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Abstract 

This multi-method multi-sample longitudinal study examined how neurological substrates 

associated with goal-directedness and information-seeking are related to adolescents’ identity. 

Self-reported data on goal-directedness were collected across three bi-annual waves in Study 1. 

Identity was measured one wave later. Study 1 design and measurements were repeated in Study 

2 and extended with structural brain data (nucleus accumbens (NAcc) and prefrontal cortex grey 

matter volume (PFC), collected across three bi-annual waves. Study 1 included 497 adolescents 

(Mage T1 13.03 years) and Study 2 included 131 adolescents (Mage T1 14.69 years). Using latent 

growth curve models, goal-directedness, NAcc, and PFC volume predicted a stronger identity 

one wave later. These findings provide crucial new insights in the underlying neurobiological 

architecture of identity. 

Keywords: Brain development, Identity formation, MRI 

 

 

 

 

 

 

 

 

 

 



Goal-Directed Correlates and Neurobiological Underpinnings of Adolescent Identity: A 

Multimethod Multisample Longitudinal Approach 

 Adolescents face the central task of establishing a clear identity (Erikson, 1968) through 

searching for self-defined values and commitments within various important life domains. This 

process of exploring and reconsidering identity alternatives is assumed to result in strong and 

stable commitments highly important for psychosocial functioning (Erikson, 1968; Klimstra, 

Hale, Raaijmakers, Branje, & Meeus, 2010; Marcia, 1966). For example, adolescents with 

weaker identity commitments and more uncertainty about their identity commitments show 

higher levels of internalizing and externalizing problem behaviors over time (e.g., Becht et al., 

2016; Crocetti, Klimstra, Keijsers, Hale, & Meeus, 2009). Thus, development of a strong identity 

can be considered a crucial task for adolescents’ concurrent and future adjustment.  

An important question concerns why some adolescents develop a strong identity whereas 

others do not. One factor that may be particularly important in this regard, but has received little 

attention in research so far, is the substantial change across adolescence in brain areas involved 

in behaviors that might facilitate identity formation. Dramatic changes in brain volume are 

known to occur during adolescence, with protracted development of the prefrontal cortex (PFC; 

Mills & Tamnes, 2014) relative to the earlier development of limbic regions, such as the nucleus 

accumbens (NAcc; Mills, Goddings, Clasen, Giedd, & Blakemore, 2014). The aim of this multi-

sample longitudinal study was to investigate how identity-relevant behaviors and their 

neurological substrates relate to subsequent identity in adolescence.  

Identity as Goal-Directedness and Information Seeking Behavior 

Contemporary models of identity emphasize different dimensions underlying the identity 

formation process (Crocetti, Rubini, & Meeus, 2008; Luyckx, Goossens, & Soenens, 2006). The 



present study used the three dimensional Meeus-Crocetti model to operationalize management of 

identity commitments (Crocetti et al., 2008; Meeus, Van De Schoot, Keijsers, Schwartz, & 

Branje, 2010). Within this model, commitment refers to strong choices adolescents have made 

and the certainty they derive from these choices. Reconsideration of commitment represents 

adolescents’ commitment uncertainty and willingness to abandon current commitments to search 

for new ones. These dimensions define the identity formation cycle in which adolescents form 

commitments by considering and reconsidering them. Through in-depth exploration, adolescents 

maintain their current identity commitments by exploring and gathering new information on their 

commitments cyclically (Crocetti et al., 2008, Meeus et al., 2010). 

 Based on the Meeus-Crocetti model (Crocetti et al., 2008), establishing a strong identity 

requires at least two processes involved in identity commitment: goal-directedness and 

information seeking. First, motivation and goal-directedness are important capacities needed to 

pursue valued goals and make commitments (Burrow & Hill, 2011; Crone & Dahl, 2012; 

Erikson, 1968). Indeed, adolescents with strong commitments who explore their commitments to 

a greater degree demonstrate stronger goal-directed thinking (Burrow, O’Dell, & Hill, 2010). 

Moreover, adolescents with stronger feelings of agency report stronger identity commitments 

(Schwartz, Coté, & Arnett, 2005). For example, adolescents who were actively seeking out 

identity options and critically evaluating self-relevant information to negotiate identity questions 

displayed the strongest identity commitments (Berzonsky & Niemeyer, 1994). Second, 

information seeking plays a role in identity formation. For example, adolescents with an 

informational identity style report stronger identity commitments and more active exploration of 

their commitments in order to strengthen these commitments further (Crocetti, Rubini, 

Berzonsky, & Meeus, 2009). 



Brain Development and Identity Formation: Goal-Directedness and Information Seeking  

Adolescence is accompanied by structural changes brain regions critically involved in 

goal-directedness and information seeking behavior (Mills & Tamnes, 2014). Large-scale 

changes in PFC and NAcc grey matter volume have been reported with substantial individual 

differences between adolescents (Gogtay et al., 2004; Mills & Tamnes, 2014). Concerning the 

developmental trajectories of NAcc, inconsistent findings have been reported in differentiating 

left and right NAcc, with some studies reporting decreasing left NAcc (Urošević et al., 2012), 

increasing left NAcc, but decreasing right NAcc volume (Denisson et al., 2013) across 

adolescence and young adulthood. A consistent decrease has been reported for bilateral NAcc 

(e.g., Mills et al., 2014; Østby et al., 2009). However, for PFC grey matter volume, a consistent 

decrease in volume has been reported with age (e.g., Raznahan et al., 2011; Mills et al., 2014), 

which is assumed to reflect decreasing density of synapses and increasing white matter volume 

to facilitate greater efficiency of information processing (Mills et al., 2014).  

