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4-Ranks and the general model for  

statistics of ray class groups of imaginary 
quadratic number fields

C. Pagano and E. Sofos

The reason for this difference in generality comes from the fact that Chiu’s
work is an adaptation of Evertse’s work [3] to characteristic p. Our work is instead
an adaptation of the work of Beukers and Schlickewei [1] to characteristic p. In
both works [1, 3], there is a key use of a certain set of identities coming from
hypergeometric functions, see [4, Lemma 3.3, Lemma 3.4]. In characteristic p
these identities can be used only in a limited range, see [2, Proposition 2] and [4,
Corollary 3.5] respectively.

Correspondingly, the solutions to the unit equations need to be counted only
up to equivalence. One of the most important steps is to use this equivalence
relation in such a way that one is inside this limited range. It is this step that
allows one to obtain an upper bound that is independent of p. The reader can find
this step in the two papers respectively at [2, Lemma 4] and at [4, Lemma 3.9].
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CLASS GROUPS OF IMAGINARY QUADRATIC NUMBER FIELDS
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Abstract. We use homological algebra to extend the Cohen–Lenstra heuristics to the set-
ting of ray class groups of imaginary quadratic number fields, viewed as exact sequences of
Galois modules. By asymptotically estimating the mixed moments governing the distribu-
tion of a cohomology map, we prove these conjectures in the case of 4-ranks.
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1. Introduction

Let c be a positive odd square-free integer. Partition the set of its prime divisors, S, into
S1 Y S3, where if l P Si then l ” i pmod 4q. For an imaginary quadratic number field K,
denote by ClpK, cq the ray class group of K of conductor c, and by DpKq the discriminant
of K. Let j1 and j2 be two non-negative integers. The following theorem will be shown to
be a special case of the present work.

Theorem 1.1. Consider all imaginary quadratic number fields K such that DpKq ” 1 pmod 4q
and OK{c –ring

ś

lPS Fl2. When such K are ordered by the size of their discriminants the
fraction of them that satisfy

rk4pClpKqq “ j1, rk4pClpK, cqq “ j2

approaches

η8p2q
ηj1p2q22j21

#tϕ P HomF2pFj1
2 ,F

#S3

2 q : rkpϕq “ #S ´ pj2 ´ j1qu
#HomF2pFj1

2 ,F
#S3

2 q
.

For M P Zě1 and s P Zě1 Y t8u, ηspMq denotes
śs

i“1p1´M´iq. For the statement in full
generality see Theorem 5.4.

Date: November 7, 2018.
2010 Mathematics Subject Classification. 11R65, 11R29, 11R11, 11R45.
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4-RANKS AND THE GENERAL MODEL OF RAY CLASS GROUPS 15

The special case c “ 1 of Theorem 1.1 recovers a result of Fouvry and Klüners [7, Cor.
1] (in the subfamily of imaginary quadratic number fields above). The theorem of Fouvry
and Klüners on 4-ranks is one of the strongest pieces of evidence for the heuristic of Cohen–
Lenstra and Gerth about the distribution of the p-Sylow subgroup of the class group of an
imaginary quadratic number field.
Indeed, for odd primes p, Cohen and Lenstra [4] constructed a heuristic model to predict

the outcome of any statistic on the p-Sylow of the class group of imaginary quadratic number
fields. For every prime p they equipped the set of isomorphism classes of abelian p-groups,
Gp, with the only probability measure that gives to each abelian p-group G a weight inversely
proportional to #AutpGq. This measure is now often called the Cohen–Lenstra measure on
Gp, and denoted by µCL. Their heuristic model, for odd primes p, consisted in predicting
the equidistribution of ClpKqrp8s in Gp, as K ranges through natural families of imaginary
quadratic number fields. Later, Gerth [9] adapted this heuristic model for p “ 2. His idea was
that the only obstruction for ClpKqr28s to behave like a random abelian 2-group in the sense
of Cohen–Lenstra comes from ClpKqr2s; therefore his heuristic model is that 2ClpKqr28s
behaves like a random abelian 2-group. The result of Fouvry and Klüners can then be
formulated by saying that, consistently with Gerth’s conjecture, the 2-torsion of 2ClpKq
behaves like the 2-torsion of a random abelian 2-group in the sense of Cohen–Lenstra.
Before the present paper, no analogue of any of these heuristics has been proposed for

ray class groups. Our second main achievement, aside from the proof of Theorem 1.1, is
to provide an extension of the Cohen–Lenstra and Gerth heuristics for ray class groups.
We obtain this by means of two innovations, one of a rather conceptual nature and one
of a technical nature. Namely we first introduce the novel viewpoint of using homological
algebra to weight the possible occurrences of ray class groups, as explained in §2. Secondly, to
overcome the difficulties imposed by p “ 2, we introduce in §3 the new notion of embeddable
extensions (see Definition 3.2). This notion allows us to take care of the additional structure
of this case, furnishing a natural way to define the adjusted weights for the 2-part of ray class
groups. Theorem 1.1 will then be a strong evidence supporting our new heuristic for ray class
groups and precisely in the case where our heuristic has the most demanding algebraic shape.
The agreement of Theorem 1.1 and our heuristic at p “ 2 is established in Proposition 3.5.
With our model we can provide the conjectural analogue of Theorem 1.1 for all odd primes

p. Partition S into S1 Y . . . Y Sp´1, where l P Si if l ” i pmod pq.

Conjecture 1.2. Let p be an odd prime. Consider all imaginary quadratic number fields
K having the property OK{c –ring

ś

lPS Fl2. When such K are ordered by the size of their
discriminants the fraction of them that satisfy

rkppClpKqq “ j1, rkppClpK, cqq “ j2

approaches

η8ppq
ηj1ppq2pjp1

#tϕ P HomFppFj1
p ,F

#Sp´1
p q : rkpϕq “ #S1 ` #Sp´1 ´ pj2 ´ j1qu
#HomFppFj1

p ,F#Sp´1
p q

.

For the statement in the general case see Conjecture 2.10, in particular, in the main body
of the paper, we shall allow any admissible ring structure for OK{c. From our model in its
full generality we shall derive conjectural formulas for the average size of the p-torsion of ray
class groups of imaginary quadratic number fields.

16 C. PAGANO AND E. SOFOS

Conjecture 1.3. Let p be an odd prime. The average value of #ClpK, cqrps as K ranges over
imaginary quadratic number fields with gcdpDpKq, cq “ 1 and ordered by their discriminant
is:
(1)

p#tl prime: l|c,l”1pmod pqu
´

1 `
´p ` 1

2

¯#tl prime: l|c,l”1 or ´1pmod pqu¯

if p2 does not divide c,
(2)

p#tl prime: l|c,l”1pmod pqu`1
´

1 ` p
´p ` 1

2

¯#tl prime: l|c,l”1 or ´1pmod pqu¯

if p2 divides c.

For p “ 3 this conjecture was recently proved by Varma [18] using geometry of numbers.
In [18, §1] she asked whether one can formulate an extension of the Cohen–Lenstra heuristic
that explains her result. Our model for ray class groups settles this for imaginary quadratic
number fields (for the full comparison with Varma’s result see §2.2).
Our main theorems and conjectures are not merely about the group ClpK, cq but also

about the entire exact sequence naturally attached to it:

1 Ñ pOK{cq˚

O˚
K

Ñ ClpK, cq Ñ ClpKq Ñ 1.

For simplicity, in this section we will continue to assume that all the primes in S are inert
in K. Then one can show that there is a long exact sequence whose first terms are

1 Ñ
´pOK{cq˚

x´1y

¯2

r2s Ñ p2ClpK, cqqr2s Ñ p2ClpKqqr2s δ2pKqÑ
ź

lPS3

F˚2
l2

F˚4
l2
.

To obtain the last map one chooses any identification between

`

pOK {cq˚
x´1y

˘2

`

pOK {cq˚
x´1y

˘4 and
ś

lPS
F˚2

l2

F˚4

l2
via

an identification of the rings OK{c and
ś

lPS Fl2 . The resulting set of maps is an orbit
under Autringp

ś

lPS Fl2q, acting by post-composition. But Autringp
ś

lPS Fl2q acts trivially on
ś

lPS3

F˚2

l2

F˚4

l2
, so one has a canonical identification.

Let Y be a subspace of
ś

lPS3

F˚2

l2

F˚4

l2
and j a non-negative integer. In this setting we manage to

control the statistical distribution of p#2ClpKqqr2s, Impδ2pKqq, thus providing a considerable
refinement of Theorem 1.1. Our result is as follows.

