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CHAPTER

4-Ranks and the general model for
statistics of ray class groups of imaginary
quadratic number fields

C. Pagano and E. Sofos






4-RANKS AND THE GENERAL MODEL OF RAY CLASS GROUPS

4-RANKS AND THE GENERAL MODEL FOR STATISTICS OF RAY
CLASS GROUPS OF IMAGINARY QUADRATIC NUMBER FIELDS

C. PAGANO AND E. SOFOS

ABSTRACT. We use homological algebra to extend the Cohen—Lenstra heuristics to the set-
ting of ray class groups of imaginary quadratic number fields, viewed as exact sequences of
Galois modules. By asymptotically estimating the mixed moments governing the distribu-
tion of a cohomology map, we prove these conjectures in the case of 4-ranks.
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1. INTRODUCTION

Let ¢ be a positive odd square-free integer. Partition the set of its prime divisors, S, into
S1 U Ss, where if [ € S; then [ = i (mod 4). For an imaginary quadratic number field K,
denote by CI(K ¢) the ray class group of K of conductor ¢, and by D(K) the discriminant
of K. Let j; and j be two non-negative integers. The following theorem will be shown to
be a special case of the present work.

Theorem 1.1. Consider all imaginary quadratic number fields K such that D(K) = 1 (mod 4)
and Ok /¢ =ying | |1 Fiz. When such K are ordered by the size of their discriminants the
fraction of them that satisfy

rky(CU(K)) = ji1, tky(CUK, ) = jo

approaches

15(2)  #{p € Homg, (F)', F§™) : tk(p) = #S — (jo — j1)}
15, (2)2291 # Homg, (F}', F5) '

For M € Z>; and s € Z=; U {o0}, ns(M) denotes [ [}_,(1— M 7). For the statement in full
generality see Theorem 5.4.

Date: November 7, 2018.
2010 Mathematics Subject Classification. 11R65, 11R29, 11R11, 11R45.
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C. PAGANO AND E. SOFOS

The special case ¢ = 1 of Theorem 1.1 recovers a result of Fouvry and Kliiners [7, Cor.
1] (in the subfamily of imaginary quadratic number fields above). The theorem of Fouvry
and Kliiners on 4-ranks is one of the strongest pieces of evidence for the heuristic of Cohen—
Lenstra and Gerth about the distribution of the p-Sylow subgroup of the class group of an
imaginary quadratic number field.

Indeed, for odd primes p, Cohen and Lenstra [4] constructed a heuristic model to predict
the outcome of any statistic on the p-Sylow of the class group of imaginary quadratic number
fields. For every prime p they equipped the set of isomorphism classes of abelian p-groups,
%, with the only probability measure that gives to each abelian p-group G a weight inversely
proportional to # Aut(G). This measure is now often called the Cohen—Lenstra measure on
¢,, and denoted by pcr. Their heuristic model, for odd primes p, consisted in predicting
the equidistribution of CI(K)[p*] in ¥, as K ranges through natural families of imaginary
quadratic number fields. Later, Gerth [9] adapted this heuristic model for p = 2. His idea was
that the only obstruction for C1(K)[2%] to behave like a random abelian 2-group in the sense
of Cohen—Lenstra comes from Cl(K)[2]; therefore his heuristic model is that 2 C1(K)[2%]
behaves like a random abelian 2-group. The result of Fouvry and Kliiners can then be
formulated by saying that, consistently with Gerth’s conjecture, the 2-torsion of 2 Cl(K)
behaves like the 2-torsion of a random abelian 2-group in the sense of Cohen—Lenstra.

Before the present paper, no analogue of any of these heuristics has been proposed for
ray class groups. Our second main achievement, aside from the proof of Theorem 1.1, is
to provide an extension of the Cohen—Lenstra and Gerth heuristics for ray class groups.
We obtain this by means of two innovations, one of a rather conceptual nature and one
of a technical nature. Namely we first introduce the novel viewpoint of using homological
algebra to weight the possible occurrences of ray class groups, as explained in §2. Secondly, to
overcome the difficulties imposed by p = 2, we introduce in §3 the new notion of embeddable
extensions (see Definition 3.2). This notion allows us to take care of the additional structure
of this case, furnishing a natural way to define the adjusted weights for the 2-part of ray class
groups. Theorem 1.1 will then be a strong evidence supporting our new heuristic for ray class
groups and precisely in the case where our heuristic has the most demanding algebraic shape.
The agreement of Theorem 1.1 and our heuristic at p = 2 is established in Proposition 3.5.

With our model we can provide the conjectural analogue of Theorem 1.1 for all odd primes
p. Partition S into Sy U ... U S, 1, where [ € S; if I = ¢ (mod p).

Conjecture 1.2. Let p be an odd prime. Consider all imaginary quadratic number fields
K having the property Or/c =ying | [jcsFiz. When such K are ordered by the size of their
discriminants the fraction of them that satisfy

rk,(CI(K)) = j1, 1k, (CL(K, c)) = j2
approaches
No(p)  #{ip € Homg, (F F) ™) : 1k(p) = #81 + #8,11 — (2 — 1)}
15, (p)*p # Homg, (F3!, FY )

For the statement in the general case see Conjecture 2.10, in particular, in the main body
of the paper, we shall allow any admissible ring structure for 0 /c. From our model in its
full generality we shall derive conjectural formulas for the average size of the p-torsion of ray
class groups of imaginary quadratic number fields.

26
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Conjecture 1.3. Let p be an odd prime. The average value of # CI(K, ¢)[p] as K ranges over
imaginary quadratic number fields with ged(D(K),c) = 1 and ordered by their discriminant

18:
(1)
il prime: lle1=1(mod p)} (1 L (p + 1)#“ prime: ljel=1 or —1(mod P”)

if p? does not divide c,
(2)

p#{l prime: I|c,l=1(mod p)}+1 (1 + p(p'; 1)#{1 prime: l|c,/=1 or —1(mod p)})
if p* divides c.

For p = 3 this conjecture was recently proved by Varma [18] using geometry of numbers.
In [18, §1] she asked whether one can formulate an extension of the Cohen-Lenstra heuristic
that explains her result. Our model for ray class groups settles this for imaginary quadratic
number fields (for the full comparison with Varma’s result see §2.2).

Our main theorems and conjectures are not merely about the group CI(K,c) but also
about the entire exact sequence naturally attached to it:

*
1— M — Cl(K,¢) - CI(K) — 1.
Ok
For simplicity, in this section we will continue to assume that all the primes in S are inert
in K. Then one can show that there is a long exact sequence whose first terms are

1= () 21— ooz - @aum)i =¥ 11 E
((aggc;*)z P2

To obtain the last map one chooses any identification between + and HZES ]F% via
12

(“exp=)

an identification of the rings Ok /c and [[,.gFp. The resulting set of maps is an orbit

under Autyiyg (] [,cq Fi2), acting by post-composition. But Autyg(] [,cq Fi2) acts trivially on
*2

¥ L. . .
HleS3 =7, 50 one has a canonical identification.
12

%2
Let Y be a subspace of | [, S %ﬁ; and j a non-negative integer. In this setting we manage to
s 5
control the statistical distribution of (#2 C1(K))[2], Im(d2(K)), thus providing a considerable
refinement of Theorem 1.1. Our result is as follows.

Theorem 1.4. Consider all imaginary quadratic number fields K such that D(K) = 1 (mod 4)
and O /¢ Zing | |1cgFrz. When such K are ordered by the size of their discriminants the
fraction of them that satisfy

(2CI(K))[2] = F), Tm(5(K)) = ¥
approaches
1 (2) # Epig, (F}, Y)
12 g Home, (7 T, 5)
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This means that (#(2Cl(K))[2],Im(d2(K))) behaves like (#G[2],Im(0)), where G is a
random abelian 2-group in the Cohen-Lenstra sense, and § : G[2] — F¥™ is a random map.
For the statement in full generality see Theorem 5.2. We show in §3 that this result is also
predicted by our heuristic model. Our model enables us to provide a conjectural analogue
of Theorem 1.4 for all odd p. Its formulation is in Conjecture 2.8.

Theorem 1.4 determines the joint distribution of the pair (#(2 Cl(K))[2], Im(d2(K))).
Theorem [7, Cor.1] of Fouvry and Kliiners determines the distribution of the first component,
#(2CI(K))[2] via the use of another result of the two authors, [8, Theorem 3|, where they
obtained asymptotics for all moments of #(2 C1(K))[2]. A surprising feature of our work is
that we establish the joint distribution of the pair (#(2 C1(K))[2], Im(02(K))) by means of
the moment-method, despite the fact that Im(d2(K)) is not a number. Although the general
philosophy of using moments to study distributions is standard in the literature related to
the Cohen—Lenstra heuristics (see, for example, [22]), we stress that no object like the image
of the §-map has been treated in the subject. It is instructive to see how we incorporate
the image-data into the Fouvry—Kliiners method. We do this by introducing for every real
character y : ]_[le S IF‘;;Z — R*, the random variable

my (02(K)) = #ker(x(62(K)))-
To know the pair (#(2 Cl(K))[2], Im(d2(K))) is equivalent to knowing (m,(d2(K))),. How-
ever, the advantage is that the latter is a numerical vector and therefore one can hope to
apply the method of moments to control its distribution. This is precisely what we achieve
in Theorem 5.6. The expressions that appear during the proof of Theorem 5.6 are of the

shape

> [ImG:@(v=D)),

D<X x
where D ranges over all positive square-free integers with D = 3 (mod 4) and y ranges
over all real characters x : [[,.g, Fp — R*. As explained in §6.1, the additional complex-
ity of these expressions compared to the classical case settled by Fouvry and Kliiners, is
tempered by the fact that, with our heuristic model for ray class groups, we already have
a candidate main term. In particular, the shape of its expression suggests a way to sub-
divide the sum, with the benefit of hindsight, in many smaller sub-sums. For each of these
sub-sums it turns out that the techniques of Fouvry and Kliiners are applicable with only
minor modifications. After proving Theorem 5.6 we turn our attention to the distribution
of (#(2 CU(K))[2], Im(d2(K))), which we reconstruct from the mixed moments by following
an argument of Heath-Brown [10].

We stress that Theorem 1.4 is stronger than Theorem 1.1. Here the finer information
(which is the image of the d-map), is obtained precisely owing to the fact that we use ring
identifications rather than merely group identifications'. Using the latter we could have
studied only the size of Im(d2(K)), which is precisely what occurs in Theorem 1.1. On the
other hand, it is important to note that the techniques employed in the proof of Theorem 1.4
are not applicable in studying directly the moments of the isolated quantity #(2 C1(X ¢))[2]:
we can access the distribution of the quantity #(2 Cl(X, c))[2] only by the moments of a
finer object, the J-map. This contrast reflects the fact that the natural algebraic structure
attached to the ray class group is the entire exact sequence naturally attached to it, rather
than just the isolated group CI(K,c). It is precisely this phenomenon that leads us to

IWe thank Hendrik Lenstra for having suggested this.
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formulate a general heuristic for ray class sequences of conductor ¢. In this framework,
Theorem 1.4 gives compelling evidence that our heuristic model predicts correct answers
also when it is challenged to produce the outcome of statistics about the ray class sequence,
and not only when, less directly, one isolates the group CI(K, ¢).

Encouraged by this corroboration, we formulate our heuristic to predict the outcome of any
statistical question about the p-part of the ray class sequence, viewed as an exact sequence
of Galois modules. A positive side effect of this enhanced generality is the consequent logical
simplification of our conjectural framework: our heuristic is based on a simple unifying
principle, which, if true, implies at once all our conjectures. This heuristic principle is stated
in §2 for an odd prime p, and in §3 for p = 2.

Let p be an odd prime and G a finite abelian p-group. The following is an attractive and
easy example of the conjectural conclusions that are available in this new model:

Conjecture 1.5. Consider all imaginary quadratic number fields K having the property
that O /c =ing [ [1eg Fiz. When such K are ordered by the size of their discriminants, the
fraction of them having the properties that the p-part of the ray class sequence of modulus ¢
splits and

CI(K)[pJO] ;ab.gr. G7
approaches

1 (P) 1
# Autahgr. (G) # Honlab4gr.(G> Hles,,,l Fl*z)

1.1. Comparison with the literature. The present work sits in an active area of research
focused on extending the classical Cohen—Lenstra heuristics to other interesting arithmetical
objects and on establishing the correctness of these statistical models in cases where an
‘analytically-friendly’ description of the problem is available. Developments along this line
of research can be found in the very recent work by Wood [21], which provides a heuristic
for the average number of unramified G-extensions of a quadratic number field for any
finite group G: the Cohen-Lenstra heuristics are recovered by taking G to be an abelian
group. It would be interesting to reach the generality of both the present paper and [21], by
considering G-extensions with prescribed ramification data. The evidence provided in [21] is
over function fields, by means of the approach of Ellenberg, Venkatesh and Westerland [6]. In
a recent preprint, Alberts and Klys [1] offered evidence for the heuristics in Wood’s work [21]
over number fields using the approach of Fouvry and Kliiners. It is interesting to note that
in a previous work Klys [14] extended the work of Fouvry and Kliiners to the p-torsion of
cyclic degree p extensions. These last two examples, together with the present work, show
the remarkable versatility of the method used in [8] and pioneered (in the context of Selmer
groups) by Heath-Brown [10].