Individual differences in level and change observed in subcortical brain regions have also 

been reported, particularly in the NAcc, which supports reward processing, goal-orientation, and 

motivated behavior. In one of the few longitudinal brain-behavior studies, adolescents with 

greater versus smaller increases in NAcc volume over time reported more motivation to pursue 

valued goals (Urošević, Collins, Muetzel, & Luciana 2012). Additionally, in a cross-sectional 

study, higher grey matter volume in NAcc positively related to pursuit of long-term goals 

(Nemmi, Nymberg, Helander, & Klingberg, 2016). Because NAcc volume relates to goal-

directedness, NAcc volume might be involved in identity as well. 

The PFC has been linked to the development of cognitive control and information 

seeking behavior (Casey, 2015). The PFC shows a protracted development across adolescence 



(Tamnes et al., 2013), which is assumed to reflect neural plasticity that provides adolescents 

opportunities to learn new skills, but also ‘build an identity’ (Blakemore & Mills, 2014). Thus, 

although decreasing grey matter volume reflects normative brain maturation, individual 

differences in its initial level and change over time defines a certain window of opportunity that 

differs between adolescents. Based on the window of opportunity principle, adolescents who 

maintain relatively higher PFC volume during adolescence might also reflect more actively on 

identity issues. Because information seeking behavior is important for exploring and maintaining 

identity (Berzonsky & Niemeyer, 1994), we expected that individual differences in the level and 

changes in PFC structure would predict adolescents’ identity as well. To date, most studies have 

investigated structural development of the NAcc and PFC brain regions separately from 

behavioral changes (Mills et al., 2014). Yet, individual differences in baseline level of and 

changes in structure likely relate to behavior (Walhovd, Tamnes, & Fjell, 2014). In the current 

longitudinal study, we used a novel approach to test whether the changes in brain areas during 

adolescence (Mills et al., 2014; 2016) that are involved in observed changes in self-reported 

goal-directedness and information seeking behaviors predict later identity.  

The Present Study 

The purpose of the present research was to investigate self-reported and neural processes 

underlying adolescents’ identity in two separate studies. In Study 1, we tested the hypothesis that 

adolescents with higher and increasing goal-directedness would show a stronger later identity  

(indicated by relatively high commitments, high in-depth exploration and low reconsideration). 

In Study 2, we drew on questionnaire and neuroimaging data from a second large-scale 

longitudinal imaging study. First, we aimed to replicate the questionnaire-based findings of 

Study 1. Second, we examined the general developmental trajectories of NAcc and PFC. Based 



on prior studies, we expected a decrease in PFC brain volume across adolescence (Raznahan et 

al., 2011; Mills et al., 2014). Because prior studies were inconclusive about change in NAcc 

volume across adolescence, we could not formulate clear expectations regarding the 

developmental trajectories of left and right NAcc. Next, we combined questionnaire and imaging 

data to test whether individual differences in initial level and structural changes of NAcc and 

PFC grey matter volume predicted later identity commitments, in-depth exploration, and 

reconsideration of commitments. We hypothesized that a more protracted developmental 

trajectory in both NAcc and PFC grey matter volume would provide for more opportunities for 

identity exploration and therefore predict a more mature identity (Erikson, 1968). 

Method 

General Methodological and Statistical Approach 

 Studies 1 and 2 provided four waves of longitudinal data from two community samples of 

adolescents. In Study 1, we investigated whether goal-directedness predicted later identity, using 

self-reports. Similarly, in Study 2 we examined whether self-reported goal-directedness predicted 

later identity. We also investigated whether structural brain changes predicted identity in Study 

2. Specifically, we investigated whether initial level and changes in volume of the NAcc and 

PFC predicted later identity.  

To study whether changes in goal-directedness (measured with self-reports, and with 

structural brain measures for areas involved in goal-directedness) and information seeking 

(assessed with structural brain measures) predicted later identity, we conducted a series of Latent 

Growth Curve Models (LGM; Duncan, Duncan, & Strycker, 2013) on the predictor variables. In 

both studies, these LGMs were based on three biennial measurement waves (separated by two-

year intervals), covering ages 11-21 years across waves (Study 1) and ages 12-22 years across 



waves (Study 2). We assessed adolescents’ identity at the fourth wave (see Figure 1 for the 

conceptual models). LGM is a highly flexible method for analyzing longitudinal data by 

capturing both the level where individuals start out at the first measurement point (referred to as 

the initial level or intercept) as well as the change over time from the first to third wave (referred 

to as the slope). LGM provides estimates of the average intercept and slopes parameters (i.e., 

fixed effects), which represent the estimates for the entire sample. Individual differences around 

these overall growth parameters are captured by a variance component (or random effect). LGM 

allows one to include the intercept and slope estimates to predict the outcome variable, in our 

study identity, within the same model (Duncan et al., 2013). That is, we investigated whether 

adolescents’ starting point at the first wave as well as the change over time from Wave 1 one to 

Wave 3 predicted identity at the fourth measurement wave.  

Because adolescents in both studies varied significantly in age at each measurement 

wave, we applied a model where individually varying times of observations could be estimated 

(i.e., TSCORES option in Mplus, Muthén & Muthén, 1998-2012). Please find an elaborate 

description of this TSCORES method as online supplementary material S.1. Given the fact that 

there were only three measurement waves, we restricted our model to estimate linear slopes only. 

Because of the multilevel structure when modelling individually varying times of observation 

(using the TSCORES option in Mplus), standardized coefficients were not available in our 

prediction models. Therefore, we reported unstandardized coefficients. In all our prediction 

models, we controlled for gender differences in goal-directedness and structural brain measures 

(i.e., NAcc and PFC volume) as well as possible age and gender differences in level of identity 

commitments, exploration-in depth, and reconsideration. If these covariates were, however, non-

significant, they were trimmed from the models for reasons of parsimony.  
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Figure 1. Conceptual latent growth curve model with intercept and slope of (panel A) BAS Drive predicting 

identity (Study 1 and Study 2), BAS = Behavioral Activation System, and (panel B) intercept and slope of  

NAcc and PFC volume predicting identity (Study 2). NAcc = Nucleus Accumbens, PFC = pre-frontal cortex.  