Theorem 1.4. Consider all imaginary quadratic number fields K such that DpKq ” 1 pmod 4q
and OK{c –ring

ś

lPS Fl2. When such K are ordered by the size of their discriminants the
fraction of them that satisfy

p2ClpKqqr2s – Fj
2, Impδ2pKqq “ Y

approaches

η8p2q
ηj1p2q22j12

#EpiF2
pFj

2, Y q

#HomF2

´

Fj
2,

ś

lPS3

F˚2

l2

F˚4

l2

¯ .

c. pagano and e. sofos
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1] (in the subfamily of imaginary quadratic number fields above). The theorem of Fouvry
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4-RANKS AND THE GENERAL MODEL OF RAY CLASS GROUPS 17

This means that p#p2ClpKqqr2s, Impδ2pKqqq behaves like p#Gr2s, Impδqq, where G is a

random abelian 2-group in the Cohen–Lenstra sense, and δ : Gr2s Ñ F#S3

2 is a random map.
For the statement in full generality see Theorem 5.2. We show in §3 that this result is also
predicted by our heuristic model. Our model enables us to provide a conjectural analogue
of Theorem 1.4 for all odd p. Its formulation is in Conjecture 2.8.
Theorem 1.4 determines the joint distribution of the pair p#p2ClpKqqr2s, Impδ2pKqqq.

Theorem [7, Cor.1] of Fouvry and Klüners determines the distribution of the first component,
#p2ClpKqqr2s via the use of another result of the two authors, [8, Theorem 3], where they
obtained asymptotics for all moments of #p2ClpKqqr2s. A surprising feature of our work is
that we establish the joint distribution of the pair p#p2ClpKqqr2s, Impδ2pKqqq by means of
the moment-method, despite the fact that Impδ2pKqq is not a number. Although the general
philosophy of using moments to study distributions is standard in the literature related to
the Cohen–Lenstra heuristics (see, for example, [22]), we stress that no object like the image
of the δ-map has been treated in the subject. It is instructive to see how we incorporate
the image-data into the Fouvry–Klüners method. We do this by introducing for every real
character χ :

ś

lPS3
F˚2
l2 Ñ R˚, the random variable

mχpδ2pKqq :“ #kerpχpδ2pKqqq.
To know the pair p#p2ClpKqqr2s, Impδ2pKqqq is equivalent to knowing pmχpδ2pKqqqχ. How-
ever, the advantage is that the latter is a numerical vector and therefore one can hope to
apply the method of moments to control its distribution. This is precisely what we achieve
in Theorem 5.6. The expressions that appear during the proof of Theorem 5.6 are of the
shape

ÿ

DăX

ź

χ

mχpδ2pQp
?

´Dqqqkχ ,

where D ranges over all positive square-free integers with D ” 3 pmod 4q and χ ranges
over all real characters χ :

ś

lPS3
F˚
l2 Ñ R˚. As explained in §6.1, the additional complex-

ity of these expressions compared to the classical case settled by Fouvry and Klüners, is
tempered by the fact that, with our heuristic model for ray class groups, we already have
a candidate main term. In particular, the shape of its expression suggests a way to sub-
divide the sum, with the benefit of hindsight, in many smaller sub-sums. For each of these
sub-sums it turns out that the techniques of Fouvry and Klüners are applicable with only
minor modifications. After proving Theorem 5.6 we turn our attention to the distribution
of p#p2ClpKqqr2s, Impδ2pKqqq, which we reconstruct from the mixed moments by following
an argument of Heath-Brown [10].
We stress that Theorem 1.4 is stronger than Theorem 1.1. Here the finer information

(which is the image of the δ-map), is obtained precisely owing to the fact that we use ring
identifications rather than merely group identifications1. Using the latter we could have
studied only the size of Impδ2pKqq, which is precisely what occurs in Theorem 1.1. On the
other hand, it is important to note that the techniques employed in the proof of Theorem 1.4
are not applicable in studying directly the moments of the isolated quantity #p2ClpK, cqqr2s:
we can access the distribution of the quantity #p2ClpK, cqqr2s only by the moments of a
finer object, the δ-map. This contrast reflects the fact that the natural algebraic structure
attached to the ray class group is the entire exact sequence naturally attached to it, rather
than just the isolated group ClpK, cq. It is precisely this phenomenon that leads us to

1We thank Hendrik Lenstra for having suggested this.

18 C. PAGANO AND E. SOFOS

formulate a general heuristic for ray class sequences of conductor c. In this framework,
Theorem 1.4 gives compelling evidence that our heuristic model predicts correct answers
also when it is challenged to produce the outcome of statistics about the ray class sequence,
and not only when, less directly, one isolates the group ClpK, cq.
Encouraged by this corroboration, we formulate our heuristic to predict the outcome of any

statistical question about the p-part of the ray class sequence, viewed as an exact sequence
of Galois modules. A positive side effect of this enhanced generality is the consequent logical
simplification of our conjectural framework: our heuristic is based on a simple unifying
principle, which, if true, implies at once all our conjectures. This heuristic principle is stated
in §2 for an odd prime p, and in §3 for p “ 2.
Let p be an odd prime and G a finite abelian p-group. The following is an attractive and

easy example of the conjectural conclusions that are available in this new model:

Conjecture 1.5. Consider all imaginary quadratic number fields K having the property
that OK{c –ring

ś

lPS Fl2. When such K are ordered by the size of their discriminants, the
fraction of them having the properties that the p-part of the ray class sequence of modulus c
splits and

ClpKqrp8s –ab.gr. G,

approaches

η8ppq
#Autab.gr.pGq

1

#Homab.gr.pG,
ś

lPSp´1
F˚
l2q .

1.1. Comparison with the literature. The present work sits in an active area of research
focused on extending the classical Cohen–Lenstra heuristics to other interesting arithmetical
objects and on establishing the correctness of these statistical models in cases where an
‘analytically-friendly’ description of the problem is available. Developments along this line
of research can be found in the very recent work by Wood [21], which provides a heuristic
for the average number of unramified G-extensions of a quadratic number field for any
finite group G: the Cohen–Lenstra heuristics are recovered by taking G to be an abelian
group. It would be interesting to reach the generality of both the present paper and [21], by
considering G-extensions with prescribed ramification data. The evidence provided in [21] is
over function fields, by means of the approach of Ellenberg, Venkatesh and Westerland [6]. In
a recent preprint, Alberts and Klys [1] offered evidence for the heuristics in Wood’s work [21]
over number fields using the approach of Fouvry and Klüners. It is interesting to note that
in a previous work Klys [14] extended the work of Fouvry and Klüners to the p-torsion of
cyclic degree p extensions. These last two examples, together with the present work, show
the remarkable versatility of the method used in [8] and pioneered (in the context of Selmer
groups) by Heath-Brown [10].
The case of narrow class groups was investigated by Bhargava and Varma [3] and by

Dummit and Voight [5]. The latter work provides, among other things, a conjectural formula
for the average size of the 2-torsion of narrow class groups among the family of Sn-number
fields, for odd n. For n “ 3, this was a theorem of Bhargava and Varma [3].
Very recently, Jordan, Klagsbrun, Poonen, Skinner and Zaytman [13] made a conjecture for

the distribution of the p-torsion of K-groups of real and imaginary quadratic number fields.
Building on the recent improvement of the work of Bhargava, Shankar and Tsimerman [2],
they established their conjecture for the average size of the 3-torsion. Incidentally, the
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This means that p#p2ClpKqqr2s, Impδ2pKqqq behaves like p#Gr2s, Impδqq, where G is a

random abelian 2-group in the Cohen–Lenstra sense, and δ : Gr2s Ñ F#S3

2 is a random map.
For the statement in full generality see Theorem 5.2. We show in §3 that this result is also
predicted by our heuristic model. Our model enables us to provide a conjectural analogue
of Theorem 1.4 for all odd p. Its formulation is in Conjecture 2.8.
Theorem 1.4 determines the joint distribution of the pair p#p2ClpKqqr2s, Impδ2pKqqq.