The case of narrow class groups was investigated by Bhargava and Varma [3] and by
Dummit and Voight [5]. The latter work provides, among other things, a conjectural formula
for the average size of the 2-torsion of narrow class groups among the family of S,-number
fields, for odd n. For n = 3, this was a theorem of Bhargava and Varma [3].

Very recently, Jordan, Klagsbrun, Poonen, Skinner and Zaytman [13] made a conjecture for
the distribution of the p-torsion of K-groups of real and imaginary quadratic number fields.
Building on the recent improvement of the work of Bhargava, Shankar and Tsimerman [2],
they established their conjecture for the average size of the 3-torsion. Incidentally, the
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work [2] is also employed by Varma [18] on the average 3-torsion of ray class groups, which
is placed in a general conjectural framework by the present paper.

Despite this rich context of developments, the present paper is, to the best of our knowl-
edge, the first one to propose a heuristic model for the ray class sequence of imaginary
quadratic number fields and to prove its correctness for the pair (#(2 C1(K))[2], Im(d2(K))),
establishing, as a corollary, the joint distribution of the 4-ranks of C1(K) and CI(K, c).

1.2. Organization of the material. The remainder of this paper is organized as follows:
In §2 we explain our heuristic model for the distribution of the p-part of ray class sequences
of imaginary quadratic number fields, for odd primes p. We draw several conjectures from
this heuristic principle and verify its consistency with the theorems of Varma [18] in the
imaginary quadratic case.

In §3 we examine the case p = 2. This case requires some additional work to isolate
the ‘random’ part of the 2-Sylow of the ray class sequences of imaginary quadratic number
fields. This additional difficulty arises already for the ordinary class group as can be seen
in the work of Gerth [9]. However, for ray class sequences overcoming such difficulties is
much more intricate due to the more articulate underlying algebraic structures. This will
allow us to formulate a number of predictions that will be proved in §§5-7. A key step
in these proofs is the reformulation of the problem about 4-ranks into a purely analytic
problem about mixed moments. For this we introduce the notion of special divisors in §4
and certain related statistical questions that will be subsequently answered. This statistic is
a special case of a ray class group statistic, as subsequently established in §5. Therefore the
material of §3 would implicitly provide a heuristic for it. Nevertheless, in §4 we present the
problem and the heuristic in a direct way using the language of special divisors. This has
the advantage that §4, Theorems 5.6-5.7, §6 and §7 are mostly analytic in nature and can
be read independently of the algebraic considerations in §2 and §3.

In §5 we state the main theorems about the 2-part of the ray class sequences and reduce
their proof so as to establish the predictions in §4. The section ends with the statement of
the corresponding main theorems on special divisors. In §6 we prove the main theorem on
mixed moments attached to the maps on special divisors introduced in §4. Finally, in §7 we
reconstruct the distribution from the mixed moments, concluding the proof of all theorems
stated in §5.

Notation. The symbol D(K') will always refer to the discriminant of a number field K. Let
us furthermore denote

F = {K imaginary quadratic number field}.

Acknowledgements. We are very grateful to Hendrik Lenstra for several insightful discus-
sions and for useful feedback during the course of this project. In particular, we thank him
for suggesting to consider the first terms of the ray class sequences only up to ring automor-
phisms, which turned out to be a natural level of greater generality where we could prove our
main theorems on 4-ranks. We thank Alex Bartel for many stimulating discussions about
our work, as well as organizing an inspiring conference on the Cohen—Lenstra heuristics in
Warwick in July 2016, where this project started. We also wish to thank Djordjo Milovic
and Peter Koymans for useful discussions and Ila Varma and Peter Stevenhagen for prof-
itable feedback. Furthermore, we thank Alex Bartel, Joseph Gunther and Peter Koymans
for helpful remarks on earlier versions of this paper.
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2. HEURISTICS AND CONJECTURES FOR p ODD

Let p be an odd prime number and ¢ a positive integer. Denote by Cy a group with 2
elements and denote by 7 its generator. In this section we provide a heuristic model that
predicts the statistical behavior of the exact sequence of Z,[Cs]-modules attached to the ray
class group of conductor ¢ of an imaginary quadratic number field K. Denote it by

. (ﬁK/C)* 0 0 o0
Sy(E) = (1= =5 l] = QUK 7] = CUE)[p7] = 1), (2.1)
where the Ch-action comes from the natural action of Gal(K/Q) on each term of the sequence.
The reader is referred to [15, §IV] for related background material. We shall call S,(K) the p-
part of the ray class sequence of conductor ¢. We shall henceforth ignore the fields K = Q(i)
and K = Q(+/=3), to ensure that 0} = (—1). Owing to p # 2 we furthermore have
(O /e)* [{=1)[p*] = (Ok/c)*[p™], thus allowing us to write

Sp(K) := (1 = (Ok/c)*[p”] — CUK, )[p”] — CUK)[p*] = 1).

Denote by ¥, a set of representatives of isomorphism classes of finite abelian p-groups,
viewed as Cy-modules under the action of —Id and call G,(K) the unique representative
of CI(K)[p™] in %,. Any family of imaginary quadratic fields can be partitioned in finitely
many subfamilies where the isomorphism class of the ring O /c is fixed, by imposing finitely
many congruence conditions on the discriminants. Therefore we can always assume that
(Ok/c)* has been fixed as the unit group of some ring that is independent of K.

Definition 2.1. Let K, ¢ be as above and R a finite commutative ring. We shall say that
K is of type R if O /char(R) = R as rings. With this definition in mind let us denote

Z(R) := {K imaginary quadratic number field of type R}.

From now on we will assume that R is of the form R := O, /c, where O, is the integral
closure of H”C Z;in o = ]_[”C E;, with F; being an etale Q;-algebra of degree 2. Under this
assumption, a positive fraction of all discriminants lies in % (R).

Suppose K is of type R. Then (Ok/c)* can be identified with R* via any restriction of a
ring isomorphism, that is via any element of Isom,in (O /¢, R). Furthermore, we can identify
CI(K)[p™] and G,(K) via any element of Isom,y, . (C1(K)[p*], G,(K)). Therefore applying
Isomying (Ok /¢, R) % Isomyy, ¢ (C1(K)[p™], Gp(K)) to S,(K), we obtain a unique orbit

Ocp(K) € Exty, ) (Gp(K), B*[p™])/(Autring (R) x Autap g (Gp(K)))-

We refer the reader to [19, §3] for definition and properties of Extg(A, B), where S is a ring
and A, B are S-modules. For the remainder of the paper, given S-modules A, B,C, A’, B’
and C’, we call a commutative diagram of S-modules, a diagram of maps of S-modules

0 — Bl—> Cl g A1—>0

f1 g1
Vi L 13
0 g BQ i CQ i A2 g 07
fa g2
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with 9 0 fi = fa oty and 930 g1 = g2 092, Note that CI(K1)[p™] =ap g CL(K2)[p*] and
Ocp(K1) = O, p(K>) if and only if there is a commutative diagram of Z,[Cs| modules
0 — (Ok /)" [p"] — CUKy, o[p"] — CUK)[p*] -0
X L o2 1 o3
0 = (Ok,/c)*[p"] = ClUK20)[p”] — CUK;)[p*] -0,

with ¢ being the restriction of a ring isomorphism and @3 being an isomorphism of abelian

groups.

Definition 2.2. Define .7,(R) as the set of equivalence classes of pairs (G, ¢), where
Ge%9,, e Exty c,)(G,R*[p”])

under the following equivalence relation: two pairs (G, 0;), (G, 05) are identified if Gy = G4
and #; and 6, are in the same Autyi,g(R) X Autyp, g (G1)-orbit.

Let us denote by %(R) the set of pairs (G, 6) where G € 4, and 0 € Exty, (c,)(G, R*[p*]),
thus bringing into play the quotient map 7 : %(R) — Z,(R). We are interested in studying
the distribution of S,(K') given by the pair

K — S)(K) := (Gy(K), Ocp(K)) € S(R).

Definition 2.3. Let picr, be the unique probability measure on ¢, which gives to each abelian
p-group G a weight inversely proportional to the size of the automorphism group of G.

This measure was introduced by Cohen and Lenstra in [4] to predict the distribution of
Gp(K), the first component of S} (/). We shall introduce a measure on .%,(R) that enables
us to predict the joint distribution of the vector S(K’). Consider the discrete o-algebra on

both 5’;,/(}?)7 Zp(R) and equip %(R) with the following measure,

~ toL(G)
weq((G, 0
/L q(( )) #EXth Cz (G R [ ])
Let figeq 1= Ta(fiseq) be the pushforward measure of [iseq on .7,(R) via m. It is evident

that fiseq and piseq are probability measures. We now formulate a heuristic which roughly
states that ray class sequences equidistribute within the set of isomorphism classes of exact
sequences with respect to the measure figeq.

Heuristic assumption 2.4. For any ‘reasonable’ function f : .%,(R) — R we have

lim ${K e F(R): D) < X} Y] [(S,(K) = Y, S(S)usea(S
KeZ (R Se.7p(R)
| D( K)|<X

Letting f be the indicator function of a singleton yields the following statement.
Conjecture 2.5. For any S € .%,(R) we have

1oy PHE € F(R): | DK)| < X, Si(K) = 5} )
= #{K e Z(R):|D(K)| < X} = Hseq(5).

A special concrete example is the case of split sequences.
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Conjecture 2.6. The fraction of K € .Z(R), ordered by the size of their discriminant,
Jor which CI(K)[p*] Zaber. G and the p-part of the ray class sequence of modulus ¢ splits,
approaches
per(G)
# Homab.gn(Gv R* [p@],) ’
where (R*[p™])~ denotes the minus part of R*[p™]| under the action of Cs.
Indeed, Exty, [c,)(G, R*[p”]) = Exty, (G, (R*[p®])~) holds, hence Conjecture 2.6 is derived

from Conjecture 2.5 by recalling that for two finite abelian p-groups A, B, there is a non-
canonical isomorphism Exty (A, B) Zap.g. Homy, (A4, B).

2.1. Conjectures on the p-torsion. We next state certain consequences of Heuristic as-
sumption 2.4 regarding the p-torsion of the ray class sequences. Taking p-torsion in (2.1)
provides us with a long exact sequence whose first four terms are given by

) (Or/c)"
(Gx/e)*) )

where the map §,(K) is defined as follows: given a class « € CI(K)[p] pick a representative
ideal .# of x which is coprime to ¢, take a generator of #? and reduce it modulo ¢. The
choice of another representative does not change it modulo p-th powers. More generally,
taking p-torsion in any short exact sequence of Z,[C5]-modules

S:=(0—A—B—C—0)

S(E)[p] = (1 = (Ok/c)"[p] = CUK, c)[p] — CUK)[p]

provides us with a long exact sequence whose first terms are

() A
= |1— Alp] — B[p] — = —,
S[p] ( [p] = Blp] = CIp] pA),
where 0,,(5) is defined in the same way as explained above (in particular we have 0,(S,(K)) =
0p(K)). Thus this provides a map sending an element 6 of Extz, [¢,)(C, A) to a map §,(0) :
C[p] — A/pA. We will make repeatedly use of the following fact.

Proposition 2.7. The map sending 0 to 6,(0), from Exty, [c,)(C, A) to Homy, c,)(Clp], A/pA),
is a surjective group homomorphism.

The reader interested in a proof of Proposition 2.7, can look at the proof of the analogous,
but more complicated, Proposition 3.5: all the ingredients for the proof of Proposition 2.7
are contained in the proof of Proposition 3.5.

Next we shall define j := dimg, (CI(K)[p]) and apply any pair of identifications from
Isomg, (CI(K)[p], F}) x Isomyg(Ok/c, R). Therefore, we obtain a unique orbit of maps
¢ € Homg, (FJ, (%)_) under the action of GL;(F,) x Aut,,g(R). This is tantamount to
having a Aut,,g(R)-orbit of images in (%)’ of 0,(K’) via any of the previous identifications.
We denote this orbit by [Im(d,(K))]. The assignment K — [Im(d,(K))] attaches to each
imaginary quadratic field K € .Z.(R) a well-defined Aut,i,,(R)-orbit of vector sub-spaces of
(7) -

By Proposition 2.7, the map

EXth(G, R*[poo]—) N HOIHZP(G[])], (R*/R*p)—)
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induces, by pushforward, the counting probability measure from EthP(G, (R*[p™])7) to
Homgz, (G[p], (R*/R*)~). Therefore, fixing a sub-F,-space Y of ( R*p)’ and a non-negative
integer j, Heuristic assumption 2.4 supplies us w1th the following.