Note that separate models were conducted for left NAcc, right, NAcc, left PFC and right PFC.  

 



Study 1  

Method 

 Participants and procedure. Participants were 497 Dutch adolescents (283 boys, Mage 

T1 = 13.03, SD = 0.46) from the ongoing longitudinal project Research on Adolescent 

Development and Relationships Young Cohort (RADAR-Y). Most adolescents came from 

medium or high SES families (87.9%). For the present study, we used data from T1, T3, T5 and 

T6, which will be designated as Waves 1 through 4, respectively. Wave 1, 2, and 3 were 

separated by a 2-year interval. Wave 3 and 4 were separated by a 1-year interval. We chose these 

measurement waves to match the longitudinal design of Study 2. Adolescents were aged between 

11 and 21 years across waves. At Wave 1, adolescents’ age ranged between 11.01 and 15.56 

years. Adolescents filled out questionnaires during home visits.   

Missing value analysis indicated 86% of all possible data points were completed by the 

adolescents across waves. Little’s MCAR test revealed a chi-square (χ
2
/df) of 1.58, indicating 

that is unlikely that results were biased as a result of missing values. Hence, missing data were 

handled in Mplus 7.4 using Full Information Maximum Likelihood (FIML). Participants 

received €10 (equivalent to approximately US $11) when they completed the questionnaires. All 

participants signed an informed consent form. The medical ethical committee of the University 

Medical Center Utrecht has approved the RADAR-study. 

 Measures. 

 Identity. Adolescents reported on their identity using the Utrecht-Management of Identity 

Commitments Scale (U-MICS, Crocetti et al., 2008). This 26-item questionnaire measures 

identity in three dimensions across educational (13 items) and interpersonal identity domains (13 

items). Within the educational and interpersonal domains, the U-MICS measures commitment 



with 5 items, exploration in-depth with 5 items and reconsideration with 3 items. Sample items 

for educational and interpersonal identity are respectively, “My education/best friend makes me 

feel confident about myself” (commitment), “I often think about my education/best friend” (in-

depth exploration), and “In fact, I’m looking for a different education/best friend” 

(reconsideration), answered on a 5-point Likert scale (1 = completely untrue, 5 = completely 

true). While the U-MICS allows identity to be measured in different domains, we investigated 

global identity by combining the educational and interpersonal identity domains in line with 

other studies (e.g., Crocetti et al., 2008; Meeus et al., 2010). The factorial validity of the U-MICS 

for the assessment of global identity has been confirmed (Crocetti et al., 2008). Moreover, the U-

MICS shows good reliability and measurement invariance across sex and time (Crocetti et al., 

2008). Cronbach’s alpha at Wave 4 was .96, .88, and .91 for commitment, exploration in-depth 

and reconsideration, respectively.  

 Goal-Directedness. Adolescents reported on their goal-directedness using a Dutch 

version of the BAS Drive subscale of the BIS/BAS questionnaire (Carver & White, 1994). BAS 

Drive was assessed with four items, for example “I undertake a lot of effort to get things I want” 

or “When I want something, I usually go all-out to get it”. Items were rated on a 4-point Likert 

scale (1 = strongly disagree, 4 = strongly agree). Factorial validity of the BAS Drive subscale 

has been established for both the original version (e.g., Carver & White, 1994) and the translated 

Dutch version (Yu, Branje, Keijsers, & Meeus, 2011). Cronbach’s alpha was .58, .67, and .76 for 

Waves 1 through 3, respectively. 

Results 

Means, standard deviations, and correlations among study variables of Study 1 can be found as 

online supplementary material S.2. 



Development of goal-directedness and identity. Parameter estimates of intercept and 

slope factors of self-reported goal-directedness predicting identity are depicted in Table 1. 

Results indicated that, on average, BAS Drive was stable across adolescence, intercept = 12.17, p 

<.001, σ = 23.88, p = .013, linear slope 0.03, p = .436, σ = .12, p = .005. Intercept and slope were 

negatively correlated, -1.65, p = .009, indicating that when adolescents started with relatively 

higher initial BAS Drive level, they reported relatively stronger decreasing BAS Drive levels 

over time. Girls reported lower initial levels of BAS Drive, b = -2.87, p = .002, but a stronger 

increase in BAS Drive over time, b = .21, p = .001, compared to boys. Consistent with our 

hypothesis, adolescents with relatively higher initial levels of BAS Drive reported stronger 

commitments, and less reconsideration of identity commitments one-wave later (Table 1). 

Higher baseline levels of BAS Drive were not related to exploration in-depth. When adolescents 

reported a stronger increase in BAS Drive they reported stronger commitments, more exploration 

in-depth and less reconsideration, one wave later.  

Discussion 

Findings of Study 1 supported the hypothesis that adolescents who engage in goal-

directed efforts (as assessed by BAS Drive) were more likely to show stronger identity 

commitments, more in-depth exploration and less reconsideration of identity commitments at a 

later moment in time.   

 

 

 

 

 



Table 1 

Unstandardized Parameter Estimates and Standard Errors Predicting Identity 

Note. In all our prediction models, we controlled for gender differences in intercept and slope 

factors as well as possible age and gender differences in identity dimensions. If these covariates 

were non-significant, they were trimmed from the models for reasons of parsimony. BAS = 

Behavioral Activation System, Int. = intercept, NAcc = Nucleus Accumbens, PFC = Pre-frontal 

cortex, *p <.05. **p<.01. ***p <.001. 