Theorem [7, Cor.1] of Fouvry and Klüners determines the distribution of the first component,
#p2ClpKqqr2s via the use of another result of the two authors, [8, Theorem 3], where they
obtained asymptotics for all moments of #p2ClpKqqr2s. A surprising feature of our work is
that we establish the joint distribution of the pair p#p2ClpKqqr2s, Impδ2pKqqq by means of
the moment-method, despite the fact that Impδ2pKqq is not a number. Although the general
philosophy of using moments to study distributions is standard in the literature related to
the Cohen–Lenstra heuristics (see, for example, [22]), we stress that no object like the image
of the δ-map has been treated in the subject. It is instructive to see how we incorporate
the image-data into the Fouvry–Klüners method. We do this by introducing for every real
character χ :

ś

lPS3
F˚2
l2 Ñ R˚, the random variable

mχpδ2pKqq :“ #kerpχpδ2pKqqq.
To know the pair p#p2ClpKqqr2s, Impδ2pKqqq is equivalent to knowing pmχpδ2pKqqqχ. How-
ever, the advantage is that the latter is a numerical vector and therefore one can hope to
apply the method of moments to control its distribution. This is precisely what we achieve
in Theorem 5.6. The expressions that appear during the proof of Theorem 5.6 are of the
shape

ÿ

DăX

ź

χ

mχpδ2pQp
?

´Dqqqkχ ,

where D ranges over all positive square-free integers with D ” 3 pmod 4q and χ ranges
over all real characters χ :

ś

lPS3
F˚
l2 Ñ R˚. As explained in §6.1, the additional complex-

ity of these expressions compared to the classical case settled by Fouvry and Klüners, is
tempered by the fact that, with our heuristic model for ray class groups, we already have
a candidate main term. In particular, the shape of its expression suggests a way to sub-
divide the sum, with the benefit of hindsight, in many smaller sub-sums. For each of these
sub-sums it turns out that the techniques of Fouvry and Klüners are applicable with only
minor modifications. After proving Theorem 5.6 we turn our attention to the distribution
of p#p2ClpKqqr2s, Impδ2pKqqq, which we reconstruct from the mixed moments by following
an argument of Heath-Brown [10].
We stress that Theorem 1.4 is stronger than Theorem 1.1. Here the finer information

(which is the image of the δ-map), is obtained precisely owing to the fact that we use ring
identifications rather than merely group identifications1. Using the latter we could have
studied only the size of Impδ2pKqq, which is precisely what occurs in Theorem 1.1. On the
other hand, it is important to note that the techniques employed in the proof of Theorem 1.4
are not applicable in studying directly the moments of the isolated quantity #p2ClpK, cqqr2s:
we can access the distribution of the quantity #p2ClpK, cqqr2s only by the moments of a
finer object, the δ-map. This contrast reflects the fact that the natural algebraic structure
attached to the ray class group is the entire exact sequence naturally attached to it, rather
than just the isolated group ClpK, cq. It is precisely this phenomenon that leads us to

1We thank Hendrik Lenstra for having suggested this.
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formulate a general heuristic for ray class sequences of conductor c. In this framework,
Theorem 1.4 gives compelling evidence that our heuristic model predicts correct answers
also when it is challenged to produce the outcome of statistics about the ray class sequence,
and not only when, less directly, one isolates the group ClpK, cq.
Encouraged by this corroboration, we formulate our heuristic to predict the outcome of any

statistical question about the p-part of the ray class sequence, viewed as an exact sequence
of Galois modules. A positive side effect of this enhanced generality is the consequent logical
simplification of our conjectural framework: our heuristic is based on a simple unifying
principle, which, if true, implies at once all our conjectures. This heuristic principle is stated
in §2 for an odd prime p, and in §3 for p “ 2.
Let p be an odd prime and G a finite abelian p-group. The following is an attractive and

easy example of the conjectural conclusions that are available in this new model:

Conjecture 1.5. Consider all imaginary quadratic number fields K having the property
that OK{c –ring

ś

lPS Fl2. When such K are ordered by the size of their discriminants, the
fraction of them having the properties that the p-part of the ray class sequence of modulus c
splits and

ClpKqrp8s –ab.gr. G,

approaches

η8ppq
#Autab.gr.pGq

1

#Homab.gr.pG,
ś

lPSp´1
F˚
l2q .

1.1. Comparison with the literature. The present work sits in an active area of research
focused on extending the classical Cohen–Lenstra heuristics to other interesting arithmetical
objects and on establishing the correctness of these statistical models in cases where an
‘analytically-friendly’ description of the problem is available. Developments along this line
of research can be found in the very recent work by Wood [21], which provides a heuristic
for the average number of unramified G-extensions of a quadratic number field for any
finite group G: the Cohen–Lenstra heuristics are recovered by taking G to be an abelian
group. It would be interesting to reach the generality of both the present paper and [21], by
considering G-extensions with prescribed ramification data. The evidence provided in [21] is
over function fields, by means of the approach of Ellenberg, Venkatesh and Westerland [6]. In
a recent preprint, Alberts and Klys [1] offered evidence for the heuristics in Wood’s work [21]
over number fields using the approach of Fouvry and Klüners. It is interesting to note that
in a previous work Klys [14] extended the work of Fouvry and Klüners to the p-torsion of
cyclic degree p extensions. These last two examples, together with the present work, show
the remarkable versatility of the method used in [8] and pioneered (in the context of Selmer
groups) by Heath-Brown [10].
The case of narrow class groups was investigated by Bhargava and Varma [3] and by

Dummit and Voight [5]. The latter work provides, among other things, a conjectural formula
for the average size of the 2-torsion of narrow class groups among the family of Sn-number
fields, for odd n. For n “ 3, this was a theorem of Bhargava and Varma [3].
Very recently, Jordan, Klagsbrun, Poonen, Skinner and Zaytman [13] made a conjecture for

the distribution of the p-torsion of K-groups of real and imaginary quadratic number fields.
Building on the recent improvement of the work of Bhargava, Shankar and Tsimerman [2],
they established their conjecture for the average size of the 3-torsion. Incidentally, the
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work [2] is also employed by Varma [18] on the average 3-torsion of ray class groups, which
is placed in a general conjectural framework by the present paper.
Despite this rich context of developments, the present paper is, to the best of our knowl-

edge, the first one to propose a heuristic model for the ray class sequence of imaginary
quadratic number fields and to prove its correctness for the pair p#p2ClpKqqr2s, Impδ2pKqqq,
establishing, as a corollary, the joint distribution of the 4-ranks of ClpKq and ClpK, cq.

1.2. Organization of the material. The remainder of this paper is organized as follows:
In §2 we explain our heuristic model for the distribution of the p-part of ray class sequences
of imaginary quadratic number fields, for odd primes p. We draw several conjectures from
this heuristic principle and verify its consistency with the theorems of Varma [18] in the
imaginary quadratic case.
In §3 we examine the case p “ 2. This case requires some additional work to isolate

the ‘random’ part of the 2-Sylow of the ray class sequences of imaginary quadratic number
fields. This additional difficulty arises already for the ordinary class group as can be seen
in the work of Gerth [9]. However, for ray class sequences overcoming such difficulties is
much more intricate due to the more articulate underlying algebraic structures. This will
allow us to formulate a number of predictions that will be proved in §§5-7. A key step
in these proofs is the reformulation of the problem about 4-ranks into a purely analytic
problem about mixed moments. For this we introduce the notion of special divisors in §4
and certain related statistical questions that will be subsequently answered. This statistic is
a special case of a ray class group statistic, as subsequently established in §5. Therefore the
material of §3 would implicitly provide a heuristic for it. Nevertheless, in §4 we present the
problem and the heuristic in a direct way using the language of special divisors. This has
the advantage that §4, Theorems 5.6-5.7, §6 and §7 are mostly analytic in nature and can
be read independently of the algebraic considerations in §2 and §3.
In §5 we state the main theorems about the 2-part of the ray class sequences and reduce

their proof so as to establish the predictions in §4. The section ends with the statement of
the corresponding main theorems on special divisors. In §6 we prove the main theorem on
mixed moments attached to the maps on special divisors introduced in §4. Finally, in §7 we
reconstruct the distribution from the mixed moments, concluding the proof of all theorems
stated in §5.
Notation. The symbol DpKq will always refer to the discriminant of a number field K. Let
us furthermore denote

F :“ tK imaginary quadratic number fieldu.

