariates). After the simulation step, all datasets were
fitted in NONMEM with a base model that did not include
an estimated effect of the covariate (Effectcov fixed to
zero). The output of these base model fits was then used as
an input for the covariate preselection techniques
described below. To perform the LRT, the fit of a model,

Table I. Overview of Simulation Scenarios

Scenario Covariate type # of subjects Effectcov hpop (h−1) [EBE shrinkage level] # of datasets simulated

1 Binary 150 0 0.05 [low] 500
2 Binary 150 0 0.005 [high] 500
3 Binary 50 0 0.05 [low] 500
4 Binary 50 0 0.005 [high] 500
5 Continuous 150 0 0.05 [low] 500
6 Continuous 150 0 0.005 [high] 500
7 Continuous 50 0 0.05 [low] 500
8 Continuous 50 0 0.005 [high] 500
9 Binary 150 0.25 0.05 [low] 250
10 Binary 150 0.25 0.005 [high] 250
11 Binary 150 0.35 0.05 [low] 250
12 Binary 150 0.35 0.005 [high] 250
13 Binary 150 0.5 0.05 [low] 250
14 Binary 150 0.5 0.005 [high] 250
15 Binary 150 0.8 0.05 [low] 250
16 Binary 150 0.8 0.005 [high] 250
17 Continuous 150 0.1 0.05 [low] 250
18 Continuous 150 0.1 0.005 [high] 250
19 Continuous 150 0.15 0.05 [low] 250
20 Continuous 150 0.15 0.005 [high] 250
21 Continuous 150 0.25 0.05 [low] 250
22 Continuous 150 0.25 0.005 [high] 250
23 Continuous 150 0.5 0.05 [low] 250
24 Continuous 150 0.5 0.005 [high] 250

EBE, empirical Bayesian estimates; Effectcov, covariate effect parameter; hpop, value of population hazard
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where Effectcov was estimated, was compared to the base
model fit.

Covariate Selection with LRT

The LRT is performed by comparing the objective
function value (− 2 log-likelihood) between a model with an
estimated covariate effect (Effectcov) and a base model
without a covariate effect (Effectcov fixed to 0). When the
inclusion of the estimated covariate effect results in a drop in
objective function value of at least 3.84 points, the covariate
was considered to be significant with p < 0.05. To test and
compare type I error rates and statistical power of all
techniques, in this study, the LRT was applied to each of the
simulated datasets, regardless of the results of the covariate
preselection techniques described below.

Covariate Preselection

Empirical Bayes Estimates Test

All fitted models included an estimated frailty term,
which represents the magnitude of between-subject variability
around the population hazard estimate. During the post hoc
step in NONMEM, EBEs of the frailty term are generated for
each individual subject (ηi in Eq. 3). For scenarios with a
continuous covariate, the correlation between EBEs from the
NONMEM output and continuous covariate values was
calculated using the Pearson correlation test. For binary
covariates, an unpaired two-way t test was used to test for
significant differences between the two groups (α = 0.05).

Schoenfeld-Like Residual Test

The Schoenfeld-like residual is a residual that is
defined for each separate event and each covariate. It is
defined by the difference between the expected and
observed covariate value of the given event (Eq. 4). The
observed covariate value is the covariate value of the
subject experiencing the event at the time of the event.
The expected covariate value is defined as the weighted
average of the covariate values of all non-censored subjects
at the time of the event, where the weight is the population
hazard of each subject (Eq. 5).

SF j ¼ covj−predicted covj ð4Þ

predicted covj ¼ ∑k
i¼1covi �HAZTV ið Þ
∑k

i¼1HAZTV ið Þ ð5Þ

where SFj is the Schoenfeld-like residual for the jth event,
COVj is the covariate value of the subject experiencing the jth
event at the respective event time, predicted_covj the
predicted covariate value at the time of the jth event, k is
the number of uncensored subjects at the time of the jth
event, covi is the covariate value of the ith uncensored
subject, HAZTVi is the population hazard of the ith uncen-
sored subject.