    Commitment  Exploration 

in-depth 

 Reconsideration 

Predictor   Parameter SE  Parameter    SE     Parameter     SE 

Study 1 Questionnaire part           

BAS Drive Int.  0.163* 0.059  0.097 0.050  - 0.128* 0.059 

BAS Drive Slope  2.222** 0.718  1.790** 0.620  - 2.070* 0.742 

Study 2 Questionnaire part           

BAS Drive Int.  0.151*** 0.009  0.117*** 0.006   0.024 0.013 

BAS Drive Slope - 0.060 0.108  0.058 0.073   0.001 0.133 

Study 2 MRI part           

Left NAcc Int.  0.110*** 0.019  0.020 0.019  - 0.104** 0.030 

Left NAcc Slope - 0.110 0.200  0.386* 0.187   0.156 0.313 

Right NAcc Int.  0.171*** 0.015  0.025 0.018  - 0.016 0.026 

Right NAcc Slope  0.022 0.098  0.173 0.161   0.112 0.155 

Left PFC Int.  0.071 0.160  0.171 1.266   0.092 0.415 

Left PFC Slope - 0.600 0.937  2.133 7.409   1.448 2.499 

Right PFC Int  0.069 0.084  0.124* 0.061   0.097 0.149 

Right PFC Slope - 0.292 0.549  1.103*  0.388   0.837 0.957 



Study 2 

 To replicate findings of Study 1 and investigate underlying neural mechanisms of 

identity, we examined a second sample of adolescents.  

Method 

 Participants and procedure. Participants were 138 Dutch adolescents (69 boys, Mage 

T1= 14.70 year, SD = 1.79) who took part in a large longitudinal study named Braintime. The 

initial sample of Braintime consisted of 299 participants aged between 8-25 years at T1 (for 

details, see Braams et al., 2015; Peters et al., 2016). For the present study, focussing on identity 

in adolescence, and the validity of our identity measure (i.e., U-MICS; Crocetti et al., 2008) 

aimed at assessing identity during adolescence and early adulthood, we included a sample of 

adolescents only. To this end, we selected data for participants who were aged between 12 and 

22 years across the three measurement waves, resulting in a sample of 138 adolescents. At T1, 

these adolescents’ age ranged between, 12.05 and 17.91 years. We used questionnaire data (for 

replication of Study 1) and structural brain data from Waves 1 through 3 with two-year intervals 

between assessment waves. Six months later (Wave 4), adolescents’ identity was assessed. These 

measurement points will be further referred to as Waves 1 through 4, respectively. When 

participants came to the lab for the scan session, they were instructed to lie as still as possible 

during the whole scan period. They could watch a movie of their choice during the high 

resolution structural scan, which was administered at the end of the scan session. Adolescents 

received €30 (equivalent to approximately US $32) for participation at each time point. Written 

informed consent for the study (i.e., parental consent and participant assent for adolescents) was 

provided at each time point. The medical ethical committee of the Leiden Medical Centre 

approved study procedures. All participants were right-handed, and reported no neurological or 



psychiatric impairment at Wave 1. Missing value analyses indicated that 83% of possible data 

points were completed by the adolescents across waves. Little’s MCAR test revealed a chi-

square (χ
2
/df) of 1.08, indicating that it is unlikely that results were biased as a result of missing 

values. Therefore, missing data were handled using FIML. 

 Measures. 

 Identity. Similar to Study 1, adolescents reported on their identity at Wave 4 using the U-

MICS (Crocetti et al., 2008). Cronbach’s alpha was .88, .76, and .92 for commitment, 

exploration in-depth, and reconsideration, respectively.  

Goal-Directedness. As in Study 1, adolescents reported on their goal-directedness using 

the Dutch version of the BAS Drive subscale of the BIS/BAS questionnaire (Carver & White, 

1994). Cronbach’s alpha was .60, .53, and .72 for Waves 1 through 3, respectively.  

Neuroimaging. All participants were scanned on the same 3T MRI scanner. The 

longitudinal pipeline in Freesurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) was used for cortical 

surface reconstruction and volumetric segregation. Per hemisphere, 31 cortical structures were 

labelled. All images were visually inspected after processing (longitudinal pipeline) for accuracy 

(e.g., Mills & Tamnes, 2014). Poor quality scans were excluded and high quality scans were 

reprocessed through the longitudinal pipeline. Note that also single time points were processed 

longitudinally. We repeated this quality-control procedure until only acceptable scans were 

included in the processing. No manual editing was performed. From the 404 available scans, we 

excluded 37 scans. In total, 367 scans were of good quality; 109 participants had scans at three 

waves, 18 had scans at two waves, 4 had a scan at one wave, and 7 had no available scan of good 

quality; hence, data of 131 participants were used in the analyses of structural brain data. 

http://surfer.nmr.mgh.harvard.edu/


 Scan acquisition parameters and a detailed description of the structural analyses can be 

found in the supplementary information S.3. 

Regions of interest. We derived the measure of grey matter volume for the NAcc by 

using the volumetric segmentation procedure. Grey matter volume was obtained using the 

surface-based reconstructed image. PFC was defined by combining the following subdivisions: 

rostral middle frontal, caudal middle frontal, caudal anterior cingulate and superior frontal (Mills 

et al., 2014). We conducted separate analyses for both left and right NAcc and PFC.  

Results 

Means, standard deviations and correlations among Study 2 variables can be found as online 

supplementary material S.4. 

Development of goal-directedness and identity. To replicate Study 1 findings, we 

investigated whether intercept and linear slope in adolescents’ reported BAS Drive across three 

waves predicted identity six months later. Parameter estimates of intercept and slope predicting 

identity are reported in Table 1.  

As in Study 1, BAS Drive remained stable across adolescence, intercept = 10.93, p <.001, 

σ = 3.05, p = .052, linear slope 0.58, p = .512, σ = 15.33, p = .368. Intercept and slope were not 

significantly related, -4.83, p = .399, indicating that the rate of change in BAS Drive was not 

associated with the initial level of BAS Drive. Boys and girls did not differ on intercept, b = 

0.33, p = .597 and slope, b = -1.70, p = .344 of BAS Drive. Consistent with our findings from 

Study 1, adolescents who reported higher initial levels of BAS Drive reported relatively stronger 

commitments. In contrast to Study 1, higher initial levels of BAS Drive predicted more 

exploration in-depth as well. Initial level of BAS Drive was not significantly related to 



adolescents’ reconsideration of identity commitments. Also in contrast to Study 1, the linear 

slope of BAS Drive was not related to commitment, exploration in-depth and reconsideration.  