Acknowledgements. We are very grateful to Hendrik Lenstra for several insightful discus-
sions and for useful feedback during the course of this project. In particular, we thank him
for suggesting to consider the first terms of the ray class sequences only up to ring automor-
phisms, which turned out to be a natural level of greater generality where we could prove our
main theorems on 4-ranks. We thank Alex Bartel for many stimulating discussions about
our work, as well as organizing an inspiring conference on the Cohen–Lenstra heuristics in
Warwick in July 2016, where this project started. We also wish to thank Djordjo Milovic
and Peter Koymans for useful discussions and Ila Varma and Peter Stevenhagen for prof-
itable feedback. Furthermore, we thank Alex Bartel, Joseph Gunther and Peter Koymans
for helpful remarks on earlier versions of this paper.
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2. Heuristics and conjectures for p odd

Let p be an odd prime number and c a positive integer. Denote by C2 a group with 2
elements and denote by τ its generator. In this section we provide a heuristic model that
predicts the statistical behavior of the exact sequence of ZprC2s-modules attached to the ray
class group of conductor c of an imaginary quadratic number field K. Denote it by

SppKq :“
´

1 Ñ pOK{cq˚

O˚
K

rp8s Ñ ClpK, cqrp8s Ñ ClpKqrp8s Ñ 1
¯

, (2.1)

where the C2-action comes from the natural action of GalpK{Qq on each term of the sequence.
The reader is referred to [15, §IV] for related background material. We shall call SppKq the p-
part of the ray class sequence of conductor c. We shall henceforth ignore the fields K “ Qpiq
and K “ Qp

?
´3q, to ensure that O˚

K “ x´1y. Owing to p ‰ 2 we furthermore have
ppOK{cq˚{x´1yqrp8s “ pOK{cq˚rp8s, thus allowing us to write

SppKq :“ p1 Ñ pOK{cq˚rp8s Ñ ClpK, cqrp8s Ñ ClpKqrp8s Ñ 1q.

Denote by Gp a set of representatives of isomorphism classes of finite abelian p-groups,
viewed as C2-modules under the action of ´ Id and call GppKq the unique representative
of ClpKqrp8s in Gp. Any family of imaginary quadratic fields can be partitioned in finitely
many subfamilies where the isomorphism class of the ring OK{c is fixed, by imposing finitely
many congruence conditions on the discriminants. Therefore we can always assume that
pOK{cq˚ has been fixed as the unit group of some ring that is independent of K.

Definition 2.1. Let K, c be as above and R a finite commutative ring. We shall say that
K is of type R if OK{charpRq – R as rings. With this definition in mind let us denote

F pRq :“ tK imaginary quadratic number field of type Ru.

From now on we will assume that R is of the form R :“ OA {c, where OA is the integral
closure of

ś

l|c Zl in A :“
ś

l|c El, with El being an etale Ql-algebra of degree 2. Under this

assumption, a positive fraction of all discriminants lies in F pRq.
Suppose K is of type R. Then pOK{cq˚ can be identified with R˚ via any restriction of a

ring isomorphism, that is via any element of IsomringpOK{c, Rq. Furthermore, we can identify
ClpKqrp8s and GppKq via any element of Isomab.gr.pClpKqrp8s, GppKqq. Therefore applying
IsomringpOK{c, Rq ˆ Isomab.gr.pClpKqrp8s, GppKqq to SppKq, we obtain a unique orbit

Oc,ppKq P ExtZprC2spGppKq, R˚rp8sq{pAutringpRq ˆ Autab.gr.pGppKqqq.

We refer the reader to [19, §3] for definition and properties of ExtSpA,Bq, where S is a ring
and A,B are S-modules. For the remainder of the paper, given S-modules A,B,C,A1, B1

and C 1, we call a commutative diagram of S-modules, a diagram of maps of S-modules

0 Ñ B1 Ñ
f1

Ó ψ1

0 Ñ B2 Ñ
f2

C1 Ñ
g1

A1 Ñ 0

Ó ψ2 Ó ψ3

C2 Ñ
g2

A2 Ñ 0,
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work [2] is also employed by Varma [18] on the average 3-torsion of ray class groups, which
is placed in a general conjectural framework by the present paper.
Despite this rich context of developments, the present paper is, to the best of our knowl-

edge, the first one to propose a heuristic model for the ray class sequence of imaginary
quadratic number fields and to prove its correctness for the pair p#p2ClpKqqr2s, Impδ2pKqqq,
establishing, as a corollary, the joint distribution of the 4-ranks of ClpKq and ClpK, cq.

1.2. Organization of the material. The remainder of this paper is organized as follows:
In §2 we explain our heuristic model for the distribution of the p-part of ray class sequences
of imaginary quadratic number fields, for odd primes p. We draw several conjectures from
this heuristic principle and verify its consistency with the theorems of Varma [18] in the
imaginary quadratic case.
In §3 we examine the case p “ 2. This case requires some additional work to isolate

the ‘random’ part of the 2-Sylow of the ray class sequences of imaginary quadratic number
fields. This additional difficulty arises already for the ordinary class group as can be seen
in the work of Gerth [9]. However, for ray class sequences overcoming such difficulties is
much more intricate due to the more articulate underlying algebraic structures. This will
allow us to formulate a number of predictions that will be proved in §§5-7. A key step
in these proofs is the reformulation of the problem about 4-ranks into a purely analytic
problem about mixed moments. For this we introduce the notion of special divisors in §4
and certain related statistical questions that will be subsequently answered. This statistic is
a special case of a ray class group statistic, as subsequently established in §5. Therefore the
material of §3 would implicitly provide a heuristic for it. Nevertheless, in §4 we present the
problem and the heuristic in a direct way using the language of special divisors. This has
the advantage that §4, Theorems 5.6-5.7, §6 and §7 are mostly analytic in nature and can
be read independently of the algebraic considerations in §2 and §3.
In §5 we state the main theorems about the 2-part of the ray class sequences and reduce

their proof so as to establish the predictions in §4. The section ends with the statement of
the corresponding main theorems on special divisors. In §6 we prove the main theorem on
mixed moments attached to the maps on special divisors introduced in §4. Finally, in §7 we
reconstruct the distribution from the mixed moments, concluding the proof of all theorems
stated in §5.
Notation. The symbol DpKq will always refer to the discriminant of a number field K. Let
us furthermore denote

F :“ tK imaginary quadratic number fieldu.

Acknowledgements. We are very grateful to Hendrik Lenstra for several insightful discus-
sions and for useful feedback during the course of this project. In particular, we thank him
for suggesting to consider the first terms of the ray class sequences only up to ring automor-
phisms, which turned out to be a natural level of greater generality where we could prove our
main theorems on 4-ranks. We thank Alex Bartel for many stimulating discussions about
our work, as well as organizing an inspiring conference on the Cohen–Lenstra heuristics in
Warwick in July 2016, where this project started. We also wish to thank Djordjo Milovic
and Peter Koymans for useful discussions and Ila Varma and Peter Stevenhagen for prof-
itable feedback. Furthermore, we thank Alex Bartel, Joseph Gunther and Peter Koymans
for helpful remarks on earlier versions of this paper.
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2. Heuristics and conjectures for p odd

Let p be an odd prime number and c a positive integer. Denote by C2 a group with 2
elements and denote by τ its generator. In this section we provide a heuristic model that
predicts the statistical behavior of the exact sequence of ZprC2s-modules attached to the ray
class group of conductor c of an imaginary quadratic number field K. Denote it by

SppKq :“
´

1 Ñ pOK{cq˚

O˚
K

rp8s Ñ ClpK, cqrp8s Ñ ClpKqrp8s Ñ 1
¯

, (2.1)

where the C2-action comes from the natural action of GalpK{Qq on each term of the sequence.
The reader is referred to [15, §IV] for related background material. We shall call SppKq the p-
part of the ray class sequence of conductor c. We shall henceforth ignore the fields K “ Qpiq
and K “ Qp

?
´3q, to ensure that O˚

K “ x´1y. Owing to p ‰ 2 we furthermore have
ppOK{cq˚{x´1yqrp8s “ pOK{cq˚rp8s, thus allowing us to write

SppKq :“ p1 Ñ pOK{cq˚rp8s Ñ ClpK, cqrp8s Ñ ClpKqrp8s Ñ 1q.

Denote by Gp a set of representatives of isomorphism classes of finite abelian p-groups,
viewed as C2-modules under the action of ´ Id and call GppKq the unique representative
of ClpKqrp8s in Gp. Any family of imaginary quadratic fields can be partitioned in finitely
many subfamilies where the isomorphism class of the ring OK{c is fixed, by imposing finitely
many congruence conditions on the discriminants. Therefore we can always assume that
pOK{cq˚ has been fixed as the unit group of some ring that is independent of K.

Definition 2.1. Let K, c be as above and R a finite commutative ring. We shall say that
K is of type R if OK{charpRq – R as rings. With this definition in mind let us denote

F pRq :“ tK imaginary quadratic number field of type Ru.