Conjecture 2.8. The proportion of K € Z (R) ordered by the size of their discriminant, for
which dimg, (CL(K)[p]) = j and [Im(6,(K))] is O(Y), the Autyyg(R)-orbit of Y, approaches

# Epig, (F,Y) - #0(Y)
# Homg, (F), (R*/R*)~)’

We will prove the analogous statement of this Conjecture 2.8 for p = 2 in Theorem 5.2. A
concrete special case is given by the following

pen(G € 9, - dimg, (G[p]) = J)

Conjecture 2.9. The proportion of K € F(R) ordered by the size of their discriminant,
for which dimg, (CY(K)[p]) = j and Cl(K, c)[p] splits as the direct sum of Cl(K)[p] and
(Ox/c)*[p], approaches

poL(G € 9, - dimg, (G[p]) = 7)

# Homg, (F}, (R*/R*)~)

More generally, as a cruder result, one derives a conjectural formula for the joint dis-
tribution of the p-rank of CI(K) and of CI(K,c), as follows. Fix jj,j2 two non-negative
integers.

Conjecture 2.10. As K wvaries among imaginary quadratic number fields of type R, the
proportion of them for which dimg, (C1(K)[p]) = j1 and dimg, (C1(K, ¢)[p]) = j» approaches

#lo By — (R/R™) :1k(p) = 1y (R7) — (2 — 1))}
# Homg, (FJ', (R*/R*)") '

The statements analogous to Conjectures 2.8 and 2.10 for p = 2 will be proved in Theo-
rem 5.3, with a more explicit version provided by Theorem 5.4.

e (G € 9, « dimg, (Glp]) = ji1)

2.2. Agreement with Varma’s results. In this section we make a certain choice for f
in Heuristic assumption 2.4 with the aim of stating conjectures for the average of p-torsion
of ray class groups. These statements were previously proved for p = 3 by Varma [18]. In
fact, the present paper partly began as an effort to fit her results into a general heuristic
framework.

For an element S € .%,(R), denote by M(S) the isomorphism class of the middle term
of the sequence corresponding to S. Similarly, for § € Extz,[c,) we denote by M (6) the
isomorphism class of the middle term of the equivalence class of sequences corresponding to
0. We will adopt the standard notation A for the dual of a finite abelian group A.

Proposition 2.11. We have

D #M(S)[plpsea(S) = #( 5;)+ (1 * #(R*p)_)'

Se7y(R)

Proof. By the definition of gy we obtain equality of the sum in our proposition with

poL(G)
2, # Ext, Cj] G, R*[p™]) 2, #M(6)[p]-

Ged, 0cExtz, [0y (G R*[p])
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Again by Proposition 2.7 we know that the map # — §,(#) is a surjective homomorphism
Extzp[cz](G, R*[p”]) — HOIan(G[p], (R*/R*")")

Thus we can rewrite the last sum as

pen(G #G[p]
Z # Homy, (G[p], R*/R*p Z #R* #Im( ) (2.2)

Ge9,

where the sum ;" is taken over ¢ in Homg (G[p], (R*/R*?)~). For each x in the dual of
(R*/R*)~ denote by 1, the indicator function of those ¢ for which x vanishes on the image
of 0. This allows us to recast (2.2) in the following manner,

Z # Homy,, (G = 5 ()R* R#p)~ Z #(R/R*) " #Gp] Z 1,(0),

Ge9, G(Rﬂ;@p)_
where ¢ varies over all elements in Homg, (G[p], ( %)‘). Exchanging the order of summation
yields
isettons, (G1pL( )7 ()
#(R/R) #Gpluci(G) ST :
G;% Z*\ # Homzp (G[p]7 (R*”) )

xe(£p) ™

The x-th summand in the last expression equals 1 if y is the trivial character and equals

#G%[p] otherwise, thus obtaining
R*/R*)™ —1
Ge% #(R*/R*) " #Gp] (1 + %)“CL(G)

Recalling the classical equality > ., #G[p]ucL(G) = 2 provides us with

R (R 24 (R R)™ 1) = (R R (L4 (1) ).

which concludes our proof. O

Combining Proposition 2.11 and Heuristic Assumption 2.4 offers the following.

Conjecture 2.12. The average value of # Cl(K, c)[p], as K ranges among imaginary qua-
dratic number fields of type R ordered by their discriminant, is given by

R* _
#(m) (1+#(55) )
In particular we can now derive conjectural formulas for the average size of CI(K ¢)[p]
with K varying in larger families.
We next consider here two cases: in §2.2.1 the case when all the primes dividing ¢ are

required to be unramified in K, and in §2.2.2 the case where K ranges through all discrimi-
nants. The letter [ will refer to a prime until the end of §2.
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2.2.1. Collecting unramified discriminants. Observe that if R correspond to a splitting type
where all the primes dividing ¢ are unramified in K, and if p? does not divide ¢ (so there is
no contribution to the p-part from p itself in case it divides ¢) then we have that

R* N+ R* N\~ ~ _
e _ o #{l prime: I|c, I=1(mod p)} wr(c)
#(gm) (14 #(5) ) =0 RS
where wg(c) is defined by

#{l prime : l|¢c, (I =1 (mod p) and [ is split in R) or (I = —1 (mod p) and [ is inert in R)}.

Therefore when we average over all 2°(¢) choices of R, using the binomial formula we get
p#{l prime: I|c,/=1(mod p)} (1 + (p + 1)#{l prime: []e,l=1 or —1(mod p)})

as average value of the size of CI(K, ¢)[p] when K ranges over imaginary quadratic number
fields unramified at all primes dividing ¢, as long as p? { ¢. Instead, if p? | ¢ there is an
additional contribution from the principal units modulo p? to #( g:p )+(1 + #(%)_), which
gives

p#{l prime: [|e,/=1(mod p)}+1 (1 + p(p ‘; 1
This leads to the Conjecture 1.3 that we stated in the introduction. The special case p = 3

of Conjecture 1.3 was recently proved by Varma [18, Th.2.(b)].

)#{l prime: [|¢,/=1 or —1(mod p)})

Theorem 2.13 (Varma). The average value of # Cl(K, ¢)[3] as K ranges over imaginary
quadratic number fields with ged(D(K),c) =1 is:
(1)

3#{l prime: l|¢,/=1(mod 3)}(1 + 2#{1 prime: Ilc, l¢3})

if 9 does not divide c.

(2)

3#{l prime: I|c,/=1(mod ’3)}+1(1 +3- 2#{[ prime: llc, 1#3})
if 9 divides c.

2.2.2. Collecting all discriminants. We now consider the case where K is allowed to ramify
at the primes dividing ¢. Now we have to evaluate

SH(E) (14 Jetn
where R varies between all the possible types of ring at ¢, and

w(R) := lim #{K e Z.(R) : |D(K)| < X}
T Xt #{Ke.Z:|DK)| <X}

First observe that if p* { ¢ then

#< R* )+ _ p#{l prime: l|c,/=1(mod p)}
R ’

while if p?|c then

#< R* )Jr _ #{l prime: ¢ l=1(mod p)}+1
rew) ~F '
Therefore we are left with computing the average of #(%)7, over all R. But this, as a
function of ¢, is multiplicative, thus we only have to deal with prime powers, i.e. ¢ = [" for
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some prime [ and some positive integer n. Clearly, the value of this average is 1 if [ is such
that ged(p, I3 — 1) = 1. Instead, if p|/?> — 1 the value of the average is

p+1
[+1 [+1 2 [+1
where the first contribution comes from the R ramified at [, and the second from the R
unramified at I. 2 Meanwhile, the value of the average for p = ¢ is
L
p+1 p+1’
where the first contribution comes from R ramified at p and the second from R unramified
at p. Lastly, we consider the case p*lc. Remarkably enough, one observes that the case
p = 3 acquires a special status in the computation of this average: indeed % of the imaginary
quadratics locally at 3 give the extension Q3((3)/Qs, and the result for them will be different
than for the % totally ramified that locally at 3 become Q3(v/3). Clearly for all p > 3 there
is no p-th root of unity in a quadratic extension of Q,, so, as we will see, in that case the
contribution from the two R ramified at p will be the same.
Assume p = 3. The contribution from powers of 3 starting from 9 is

9 3 9 15

sTsTiT T
where the first contribution is from Qs(Cs), the second from Qs(v/3) and the third from
unramified R. This gives a prediction that was previously verified by Varma [18, Th.1.(b)].

Theorem 2.14 (Varma). The average value of # CI(K, ¢)[3] as K ranges through imaginary
quadratic number fields ordered by their discriminant is:

(1) I
3#{1 prime: l|¢c,/=1(mod 3)} (1 (1 —))
" 1;[ Y

if 3 does not divide c,
(2) l
. _ . (8]
3#{1 prime: l|c,/=1(mod 3)} (1 4 = (1 + ))
7H I+1
if 3 divides ¢ but 9 does not divide c,
(3)

; _ 15 l
3#{1 prime: l|c,/l=1(mod 3)}+1 (1 4+ = (1 ))
L0

if 9 divides c.

Now assume that p > 3. Then we get
p v
—_— + s
p+1 p+1
where the first contribution is from the R ramified at p and the second from R unramified
at p. Collecting everything together we get the following prediction.

2R is said unramified at [ if R/IR does not contain non-zero nilpotents. Otherwise R is said ramified at [.
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Conjecture 2.15. Suppose p > 3. Then the average value of # CI(K,c)[p] as K ranges
over imaginary quadratic number fields ordered by their discriminant is:

(1)

; - -1 1
#{l prime: I|c,I=1(mod p)} (1 (1 P ))
P - H M I+1
l|e,pli2—1

if p does not divide c,

(2)
p#{l prime: I|c,/=1(mod p)} (1 + ( 2p ) H (1 + p— 11 ))

p+1

if p divides ¢ but p* does not divide c,

(3) )
) _ -1 1
#{l prime: [|c,/=1(mod p)} (1 + (p tp (1 + p ))
P pt1 ”CEL 2 1+1

if p* divides c.

It would be desirable to extend Varma’s arguments to prove Conjecture 2.12 for p = 3.
In particular, it would be informative to see how the proof distinguishes between the cases
R/3m = ﬁ@s({g)/z)’m and R/3m = ﬁ@3(\/§>/3m7 for m > 2.

3. HEURISTIC AND CONJECTURES FOR p = 2

Let ¢ be an odd positive integer. In this section we explain a heuristic model for the
2-part of ray class sequences of conductor ¢, in the case that no primes dividing ¢ ramify
in the fields. The additional difficulty with respect to the case of p odd, is that Cl1(K)[2*]
does not behave like a random 2-group (in the sense of Cohen and Lenstra), but instead
(as conjectured by Gerth [9]), 2 CI(K)[2*] is believed to behave like a random 2-group:
the behavior of CI(K)[2] is governed instead by genus theory which trivially excludes any
Cohen—Lenstra behavior for C1(K)[2*], when K varies among usual families of imaginary
quadratic number fields.

Our approach will be as follows: we will see that for ‘most’ discriminants of type R,
2 CI(K,c) is an extension of 2 C1(K') with a certain subgroup of %, which we will call Wkg.
Nevertheless, one cannot completely ignore the presence of the class group, since it leaves
an additional restriction on such extensions. Namely it forces them to belong to a certain
subgroup of the Ext, that we will call Ext. From there we will proceed in analogy with the
previous section replacing Ext with Ext. Using this heuristic we will offer several predictions
which are proved in the subsequent sections.

Since we will only consider the case that no primes dividing ¢ ramify in the imaginary
number fields K, and since we assume that ¢ is odd, we do not lose generality in assuming that
¢ is also square-free: indeed, in our setting, the 2-part of (0 /c)* /(—1) is no different from the
one of (O /c')* /(—1), where ¢ is the square-free part of ¢. Therefore the choice of a ring type
at ¢ amounts to the choice of a partition of the set S, := {l prime : I|c} in the disjoint union
of two sets S¢(inert) and Se(split). Then one takes R := (] [;cs, (ierty F12) ¥ (I [yes, spiie) (Fr)?).
For such an R, the Cs-action is given by [-Frobenius on the non-split components, and by
swapping on the split components. We will call such R, unramified at ¢. By a small abuse
of notation, we denote by Z/cZ the natural image of Z/cZ in R.
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For R unramified at ¢, we define

* * 2 *

Wy = 2 ( L ) < (3.1)
1 =D -1

Now fix some R unramified at ¢. For the remainder of this section we will assume, for

simplicity, the imaginary quadratic number field K to have an odd discriminant. We shall

prove that one has an exact sequence

25(K) = (0 — W — 2CI(K, ¢) — 2 CI(K) — 0),

for all imaginary quadratic number fields of type R with the exception of O(x(logz)~/#())
discriminants up to x. Indeed, by the theory of ambiguous ideals, one has that

(/o) . (Gr/oy?
W N 2CI(K, c) = {{q prime and ¢| D(K)}>( (1) ) :

Therefore it is enough to show that the set of positive square-free D < x such that
{q (mod ¢) : ¢ prime and ¢q|D} # (Z/cZ)*

is O(z(logz)~"#(9)). This cardinality is
x

2
< Z Z ,U/(D) < W,

ae(Z/cL)* 1<D<sX
p|D=>p#a(mod c)

where the last bound is easily derived by using [12, Eq.(1.85)] with f being the characteristic
function of integers all of whose prime divisors are not a (mod ¢). Identifying 0k /c with R
via a ring isomorphism gives an identification between Wx and

(Z/cZ)* ((ﬁK/C)*)2
—n U
Definition 3.1. Among the imaginary quadratic number fields of type R, we call strongly
of type R, those satisfying
% * Z/cZ)* /(O *\ 2
(ORI i ) - D" O/
% <D N =D
Let E(zx) denote the cardinality of negative discriminants 1 (mod 4) of absolute value at

most = and which are of type R but not strongly of type R. The analysis above can be
summarised by the bound

x
One could be tempted to think of the sequence Sy(K) := 2S(K)[2] as a ‘random’ sequence,
just as in the previous section. This would be incorrect, since the way the sequences Sy (K) are
produced naturally puts on them an additional restriction. Namely one has a commutative
diagram of Z[Cs]-modules:

E(x) « (3.2)

0 — L= CUK, ) & CIK) -0
Ti IKZ Tis
0 — %(%yﬂﬂ 2CI(K,c) — 2CIK)—0
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where i1, 19, i3 are the natural inclusion maps, so i, and i3 consist of isomorphisms between
the source groups and the double of the target groups. The top sequence has two obvious
properties that are automatically satisfied:

7(CI(K, ¢)[2°]7) = CI(K)[2] and 7(CI(K, c)[2*]*) = CI(K)[2].