Structural brain changes and identity. To test whether structural brain changes in 

volume of the NAcc and PFC related to adolescents’ identity one wave later, we conducted four 

separate growth curve models (i.e., a model for left NAcc, a model for right NAcc, a model for 

left PFC, and a model for right PFC). Based on the intercept and linear slope factors of these 

brain volumes we predicted adolescents’ identity six months later. Parameter estimates of NAcc 

and PFC volume intercept and slope predicting identity are reported in Table 1. The observed 

individual volume trajectories and average trajectories of left and right NAcc and PFC are 

presented in Figure 2.  

NAcc Grey Matter Volume. Due to previous inconsistency in empirical findings 

concerning the developmental trajectory of the NAcc, we explored the developmental changes of 

NAcc volume. We found, that, on average, NAcc volume did not significantly change across 

adolescence, left NAcc intercept 5.81, p <.001, σ = 1.28, p = .546, linear slope -0.43, p = .405, σ 

= 0.39 p = .994, right NAcc intercept 6.62, p <.001, σ = 0.89, p = .019, linear slope -0.76, p = 

.054, σ = 0.62, p = .884. Intercept and slope were not significantly related for left NAcc volume, 

b = -0.24, p = .984, and right NAcc volume, b = -0.51, p = .696. These findings imply that the 

relative change in NAcc volume was not associated with the initial level of NAcc volume. Boys 

and girls did not differ on initial left NAcc volume, b = .63, p = .053 or change over time, b = -

.18, p = .841. Yet, boys had higher initial right NAcc volume, b = .97, p = <.001, but a similar 

rate of change in right NAcc volume, b = -1.20, p = .090, relative to girls.  

Adolescents with higher initial volume of NAcc (both left and right NAcc) reported 

stronger identity commitments at Wave 4. In addition, higher initial volume of the left (but not 



right) NAcc predicted less identity reconsideration six months later. Finally, when adolescents 

showed a stronger increase in left NAcc volume over time they reported more exploration in-

depth six months later but this finding was not found for right NAcc volume.  

PFC Grey Matter Volume. PFC volume decreased during adolescence, left PFC intercept 

5.92, p <.001, σ = 0.37, p = .002, linear slope -1.01, p = .001, σ = 0.12, p = .927, right PFC 

intercept 6.00, p <.001, σ = 0.43, p <.001, linear slope -0.91, p = .006, σ = 0.18, p = .910. 

Intercept and slope were non-significantly related for left PFC volume, b = -0.08, p = .847 and 

right PFC volume, b = -0.11, p = .748. These findings demonstrate that the rate of change in PFC 

volume was not associated with the initial level of PFC volume. Boys’ initial left PFC volume 

was higher, b = .57, p = .001, as well as boys’ initial right PFC volume, b = .68, p <.001. 

However, the rate of change was similar for boys and girls, for left PFC, b = -.19, p = .662, and 

right PFC, b = -.02, p = .976.  

A higher intercept of right (but not left) PFC volume was related to more exploration in-

depth. Moreover, when adolescents showed a weaker decreasing right PFC volume (i.e., they 

kept relatively higher volume levels across a longer period of time compared to other 

adolescents), they reported relatively more exploration in-depth six months later. However, 

individual differences in left PFC volume intercept and change were not significantly related to 

exploration in-depth. Hence, findings were not replicated across left and right PFC. Moreover, 

left and right PFC volume intercept and slope were not related to commitment and 

reconsideration of identity commitments.  

Discussion 

 The purpose of Study 2 was to replicate findings based on self-reported goal-directedness  

of Study 1 and to investigate the relationship between structural brain changes and subsequent 



identity. First, Study 2 partially replicated findings from Study 1, using self-reports, by showing 

that adolescents’ who engaged in goal-directedness developed stronger identity commitments 

and explored these commitments more in-depth in order to maintain their commitments. Second, 

we showed that structural changes in NAcc and PFC during adolescence related to later identity. 

Specifically, higher baseline differences in both left and right NAcc volume positively predicted 

later identity commitments. Increase in left NAcc volume over time predicted more in depth-

exploration but this finding was not found for right NAcc volume. Furthermore, adolescents with 

higher initial levels of right (but not left) PFC volume as well as less steeply decreasing right 

(but not left) PFC volume over time showed more in-depth exploration of their identity 

commitments.  

 



 

Figure 2. Observed individual volume (in mm
3
) trajectories and average trajectories for (A)  

Left NAcc, (B) right NAcc, (C) left PFC, and (D) right PFC volume. Shaded areas represent 

95%CI. Raw mean scores for NAcc and PFC volume are displayed. 
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General Discussion 

 This longitudinal multi-sample study investigated how subcortical and cortical regions 

involved in goal-directedness and information seeking behavior relate to adolescents’ identity. 

Previous studies on adolescents’ identity formation suggested the importance of goal-

directedness and active information seeking to explore, develop, and maintain strong identity 

commitments (e.g., Burrow et al., 2010; Marcia, 1966; Schwartz et al., 2005). While adolescents’ 

search for identity is accompanied by, and perhaps also facilitated by changes in brain structure, 

empirical studies investigating structural brain changes and identity are lacking. In this study, we 

combined a large-scale questionnaire and a structural brain development study. We applied a 

two-step approach to investigate the longitudinal associations between brain regions, goal-

directedness, and identity. In the first step, we showed that individual differences in 

developmental trajectories of self-reported goal-directedness predicted later identity. These 

findings were partially replicated in a second longitudinal adolescent sample. In the second step, 

we extended these self-reported findings to the neural level by showing how individual 

differences in initial level and change of NAcc and right PFC grey matter volume predicted 

adolescents’ later identity.  