From now on we will assume that R is of the form R :“ OA {c, where OA is the integral
closure of

ś

l|c Zl in A :“
ś

l|c El, with El being an etale Ql-algebra of degree 2. Under this

assumption, a positive fraction of all discriminants lies in F pRq.
Suppose K is of type R. Then pOK{cq˚ can be identified with R˚ via any restriction of a

ring isomorphism, that is via any element of IsomringpOK{c, Rq. Furthermore, we can identify
ClpKqrp8s and GppKq via any element of Isomab.gr.pClpKqrp8s, GppKqq. Therefore applying
IsomringpOK{c, Rq ˆ Isomab.gr.pClpKqrp8s, GppKqq to SppKq, we obtain a unique orbit

Oc,ppKq P ExtZprC2spGppKq, R˚rp8sq{pAutringpRq ˆ Autab.gr.pGppKqqq.

We refer the reader to [19, §3] for definition and properties of ExtSpA,Bq, where S is a ring
and A,B are S-modules. For the remainder of the paper, given S-modules A,B,C,A1, B1

and C 1, we call a commutative diagram of S-modules, a diagram of maps of S-modules

0 Ñ B1 Ñ
f1

Ó ψ1

0 Ñ B2 Ñ
f2

C1 Ñ
g1

A1 Ñ 0

Ó ψ2 Ó ψ3

C2 Ñ
g2

A2 Ñ 0,
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with ψ2 ˝ f1 “ f2 ˝ ψ1 and ψ3 ˝ g1 “ g2 ˝ ψ2. Note that ClpK1qrp8s –ab.gr ClpK2qrp8s and
Oc,ppK1q “ Oc,ppK2q if and only if there is a commutative diagram of ZprC2s modules

0 Ñ pOK1{cq˚rp8s Ñ
Ó ϕ1

0 Ñ pOK2{cq˚rp8s Ñ

ClpK1, cqrp8s Ñ ClpK1qrp8s Ñ 0
Ó ϕ2 Ó ϕ3

ClpK2, cqrp8s Ñ ClpK2qrp8s Ñ 0,

with ϕ1 being the restriction of a ring isomorphism and ϕ3 being an isomorphism of abelian
groups.

Definition 2.2. Define SppRq as the set of equivalence classes of pairs pG, θq, where

G P Gp, θ P ExtZprC2spG,R˚rp8sq

under the following equivalence relation: two pairs pG1, θ1q, pG2, θ2q are identified if G1 “ G2

and θ1 and θ2 are in the same AutringpRq ˆ Autab.gr.pG1q-orbit.

Let us denote by ĂSppRq the set of pairs pG, θq where G P Gp and θ P ExtZprC2spG,R˚rp8sq,
thus bringing into play the quotient map π : ĂSppRq Ñ SppRq. We are interested in studying
the distribution of S 1

ppKq given by the pair

K ÞÑ S1
ppKq :“ pGppKq, Oc,ppKqq P SppRq.

Definition 2.3. Let µCL be the unique probability measure on Gp which gives to each abelian
p-group G a weight inversely proportional to the size of the automorphism group of G.

This measure was introduced by Cohen and Lenstra in [4] to predict the distribution of
GppKq, the first component of S 1

ppKq. We shall introduce a measure on SppRq that enables
us to predict the joint distribution of the vector S1

ppKq. Consider the discrete σ-algebra on

both ĂSppRq,SppRq and equip ĂSppRq with the following measure,

rµseqppG, θqq :“ µCLpGq
#ExtZprC2spG,R˚rp8sq .

Let µseq :“ π˚prµseqq be the pushforward measure of rµseq on SppRq via π. It is evident
that rµseq and µseq are probability measures. We now formulate a heuristic which roughly
states that ray class sequences equidistribute within the set of isomorphism classes of exact
sequences with respect to the measure µseq.

Heuristic assumption 2.4. For any ‘reasonable’ function f : SppRq Ñ R we have

lim
XÑ8

#tK P F pRq : |DpKq| ď Xu´1
ÿ

KPF pRq
|DpKq|ďX

fpS 1
ppKqq “

ÿ

SPSppRq

fpSqµseqpSq.

Letting f be the indicator function of a singleton yields the following statement.

Conjecture 2.5. For any S P SppRq we have

lim
XÑ8

#tK P F pRq : |DpKq| ď X,S1
ppKq “ Su

#tK P F pRq : |DpKq| ď Xu “ µseqpSq.

A special concrete example is the case of split sequences.
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Conjecture 2.6. The fraction of K P F pRq, ordered by the size of their discriminant,
for which ClpKqrp8s –ab.gr. G and the p-part of the ray class sequence of modulus c splits,
approaches

µCLpGq
#Homab.gr.pG,R˚rp8s´q ,

where pR˚rp8sq´ denotes the minus part of R˚rp8s under the action of C2.

Indeed, ExtZprC2spG,R˚rp8sq “ ExtZppG, pR˚rp8sq´q holds, hence Conjecture 2.6 is derived
from Conjecture 2.5 by recalling that for two finite abelian p-groups A,B, there is a non-
canonical isomorphism ExtZppA,Bq –ab.gr. HomZppA,Bq.

2.1. Conjectures on the p-torsion. We next state certain consequences of Heuristic as-
sumption 2.4 regarding the p-torsion of the ray class sequences. Taking p-torsion in (2.1)
provides us with a long exact sequence whose first four terms are given by

SpKqrps :“
˜

1 Ñ pOK{cq˚rps Ñ ClpK, cqrps Ñ ClpKqrps δppKqÝÝÝÑ pOK{cq˚

ppOK{cq˚qp

¸

,

where the map δppKq is defined as follows: given a class x P ClpKqrps pick a representative
ideal I of x which is coprime to c, take a generator of I p and reduce it modulo c. The
choice of another representative does not change it modulo p-th powers. More generally,
taking p-torsion in any short exact sequence of ZprC2s-modules

S :“ p0 Ñ A Ñ B Ñ C Ñ 0q
provides us with a long exact sequence whose first terms are

Srps :“
˜

1 Ñ Arps Ñ Brps Ñ Crps δppSqÝÝÝÑ A

pA

¸

,

where δppSq is defined in the same way as explained above (in particular we have δppSppKqq “
δppKq). Thus this provides a map sending an element θ of ExtZprC2spC,Aq to a map δppθq :
Crps Ñ A{pA. We will make repeatedly use of the following fact.

Proposition 2.7. The map sending θ to δppθq, from ExtZprC2spC,Aq to HomZprC2spCrps, A{pAq,
is a surjective group homomorphism.

The reader interested in a proof of Proposition 2.7, can look at the proof of the analogous,
but more complicated, Proposition 3.5: all the ingredients for the proof of Proposition 2.7
are contained in the proof of Proposition 3.5.
Next we shall define j :“ dimFppClpKqrpsq and apply any pair of identifications from

IsomFppClpKqrps,Fj
pq ˆ IsomringpOK{c, Rq. Therefore, we obtain a unique orbit of maps

ϕ P HomFppFj
p, p R˚

R˚p q´q under the action of GLjpFpq ˆ AutringpRq. This is tantamount to

having a AutringpRq-orbit of images in p R˚

R˚p q´ of δppKq via any of the previous identifications.
We denote this orbit by rImpδppKqqs. The assignment K ÞÑ rImpδppKqqs attaches to each
imaginary quadratic field K P FcpRq a well-defined AutringpRq-orbit of vector sub-spaces of
p R˚

R˚p q´.
By Proposition 2.7, the map

ExtZppG,R˚rp8s´q Ñ HomZppGrps, pR˚{R˚pq´q
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with ψ2 ˝ f1 “ f2 ˝ ψ1 and ψ3 ˝ g1 “ g2 ˝ ψ2. Note that ClpK1qrp8s –ab.gr ClpK2qrp8s and
Oc,ppK1q “ Oc,ppK2q if and only if there is a commutative diagram of ZprC2s modules

0 Ñ pOK1{cq˚rp8s Ñ
Ó ϕ1

0 Ñ pOK2{cq˚rp8s Ñ

ClpK1, cqrp8s Ñ ClpK1qrp8s Ñ 0
Ó ϕ2 Ó ϕ3

ClpK2, cqrp8s Ñ ClpK2qrp8s Ñ 0,

with ϕ1 being the restriction of a ring isomorphism and ϕ3 being an isomorphism of abelian
groups.

Definition 2.2. Define SppRq as the set of equivalence classes of pairs pG, θq, where

G P Gp, θ P ExtZprC2spG,R˚rp8sq

under the following equivalence relation: two pairs pG1, θ1q, pG2, θ2q are identified if G1 “ G2

and θ1 and θ2 are in the same AutringpRq ˆ Autab.gr.pG1q-orbit.