The first property is equivalent to the sequence remaining exact after taking (1 + 7)-torsion,
where 7 is the generator of (5. Indeed, this is equivalent to the natural map
_R*
CUK)[2*] » — 2
(t+ 1)%

being the 0-map, which holds since the norm of an integral ideal is always an integer. The
second property follows from the fact that we are looking at families of discriminants coprime
to ¢. Therefore we are allowed to lift a prime ideal ¢ lying above a prime ¢ dividing D(K),
using the class of the ideal q in CI(K, ¢): this class will still be a fixed point, since it is the
class of a 7-invariant ideal. This motivates the following:

Definition 3.2. Let G be a finite abelian 2-group, viewed as a Cy module with the —id-
action. We say that an element ¢ of Extz,c,|(G, Wg[2¥]):

0:1—->Wg[2*] > B—>G—1
is embeddable if there is an exact sequence of Zy[Cs]-modules

[2°] - B -G —1

R*
ey

and a commutative diagram of Zs[Cs]-modules

* ~ T ~
o I B 5 G
T4y 11y T3

where: ~ R
e The map 7 : B — G — 1 satisfies

7(B7) = G and n(BT) = G[2].

e The maps iy and i3 are isomorphisms between the source groups and the double of the
target groups. The map ¢, is the natural inclusion.

We denote the set of embeddable extensions by ]:];(/tzz[cz](G, Wg[2%]). It will be clear by
Proposition 3.5, that the two following sets do not always coincide:

Extz,(0,](G, Wr[27]), Exta,(o,(G, Wr[27]).

On the other hand, the set of embeddable extensions has the algebraic structure that allows
us to proceed in perfect parallel with the previous section.

Proposition 3.3. One has that }’E\XJtZZ[CZ](G, Wr[2%]) is a subgroup of Exty,(c,)(G, Wr[27])
stable under the action of Auting(R) X Autap.g (G).
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Proof. Let
® ~ ™ ~
0 - > B 5 G0
T i T L2 T i3
0 — Wg[2*]—- B 7 G—0
and
* ~ ’ ~
0 - E5R271—> B 5 G0
T 15 Ty
0 — Wg[2*]—> B I G—0

be two embeddable extensions equipped with their respective diagrams. We now consider
the following commutative diagram of Z,[Cs]-modules,

0 — g’j{;[zw]_) (BxgB))Y' ™5 GxgG —0
T/Ll TZ2><Z/2 Tlgxlé
0 — WR[2OO]—> (B XGBI)/Y f*}" G"O

where B xg B’ := {(by,by) € B x B’ : 2r(by) = 27'(by)}, while Y’ denotes the antidiagonal

embedding of %[2"0] in B x¢g B. Similarly B xg B’ := {(b1,bs) € Bx B": f(g1) = f'(92)},

with Y denoting the anti-diagonal embedding of Wx[2%], and
Gxe@G = {(g1,92) € GxG:2g = 2ga}.
There is an obviously induced compatible Cy action on each terms and one can deduce that
(mx 7Y (B xg B)/Y")") =G xg G and (7 x 7') (B x¢ B)/Y")) = (G x¢ G)[2]
using the fact that individually 7w and 7 satisfy the respective property.
On the other hand, by construction one has that iy x i}, and i3 x4 are isomorphisms between
the source groups and the double of the targets. This shows that Exty,(c,)(G, Wgr[2¥]) is

closed under addition because the sequence 0 — Wx[2¥] — (BxgB’)/Y — G — 0 represents
the class of the Baer sum of the two embeddable sequences in Extgz,[cy)(G, Wr[2%]). Since

Exty,[cy](G, Wg[2%]) is finite, in order to conclude that I:D;(/tZZ[CQ](G., Wg[2%]) is a subgroup,
one is only left to show that E;;tzz[cz](G, Wg[2%]) is non-empty. To this end we refer the
reader to Proposition 3.5, which in particular implies that E;(TBZQ (c2] (G, Wr[2%]) is non-empty
(alternatively one could also directly prove that the split sequence is embeddable, which one
can indeed show using the same steps of the proof of Proposition 3.5). Finally, given an
embeddable sequence

0 — WgP*]h B

=
Q
l

and a pair (1, p2) € Autyng(R) X Autyy g (G), we can consider
0 — EE[2#]% B 5 G0
tir 14 Mgy’

p2f
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which gives an embeddability diagram for the sequence
(p1,92)(0 > Wg[2"] - B - G —0)
showing that ]:];;tzz[gz] (G, Wg[2%]) is stable under the action of Autyie(R) X Autap g (G). O

Denote by % a set of representatives of isomorphism classes of finite abelian 2-groups,
viewed as Cy-modules under the action of —Id. For an imaginary quadratic number field
K, denote by Go(K) the unique representative of 2 C1(K)[2°] in %. Suppose K is strongly
of type R. Then (Ok/c)*/{—1) can be identified with R*/{—1) via any restriction of a ring
isomorphism, that is via any element of Isomy(Ok/c, R). Furthemore, we can identify
2CHK)[2°] and G5(K) via any element of Isomyy, g, (CI(K)[2*],G). Therefore applying
Isomying (Ok /¢, R) x Isomyy, . (2 C1(K)[27], Go(K)) to S3(K'), we obtain a unique orbit

O.2(K) e E,S&Zz[cz](Gz(K), Wg[27])/(Autying(R) x Autap.gr. (Q)).
For K strongly of type R we use the notation
S5(K) := (Ga2(K), Oc2(K)).
If K is not strongly of type R, we set S5(K) to be the symbol e. We now proceed by offering
a heuristic model for S4(K) as K varies among imaginary quadratic number fields of type R.
Let R be an unramified ring at ¢ and denote by % a set of representatives of isomorphism

classes of finite abelian 2-groups, viewed as Cy-modules under the action of —Id. Denote
by #(R) the union of the singleton {e} and of the set of equivalence classes of pairs (G, 6),

where G € %, 6 € I:];;tzz 0)(G, Wg[2]) and the equivalence is defined as follows: two pairs
(G1,6h), (Ga,0y) are 1dent1ﬁed if Gy = G and 0, 65 are in the same Aut,ing(R) X Aty g0 (G)-

orbit. Denote by ,72( ) the union of the singleton {e} and the set of pairs (G, 0), where
G € %, and 0 € Extg,[c,)(G, Wr[2%]), thus bringing into play the quotient map

T %(R) — S(R).

Consider the sigma algebra generated by all subsets on 572/(}%)7 as well as on 7 (R), and
equip % (R) with the measure

fiseq (G, 0)) := poL(G)

#Extz,[0,1 (G, Wr[27])
where pcr, denotes, as usual, the Cohen—Lenstra probability measure on % that gives to
each abelian 2-group G weight inversely proportional to the size of the automorphism group

of G. Push forward, via 7, the measure [l to a measure pieeq on “(R). It is clear by
construction that flgeq and fiseq are probability measures.

7ﬁseq({.}) =0

The heuristic assumption that we propose for the 2-part of ray class sequences of conductor
¢ of imaginary quadratic fields of type R is as follows.

Heuristic assumption 3.4. For any ‘reasonable’ function f : % (R) — R one has that,
as K wvaries among imaginary quadratic number fields of type R, the following equality of
averages takes place

i Z D(K)<X f(SQ 2 f

X TR DK <X} ol S

Se#5(R)
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As a consistency check, observe that the above identity of average takes place if one chooses
as f the indicator function of {e}: indeed, since the number of K with D(K) < X that are
not strongly of type R is at most «, X (log X)~1#() we see that we obtain 0 in the left
side, while in the right side we obtain 0 by definition. Clearly one can readily formulate the
analogues of Conjectures 2.5 and 2.6. We shall instead opt to devote the rest of the section
to the analogues of Conjectures 2.8-2.10.

If o € R*/{—1) then o®’N(a) € Wg, where N(- ) is the norm-function with respect to the
Cy-action prescribed to R*/(—1): indeed both o and N(«) are in Wx. We define the map

g R*/(—=1) — Wg given by a — a?N(a). With a small abuse of notation, we use the

same notation for the induced map gg : ﬁ — Wgr/2Wg and we denote by Im(gg) the

image of gg in Wg/2Wkg.
Proposition 3.5. The image of the natural map
Extz,(0y)(G, Wg) — Homg,(c,)(G[2], Wa/2Wg)
18
Hom,[c,)(G[2], Im(gr)) (= Homp, (G[2], Im(gr)))-
Proof. Consider § an embeddable sequence
* ~ ™ =~
0 - ] > B 5 G0
T i1 T 12 T 13

and pick b e G[2]. By definition of embeddability there exist b in B* such that 7(b) = i5(b).
On the other hand e can find € B such that 7(2z) = is(b). Therefore there exists
an element o € 2 5 [2*] such that ba™! = z% which implies that b>N(a)™! = N(z)%
Furthermore, 2z is in B, hence we have that d»(6)(b) = b2a~2 as an element of Wg/2Wg.
However note that N (z)? € 2Wg: indeed, by definition of embeddability, we can always write
z = x~ [ with z~ an anti-fixed point and 3 € %, so that N(z)? = N(83)? € Wg. Therefore
we find that d,(0)(b) = N(a)a?, ie. 5,(0)(b) € Im(gg).

Conversely, we prove that given a Co-map &y : G[2] — Im(gg), there exists a 0 € mzz[cz]
such that d5(6) = dy. Firstly observe that Homp,[c,](G[2],Im(gr)) = Homg, (G[2], Im(gg))),
since 7 clearly fixes N(a) for any « in R and o®7(a?) = N(«)? € 2Wg, therefore 7 acts triv-
ially on Im(gr) (see Lemma 3.6 for a more general fact). Thus pick dy € Homp, (G[2], Im(gr))).
We divide the construction of § and its embedding in four steps:

Step 1: Observe that a®?N(a) = #Z)N(ay = T(D;)N(a)2. Since N(a)? € QWR[2°O] we con-
clude that any element of Im(gg) =) < TS ~[27].

Step 2: Write G = {e1)@® ... D {e;), with the order of ¢; being 2™ for a positive integer m;,
for each i € {1,...,j}. Therefore G[2 ] @2m=ley@... 2™ e;) and now, use Step 1 for

< 5 “_[2] such that 6o(2™ e;) = s

Step 3: Embed G in a group G = (E1)®...®E;)D{(d)®. .. {d), with the rules 2¢; = ¢; for
every iin {1,... ,j} 2dy = 0 forevery s € {1,...,h} and h > rky((Z/cZ*))—1. Take an exten-
sion # € Exty, (G, £ - >) such that for every i € {1 ..., j} one has that dym+1(0)(¢&;) = Ty and

such that ({62(0)(dy), ..., 02(0)(dn)}> = Im((Z/cZ)* — Wg/2Wg). Call B the middle term

of this extension. Pick &}, ..., ¢’ liftings of e, ..., e; with the property that omitlel = %L)

each i € {1,...,j} to construct a; €
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for all 7 in {1,...,j}. Choose also d},...,d}, liftings of dy,...,ds in B and put 2B = B.
Observe that by construction the kernel of B — G is Wg[2®]. This gives a commutative
diagram of Zy-modules,

® ~ - ~

0 - - B 5 G0
Til T7'2 TZQS

0 — Wg[2*]—> B 7 G —0.

A

By construction iy and i3 are isomorphisms between the source groups and the double of the
target groups.

Step 4: Define Ay 1= ({&,...,&), Ay := {{dy,...,d,}) and A := (A;, Ay). Consider A, as a
Cy-module with the —Id-action and A, with the Id-action. Observe that, by construction, the
Cy-action on A; and A, restrict to the same Cy-action on A; N Ay. Therefore the Cy-action

extend to an action on A. Observe that, by construction, the Cs-action on A and %[2‘”]

restricts to the same Cy-action on A N <Ij’j>[2°c]4 It is also clear that (A, <IET> [2°]) = B.