Goal-Directedness and Identity 

 Our longitudinal self-report findings from Study 1 and Study 2 indicated that adolescents 

who showed higher initial levels of goal-directedness reported relatively stronger identity 

commitments, explored these commitments more in-depth and were less uncertain about their 

commitments. We also found that increasing goal-directedness over time predicted stronger 

identity commitments, more in-depth exploration and less reconsideration (e.g., Burrow et al., 

2010; Schwartz et al., 2005) but these findings were not replicated in Study 2. Goal-directedness 



might facilitate the identity exploration process, which is an important predictor for the 

formation of identity commitments (Luyckx et al., 2006). For example, when adolescents start 

questioning and evaluating what type of study or work they want to do later in life, adolescents 

with a strong goal-orientation may be more likely to commit to possible identity choices and to 

explore them actively to determine what type of study or work suits them. In Study 1 and Study 

2 we found that higher initial level in goal-directedness positively predicted later identity 

commitments.  

Findings regarding in-depth exploration and reconsideration were not consistent across 

studies. That is, few associations replicated across Study 1 and Study 2, especially with respect 

to the linear slopes that were not significant in Study 2. One possible explanation for this 

discrepancy in findings might result from the difference in sample size between Study 1 and 

Study 2. Generally, smaller sample sizes tend to produce larger standard errors, resulting in less 

power to detect a significant effect. Moreover, the larger age heterogeneity at each measurement 

wave of Study 2 might also have increased the standard errors of the linear slopes, which makes 

it less likely to identify a significant linear slope. However, the sign of the slopes (indicating 

negative or positive change) was not always consistent across Study 1 and Study 2 either. 

Therefore, future studies are needed to replicate our findings. An important question that remains 

to be answered is the sequence of identity formation processes, which could not be answered in 

the current study because identity was measured only at the latest wave. Future work should 

further investigate the consecutive steps of identity formation, to see whether changes in goal-

directedness predict changes in identity exploration, which in turn predict stronger identity 

commitments. In sum, findings from Study 1 and Study 2 suggested that self-reported goal-



directedness consistently predicted identity commitments. Findings for exploration in-depth and 

reconsideration were not consistent across Study 1 and Study 2.  

Developmental Trajectories of NAcc Volume, and PFC Volume 

 At the neural level, we tested the relationship between trajectories of change in NAcc and 

PFC volume, on the one hand, and subsequent identity, on the other. First, we found that NAcc 

(both left and right) grey matter volume remained stable across three waves, which partially 

replicates previous findings. For example, similar to our findings, right NAcc grey matter 

volume has been found to be stable across two waves (Urošević et al., 2012), although decreases 

have been reported as well (Dennison et al., 2013). Prior studies also reported different findings 

for left NAcc volume development. For example, one study found a decrease during young 

adulthood across two waves (Urošević et al., 2012) whereas another study reported increased left 

NAcc across two waves (Dennison et al., 2013).  

These discrepancies in findings might have resulted from differences in the age range of 

participants between studies. With respect to age, the developmental mismatch model would 

predict that subcortical regions (such as the NAcc) develop earlier relative to cortical regions 

(Somerville, Jones, & Casey, 2010). Thus, volume of subcortical regions may show a linear 

increase early in adolescence, and then stabilize later in adolescence. Consistent with this idea, 

Urošević et al. (2012) found that left NAcc increased in early adolescence (ages 9-12 years) but 

stabilized during late adolescence (13-17 years), and decreased in young adulthood. Hence, 

future studies need to include a broader age range from childhood through young adulthood to 

further investigate the developmental shape of NAcc. Because the NAcc is a small structure, 

challenges exist concerning its measurement that might also explain inconsistencies regarding 

the shape of NAcc volume development (Mills et al., 2014). To further our understanding of 



developmental trajectories of the NAcc during adolescence, future research should include at 

least four or more waves of measurement to increase statistical precision (Muthén & Curran, 

1997) and be able to identify the shape of NAcc volume development (i.e., linear, quadratic, and 

cubic).  

Highly consistent findings were observed for PFC over time. In line with prior studies, 

we found a decrease of PFC grey matter volume across adolescence (e.g., Gogtay et al., 2004; 

Mills et al., 2014). Changes were highly comparable for left and right PFC volume over time 

(e.g., Mills, Lalonde, Clasen, Giedd, & Blakemore, 2014). 

Developmental Trajectories of NAcc Volume, PFC Volume, and Identity 

 To augment our understanding of the neurobiological processes underlying adolescents’ 

identity, we conducted latent growth curve models to investigate how individual differences in 

NAcc and PFC volume predicted identity. Results showed that higher levels of left and right 

NAcc volume were associated with stronger identity commitments six months later. In addition, 

higher levels of left NAcc volume were related to less identity reconsideration six months later. 

These brain structure findings from Study 2 add to the self-reported findings from Study 1 and 

previous questionnaire studies, by showing that goal-directedness and its presumed underlying 

neurological substrates are associated with adolescents’ identity formation (e.g., Burrow & Hill, 

2011). Past studies have also found that adolescents with increasing NAcc grey matter volume 

reported relatively more goal-directedness and goal pursuit (Urošević et al., 2012).  

Our findings might also further stimulate research on lateralization of the human brain. In 

general, inconsistent findings in differential functions between the left and right human brain 

have been reported, except for lateralization for language (Willems, Van der Haegen, Fisher, & 

Francks, 2014). For NAcc specifically, it has been found that increase in left (but not right) 



NAcc was related to higher levels of BAS Drive (Urošević et al., 2012). This finding was similar 

to our finding that left increase in NAcc was related to more in-depth exploration but not right 

NAcc. Correlations between left and right NAcc ranged between .26 and .41, which suggest that 

left and right NAcc are correlated but also differ substantially. Future studies should further test 

the unique associations of left and right NAcc and identity formation processes. Our results add 

to the growing brain-behavior literature by showing that neurobiological underpinnings of goal-

directedness (i.e., the NAcc) are positively related to adolescents’ later commitment making and 

negatively related to reconsideration of identity commitments.  