In the absence of a (true) covariate effect, the expected
mean value of the Schoenfeld-like residual is zero (11,16).
The 95% confidence interval of the mean Schoenfeld-like
residuals was calculated with a 1000 sample bootstrap of the
model output dataset; resampling subjects with replacement
and then recalculating the mean Schoenfeld-like residual in
each resampled dataset. If the 95% confidence interval of the
mean Schoenfeld-like residual did not include zero, the
covariate was considered to be significantly associated with
the hazard rate (p < 0.05).

Evaluation of the Covariate (Pre)Selection Techniques

For simulated scenarios without a true covariate effect
(Effectcov = 0), the false positive rate and its 95% confidence
interval were calculated using the prop.test function in R
(one-sample proportion test with continuity correction). This
was done for each scenario separately, but also in a pooled
assessment where all simulated datasets without a true
covariate effect were analyzed together to increase the power
to detect inflations of the false positive rate. For simulation
scenarios with a covariate effect, the prop.test function was
used to compare the power of the (pre)selection techniques
to detect the covariate effect (two-sample test for equality of
proportions with continuity correction with α = 0.05). This
pairwise comparison of the power was performed between
LRT versus EBE test, LRT versus Schoenfeld-like residual
test, and EBE test versus Schoenfeld-like residual test. This
was done for each scenario separately, but also in a pooled
assessment where all simulated datasets with a true covariate
effect were analyzed together to increase the power to detect
differences in the power. The level of agreement between the
two preselection techniques and the LRT was assessed by
calculating the percentages of the datasets in which the
techniques came to the same conclusion (i.e., significant
covariate effect or not). Finally, we compared the computa-
tional time needed to run the (pre)selection techniques.

RESULTS

In this work, we evaluated a covariate selection tech-
nique (LRT), and two covariate preselection techniques
(EBE test and Schoenfeld-like residual test) in 24 different
scenarios. The median EBE shrinkage of the base model fits
of each simulation scenario was calculated to determine the
shrinkage obtained in the simulations with high or low value
of the typical hazard hpop (0.05 or 0.005 h−1). Setting the
typical hazard hpop to a relatively high value (0.05 h−1)
resulted in simulated scenarios with relatively low EBE
shrinkage ranging from 11 to 16%. In scenarios with a
tenfold lower value of hpop (0.005 h−1), median EBE
shrinkage ranged from 42 to 55%.

The false positive rate was evaluated in eight scenarios
with 500 datasets of 150 or 50 individuals each, in which there
was no true covariate effect (Effectcov = 0). In the scenarios
with the binary covariate presented in Table II, the
Schoenfeld-like residual test has an increased false positive
rate in the low shrinkage scenario with 150 subjects (95% CI
of 6.2–11.3), but not in the other three scenarios. The LRT
and EBE test did not result in a false positive rate
significantly different from 5% in any of the separate binary
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covariate scenarios. Table III shows the results for the four
scenarios in which a continuous covariate was tested. With 50
subject and low shrinkage, all techniques show an inflated
false positive rate above 5% (p < 0.05). In the three remaining
scenarios for the continuous covariate, the false positive rate
was not inflated for any of the (pre)selection techniques
(p > 0.05).

There were no clear trends in false positive rate in either
high versus low shrinkage, 150 versus 50 subjects, or binary
versus continuous covariate. Only after pooling the results
from all eight scenarios (total of 4000 datasets) in Table II
and III, was it found that the false positive rates were
significantly inflated for both the Schoenfeld-like residual test
(7.2%, CI 6.45–8.08), and the LRT (5.7%, CI 5.04–6.51). The
false positive rate of the EBE test was not significantly higher
than 5% (5.3%, CI 4.60–6.00) in the pooled analysis.