Therefore one can put on B a Cy-action which restricted to A is —Id and restricted to %

is the usual action. This turns the above diagram into a diagram of Cy-modules, and we
want to prove that the top sequence remains exact when we take (1 + 7)-torsion and when
we take (1 — 7)-torsion. But by construction

(L4 7)(B) = (14 7) (CAL, Az, B (=13)) = (1+7)((Ag, R (-1))
= A, (1+ 1) (R /(=1))) = (1 + 7)(R*/(=1)))
and
(1 =)@ 1 (G[2]) = (1 = 7)((Ar 0 ker(2m), R*{(~1)))
= 2(A1 nker(27)), (1 = 7)(R*/(=1)))
< (I =7)(R*/(-1)),
where the last two inclusions follow from Step 3. This shows that dy can be realized as d5(6)
for some 6 in I:D?(Jtzz[cz](G, Wg[2%]) (i.e. 0 > Wg[2¥] - B 5a- 0). O
If K is strongly of type R, we denote by d2(K) the map d2(S2(K)). By choosing any
ring identification in Isomyi,e(Ok/c, R) and any identification in Isomgy g (2 CI(K), Go(K))

we obtain an Aut,,e(R)-orbit of subspaces of Wr/2Wg. On the other hand this orbit is
composed of a single element due to the following fact:

Lemma 3.6. The action of Autying(R) on Im(gg) is trivial.

Proof. Consider the ring decomposition R = Huc R/IR. Tt is clear that the following holds,
Autying(R) = ]_[”C Autying(R/IR). On the other hand, this decomposition is compatible with
Jr, i.6. gr = H”CgR/lR, where [] of maps is to be thought of as the map obtained by
applying the maps coordinatewise. This reduces the claim to ¢ = [ a prime number. In that

case one has that o?7(«)? = N(a)?, but N(«)? is in 2Wg, therefore, modulo 2Wg, one has
that o®>N(«) is fixed by 7. O

Hence we see that Im(d2(K)) can be identified with a well-defined subgroup of Im(gg). We
will keep denoting this subgroup as Im(dy(K)). Moreover, thanks to Proposition 3.5 and the
fact that the pushforward, via an epimorphism, of the counting probability measure induces
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the counting probability measure on the target group, we readily obtain the prediction of
the distribution of the pair (#(2 Cl(K))[2], Im(d2(K))).
Fix a subspace Y < Im(gg) and a non-negative integer j.

Prediction 3.7. As K wvaries among imaginary quadratic number fields of type R, we have
the following equality
i 7 = D) < X #(2CUK))[2] = 2
im
X #{K:-D(K) < X}
# Epig, (F3,Y)
# HOIH]FQ (IFJ27 Im(gR))
This will be proved in Theorem 5.2, but see also Theorem 5.4 for a more explicit statement.

A crucial step is to deduce it from a statement about mized moments. Indeed, observe that
to know the pair

and Tm(65(K)) =Y}

= /LCL(G € gg : #G[Q] = 2j)

(#G[2], Tm(0 - G[2] — Im(gr)))
is equivalent to knowing for each y in the dual group In/l(g\R)7 the value of
my(6) 1= #ker(x(8)).
For each y € IH/I(g\R), fix a non-negative integer k.

Notation. For any function I@) — Zi=0, X — ky, we will use the notation

K= > ky

X€lm(gr)

Pick a random subset of Im(gg) by choosing each character x independently at random
with the rule that x is not in the set with probability 2%){ and that y is in the set with

2kx 1 =

probability == For a subspace ¥ < Im(gg) denote by P(; )(Y') the probability that such
a random subset generates Y. Observe that if dim(Y") > [k[; then P, y(Y) = 0: indeed, in
that case we select with probability 1 less characters than dimg,(Y'), so they they generate
Y with zero probability. Denote by .45(j) the number of vector subspaces of Fj. If j < 0,
we shall make sense of the expression 0 - 45(j) by setting it equal to 0.

The following proposition reveals the value predicted by the heuristic model for the

(kx)xeh@)—mixed moment. In what follows we use the convention m, (dg) = 0 if we have

S =ee.%(R).

Proposition 3.8. One has that
O mealS) [T mi@s)™ = 3 Puy(¥) Akl - dim(Y)).
Se2(R) xelm(gr) Y<im(gn)

We do not spell out the proof of Proposition 3.8 because it is identical to the proof of
Proposition 4.8 which we will provide in §4.
Proposition 3.8 leads to the following prediction.
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Prediction 3.9. As K wvaries among imaginary quadratic number fields of type R, the fol-

lowing equality of averages takes place
lim ZfD(K)SX [Ty (d2(5)™
Xow K —D(K) < X}

= % P (VA5 — dim(V))

Velm(gr)

A stronger statement will be proved in Theorem 5.1.

As a cruder result, one derives a prediction for the joint-distribution of the 4-ranks of the
class group and the ray class group. Let j1, j2 be two non-negative integers. Then we have
the following prediction.

Prediction 3.10. As K wvaries among imaginary quadratic number fields of type R, we have
the following equality
i #{K : —D(K) < X,rky(Cl(K)) = j1,rks(ClI(K, ¢)) = jo}
X0 #{K:-D(K) < X}
#{; € Homg, (F}', Tm(g)) : tk() = rko(Wr) = (o — j1)}
# Homp, (F3', Tm(gr)) .

This will be proved in Theorem 5.3, but see also Theorem 5.4 for a more explicit law.
Similarly, the heuristic of the present section can be used to conjecturally predict the distri-
bution of the pair (rkom (Cl(K)), rkem (CI(K, ¢))) among imaginary quadratic number fields
K with ged(D(K),¢) = 1. For reasons of space we do not explicitly state such a conjecture
but it is implicitly given in the present section; such a conjecture might be within reach
given the recent work of Smith [16].

= pcr(G € %, : dimg, (G[2]) = j1)

4. SPECIAL DIVISORS AND 4-RANK

Let D be a square-free odd positive integer. In this section we introduce the notion of
special divisors of D, which will be instrumental in our proof of Theorems 5.1, 5.2, 5.3,
and 5.4. We call a positive divisor d of D special if d is a square modulo D/d and D/d is
a square modulo d. We denote by S(D) the set of special divisors of D, and by T'(D) the
set of all divisors of D. The set T'(D) has naturally the structure of a vector space over Fy
under the operation

didy
ng(dl, d2)2 ’

Lemma 4.1. The set S(D) is a subspace of T(D) over F.

d1 @dg =

Proof. We need to show that if dy, dy are special then d; ®ds is special as well. This amount
to showing firstly that if a prime ¢ divides D but ¢ t dy @ ds then d; ©ds is a square (mod ¢)
and secondly that if a prime ¢ divides d; ® dy then D/d; ® dy is a square (mod q).

For the proof of the first claim, suppose that ¢|D but ¢ f d;®Ods. Then either ged(d;dz, ¢) =
1 or gq| ged(dy, dz). In the first case we know that, since both d; and dy are special, d; and ds
are both squares (mod ¢), thus showing that d; ©®ds is a square (mod ¢). In the second case
we know that, since both d; and dy are special, D/d; and D/ds are both squares (mod q).
This shows that

2
DD D

—— = (d1 O dy) <—>
di dy gcdd(d(f,dz)
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is a square (mod ¢), hence d; © dy is a square (mod q).

Next, suppose that g | d; © da. Then, either ¢ | di and ¢ { da, or ¢ | dy and g 1 di: by
symmetry we are allowed to focus on the former case. Then, since both d; and dy are special,
we have that both D/d; and dy are squares (mod ¢q). Therefore

D1 D
——gcd(dy,dy)* = ————
dl dg & ( ! 2) (dl @ d2)
is a square (mod ¢), thus concluding our proof. O

Let n be another square-free odd positive integer with ged(n, D) = 1 and consider the
group Gy, := (Z/nZ)*/(Z/nZ)**. One has a natural map ¢, p : S(D) — G, by reducing
(mod n) and then modulo squares.

Lemma 4.2. The map @, p is a homomorphism of Fa-vector spaces.

Proof. By definition we have d; © dy = ﬁ and reducing this equality (mod n) and

then modulo squares, the right side yields didy. Thus ¢, p(di ©ds) = @n,.p(d1)enp(ds). O

Observe that S(D) always contains the subgroup {1, D}. It is then a consequence of
the work of Fouvry and Kliiners (8] that S(D)/{1, D} behaves like the 2-torsion of a random
abelian 2-group, in the sense of Cohen and Lenstra. In other words, for every positive integer
j we have

. #{1 < D < X, D square-free : S(D)/{1, D} = F}} ;
1 : : = A€, A[2] =T
X #{1 < D < X, D square-free} no(A € %z A2 = Fy),
where %, is a set of representatives of isomorphism classes of finite abelian 2-groups. The
present section in addition to Theorems 5.6-5.7, §6 and §7 are devoted to the determination

of the distribution of the pair
(#S(D), Im(en,p))-

The general heuristic constructed in §3 specializes to a heuristic model for this pair,
thanks to the commutative diagram after Lemma 5.5. However, we choose to give here a
direct presentation of this heuristic avoiding ray class groups. Therefore the present section,
Theorems 5.6-5.7, §6 and §7 are completely self-contained.

Before proceeding we introduce a modification of ¢, p which will be required in the ray
class group applications in §5. Denote by L, the subgroup of GG, generated by an integer
which is a quadratic non-residue modulo every prime dividing n and write C:’n = Gp/L,.
Now let n1,ny be two integers such that 2Dnqns is square-free and assume that D is a square
modulo n; and generates L, (mod ny). Denote by ¢, », p the natural map

Pny,na,D - S(D)/{la D} - Gm X Gng-
Our goal is to understand the statistical behavior of the pair

(#S(D)v hn(<pn1,n2,D)):

as D varies through positive square-free integers coprime to nyns, which are squares (mod n,)
and non-squares modulo every prime dividing ny. There is an obvious guess: namely that,
once dimp, (S(D)/{1,D}) = j is fixed, then Im(y,, »,.p) should distribute as the image of
a random map ¢ : F) — G, x én2~ We formalize this guess in a more general heuristic
principle.
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Definition 4.3. Consider the set .#,, ,, consisting of equivalence classes of pairs (A4, V),
where A is a vector space over Fy and V is a vector subspace of G,, x ém: declare
(A1, V1), (A2, V3) identified, if A; and Ay have the same Fo-dimension and V; = V5. De-
note this equivalence relation by ~. Each representative pair (F}, V) is equipped with the
following mass,

# Epig, (F3,V)
# Homp, (F}, G, x Gpy)

By construction, this is a probability measure on .4, ,,.

(B, V) i= pe(A € % : A[2] = )

Now we formulate the following.
Heuristic assumption 4.4. For any ‘reasonable’ function f : My, n, — R one has
S(D)/{1, D}, Im(n,
iy Zoex SOV Db lonime)) 52
Ao Yipex 1 Tty o

where in both sums D varies among square-free positive integers which are squares (mod ny)
and non-squares modulo any prime divisor of ny. Furthermore, for any positive integers a,r
with ged(r,aning) = 1 the same holds if we have the additional restriction D = a (mod r).

The simple case where f is the indicator function of an element (F}, V) € 4, ., yields
the following prediction.
Prediction 4.5. We have
D < X,(S(D)/{1, D}, ¢nyn ~T
lim #{ ( ( )/{ } Pna, 2,D) } _ :U/(T)
X #D <X}
where D waries among square-free positive integers which are squares (mod ny) and non-
squares modulo every prime divisor of ns.

This prediction will be confirmed in Theorem 5.7.

Despite the fact that the ‘random variable’ (S(D),Im(pn, n,,p)) does not consist of two
numbers, we achieve its distribution by means of the moment-method. For this we shall
replace the pair (S(D),Im(@n, ny,p)) by a higher-dimensional numerical ‘random variable’,

which we proceed to define. For each character x in the dual of G,,, x C:'nz define

my(D) := #{d € S(D) : X(¢ny.ns.0(d)) = 1} (4.1)
and recall that Tm(pn, n,.p)t is the set of all character x with x © ¢, n,.p being trivial.
Clearly for each x € Im(pn, n,.p)" we have m, (D) = my(D) = #S(D), while for the
remaining characters we have m, (D) = #5(D)/2. Therefore the knowledge of the pair

(#S(D)7 Im(‘ﬁmsz))

is equivalent to the knowledge of
(m(D)), g, &,

It will transpire that this shift in focus will be advantageous since it will allow us to study
the asymptotic behaviour of the latter vector by the method of moments.

We conclude this section by providing a prediction regarding the mixed moments of
(my(D)). This will be later used in the proof of Theorem 5.6.
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Notation 4.6. For any function C:'nl X @nz — Z=0, X — k,, we will use the notation

ki= (k) . = and [klii= > k.