Together, these findings suggest that different brain regions are involved in different 

processes of identity formation as described by the identity process model (Crocetti et al., 2008). 

That is, especially individual differences in initial levels of the left and right NAcc volume were 

most consistently involved in the process of identity formation, also referred to as the identity 

formation cycle. In this cycle, adolescents form commitments by considering and reconsidering 

them (Crocetti et al., 2008; Luyckx et al., 2006). This cycle constitutes two opposing forces of 

Erikson’s (1968) dynamic of identity synthesis (forming commitments) versus identity confusion 

(questioning identity commitments). The NAcc has been related to goal-orientation and 

motivated behavior (e.g., Urošević et al., 2012). Therefore, individual differences in NAcc 

volume may especially facilitate the process of pursuing and making certain identity 

commitments, which is central to the identity formation cycle. 

In contrast, individual differences in PFC volume were related to processes involved in 

the maintenance cycle of identity formation. The PFC has been involved in information seeking 

and cognitive control (Casey, 2015). Our empirical findings further support this function of the 

PFC. Specifically, we found that adolescents with greater right PFC volume at baseline were 



more involved in in-depth exploration of the commitments they already have by actively 

reflecting on their identity choices, and searching for information about these commitments. 

Also, adolescents who showed a less steep decrease in their right PFC volume reported higher 

levels of exploring their commitments in-depth. These findings seem to further confirm the role 

of the PFC in several behaviors that involve certain levels of cognitive control (Casey, 2015). 

For example, more PFC grey matter volume has been related to more long-term goal-orientation, 

self-reflection (Blakemore, & Choudhury, 2006), and information seeking behaviors (Casey, 

2015). In-depth exploration of identity commitments, involving active reflection upon current 

commitments, is one such task involving these aspects of cognitive control (e.g., Crocetti et al., 

2008; Meeus et al., 2010). Consistent with this role of the PFC, those adolescents with less 

steeply decreasing PFC volume, and thus relatively more volume across adolescence, were more 

actively thinking and gathering information about their identity commitments. Our findings that 

continued higher levels of grey matter volume were related to a stronger identity seem to support 

a popular neuroscience perspective on adolescent development. According to this perspective, 

brain changes during adolescence might not only explain increased risk taking but also 

increasing flexibility to change and adaptation (Casey, 2015; Crone & Dahl, 2012). The 

formation of a stable sense of identity can be considered one such complex but important 

adaptive task in order to prepare for adult roles (Blakemore & Mills, 2014; Erikson, 1968). 

Interestingly, the results showed that developmental changes in grey matter volume occur 

within relative stability. That is, when adolescents started with higher grey matter volume 

compared to their peers, most adolescents kept this position across adolescence. As such, these 

intercept differences might reflect a certain window of opportunity and plasticity for adolescents 

to develop a strong identity. Specifically, adolescents with higher initial grey matter volume or 



less steep decreasing grey matter volume, might have a larger window of opportunity to explore 

their identity compared to adolescents with lower levels of grey matter volume. It remains to be 

empirically tested how changes in brain regions and identity processes influence each other over 

time. Specifically, an important task for future work is to investigate the temporal order of brain-

behavior associations over time.  

Strengths, Limitations, and Future Directions 

 This study has several important strengths. First, our multi-sample design allowed us to 

test our hypotheses in two independent adolescent samples, supporting the replicability of our 

findings. Second, the longitudinal design of both studies allowed us to investigate how both 

individual differences at baseline and individual differences in developmental change in goal-

directedness and structural brain regions related to identity. Third, both studies had a relatively 

large sample, which increases the accuracy of our estimates. Fourth, this multi-method study 

examined both self-reported measures and neuroimaging data, an approach selected for 

furthering understanding of brain-behavior associations (e.g., Mills et al., 2014). 

 This current study also had some limitations. First, despite longitudinal assessment of 

NAcc and PFC volumes across three waves, we assessed identity as an outcome at one later time 

point, prohibiting us from controlling for stability in identity dimensions in previous waves. 

Future studies should test concurrently ascertained correlated change and bidirectional 

associations between structural brain volume and identity to investigate possible developmental 

order. Second, we assessed goal-directedness at a global rather than a domain specific level, yet 

levels of goal-directedness can vary substantially across different content domains (Deci & 

Ryan, 2000). For example, adolescents’ drive of doing well in school may be a particularly 

important predictor of identity commitment making. Third, we only investigated structural 



differences in NAcc, PFC and identity, whereas profound changes in functional connectivity of 

subcortical and cortical regions, such as those involved in reward responses (e.g., van 

Duijvenvoorde et al., 2016) occur in adolescence. While we found that structural differences in 

NAcc predicted adolescents’ identity commitment making, some adolescents may experience 

more feelings of reward when making identity commitments. Future work could test this 

hypothesis by investigating how individual differences in functional connectivity in reward 

processing regions relate to adolescents’ commitment making. Fourth, we averaged across four 

subdivisions in the PFC: rostral middle frontal, caudal middle frontal, caudal anterior cingulate 

and superior frontal, allowing direct comparison with Mills et al. (2014). While our results 

showed highly consistent developmental trajectories with past work, future work should examine 

differentiation between PFC subregions. We also focused primarily on lateral PFC given its 

hypothesized relation with goal-directedness, but medial PFC may be more important for 

internalized deliberation about the self (Crone & Steinbeis, 2017). Finally, both studies used data 

from adolescents of relatively high SES families living in The Netherlands. Thus, findings based 

on self-report measures may not generalize to adolescents living in other countries or from lower 

SES families.  