Let us denote by ĂSppRq the set of pairs pG, θq where G P Gp and θ P ExtZprC2spG,R˚rp8sq,
thus bringing into play the quotient map π : ĂSppRq Ñ SppRq. We are interested in studying
the distribution of S 1

ppKq given by the pair

K ÞÑ S1
ppKq :“ pGppKq, Oc,ppKqq P SppRq.

Definition 2.3. Let µCL be the unique probability measure on Gp which gives to each abelian
p-group G a weight inversely proportional to the size of the automorphism group of G.

This measure was introduced by Cohen and Lenstra in [4] to predict the distribution of
GppKq, the first component of S 1

ppKq. We shall introduce a measure on SppRq that enables
us to predict the joint distribution of the vector S1

ppKq. Consider the discrete σ-algebra on

both ĂSppRq,SppRq and equip ĂSppRq with the following measure,

rµseqppG, θqq :“ µCLpGq
#ExtZprC2spG,R˚rp8sq .

Let µseq :“ π˚prµseqq be the pushforward measure of rµseq on SppRq via π. It is evident
that rµseq and µseq are probability measures. We now formulate a heuristic which roughly
states that ray class sequences equidistribute within the set of isomorphism classes of exact
sequences with respect to the measure µseq.

Heuristic assumption 2.4. For any ‘reasonable’ function f : SppRq Ñ R we have

lim
XÑ8

#tK P F pRq : |DpKq| ď Xu´1
ÿ

KPF pRq
|DpKq|ďX

fpS 1
ppKqq “

ÿ

SPSppRq

fpSqµseqpSq.

Letting f be the indicator function of a singleton yields the following statement.

Conjecture 2.5. For any S P SppRq we have

lim
XÑ8

#tK P F pRq : |DpKq| ď X,S1
ppKq “ Su

#tK P F pRq : |DpKq| ď Xu “ µseqpSq.

A special concrete example is the case of split sequences.
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Conjecture 2.6. The fraction of K P F pRq, ordered by the size of their discriminant,
for which ClpKqrp8s –ab.gr. G and the p-part of the ray class sequence of modulus c splits,
approaches

µCLpGq
#Homab.gr.pG,R˚rp8s´q ,

where pR˚rp8sq´ denotes the minus part of R˚rp8s under the action of C2.

Indeed, ExtZprC2spG,R˚rp8sq “ ExtZppG, pR˚rp8sq´q holds, hence Conjecture 2.6 is derived
from Conjecture 2.5 by recalling that for two finite abelian p-groups A,B, there is a non-
canonical isomorphism ExtZppA,Bq –ab.gr. HomZppA,Bq.

2.1. Conjectures on the p-torsion. We next state certain consequences of Heuristic as-
sumption 2.4 regarding the p-torsion of the ray class sequences. Taking p-torsion in (2.1)
provides us with a long exact sequence whose first four terms are given by

SpKqrps :“
˜

1 Ñ pOK{cq˚rps Ñ ClpK, cqrps Ñ ClpKqrps δppKqÝÝÝÑ pOK{cq˚

ppOK{cq˚qp

¸

,

where the map δppKq is defined as follows: given a class x P ClpKqrps pick a representative
ideal I of x which is coprime to c, take a generator of I p and reduce it modulo c. The
choice of another representative does not change it modulo p-th powers. More generally,
taking p-torsion in any short exact sequence of ZprC2s-modules

S :“ p0 Ñ A Ñ B Ñ C Ñ 0q
provides us with a long exact sequence whose first terms are

Srps :“
˜

1 Ñ Arps Ñ Brps Ñ Crps δppSqÝÝÝÑ A

pA

¸

,

where δppSq is defined in the same way as explained above (in particular we have δppSppKqq “
δppKq). Thus this provides a map sending an element θ of ExtZprC2spC,Aq to a map δppθq :
Crps Ñ A{pA. We will make repeatedly use of the following fact.

Proposition 2.7. The map sending θ to δppθq, from ExtZprC2spC,Aq to HomZprC2spCrps, A{pAq,
is a surjective group homomorphism.

The reader interested in a proof of Proposition 2.7, can look at the proof of the analogous,
but more complicated, Proposition 3.5: all the ingredients for the proof of Proposition 2.7
are contained in the proof of Proposition 3.5.
Next we shall define j :“ dimFppClpKqrpsq and apply any pair of identifications from

IsomFppClpKqrps,Fj
pq ˆ IsomringpOK{c, Rq. Therefore, we obtain a unique orbit of maps

ϕ P HomFppFj
p, p R˚

R˚p q´q under the action of GLjpFpq ˆ AutringpRq. This is tantamount to

having a AutringpRq-orbit of images in p R˚

R˚p q´ of δppKq via any of the previous identifications.
We denote this orbit by rImpδppKqqs. The assignment K ÞÑ rImpδppKqqs attaches to each
imaginary quadratic field K P FcpRq a well-defined AutringpRq-orbit of vector sub-spaces of
p R˚

R˚p q´.
By Proposition 2.7, the map

ExtZppG,R˚rp8s´q Ñ HomZppGrps, pR˚{R˚pq´q

4-ranks and the general model of ray class groups
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induces, by pushforward, the counting probability measure from ExtZppG, pR˚rp8sq´q to

HomZppGrps, pR˚{R˚pq´q. Therefore, fixing a sub-Fp-space Y of p R˚

R˚p q´ and a non-negative
integer j, Heuristic assumption 2.4 supplies us with the following.

Conjecture 2.8. The proportion of K P F pRq ordered by the size of their discriminant, for
which dimFppClpKqrpsq “ j and rImpδppKqqs is OpY q, the AutringpRq-orbit of Y , approaches

µCLpG P Gp : dimFppGrpsq “ jq
#EpiFp

pFj
p, Y q ¨ #OpY q

#HomFp

`

Fj
p, pR˚{R˚pq´

˘ .

We will prove the analogous statement of this Conjecture 2.8 for p “ 2 in Theorem 5.2. A
concrete special case is given by the following

Conjecture 2.9. The proportion of K P F pRq ordered by the size of their discriminant,
for which dimFppClpKqrpsq “ j and ClpK, cqrps splits as the direct sum of ClpKqrps and
pOK{cq˚rps, approaches

µCLpG P Gp : dimFppGrpsq “ jq
#HomFp

`

Fj
p, pR˚{R˚pq´

˘ .

More generally, as a cruder result, one derives a conjectural formula for the joint dis-
tribution of the p-rank of ClpKq and of ClpK, cq, as follows. Fix j1, j2 two non-negative
integers.

Conjecture 2.10. As K varies among imaginary quadratic number fields of type R, the
proportion of them for which dimFppClpKqrpsq “ j1 and dimFppClpK, cqrpsq “ j2 approaches

µCLpG P Gp : dimFppGrpsq “ j1q
#tϕ : Fj1

p Ñ pR˚{R˚pq´ : rkpϕq “ rkppR˚q ´ pj2 ´ j1qqu
#HomFppFj1

p , pR˚{R˚pq´q
.

The statements analogous to Conjectures 2.8 and 2.10 for p “ 2 will be proved in Theo-
rem 5.3, with a more explicit version provided by Theorem 5.4.

2.2. Agreement with Varma’s results. In this section we make a certain choice for f
in Heuristic assumption 2.4 with the aim of stating conjectures for the average of p-torsion
of ray class groups. These statements were previously proved for p “ 3 by Varma [18]. In
fact, the present paper partly began as an effort to fit her results into a general heuristic
framework.
For an element S P SppRq, denote by MpSq the isomorphism class of the middle term

of the sequence corresponding to S. Similarly, for θ P ExtZprC2s we denote by Mpθq the
isomorphism class of the middle term of the equivalence class of sequences corresponding to

θ. We will adopt the standard notation pA for the dual of a finite abelian group A.

Proposition 2.11. We have

ÿ

SPSppRq

#MpSqrpsµseqpSq “ #

ˆ

R˚

R˚p

˙`ˆ

1 ` #
´ R˚

R˚p

¯´
˙

.