The power to detect a true covariate relationship was
quantified in the 16 scenarios in which a covariate effect was
included in the simulation. Figure 2 shows the power to detect
a true covariate effect of the covariate (pre)selection tech-
niques to increase with increasing covariate values. This
power is up to 0.38 lower in the scenarios with high EBE
shrinkage compared to similar scenarios with low shrinkage,
with no apparent differences in the impact of shrinkage
amongst the covariate (pre)selection techniques. The power
of the two preselection tools and the LRT to detect the
covariate effect were not statistically significantly different in
any of the scenarios (p > 0.05). Even when the datasets from
all 16 scenarios with a Btrue^ covariate effect were pooled
(n = 4000), no significant difference could be detected be-
tween any of the covariate (pre)selection techniques.

Across all 8000 simulated datasets, the preselection
techniques were in strong agreement with the LRT on the
statistical significance of the covariate effect: 99.2% for the
EBE test and 95.4% for the Schoenfeld-like residual test. In
the cases where preselection techniques gave a different
answer than the LRT, we examined which of the two correctly
identified the true model, i.e., with or without a covariate
effect. From the 0.8% of cases where the EBE test disagreed
with the LRT, the EBE test was correct 50% of the time, with
the LRT being correct in the other 50% of the cases. Within
the 4.6% disagreement between the Schoenfeld-like residual
test and the LRT, the Schoenfeld-like residual test was correct
in 38% of the cases, and the LRT in 72% of the cases.

Both preselection techniques, EBE and Schoenfeld-like
residual test, required little computational time (within 2 s per
dataset) when compared to the LRT (average time of 4.3 min
across all scenarios). The EBE test only requires that a
correlation test is performed, which can be done directly on
the NONMEM output. Although, the generation of the
Schoenfeld-like residual test required more code than the
EBE test (Supplemental Information), the computation time
is greatly reduced compared to the LRT.

DISCUSSION

In this study, we evaluated the performance of three
techniques in covariate (pre)selection for pharmacometric
RTTE models. In particular, we tested the false positive rate
and the power to detect Btrue^ covariate effect in each of
these techniques. Two of the evaluated techniques, the EBE

test and LRT are commonly used for covariate preselection
and selection in other types of pharmacometric models, such
as pharmacokinetic models. Additionally, we evaluated a
third technique that has hitherto not been used in literature
on pharmacometric RTTE models, which uses a Schoenfeld-
like residual to preselect promising covariates.

The Schoenfeld-like residual that was used here differs
from the originally defined Schoenfeld residual, which is used
to test the proportional hazard assumption of Cox regression
models. As shown in Eq. 5, the weighted average of the
covariate values of the non-censored subjects is obtained
using the population hazard of a parametric hazard model
with an estimated frailty term. Such a population hazard is
not defined in the semi-parametric context in which the
original Schoenfeld residual is used. Another difference with
the original Schoenfeld residual is the proposed application of
the Schoenfeld-like residual: the originally defined
Schoenfeld residual is used to test the proportional hazard
assumption of included predictors in the model. This is done
by visual inspection of the (scaled) Schoenfeld residual over
time for any trends. Here, we propose that the Schoenfeld-
like residual test can be used to preselect covariates before
using the more time-consuming LRT.

Both preselection techniques (EBE test and
Schoenfeld-like residual test) had a high level of agreement
with the LRT, with the highest level of agreement being
observed for the EBE test (99.2% versus 95.4% for
Schoenfeld-like residual test). Additionally, the preselection
techniques and the LRT had similar power to detect an
effect in the 16 scenarios with a Btrue^ covariate effect
(p > 0.05), as well as the pooled analysis of all 4000 datasets
of these 16 scenarios (p > 0.4). These findings add to
previous research that found comparable power of the
EBE test and the LRT to detect covariates in population
pharmacokinetic models (5,10). Our findings support the
feasibility of preselecting a subset of promising covariates
that can be tested with the more computationally intensive
LRT. To reduce the risk of failing to preselect a statistical
significant covariate, one could use a less stringent signifi-
cance level during the preselection than that selected for the
final selection with the LRT. However, this would also
increase the number of preselected false positives, thereby
increasing computational time. It is also important to note
that the use of preselection techniques does not reduce the
importance of considering the scientific plausibility of the
tested covariate relationships a priori, as this remains
crucial to limit the amount of spurious covariates included
(6,17).