Conclusion 

 The present study is one of the first to combine longitudinal assessment of brain 

development and psychosocial data offering a novel perspective on the neurobiological 

development underlying adolescents’ identity formation. We used a comprehensive assessment 

of processes related to identity development by relating both the trajectory of goal-pursuit as well 

as NAcc and PFC structural development to adolescents´ subsequent identity. Our findings 

confirmed the hypothesis that adolescents’ views about their identity are predicted by the 



developmental trajectories of level and change of self-reported goal-pursuit and structural brain 

regions. Adolescents with higher goal-pursuit and higher NAcc volume reported stronger identity 

commitments and less uncertainty about these commitments. Moreover, adolescents with higher 

PFC volume and more protracted PFC volume development reported more reflection on their 

identity commitments in order to strengthen and maintain them. The current findings are the first 

evidence of brain-behavior relations involving adolescents’ identity formation, and set the stage 

for future longitudinal studies of linkages between white brain matter and other indices of neural 

function (e.g., resting state connectivity) on the one hand and identity on the other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Online supplementary material S.1 

Because adolescents in both studies varied significantly in age at each measurement wave, we 

applied a model where individually varying times of observations could be estimated (i.e., 

TSCORES option in Mplus, Muthén & Muthén, 1998-2012). In conventional LGM, it is 

assumed that data are collected at an identical set of fixed ages for all individuals (Mehta & 

West, 2000). In these models, slope factor loadings of a linear slope are fixed across all 

individuals to be 0, 1, 2, for Waves 1-3, respectively. However, with the TSCORES option the 

LGM takes into account heterogeneity in age at each measurement wave. That is, rather than 

defining linear growth with fixed factor loadings, age is now included in the model as a defining 

variable to scale the factor loadings and estimate the growth curve. Consider the example where 

we put the intercept at age 12 years. In this example, the starting point of the developmental 

trajectory is set at age 12 by fixing the factor loading for each observed measure for each 

individual to reflect deviation in years from age 12. Therefore, because adolescents vary in age at 

each measurement wave, the factor loadings are unique to each individual. For instance, an 

adolescent with an actual age of 12 years at the first measurement wave will obtain the linear 

slope factor loadings of 0, 1, and 2 for age 12, 13, and 14 years, respectively. However, an 

adolescent aged 15 years at the first measurement wave will obtain linear slope factor loadings of 

3, 4, and, 5 for age 15, 16 and 17 years, respectively. Thus, each individual contributes to the 

estimation of parts of the growth trajectory for ages at which he or she does provide data (please 

see Mehta & West, 2000 for a detailed discussion of modelling individually varying times of 

observations). 

 

 

 

 

 

 

 

 

 



 

 

Table S.2 

Means, Standard Deviations, and Correlations of BAS Drive, and Identity (Study 1) 

 Variable M SD   2. 3.   4.  5.    6. 

1. BAS Drive T1 12.54 1.95 .26*** .18*** .04 .06 -.08 

2. BAS Drive T2 12.50 1.95 

 

.39*** .09 .06 -.07 

3. BAS Drive T3 12.64 2.14 

  

.23*** .21*** -.15** 

4. COM. T4 3.57 0.72 

   

.56*** -.41*** 

5. EXP. T4 3.21 0.65 

    

-.08 

6. REC. T4 2.02 0.81           

 

 

 

 

Note. BAS = Behavioral Activation System, COM = commitment, EXP = exploration 

in-depth, REC = reconsideration. 

*p <.05. **p<.01. ***p <.001. 
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Tesla Philips Achieva MRI system, with a standard whole-head coil (Philips, Best, The 

Netherlands) at Leiden University Medical Centre. High-resolution T1-weighted anatomical 

scans were acquired (TR=9.8 ms, TE = 4.6 ms, flip angle = 8°, 140 slices, 0.875 mm x 0.875 mm 

x 1.2 mm, and FOV = 224 x 177 x 168 mm). Scan time for the anatomical scan was 296 s. A 

radiologist evaluated all T1 scans and no anomalous findings were reported. With respect to 

image processing, cortical reconstruction was performed with the longitudinal stream (Reuter et 

al., 2012) in FreeSurfer 5.3, a program for cortical surface reconstruction and volumetric 

segmentation (http://surfer.nmr.mgh.harvard.edu/). The procedure and technical details are 

described elsewhere (Fischl, Sereno, & Dale, 1999a; Fischl, Sereno, Tootell, & Dale, 1999b; 

Reuter, Schmansky, Rosas, & Fischl, 2012). To extract reliable volume estimates, an unbiased 

within-subject template space and image (Reuter & Fischl, 2011) is created using robust inverse 

consistent registration (Reuter et al., 2010). Several processing steps, such as skull stripping, 

Talairach transformation, atlas registration as well as spherical surface maps and parcellations 

are then initialized with common information from the within-subject template, significantly 

increasing reliability and statistical power (Reuter et al., 2012).  

 Parcellation of the cortex into gyral regions was based on the Desikan-Killiany-Tourville 

atlas (Klein & Tourville, 2012). This labelling process involved surface inflation (Fischl et al., 

1999a) and registration to a spherical atlas based on subject specific cortical folding patterns 

(Fischl et al., 2004a, b). 
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Table S.4 

Means, Standard Deviations, and Correlations of BAS Drive, NAcc, PFC, and Identity (Study 2) 

 

 

 

Note. BAS = Behavioral Activation System, NAcc = Nucleus Accumbens, PFC = Pre-frontal cortex, COM = commitment, EXP = 

exploration in-depth, REC = reconsideration. Raw mean scores for NAcc and PFC volume have been transformed to facilitate 

reliable estimation of parameter estimates. To obtain the original raw scores again please multiply NAcc by 100 and PFC by 10000. 

*p <.05. **p<.01. ***p <.001. 
 

 