Proof. By the definition of µseq we obtain equality of the sum in our proposition with

ÿ

GPGp

µCLpGq
#ExtZ�rC2spG,R˚rp8sq

ÿ

θPExtZprC2spG,R˚rp8sq

#Mpθqrps.
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Again by Proposition 2.7 we know that the map θ Ñ δppθq is a surjective homomorphism

ExtZprC2spG,R˚rp8sq Ñ HomZppGrps, pR˚{R˚pq´q

Thus we can rewrite the last sum as

ÿ

GPGp

µCLpGq
#HomZppGrps, pR˚{R˚pq´q

ÿ

*

δ

#R˚rps #Grps
#Impδq , (2.2)

where the sum
ř

* is taken over δ in HomZppGrps, pR˚{R˚pq´q. For each χ in the dual of
pR˚{R˚pq´ denote by 1χ the indicator function of those δ for which χ vanishes on the image
of δ. This allows us to recast (2.2) in the following manner,

ÿ

GPGp

µCLpGq
#HomZppGrps, pR˚{R˚pq´q

ÿ

*

δ

#pR˚{R˚pq`#Grps
ÿ

χP {pR˚{R˚pq´

1χpδq,

where δ varies over all elements in HomZppGrps, p R˚

R˚p q´q. Exchanging the order of summation
yields

ÿ

GPGp

#pR˚{R˚pq`#GrpsµCLpGq
ÿ

χP {p R˚
R˚p q´

ř

δPHomZp pGrps,p R˚
R˚p q´q 1χpδq

#HomZppGrps, p R˚

R˚p q´q
.

The χ-th summand in the last expression equals 1 if χ is the trivial character and equals
1

#Grps otherwise, thus obtaining

ÿ

GPGp

#pR˚{R˚pq`#Grps
´

1 ` #pR˚{R˚pq´ ´ 1

#Grps

¯

µCLpGq.

Recalling the classical equality
ř

GPGp
#GrpsµCLpGq “ 2 provides us with

#pR˚{pR˚pqq``

2 ` #pR˚{R˚pq´ ´ 1
˘

“ #pR˚{R˚pq`
´

1 ` #
´ R˚

R˚p

¯´¯

,

which concludes our proof. �

Combining Proposition 2.11 and Heuristic Assumption 2.4 offers the following.

Conjecture 2.12. The average value of #ClpK, cqrps, as K ranges among imaginary qua-
dratic number fields of type R ordered by their discriminant, is given by

#
´ R˚

R˚p

¯`´

1 ` #
´ R˚

R˚p

¯´¯

.

In particular we can now derive conjectural formulas for the average size of ClpK, cqrps
with K varying in larger families.
We next consider here two cases: in §2.2.1 the case when all the primes dividing c are

required to be unramified in K, and in §2.2.2 the case where K ranges through all discrimi-
nants. The letter l will refer to a prime until the end of §2.
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induces, by pushforward, the counting probability measure from ExtZppG, pR˚rp8sq´q to

HomZppGrps, pR˚{R˚pq´q. Therefore, fixing a sub-Fp-space Y of p R˚

R˚p q´ and a non-negative
integer j, Heuristic assumption 2.4 supplies us with the following.

Conjecture 2.8. The proportion of K P F pRq ordered by the size of their discriminant, for
which dimFppClpKqrpsq “ j and rImpδppKqqs is OpY q, the AutringpRq-orbit of Y , approaches

µCLpG P Gp : dimFppGrpsq “ jq
#EpiFp

pFj
p, Y q ¨ #OpY q

#HomFp

`

Fj
p, pR˚{R˚pq´

˘ .

We will prove the analogous statement of this Conjecture 2.8 for p “ 2 in Theorem 5.2. A
concrete special case is given by the following

Conjecture 2.9. The proportion of K P F pRq ordered by the size of their discriminant,
for which dimFppClpKqrpsq “ j and ClpK, cqrps splits as the direct sum of ClpKqrps and
pOK{cq˚rps, approaches

µCLpG P Gp : dimFppGrpsq “ jq
#HomFp

`

Fj
p, pR˚{R˚pq´

˘ .

More generally, as a cruder result, one derives a conjectural formula for the joint dis-
tribution of the p-rank of ClpKq and of ClpK, cq, as follows. Fix j1, j2 two non-negative
integers.

Conjecture 2.10. As K varies among imaginary quadratic number fields of type R, the
proportion of them for which dimFppClpKqrpsq “ j1 and dimFppClpK, cqrpsq “ j2 approaches

µCLpG P Gp : dimFppGrpsq “ j1q
#tϕ : Fj1

p Ñ pR˚{R˚pq´ : rkpϕq “ rkppR˚q ´ pj2 ´ j1qqu
#HomFppFj1

p , pR˚{R˚pq´q
.

The statements analogous to Conjectures 2.8 and 2.10 for p “ 2 will be proved in Theo-
rem 5.3, with a more explicit version provided by Theorem 5.4.

2.2. Agreement with Varma’s results. In this section we make a certain choice for f
in Heuristic assumption 2.4 with the aim of stating conjectures for the average of p-torsion
of ray class groups. These statements were previously proved for p “ 3 by Varma [18]. In
fact, the present paper partly began as an effort to fit her results into a general heuristic
framework.
For an element S P SppRq, denote by MpSq the isomorphism class of the middle term

of the sequence corresponding to S. Similarly, for θ P ExtZprC2s we denote by Mpθq the
isomorphism class of the middle term of the equivalence class of sequences corresponding to

θ. We will adopt the standard notation pA for the dual of a finite abelian group A.

Proposition 2.11. We have

ÿ

SPSppRq

#MpSqrpsµseqpSq “ #

ˆ

R˚

R˚p

˙`ˆ

1 ` #
´ R˚

R˚p

¯´
˙

.

Proof. By the definition of µseq we obtain equality of the sum in our proposition with

ÿ

GPGp

µCLpGq
#ExtZ�rC2spG,R˚rp8sq

ÿ

θPExtZprC2spG,R˚rp8sq

#Mpθqrps.
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Again by Proposition 2.7 we know that the map θ Ñ δppθq is a surjective homomorphism

ExtZprC2spG,R˚rp8sq Ñ HomZppGrps, pR˚{R˚pq´q

Thus we can rewrite the last sum as

ÿ

GPGp

µCLpGq
#HomZppGrps, pR˚{R˚pq´q

ÿ

*

δ

#R˚rps #Grps
#Impδq , (2.2)

where the sum
ř

* is taken over δ in HomZppGrps, pR˚{R˚pq´q. For each χ in the dual of
pR˚{R˚pq´ denote by 1χ the indicator function of those δ for which χ vanishes on the image
of δ. This allows us to recast (2.2) in the following manner,

ÿ

GPGp

µCLpGq
#HomZppGrps, pR˚{R˚pq´q

ÿ

*

δ

#pR˚{R˚pq`#Grps
ÿ

χP {pR˚{R˚pq´

1χpδq,

where δ varies over all elements in HomZppGrps, p R˚

R˚p q´q. Exchanging the order of summation
yields

ÿ

GPGp

#pR˚{R˚pq`#GrpsµCLpGq
ÿ

χP {p R˚
R˚p q´

ř

δPHomZp pGrps,p R˚
R˚p q´q 1χpδq

#HomZppGrps, p R˚

R˚p q´q
.

The χ-th summand in the last expression equals 1 if χ is the trivial character and equals
1

#Grps otherwise, thus obtaining

ÿ

GPGp

#pR˚{R˚pq`#Grps
´

1 ` #pR˚{R˚pq´ ´ 1

#Grps

¯

µCLpGq.

Recalling the classical equality
ř

GPGp
#GrpsµCLpGq “ 2 provides us with

#pR˚{pR˚pqq``

2 ` #pR˚{R˚pq´ ´ 1
˘

“ #pR˚{R˚pq`
´

1 ` #
´ R˚

R˚p

¯´¯

,

which concludes our proof. �

Combining Proposition 2.11 and Heuristic Assumption 2.4 offers the following.

Conjecture 2.12. The average value of #ClpK, cqrps, as K ranges among imaginary qua-
dratic number fields of type R ordered by their discriminant, is given by

#
´ R˚

R˚p

¯`´

1 ` #
´ R˚

R˚p

¯´¯

.