In this study, we used a significance level of 5% for all
(pre)selection techniques, and therefore expect the observed
false positive rate to be around 5%. Both the Schoenfeld-like
residual test and the LRT showed a slightly inflated false
positive rate (7.2 and 5.7%, respectively) in the pooled
analysis of 4000 datasets without a true covariate effect (eight
scenarios with 500 repetitions). The false positive rate of the
EBE test did not differ significantly from 5% (p > 0.05). We
did not identify any relationship between the false positive
rate and the number of subjects, level of EBE shrinkage or
type of covariate. Although EBE shrinkage has been
reported to affect the reliability of the EBE test in previous
work on population pharmacokinetic models, we did not
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detect any performance issues in the scenarios with high (>
40%) EBE shrinkage in the RTTE models evaluated here
(9). These results are similar to what was found by Xu et al.
for population pharmacokinetic models, and who have even
proposed that the EBE test could be used instead of the LRT
as a formal covariate selection technique, irrespective of
shrinkage, as they provide similar power and the EBE test
has improved type I error rate (5).

It is important to recognize that the small inflation of the
false positive rate of the Schoenfeld-like residual test will
have limited practical impact when it is used as a covariate
preselection technique. The inflated false positive rate could
lead to a small increase in the number of Bfalse^ covariates
that are preselected. However, because these covariates will
be tested with LRT before final inclusion in the model (Fig.
1), this is therefore unlikely to increase the inclusion of
Bfalse^ covariates in the final RTTE model. Even with the
inflated false positive rate of 7.2%, the Schoenfeld-like
residual test filters out the remaining 92.8% of the Btruly
false^ covariates, which can considerably lower the computa-
tional time spent performing the LRT in datasets with
multiple covariates. As such, the performance of the
Schoenfeld-like residual test in covariate preselection can be
considered similar to that of the EBE test, although the latter
may be more easily applied for time-constant covariates.

One disadvantage of the EBE test is that the evaluation
of time-varying covariates can be only conducted via
implementing inter-occasion variability. However, the defini-
tion of an occasion within a study could be subjective and the
implementation requires averaging the covariate values
within each occasion. The methodology of the Schoenfeld-
like residual test on the other hand is theoretically also
suitable for preselection of time-varying covariates: for each
event, the expected covariate is re-calculated based on the

covariate values of all uncensored subjects at the time of each
event (Eq. 5). Therefore, the calculating the Schoenfeld-like
residual does not require covariates to be time-constant.
However, it should be noted that we did not include any time-
varying covariates in this study, and the performance of the
Schoenfeld-like residual test remains to be determined in the
future.

Preselection of time-varying covariates would save time,
compared to the alternative practice of testing each candidate
time-varying covariate using the LRT. The most commonly
included time-varying covariate in RTTE models is drug
concentration. However, various types of dynamic bio-
markers might also be predictive of the between-subject
differences in the hazard rate in RTTE models. By including
dynamic biomarkers, such as concentration or proteomic or
metabolomic biomarker profiles, in RTTE models, we might
gain a better understanding of the physiological components
that underlie between-subject differences in disease progres-
sion and drug effect (18–20). As Bomics^ techniques typically
quantify many compounds in a single platform, the ability to
preselect promising covariates in these large datasets be-
comes more important.

