

Enumerative arithmetic

Pagano, C.

Citation

Pagano, C. (2018, December 5). *Enumerative arithmetic*. Retrieved from https://hdl.handle.net/1887/67539

Version:	Not Applicable (or Unknown)
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/67539

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/67539</u> holds various files of this Leiden University dissertation.

Author: Pagano, C. Title: Enumerative arithmetic Issue Date: 2018-12-05 Stellingen

Stellingen

1

Let p be a prime number and let K be a field with $\operatorname{char}(K) = p$. Let $\Gamma \subseteq K^* \times K^*$ be a finitely generated subgroup. Denote by $r := \dim_{\mathbb{Q}}(\Gamma \otimes_{\mathbb{Z}} \mathbb{Q})$. Then

$$\#\{(x,y) \in \Gamma - \Gamma^p : x + y = 1\} \le 31 \cdot 19^r.$$

2

Let p be an odd prime number and denote by ζ_p an element of $\mathbb{Q}_p^{\text{sep}}$ having multiplicative order equal to p. Let d be in $p\mathbb{Z}_{\geq 1}$. For each $h \in \{1, ..., d-1\}$ we say that a polynomial $g(x) = x^d + \sum_{i=0}^{d-1} a_i x^i$ in $\mathbb{Q}_p(\zeta_p)[x]$ is h-Eisenstein if $a_i \in (1-\zeta_p)\mathbb{Z}_p[\zeta_p]$ for each $i \in \{0, ..., d-1\}$ and $a_i \in (1-\zeta_p)\mathbb{Z}_p[\zeta_p] - (1-\zeta_p)^2\mathbb{Z}_p[\zeta_p]$ if and only if $i \in \{0, h\}$.

Let k, j be in $\{1, ..., d-1\}$ with gcd(p, kj) = 1, and let $r_1(x), r_2(x)$ be respectively k- and j-Eisenstein polynomials of degree d. Then one has k = j if and only if there is a group isomorphism $\varphi : (\frac{\mathbb{Z}_p[\zeta_p][x_1]}{r_1(x_1)})^* \to (\frac{\mathbb{Z}_p[\zeta_p][x_2]}{r_2(x_2)})^*$ such that

$$\varphi(1+x_1^n \frac{\mathbb{Z}_p[\zeta_p][x_1]}{r_1(x_1)}) = 1+x_2^n \frac{\mathbb{Z}_p[\zeta_p][x_2]}{r_2(x_2)},$$

for every positive integer n.

3

For a number field K and a positive integer c, we denote by Cl(K) the class group of K and by Cl(K, c) the ray class group of conductor c of K.

Let l be a prime number congruent to 3 modulo 8. Let \mathcal{P} be the set of imaginary quadratic number fields K such that $\operatorname{disc}(K)$ is congruent to 1 modulo 4, $2\operatorname{Cl}(K)[2^{\infty}]$ is a cyclic non-trivial group and l is inert in K. Let \mathcal{P}_0 be the set of $K \in \mathcal{P}$ such that $\operatorname{Cl}(K, l)[2^{\infty}] \simeq_{\operatorname{ab.gr.}} \mathbb{Z}/4\mathbb{Z} \oplus \operatorname{Cl}(K)[2^{\infty}]$. We have that

$$\lim_{X \to \infty} \frac{\#\{K \in \mathcal{P}_0 : |\operatorname{disc}(K)| < X\}}{\#\{K \in \mathcal{P} : |\operatorname{disc}(K)| < X\}} = \frac{1}{2}.$$

Moreover, if $K \in \mathcal{P} - \mathcal{P}_0$ then $2\mathrm{Cl}(K, l)[2^{\infty}]$ is also cyclic with $\#2\mathrm{Cl}(K, l)[2^{\infty}] = 2 \cdot \#2\mathrm{Cl}(K)[2^{\infty}].$

Let G be a topological group and H a normal subgroup of G. A set of topological normal generators of H in G is a subset X of H such that $\{gxg^{-1} : x \in X, g \in G\}$ is a set of topological generators of H.

Let p be a prime number and suppose that G is a pro-p group. Let moreover r be a positive integer. Then the group G is isomorphic to \mathbb{Z}_p^r if and only if for every open normal subgroup N of G, a set of topological normal generators of N in G of smallest possible size has cardinality r.

$\mathbf{5}$

Let L/K be a finite Galois extension of fields, with $\operatorname{Gal}(L/K)$ being an elementary abelian 2-group and with $\operatorname{char}(K) \neq 2$. Denote by $\mathbb{F}_2[\operatorname{Gal}(L/K)]$ the group ring of $\operatorname{Gal}(L/K)$ with coefficients in \mathbb{F}_2 ; this is a local Gorenstein \mathbb{F}_2 -algebra. For an element $\alpha \in L^*$ denote by $\tilde{L}_{\sqrt{\alpha}}$ the normal closure of $L(\sqrt{\alpha})$ over K. Then the element $N_{L/K}(\alpha)$ is not in L^{*2} if and only if

$$\operatorname{Gal}(\tilde{L}_{\sqrt{\alpha}}/K) \simeq_{\operatorname{grb.}} \mathbb{F}_2[\operatorname{Gal}(L/K)] \rtimes \operatorname{Gal}(L/K),$$

where the implicit action in the semidirect product is given by the regular representation.

6

Let r be a positive integer and p a prime number. Let A be a free module over the ring $\mathbb{Z}/p^{r+1}\mathbb{Z}$ and G be a subgroup of $\operatorname{Aut}_{\operatorname{gr}}(A)$. Suppose that $p-1 > \operatorname{rk}_{\mathbb{Z}/p^{r+1}\mathbb{Z}}(A)$ and that A^G admits a cyclic direct summand of size p^r . Then there exists a cyclic subgroup H_0 of G such that A^{H_0} admits a cyclic direct summand of size p^r .

 $\mathbf{7}$

Let p be a prime number. Let $G := (\mathbb{Z}/p\mathbb{Z})^2$. Then there is a $\mathbb{Z}/p^2\mathbb{Z}[G]$ -module A, free of rank p(p+1) as a $\mathbb{Z}/p^2\mathbb{Z}$ -module, such that A^G admits a cyclic direct summand of size p, but A^H doesn't for any proper subgroup H of G.

For a commutative ring R and for an R-module N, the annihilator of N is the set $\operatorname{Ann}_R(N) := \{x \in R : \forall n \in N, xn = 0\}$; it is an ideal of R. An R-module N is said to be faithful if $\operatorname{Ann}_R(N) = 0$.

8

Let R be a commutative ring, M a faithful R-module and J an ideal of R. Then $M/\operatorname{Ann}_R(J)M$ is a faithful $R/\operatorname{Ann}_R(J)$ -module.

9

Let k be a field and A a commutative k-algebra such that $\dim_k(A) < \infty$. Suppose A has a unique maximal ideal m_A , and that $\dim_k(A/m_A) = 1$. Let M be a faithful A-module. Then

$$\dim_k(M) \ge 2\sqrt{\dim_k(A)} - 1.$$