XEGn, XGny
XEGn, X Gy
Definition 4.7. For any subspace Y < @nl X én2, denote by P, y(Y") the probability that
a random subset of C:’m X CNY'M generates Y, where the characters x are chosen independently

and with probability 1 — 2%

For any pair (F},Y) in .4y, n,, define m, ((F},Y)) to be 27 if x(Y) = 1, and 2/~ otherwise.
Observe that if dim(Y) > [k|; then Py )(Y) = 0. Denote by .45(j) the number of vector
subspaces of F. If j < 0 we define 45(j) := 1. It is important to note that every time
A3(7) appears for some negative j then it will always appear multiplied by zero.

Proposition 4.8. One has that

Yo TT md@)um = Y Buy (W)l — dim(W)).

TeMny ny XEém xaw W;énl xanz
Proof. We want to compute

N T (08 60 )l (¥4, ),

(F2:0) xeGny % Cny

where j ranges over non-negative integers, d ranges over Hom(IF}, G,,, x G,,) and

(¥}, ) = Herd o #A4[2] = )
#HOHI(F27GH1 X an)

Therefore the sum becomes

27kl # Epi(F) F VJ_)
Z Z Qngv " 4 Hom(F, G,,, én ) cu(A e %y #A[2] = 2).

VG, xCny 7™

We assume familiarity of the reader with Mobius inversion in posets, see [17, Chapter 3],
for example. Writing Epi(F3, V*) via inclusion-exclusion on the poset of vector subspaces of
G, x Gy, and exchanging the order of summation we obtain

Z i ( w(V, W) )( 2 G2 dlm(W)uCL(G))

QZXeV
WCC:‘n1 X,va
By applying Mébius inversion with respect to the poset of vector subspaces, to the obvious
relation
27 Baw b = Py (VS W) = 3 Py (V
Vew

we obtain
n(V, W)

P(kx)(W) = ey Fx

Vcw
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On the other hand, one has that whenever |k|; — dim(WW) > 0, then
> #GRM W e (G) = A(Ky — dim(W)).
GE%Q
Instead, when |k|; — dim(W) < 0, we have that P y(1W) = 0. In conclusion we get that the
total sum equals
D1 Py (W) Aa([k|y — dim(W)). O

WEGny xGny

Choosing f(T) =1]] N my(T)" in Heuristic assumption 4.4 suggests the following
XEGny Xy

prediction by means of Proposition 4.8.
Prediction 4.9. We have

2p<x Il my (D)
. Gy XCin, .
)}III;O XEZD 1 2 = 2lkh E Py (W) A5(|k[y — dim(W)),

W‘;énl xanz

where in both sums D varies among square-free positive integers which are squares (mod ny)
and non-squares modulo every prime divisors of ns.

A version of Prediction 4.9 with an explicit error term is proved in Theorem 5.6. This
prediction has a noteworthy feature: it realizes the (k,)-mixed moments of (m, (D)) as an

average over all subspaces of @m X G’M of ordinary moments of #S5(D) and in doing so, it
suggests the first step of the proof of Theorem 5.6, see (6.2).

5. MAIN THEOREMS ON THE 2-PART OF RAY CLASS SEQUENCES

Throughout the section we keep the notation used in §3. We begin by stating Theo-
rems 5.1,5.2 and 5.3 that corroborate Predictions 3.7,3.9 and 3.10 when D(K) = 1 (mod 4).
We restrict our attention to the cases with D(K) = 1 (mod 4) only for the sake of brevity, the
remaining case being amenable to a similar analysis. Our main task in this section will then
be to reduce Theorems 5.1, 5.2, 5.3 and 5.4 that are about ray class groups to Theorems 5.6
and 5.7 which regard only special divisors.

Theorem 5.1. For any (€ R satisfying 0 < 3 < min{2-*1 (c)~'} we have
2pa<x 11 5 x(52(K))k
EG _
S o = 20 Py (V)Ax(ky = dim(V)) + O((log X)?),
D

velm(gr)

where in both sums K wvaries among imaginary quadratic number fields of type R, having
D(K) = 1(mod 4) and the implied constant depends at most on ¢ and (ky)y.
Theorem 5.2. We have

. #{K : —D(K) < X, #(2CIK))[2] = 2 and Im(02(K)) =Y}

im

X—m #{K:-D(K) < X}
2j # Epi]Fz (]Féy Y)

# Homg, (Fy, Im(gr))

where K wvaries among imaginary quadratic number fields with D(K) = 1 (mod 4) and of
type R.

=pcL(G e % : #G[2] =
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Recall the definition of Wx in (3.1) and the definition of the map gr before the statement
of Proposition 3.5.
Theorem 5.3. We have
o #E - D(K) < X aky(C(K) = i, v (CUK, ) = )
X—0 #{K:-D(K) < X}
#{p € Hom, (F}', Im(gr)) : rk(p) = rka(Wg) — (j2 — j1)}
# Homy, (F}', Im(gr))

where K wvaries among imaginary quadratic number fields with D(K) = 1 (mod 4) and of
type R.

=pcy(G € % : dimg, (G[2]) = j1)

)

We will prove a stronger version of Theorems 5.1, 5.2 and 5.3. Namely, the fact that we
deal with progressions a (mod ¢) in Theorems 5.6 and 5.7 yields results analogous to the ones
in Theorems 5.1, 5.2 and 5.3 when one imposes finitely many unramified local conditions
at primes independent of ¢ on the discriminants D(K). This supports the point of view
in Wood’s recent work [20] that local conditions on the quadratic field do not affect the
distribution of class groups, with the obvious modification that for ray class groups such
conditions must be taken independently of the primes dividing c.

We proceed to restate Theorem 5.3 in a more explicit way. Recalling that ¢ is square-free
we let n1(R) be the product of the prime divisors of ¢ which are either 3 (mod 4) and inert
in R, or 1 (mod 4) and split. Furthermore, let ny(R) be the product of the prime divisors of
¢ that are 3 (mod 4) and split in R. Recall that

Moo (2 i .
mlé% = (G € %« dimy, (G[2]) = j1).
Theorem 5.4. We have
#{K 1 — D(K) < X, 1ky(CUK)) = ji, 1ka(CU(K, ) = jo}

lim

e #{K : —D(K) < X}
__1=(2) #{p € Homp, (F}, G,y (r) X Gry(my) = k() = tha(Wg) — (j2 — j1)}
n;,(2)2271 # Homp, (3, Gy (r) X Gy(m)) 7

where K wvaries among imaginary quadratic number fields with D(K) = 1(mod 4) and of
type R.

The congruence conditions (mod 4) related to the definition of ny(R) and ny(R) in The-
orem 5.4 are analogous to the congruences (mod 3) for the primes [ appearing in the first
part of Varma’s Theorem 2.13.

Our next goal is to realise the dy-map

52(Q(vV-D)) : (2CHQ(v—-D)))[2] — Im(gr)
with the map on special divisors introduced in §4,

S(D) ~
Pra(Rna(RD Ty Gri(r) X Gra(m)-
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5.1. Realizing 6,(Q(v—D)) as ¢, (r)na(r),p- Let D be a square-free positive integer with
D = 3(mod 4). and denote its its prime factorization by D = p;---p;. Let py,...,p; be
the corresponding prime ideals in Q(v/—D), i.e. p? = (p;)). Recall that C1(Q(v/—D))[2] is
generated by py,...,p; subject only to the relation p; - p; = (v/=D). For any b positive
divisor of D, denote by b the ideal of Q(v/—D) with b2 = (b). Let us now recall from [8,
Lem.16] that given a positive divisor b of D, we have b € 2Cl(Q(v/~D) if and only if
be S(D). The assignment b — b gives an isomorphism

(2CUQ(V=D))[2] = S(D)/{1, D}.

Indeed, from the proof of [8, Lem.16], we know that b € S(D) if and only if there exists a
primitive element (i.e. not divisible by any m € Z=,) a € O, /=p, and w € Z,, such that

In that case the factorization of (@) gives an integral ideal h(b) such that (a) = h(b)2b.
We rewrite this as b(a/b) = h(b)? and observe that this shows in particular that b €

2C1Q(V=D)).

By weak approximation for conics, one has that such an « can be found with (o, ¢) = 1, i.e.
a primitive point on (5.1) such that ged(w, ¢) = 1. Therefore both («), h(b) are coprime to
(¢). Therefore the fractional ideal b($) can be employed as a lifting of b to 2 CI(Q(v/—D), c).
Therefore the definition of the do-map gives us that

5:(QV=D))(b) = b

However squares of integers in Wx/2Wpy give rise to the trivial element, therefore by (5.1)
we obtain that §(b) = gr(«) Recalling that N(-) is the norm-function with respect to the
Cy-action prescribed to R*/{—1) we see that gr(a) = o®N(a). Next, we provide a more
concrete description of Im(ggr). The proof of the following result is straightforward and
therefore omitted.

Lemma 5.5. There is an isomorphism ¢g : Im(gr) — Gn,(r) X Grar) such that
¢r(gr(z)) = N(z)

for every x € %[2"0].

Since N(a) = bw? and w? is trivial in Wg/2Wg, we get a commutative diagram
s

2CQ(W-D))[l2] - Im(gr)
iD I ¥r

p 8
s = Guyr) X Gy
$ny,ng,D

N

~
-

where the vertical rows are isomorphisms. This gives us precisely the realization of the
do-map in terms of special divisors that we were looking for.

5.2. Reduction to special divisors. Our next result holds for integers a, ¢, nq, ny satisfy-
ing

4niny divides ¢,a = 3 (mod 4) , ged(a, q) = 1, (5.2)
a is a square (mod ny) (5.3)

and
p prime, p | ng = a is a non-square (mod p) . (5.4)
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Theorem 5.6. Let a,q,ny,ny be positive integers satisfying (5.2), (5.3) and (5.4). Then for
every 6 € (0,27 %1) we have

Spex [l e 5. (D)
ZDgX

S (N By (W) Akl — dim(1)) ) < (log X) ",

WCGn1 X an

where in both sums D wvaries among square-free positive integers which are congruent to
a(mod ¢q) and the implied constant depends at most on a,q,n1,m2,6 and (ky)y.

This proves Prediction 4.9 with an explicit error term.
Recall Definition 4.3. We shall use Theorem 5.6 in §7 to deduce the following.

Theorem 5.7. Let a,q,ny,ny be positive integers satisfying (5.2), (5.3) and (5.4). Then

lim #{D <X, (S(D)/{17 D}7 ‘Pnan,D) ~ T}

Jim D <X = u(T),

where D wvaries among positive square-free integers satisfying D = a (mod q).

This confirms the Prediction 4.5.

We are finally in place to explain why Theorems 5.6 and 5.7 imply Theorems 5.1, 5.2,
5.3 and 5.4. Owing to the final diagram of the previous subsection, we have the following
implications. Theorems 5.2, 5.3 and 5.4 follow immediately from Theorem 5.7 because the
family of fields K that are strongly of type R has zero proportion.

To deduce Theorem 5.1 from Theorem 5.6 recall the definition of E(X) given prior to (3.2)
and that m, (d2(K)) coincides with m, (—D(K)) if D(K) ¢ E(X) and that it vanishes oth-
erwise. We thus obtain

I NGO EED Y | IR R W § U

D(K)<X D<X DeE(X)

x€Giny ><Gn2 XE€Gny xCny x€Gn,y xan

(5.5)
Fixing any v € (0, 1/¢(c)) we can pick a positive integer p’ which satisfies yp(c) < 1—-1/p’ < 1
and define ¢’ via 1/p’ + 1/¢' = 1. Using Holder’s inequality we see that the quantity in (5.5)
has modulus

Z H mx(D)k'x = Z 1E(X)(D)( HA mX(D)kx)

DeB(X) XEG,,l ><G,,2 b<X Xeé7L1 ><5,,2
1/q o\ U
<( X ew@) (X [T m(oy™)
D<X D<X 4
XeGnlenz
’ l/p/
l/q ( Z H mX(D)p kx) )

)(EGn1 XGT,Z

Observe that the obvious bound m, (D) < #5(D) shows that the second sum is

< Z #S(D)p,‘k‘l

D<X
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hence by [8, Th.9] it is O, x(X). Using (3.2) we conclude that the quantity in (5.5) is
X N X X
« (—) = . & ,
(]og X)l/LP(C) (]og X)l/(q #(c)) (log X)"/

This concludes our argument that shows that Theorem 5.6 implies Theorem 5.1.