This work expands on existing literature on covariate
(pre)selection for pharmacometric RTTE models. Vigan et al.
have evaluated the Wald test and LRT for binary covariates
and found that both techniques resulted in false positive rates
close to 5% (2). We found that the LRT has a slightly inflated
false positive rate, which only reached significance when all
4000 datasets without a true covariate effect were pooled. An
inflated false positive rate of the LRT has also been reported
previously in some, but not all, investigations on covariate
selection in population pharmacokinetic models (5,10). These
different results in different studies might be explained by the
fact that the inflation of the false positive rate of the LRT is

Table II. False Positive Rate of (Pre)selection of Binary Covariates [95% CI]

Selection tool 50 subjects 150 subjects

HIshrink LOshrink HIshrink LOshrink

Schoenfeld 7.0 [5.0–9.7] 7.0 [5.0–9.7] 6.4 [4.5–9.0] 8.4 [6.2–11.3]
EBE test 5.2 [3.5–7.6] 4.8 [3.2–7.2] 5.8 [4.0–8.3] 5.6 [3.8–8.1]
LRT 6.0 [4.2–8.6] 5.2 [3.5–7.6] 5.6 [3.8–8.1] 6.0 [4.2–8.6]

HIshrink, high shrinkage scenario (hpop = 0.005 h−1 ); LOshrink, low shrinkage scenario with (hpop = 0.05 h−1 )

Table III. False Positive Rate of (Pre)selection of Continuous Covariates [95% CI]

Selection tool 50 subjects 150 subjects

HIshrink LOshrink HIshrink LOshrink

Schoenfeld 6.6 [4.7–9.2] 10.2 [7.8–13.3] 5.4 [3.7–7.9] 6.8 [4.8–9.5]
EBE test 3.8 [2.4–6.0] 7.2 [5.2–9.9] 4.8 [3.2–7.2] 4.8 [3.2–7.2]
LRT 5.6 [3.8–8.1] 7.6 [5.5–10.4] 4.6 [3.0–6.9] 5.2 [3.5–7.6]

HIshrink, high shrinkage scenario (hpop = 0.005 h−1 ); LOshrink, low shrinkage scenario with (hpop = 0.05 h−1 )
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relatively mild (< 7 with 95% confidence in this study), so that
a large number of repetitions is needed to show it to be
significantly different from 5%.

In this work, we explored the effect of various
factors—shrinkage, number of subjects, type of covariate,
covariate effect size—on the performance of covariate
(pre)selection techniques. One limitation of this work is that
not all potentially relevant scenarios could be explored, such
as unbalanced distributions of the binary covariate, time-
varying covariates, or datasets with multiple covariates with
varying degrees of correlation. The latter scenario could lead
to increased false positives when Bfalse^ covariates are
correlated to Btrue^ covariates (21). Additionally, we did not
test highly non-linear covariate relationships.

In this study, we used a fast R-script (Supplemental
Information) to generate the Schoenfeld-like residual test in
situations with time-constant hazard, time-constant covariates,
and identical follow-up time for each individual. A more
versatile (albeit slower) script can be found in Supplemental
Information. This script can be used with time-varying hazard,
time-varying covariates, and in the presence of patient dropout.
It requires the inclusion of dummy records in the dataset for all
non-censored subjects at each time point where one of the
subjects experienced an event. These dummy records ensure
that for each event, the NONMEM output file includes the
population hazard and covariate values during that event for all
non-censored subjects (required for Eq. 5 with time-varying
population hazard or covariates). The computational time
needed for the versatile script depends on the number of
subjects and events in the dataset, but was typically below 1min,
and thus considerably faster than the LRT.

CONCLUSION

This study provides the first assessment of the perfor-
mance of covariate preselection techniques for RTTE models.
We found the EBE test to provide a fast and accurate
technique for covariate preselection in RTTE models, even in
the presence of high EBE shrinkage. The novel Schoenfeld-
like residual test proposed in this study has similar perfor-
mance to the EBE test, and its methodology may be readily
applied to time-varying covariates, such as drug concentration
and dynamic biomarkers. We also evaluated the false positive

rate of the LRT, the most common method for covariate
selection, and found that it has a small but statistically
significant inflation of the false positive or type 1 error rate
(5.7% instead of 5%) in our RTTE models.
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