6. MAIN THEOREMS ON SPECIAL DIVISORS
This section is devoted to the proof of Theorem 5.6.

6.1. Pre-indexing trick. In the present subsection we reduce Theorem 5.6 into a statement
that can be proved with the method of Fouvry and Kliiners. Recall the definition of the set

of special divisors S(D) given in the beginning of §4. For a character y € C:’m X @nz we bring

into play the sum ) /
EERGIONCHIONC) 1

! &’
and let A(D) := A;(D). By definition (4.1) we see that m, (D) is the cardinality of elements
a’ € S(D) such that x(a’) = 1. Detecting the latter condition via (1 + x(a’))/2 we obtain
A(D) + A (D
mX(D) :27w(D)( ( )—‘; X( ))

Recalling Notation 4.6 we obtain
(A(D) + Ay (D))"
2lk[1

1. =
[ (D) = 2 hsp) 3Gy <
XEBn; XCny
Letting |(4y)|1 be the ¢-norm of the vector (i, ), we see that the right side equals

A , .
9=Ikhw(D) Z ﬁA(D)'kh_WX)h H A, (D)
0si D, XEGony %Gy

for some integers A(; ). To each vector (i,) we attach the space
Yiiy i= {x iy # 0}) € G, x G,
and recalling Definition 4.7 we see that for a fixed subspace Y < C:'m X C:’m we have

Aliy)
> o = Lo ()
(ix):Y(iy) =Y
0<iy <y

Hence Theorem 5.6 would follow from proving that for any ¢ > 0, any integers a, g, n1, no
satistying (5.2), (5.3) and (5.4), any B < CA}M x G, — {1} and any choice of a function
1: B — Z-o with i, < ky, one has that

N o) g(p)khi-Zaen i [T A, (D)

D<X xeB

=2l A5 (|k|y — dim(Y(iX)))< > 1) +O(X (log X)=27 ™),

D<X

(6.3)
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where in both sums D varies among positive square-free integers which are congruent to
a(mod ¢). Here 45(h) denotes as usual the number of vector subspaces of F4. To prove (6.3)
we will use the approach in the proof of [8, Th.6]. In the present notation their result
corresponds to the case B = @ in (6.3).

6.2. Indexing trick. We begin by performing the following change of variables in (6.1),
a' = DDy, b = DogDoy, ¢ = Dyo,d" = D.
Letting ®4(u,v) := (u; + vy)(u; + va) and \I!(u) :=u; we can thus conclude that

A= 3] [T x(00".

D=D10D11DooDo1 (u,v)e(F3)?2 Dy uelf3

Pq(u,v)

Next, if (B) is not the zero subspace we choose a basis T < B of (B). Now suppose we

choose in each factor of ,
A(D)\kh_zxes x 1_[ AX(D) X
xeB
a decomposition of D as follows,

) ()
D= H Dy =...= ]_[ DN

u(MeF? u(\kh)g]y‘g

We change variables and write D,a) (ki) 1= gcd(D ys - - - ,D‘(J:TLI‘E)), where one can recon-
struct the old variables with tho help of

u(f) n H Dy, a®,.. ulxD

1<n<|k[1 u(®eF3
n#l

as in [8, Eq.(23)]. Thus we can write
i i D\ @)y (uv)
K| *ZXE x Ix — u 1
A(D)*ienix TT A (D) 3 ( I1 <Dv) )( T T
xep Huer‘k‘l Du=D uve]Fz‘k‘l ue]Fg‘k‘l xeT
2
where

k|1

D, (u,v) Z y(u), v

. 2/k .
and U, are linear maps from IFQ‘ o F 2, which we next describe. Decompose

2|k 2[k[1—23% cpi 2i
FQ‘ h_ F, XeB X HFQZX

xeB
and we denote a vector in this space as u := (1, (u¥),cp), where u™ := (u(f‘)7 o 7111(':))
and for every j we have u&X) € F3. Next, write
ix
() = 30 (w)
=1

and note that we have

= > W(w), (6.4)

X'€Bx
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where B, denotes the set of characters ' € B, such that x is used in writing x’ in the basis
T. In particular, this implies that x € B,. The construction of ¥, depends on 7" and (i, ),
but we suppress this dependency to simplify the notation.

Let us observe that there are #7° = dim({B)) many linear maps ¥, and that they are
independent. Indeed, given x € T, all maps ¥, with x’ € T'— {x} vanish on the vectors u
with u® = 0 for each ¥ # x, while U, evaluated in such u equals \I!;((u(X))7 which does not
vanish identically.

We can therefore rewrite the first sum over D in (6.3) as

ST oD 4Dy h—Seemix [T A, (D)

D<X xeB
Dy iy (wv) (6.5)

“S (I )T G)™ )L Tvow)

(Du)  yep2leh uver2lkh Dy uep2lkt xeT

where the second sum is over positive integers D, such that Huewz"“l D, varies among
2
positive square-free integers which are congruent to a (mod ¢) and at most X.
Our goal in §§6.3-6.5 is to prove an asymptotic for the sum over D, in (6.5) under the
assumptions on the integers a, ¢, n1,n9 in Theorem 5.6. For a real number X > 1 we bring
into play the following subset of N‘ﬂkh,

§ [1,, Du is square-free,
(X, [k1:q,a):=4 (Du)u € N u=u® . . ul*)e (F2)*: bounded by X and
congruent to a (mod q)

We are interested in asymptotically evaluating the succeeding average,

Sy (X, |K|1: g, a):= 2 2k|1u(D)< 1—[ (g_L,)@kl(UV)( H HX x(u>

(Du)e2(X,|k|1:q.a) u,ve(F2) & ue(F2)/klt xeT

and in doing so we shall not keep track of the dependence of the implied constants on
T, (iy),k, X, @, q¢,n1,n2. The sum Sy, also depends on (,) and the choice of T but we suppress
this in the notation. The function Sy, should be compared with [8, Eq.(26)]; we will verify in
§6.3 that the presence of the characters x does not affect the analysis of Fouvry-Kliiners [§]
in the error term and we shall see in §§6.4-6.5 how their presence influences the main term.

6.3. The four families of sums of Fouvry and Kliiners. We begin by restricting the
summation in Sy (X, [k|1; ¢, a) to variables having a suitably small number of prime factors
as in [8,§5.3]. Letting Q := 21+1|k|; ' loglog X we shall study the contribution, say 3,
towards Sy (X, [k|1; ¢, a) of elements not fulfilling

w(Dy) < Q, for all ue F2H,

Writing m = [ ], Du and bounding each character by 1 provides us with

pi(m)? k|10 pi(m)? [k[1w(m1)
Yy« Z W Z 1 <47 Z W Z 4ihwima)
m<X

M =M M =
w(my)>Q
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Invoking [12, Eq.(1.82)] to bound the sum over m makes the following estimate available,
5 « X (log X) 12 log(d/e) -2l (6.6)

We continue in the footsteps laid out in [8, §5.4], where four families of elements in N4 are
shown to make a negligible contribution towards a quantity that resembles S, (X, [k|1; ¢, @).
Using the trivial bound

[T []x)™™ <1 (6.7)
ue(]}?%)lkh xeT

allows us to adopt in a straightforward manner the arguments leading to [8, Eq.(34),(39)]
and we proceed to briefly explain how. Let

A:=1+ (log X)2*"

and let A, denote numbers of the form A™ where m € Z-,. For A = (4,)

ue(]F%)'k‘l we let
k|1w(D Dy \ ") w
S = Y ko T (2 [T TTxpa™e
(Du)eZ(X,|kl|159,a) u,ve(F2)lki1 v ue(F2)lkl xeT
Va(Au<Du<AAy)
Vu(w(Du)<Q)

and note that, in light of (6.6), we can deduce as in [8, Eq.(32)] that

Se(X,Klig,a) = >0 Sy(X, [Kliig,0;A) + O(X (log X) 7). (6.8)
A:HuAuSX

The contribution towards (6.8) of the first family, defined through

HAu > A_4‘k‘lX,

can be proved to be « X (log X)~! with a similar argument as the one leading to [8, Eq.(34)].
We now let

X*:= min {AZ > exp ((log X)Eleh)}.
The contribution towards (6.8) of those A fulfilling that
at most 21 — 1 of the A, are larger than X* (6.9)

can be shown to be « X (log X)=2™" as in [8, Eq.(39)].

We next pass to arguments related to cancellation due to oscillation of characters, in this
case (6.7) is not enough. The exponents ®;(u,v) will now play a role. Following Fouvry
and Kliiners we call two indices u, v linked if @, (0, v) + P, (v, u) = 1. We next define

xt.= (logX)3[1+4|k\1(1+2\k\1)]
and consider the contribution of A with

H Ay < A" X and for two linked u and v we have min{Ay, A,} > XT. (6.10)
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Fouvry and Kliiners treat this case by drawing upon the important work of Heath-Brown [11]
in the form stated in [8, Lem.12]. Specifically for A as in (6.10) we have

Sk aa)< Y (] 2Meta) 3 o),
(Dw)wifuvy wWE{u,v} a1,a26(Zn(0,q])?
a102 [ [y (u,vy Pw=a(mod q)

where b
MDD = 3 (52) 9D (Pudustast) D Do)
Du,Dy v
14, 4(Dy) D, Py, (u,w) Dy Py (wu) .
g(Dw (Dw)w¢{u,v}) = mn (D—w) H D—u HX(DU)‘I’X( )7

wé{u,v} xeT

1,5 denotes the indicator function of the set {m € Z : m = a (mod §)} and similarly for

9(Dy, (Dw)wetuvy)- Since |g(Du, (Dw)weguvy)]s [9(Dv, (Dw)weguvy)| < 1 the argument in [8,
p.476] that validates [8, Eq. (42)] can be adopted in the obvious way to yield

D IS(X, Kl a;A)| « X (log X))~

A fulfils (6.10)

wi{uv}

Note that we have used [8, Lem.15] for sequences satisfying |a,|,|b,| < 1 rather than
laml,1bn] < 1, however using [8, Lem.15] for a,,/2,b,/2 in place of a,,,b, proves a ver-
sion of [8, Lem.15] under the more general assumption |a,,|, |b,| < 2 and with the same
conclusion.

The fourth family consists of A fulfilling [], Au < A4 X , any linked u, v satisfy the
inequality min{A,, A,} < X' and there exist linked u,v with 2 < A, and A, > X*. Their
contribution towards Sy (X, |k|i;¢,a; A) is

& max 2 Z |M,|, (6.11)

o(mod q)

2 (D Dy
ged(o,q)=1 A( <WD)?<{HA‘XW A<D A,

where M, is defined through

Z )27|k‘1w(D“) < > H x(D ‘I’x(“ <H x(o ‘I’x(ﬂ )D Z 9~ lkhw(Du) (g_z) )

Dy=c(mod q xeT xeT' u=c(mod q)
Au<Dy<AAy Au<Dy<AAy

Letting P*(m) denote the largest prime factor of a positive integer m > 1 and setting
P*(1) :=1,m:= Dy,/P*(D,) we obtain

Mo« 3 REEL S e [T0w)? ()|

mPt(m)<AAy mp=c(mod q) w#u
(m,q)=1

where the inner sum is over primes p with max{A./m, P*(m)} < p < AA,/m. We may
now use Dirichlet characters to modulus ¢ to detect the congruence condition on p. We will
subsequently be faced with ¢(¢q) new sums over p, each one of which can be bounded via [8,
Lem.13]. This furnishes

A2 4, el
> u(pm [ ] Dw) ( ) —— (log X)~Ne2 Mt 4 o

mp=c(mod q) w#u
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valid for each large enough positive N that is independent of A and m. The term 2 accounts
for the presence of the p?-terms. Indeed, by (6.6) the number of distinct prime divisors of
m and each Dy, is at most 2. A moment’s thought now reveals that once the last bound is
injected into (6.11) and N is suitably increased in comparison to |k|;, the contribution of A
in the fourth case is « X (log X)7!, as in [8, Eq.(47)].
Let us now introduce the conditions

H‘E(F%)k Au < A_4\k\1 X,

at least 2/¥I" indices satisfy A, > X*,

two indices u and v with Ay, A, > XT are always linked, (6.12)

if A, and A, with A, < A, are linked, then either

A, =1lor (2< A, < XTand 4, < 4, < X¥).

Increasing the value of A in comparison to |k|; and assorting all estimates so far yields
Sy (X, k|15 ¢,a) = Z Sy (X, k|15 q,a; A) + O(X(logX)E_T‘kh), (6.13)
A satisfies (6.12)
which is in analogy with [8, Prop.2].
6.4. The main term. We can now obtain the following as in [8, Prop.3],
Se(X,IKkhiga) = Y Su(XKhig.a A) + O(X(log X)=2 ™), (6.14)
A satisfies (6.15)

where

{ U :={u: A, > X*} is a maximal subset of unlinked indices, (6.15)

[ Tueqz)mn Au < AN X and A, =1 foru¢ %.

Similarly to [8, Eq.(50)] we will say that A is admissible for % if A, > X} < ue %,
Auv=1<=u¢ % and Hue(mg)\kh Ay < A" X Assume that A is admissible for % and
note that #% = 21, By quadratic reciprocity we obtain that S, (X, [k|;; ¢, a; A) equals

2 < H (1)¢’k1(u,v)i“2_1,ﬂ%> .

(h'“)E(Z/‘LZ)z‘kh I Tuea, Pu=3(mod 4) u,ve#

5 (n N x(guw) .

(90)e(2/a2)?™ [Tueq, gu=a(mod q) ¥ XT
Yue? (hu=gu(mod 4))

s () foe)

(Du)eNZ‘kh Yu (w(Dw)<Q) uev” uev”
Yu (Du=gu(mod q),Au<Du<AAy)

We can evaluate the sum over D, via the estimate,

S = s St +0a (AR ) o)

I
meNn[y,Y] (q) meNn[y,Y] Yyt
w(m)=t w(m)=¢
m=g(mod q) ged(m,q)=1

valid for each square-free integer ny that is coprime to ¢, A > 0,Y >y > 1,{ € Z~(, where
the implied constant depends at most on A. This can be proved in a similar way as [8,
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Lem.19] by replacing the congruence condition to modulus 4 on py in [8, Eq.(53)] by one to
modulus ¢. Applying (6.16) repeatedly as in [8, p.g.481-482] to estimate the sums over Dy

leads us to
2 (H 2_“'1“”“)) 2 (]_[ Du>
(Du)GNzlk‘1 Vu(w(Dy)<Q) ue% ey

Vu(Dy=gu(mod ¢q),Au<Du<AAy)

= @(Q)_Z‘kh Z (H 9~ Ikl1w(Du) ) ( H D ) X (log X) 1_4\k\1(1+2\k\1)).
)<Q)

(Du)eNz‘kh Vu(w(Du)< uew uew
Vu(Au<Du<AAy)

Using this we obtain as in [8, Eq.(55)] that for any fixed admissible % we have

Y S [khigaA) =2 M@ Y (H(l)i’klﬂ"vv%—l}ﬂ%)x
u,vew

A admissible for % (hu)e(Z/4Z)2‘k‘1

ez, Pu=3(mod 4)

» (n nx<gu>wu>) .

k! g T
(9w)e(Z/a2)*" ! [Taeq, gu=a(mod g) “U<¥ X
Yue? (hu=gu(mod 4))

Kl (Dy X
Z (1_!/2 k1w (D )) (rad I_J/D ) <logX) ,
) Q) ue ue

(Dw)eN2™! v (w(Du)<
Yu (AusDu<AAy)

where the radical rad(m) stands for the product of the distinct prime divisors of an integer
m > 1. We can now see that the condition w(D,) < € can be ignored at the cost of an error
term of size « X (log X)~! as in the beginning of §6.3. We can furthermore show as in [8,
p.2.482] that

Z <H 2|k1“’(D“)> (rad H D ) Z u(rad(q)m)2+O(X(logX)S’Z_‘kh).

(D )ENQ\kh ue% uev m<X
u
Vu(Au<Du<AAy)

It is easily proved via Mobius inversion that for fixed a,q > 0 with ged(a, q) = 1 we have

3 utdgmp? = 22 (T -p)x + 0 (VX)

m<X plg

S u(m)? - 1(H(1 )X +0(VX).

msX R
m=a(mod q)

and

Combining these yields

> wlrad@m)?® = pa) Y, um)?+0 (VX).

m<X m<X
m=a(mod q)
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We thus obtain the following for every maximal unlinked subset %,

2. Sx(X"k'“q’“;AFM( 2 u<m>2>+0(><<logx>“‘”),

k|1 2lkl1—1
A admissible for % 2 (P(q) m<X
m=a(mod q)

where

(%)= ). ( I1 (—1)<I>k|1<usv>’i‘*z—”ﬂ%> 3 (H Hx(gu)\PX(u)) .
u,ve%

k ki 5

(hu)e(Z/4Z)2‘ 1 (gu)e(Z/qZ)Q‘ 1 \ue? xeT
[Tuca hu=3(mod 4) wea, Ju=a(mod q)
Yue? (hu=gu(mod 4))

We can now infer via (6.14) that the last equation proves

SX(Xv ‘k‘l;qv a) _
#{me[l,X]:q|m—a,um)?=1}

where % ranges over maximal unlinked subsets of F

1—2lkl1
ZWJ(%)) % + O((log)()sﬂ—\kh)7
u

2k1

6.5. Simplifying -, (% ). Introduce the following Dirichlet character (mod nins),
pui=[ [
xeT’
We will call a maximal set of unlinked indices % stable if
VxeT,Yue % (¥ (u) =0)orVxeT,YVue % (¥, (u) =1).

Let us now prove that

olkli 1
Z 1_[ Pu(gu) = 1 stamie(% ) <@> ‘

(gw)e(z/qm)? !t V<
ez Ju=a(mod q)
Vue? (hu=gu(mod 4))

Write ¢ = 2°ngm, where b := 15(q), ged(ng,ning) = 1 and ng has radical equal to ning.
Define

Ui(ng) := {u e Z/nyZ : w =1 (mod nyny)} and U, (2°) := {u e Z/2°Z : u =1 (mod 4)}.

Recalling the identification of groups (Z/qZ)* = Uy(2°) x (Z/AZ)* x Ui(ng) x (Z/ninaZ)*,
we see that

> [ pulgw) = GO #U (o) (m)? 1 ) [T pulma).

k k 9
(gu>e<Z/qZ()2‘ N : ue H(mu)E(Z/m(nsz‘ " )‘“
eq Ju=almod q cqy Mu=a(mod ninz
Vueu%(huzgu(mod 4)) "

Note that we have [[,cy Puo(mu) = pus(a) = 1 owing to (5.2)-(5.4). Therefore, fixing
ug € %, we have the following equality for any choice of m,, in the above sum

[Tralm) = pugli) [T puwy= [T (Lol

m
uev ue?Z —{uo} ue?% —{uo} puO( u)
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Therefore

[ putma) = 3 [ Lulmw)

b , My)
(mw)e(@/mnyz)2 It U (ma)e((2/mymazy )1 1 0 ~{uo} o (M)

ey Mu=a(mod ning)
But the last clearly splits as
pu(mu) _
(.2 )= T (X T im).
ueZ —{uo}  (mu)e(Z/nin22)* Puo (Ta Ue% —{up}  (mu)e(Z/ninsZ)* X€T

Using that the set of x in T consists of a set of linearly independent characters, we obtain
that each factor of the last product vanishes if and only if ¢, is not constant on %, i.e. if
and only if % is not stable. In the stable case its value is cp(nmg)ﬂkh_l
proved that

. Therefore we have

2 H Pulgu) = (#Ul(2b)#U1(no)gﬁ(m)cp(nlnz))zlkh,11% ()
(gu)e(Z/qz>2\kI1 =4

wea Ju=a(mod q)
Yue% (hu=gu(mod 4))

= (@)Z‘khill% stable (% ),

from which we deduce that

olkl1 1
Swe=(52) %X ( [T <—1>‘Pk1<"~>%—“%> ,
K4 olkly

U stable (hu)wear €(Z/AZ) u,ve%
[Tuez hu=3(mod 4)

where the pairs u, v are unordered. The inner sum is identical to the one appearing in the
work of Fouvry and Kliiners, however the outer sum does not appear in their work. Define

W)=} (H(—l)(blkl(“vw’”ﬁ—”ﬂ%).
u,ve#

(ha)uen €(2/42)? !

weay hu=3(mod 4)

We are left with proving
O ) = 2T (e - #T) (6.17)
« stable

and this will be our aim in §6.6.

6.6. Combinatorics. From [8, Lem.18] we know that the maximal unlinked sets of indices
% consist precisely of cosets of |k|;-dimensional subspaces of Fg‘kh. Therefore stable % are
cosets of |k|;-dimensional subspace of Fglkh, where all the ¥, vanish.
Next, introduce the bilinear form on F ;‘k‘l via
[k

L(u,v) = Z u2j+1(V2j+1 + V2j+2)-
=0
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Using the the terminology from [8], we say that a |k|;-dimensional subspace, %, of F. 3“"1 is

good if
Loy = 0-

2%
Recall that the upshot of [8, Lem.22-25] is that y vanishes on all cosets of non-good subspaces,
meanwhile the total contribution from the set of cosets of a fixed good subspace is 22" +/kli~1,

This provides us with

Z %) = 22““]*“‘“’1#{%0 good : U, (%) = 0 for each x € T'}.
U stable

Now, following the proof of [8, Lem.26], if {eq, - - - , egx), } denotes the standard basis of Fglkh,

choose a new basis via
{br, - ,bz\kh} ={e1+es,e0, €251 + €95, €5, , €2)k)y—1 T €21k 62\k|1}~

Then, with respect to the new basis, L assumes the form

j-1

L(x,y) = D Xaj11¥2540.

j=0
In the proof of part (i) of [8, Lem.25] it is verified that, if X consists of the subspace generated
by {b; : i odd} and Y consists of the subspace generated by {b; : i even}, the map sending
Uy — x (%) where Ty is the projection map ]Fg‘k‘1 = X@Y — X gives a bijection between
good subspaces of F;‘kh and vector subspaces of F‘Qkh. On the other hand, we are counting
only good subspaces where W, vanishes for each xy € T'. Observe that owing to (6.4) we
have that W, are all constantly 0 on Y, hence they define #7" linearly independent linear
functions from X to Fy which we will denote by the same letters. Therefore % — 7x (%)
provides a bijection between good subspaces where all ¥, vanish and subspaces of X where
all ¥, vanish. Given that ¥, : X — F, are independent we find that the cardinality of such
subspaces is precisely A5(|k|; — #7"). This substantiates (6.17), which concludes the proof
of Theorem 5.6.

7. FROM THE MIXED MOMENTS TO THE DISTRIBUTION

This section is devoted to deduce Theorem 5.7 from Theorem 5.6. We will follow an
adaptation of a method used by Heath-Brown in [10].
As explained in §4, Theorem 5.7 can be equivalently rephrased as a theorem about the
distribution of the vector

D — ('rrLX(D))énleé:nQ.
Namely consider for any positive integer j and subspace Y < G’m X énw the vector

JY é"l X Gingy
viY) g Loy ,

(3,Y

defined as vy ) =jif yeY and V§(J¥Y) _

j—1if x ¢ Y. Assign to v&Y) mass
# Epi(F V)
#Hom(Fy ™", Gy x Goy)

n(vO) = pen(A e 4 #AR2] = 27

63



C. PAGANO AND E. SOFOS

Gn1 xGn2

On the other hand, assign to all other Vectors v e Z mass equal to 0. In Propo-

nl xGn,y

sition 4.8 it is shown that this equips Z with a probability measure satisfying the

following moment equations:
Z 2"‘ku(v) = Ck,

G ><G
VEZL, nl "2

Gn1 X an

where for any k € Z_ we define

Ciei=2M0 Y Py (V) Aa([k|y — dim(Y))
Y €Gy %Gy

and where v - k denotes the inner product.
We begin the proof of Theorem 5.7 by showing that the distribution p is characterized
by the moment equations given above. Indeed we show more, namely assume z is a map

Zggl <G — [0, 1] satisfying for any k € ZG’” <o the moment relations
Z vk (v) = Ch. (7.1)
GZGM ><Gn2

Observe that one has the trivial bound Cj « 2K #5(|k|,), which leads to Cx « QM.

Letting F(t) := [[_,(1 — t27"), we therefore see that for any k € ZG"1 xGng

series is absolutely convergent,

, the following

> anCu2K, (7.2)

nEZGnl ><an

where a, is the n-coefficient of the Taylor expansion of

Fl(z) = HN F(z,).

N

Injecting (7.1) into (7.2), expanding in terms of x and exchanging the order of summation,

we obtain
S aG2 e =Y F(@m)a(m).

Gnl ><('n2 (’nl ><Gn2

nez.

If for all x we have m, < k, then F((2™ %)) # 0, otherwise we have F((2™x&x)) = 0.
Therefore, the right side is a finite sum supported in the region m, < k, for every x. Hence,
using the triangular system of relations above one can successively reconstruct the function
2(m) from the moments C. Therefore, we necessarily have x(m) = p(m) described above.

Let a,q be integers as in Theorem 5.7 and for any j € ZG"l Gna and X € R.q, define
the quantity d;(X) as the proportion of all positive square- free integers D < X satisfying
D = a(mod q) and m, (D) = 2¥x for all x. Therefore, Theorem 5.6 shows that for any

Kk e ZGn1 ><Gn2

meZ_,

we have Y. do(X)2"% = Ci + o(1), as X — +o0, where the sum is taken
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Gy xCin Gy xGin
over v € Zzy" ™. The argument concludes as follows: fix any vector v € ZZ5'" ™ by

compactness of the interval [0,1] and a standard diagonal argument, one can choose a
sequence {Y, }nen tending to infinity, such that d,(Y;) converges to any of the limit points of
{dy(X) : X € Ry}, call it d,, while for every other w the sequence d.,(Y},) is also converging

S Gy X G, . .
to some limit point d,. Next, we fix h e Z_¢"" ", and we use the previous moment relation

for k = 2h, trivially bounding each terms with the total sum, providing d.(Y,) <y 275
This enables us to apply the dominated convergence theorem to exchange the sum and the
limit in the expression of the h-th moment, from which we deduce that d, satisfies the
following moment equations as well:

>, v, = Ch.

We must therefore have dl, = p(w) for all w € ZSSIXG"Z. Note that d, was an arbitrary

limit point of dy(X), hence we deduce that
lim dy(X) = u(v).
X—w0

Since v was chosen arbitrarily in ZSSIXGW we have thus shown that Theorem 5.7 holds,
thereby concluding the proof of Theorem 5.7.
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