In particular we can now derive conjectural formulas for the average size of ClpK, cqrps
with K varying in larger families.
We next consider here two cases: in §2.2.1 the case when all the primes dividing c are

required to be unramified in K, and in §2.2.2 the case where K ranges through all discrimi-
nants. The letter l will refer to a prime until the end of §2.
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2.2.1. Collecting unramified discriminants. Observe that if R correspond to a splitting type
where all the primes dividing c are unramified in K, and if p2 does not divide c (so there is
no contribution to the p-part from p itself in case it divides c) then we have that

#
´ R˚

R˚p

¯`´

1 ` #
´ R˚

R˚p

¯´¯

“ p#tl prime: l|c, l”1pmod pqup1 ` pωRpcqq,

where ωRpcq is defined by

#tl prime : l|c, pl ” 1 pmod pq and l is split in Rq or pl ” ´1 pmod pq and l is inert in Rqu.
Therefore when we average over all 2ωpcq choices of R, using the binomial formula we get

p#tl prime: l|c,l”1pmod pqu
´

1 `
´p ` 1

2

¯#tl prime: l|c,l”1 or ´1pmod pqu¯

as average value of the size of ClpK, cqrps when K ranges over imaginary quadratic number
fields unramified at all primes dividing c, as long as p2 � c. Instead, if p2 | c there is an

additional contribution from the principal units modulo p2 to #p R˚

R˚p q`p1`#p R˚

R˚p q´q, which
gives

p#tl prime: l|c,l”1pmod pqu`1
´

1 ` p
´p ` 1

2

¯#tl prime: l|c,l”1 or ´1pmod pqu¯

.

This leads to the Conjecture 1.3 that we stated in the introduction. The special case p “ 3
of Conjecture 1.3 was recently proved by Varma [18, Th.2.(b)].

Theorem 2.13 (Varma). The average value of #ClpK, cqr3s as K ranges over imaginary
quadratic number fields with gcdpDpKq, cq “ 1 is:
(1)

3#tl prime: l|c,l”1pmod 3qup1 ` 2#tl prime: l|c, l‰3uq
if 9 does not divide c.
(2)

3#tl prime: l|c,l”1pmod 3qu`1p1 ` 3 ¨ 2#tl prime: l|c, l‰3uq
if 9 divides c.

2.2.2. Collecting all discriminants. We now consider the case where K is allowed to ramify
at the primes dividing c. Now we have to evaluate

ÿ

R

#
´ R˚

R˚p

¯`´

1 ` #
´ R˚

R˚p

¯´¯

wpRq,

where R varies between all the possible types of ring at c, and

wpRq :“ lim
XÑ`8

#tK P FcpRq : |DpKq| ď Xu
#tK P F : |DpKq| ď Xu .

First observe that if p2 � c then

#
´ R˚

R˚p

¯`
“ p#tl prime: l|c,l”1pmod pqu,

while if p2|c then
#

´ R˚

R˚p

¯`
“ p#tl prime: l|c,l”1pmod pqu`1.

Therefore we are left with computing the average of #
´

R˚

R˚p

¯´
, over all R. But this, as a

function of c, is multiplicative, thus we only have to deal with prime powers, i.e. c “ ln for
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some prime l and some positive integer n. Clearly, the value of this average is 1 if l is such
that gcdpp, l3 ´ lq “ 1. Instead, if p|l2 ´ 1 the value of the average is

1

l ` 1
`

pp`1
2

ql
l ` 1

“ 1 `
´p ´ 1

2

¯ l

l ` 1
,

where the first contribution comes from the R ramified at l, and the second from the R
unramified at l. 2 Meanwhile, the value of the average for p “ c is

p

p ` 1
` p

p ` 1
,

where the first contribution comes from R ramified at p and the second from R unramified
at p. Lastly, we consider the case p2|c. Remarkably enough, one observes that the case
p “ 3 acquires a special status in the computation of this average: indeed 1

8
of the imaginary

quadratics locally at 3 give the extension Q3pζ3q{Q3, and the result for them will be different
than for the 1

8
totally ramified that locally at 3 become Q3p

?
3q. Clearly for all p ą 3 there

is no p-th root of unity in a quadratic extension of Qp, so, as we will see, in that case the
contribution from the two R ramified at p will be the same.
Assume p “ 3. The contribution from powers of 3 starting from 9 is

9

8
` 3

8
` 9

4
“ 15

4
,

where the first contribution is from Q3pζ3q, the second from Q3p
?
3q and the third from

unramified R. This gives a prediction that was previously verified by Varma [18, Th.1.(b)].

Theorem 2.14 (Varma). The average value of #ClpK, cqr3s as K ranges through imaginary
quadratic number fields ordered by their discriminant is:
(1)

3#tl prime: l|c,l”1pmod 3qu
´

1 `
ź

l|c

´

1 ` l

l ` 1

¯¯

if 3 does not divide c,
(2)

3#tl prime: l|c,l”1pmod 3qu
´

1 ` 6

7

ź

l|c

´

1 ` l

l ` 1

¯¯

if 3 divides c but 9 does not divide c,
(3)

3#tl prime: l|c,l”1pmod 3qu`1
´

1 ` 15

7

ź

l|c

´

1 ` l

l ` 1

¯¯

if 9 divides c.

Now assume that p ą 3. Then we get

p

p ` 1
` p2

p ` 1
,

where the first contribution is from the R ramified at p and the second from R unramified
at p. Collecting everything together we get the following prediction.

2R is said unramified at l if R{lR does not contain non-zero nilpotents. Otherwise R is said ramified at l.
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2.2.1. Collecting unramified discriminants. Observe that if R correspond to a splitting type
where all the primes dividing c are unramified in K, and if p2 does not divide c (so there is
no contribution to the p-part from p itself in case it divides c) then we have that

#
´ R˚

R˚p

¯`´

1 ` #
´ R˚

R˚p

¯´¯

“ p#tl prime: l|c, l”1pmod pqup1 ` pωRpcqq,

where ωRpcq is defined by

#tl prime : l|c, pl ” 1 pmod pq and l is split in Rq or pl ” ´1 pmod pq and l is inert in Rqu.
Therefore when we average over all 2ωpcq choices of R, using the binomial formula we get

p#tl prime: l|c,l”1pmod pqu
´

1 `
´p ` 1

2

¯#tl prime: l|c,l”1 or ´1pmod pqu¯

as average value of the size of ClpK, cqrps when K ranges over imaginary quadratic number
fields unramified at all primes dividing c, as long as p2 � c. Instead, if p2 | c there is an

additional contribution from the principal units modulo p2 to #p R˚

R˚p q`p1`#p R˚

R˚p q´q, which
gives

p#tl prime: l|c,l”1pmod pqu`1
´

1 ` p
´p ` 1

2

¯#tl prime: l|c,l”1 or ´1pmod pqu¯

.

This leads to the Conjecture 1.3 that we stated in the introduction. The special case p “ 3
of Conjecture 1.3 was recently proved by Varma [18, Th.2.(b)].

Theorem 2.13 (Varma). The average value of #ClpK, cqr3s as K ranges over imaginary
quadratic number fields with gcdpDpKq, cq “ 1 is:
(1)

3#tl prime: l|c,l”1pmod 3qup1 ` 2#tl prime: l|c, l‰3uq
if 9 does not divide c.
(2)

3#tl prime: l|c,l”1pmod 3qu`1p1 ` 3 ¨ 2#tl prime: l|c, l‰3uq
if 9 divides c.

2.2.2. Collecting all discriminants. We now consider the case where K is allowed to ramify
at the primes dividing c. Now we have to evaluate

ÿ

R

#
´ R˚

R˚p

¯`´

1 ` #
´ R˚

R˚p

¯´¯

wpRq,

where R varies between all the possible types of ring at c, and

wpRq :“ lim
XÑ`8

#tK P FcpRq : |DpKq| ď Xu
#tK P F : |DpKq| ď Xu .

First observe that if p2 � c then

#
´ R˚

R˚p

¯`
“ p#tl prime: l|c,l”1pmod pqu,

while if p2|c then
#

´ R˚

R˚p

¯`
“ p#tl prime: l|c,l”1pmod pqu`1.

Therefore we are left with computing the average of #
´

R˚

R˚p

¯´
, over all R. But this, as a

function of c, is multiplicative, thus we only have to deal with prime powers, i.e. c “ ln for
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some prime l and some positive integer n. Clearly, the value of this average is 1 if l is such
that gcdpp, l3 ´ lq “ 1. Instead, if p|l2 ´ 1 the value of the average is

1

l ` 1
`

pp`1
2

ql
l ` 1

“ 1 `
´p ´ 1

2

¯ l

l ` 1
,

where the first contribution comes from the R ramified at l, and the second from the R
unramified at l. 2 Meanwhile, the value of the average for p “ c is

p

p ` 1
` p

p ` 1
,

where the first contribution comes from R ramified at p and the second from R unramified
at p. Lastly, we consider the case p2|c. Remarkably enough, one observes that the case
p “ 3 acquires a special status in the computation of this average: indeed 1

8
of the imaginary

quadratics locally at 3 give the extension Q3pζ3q{Q3, and the result for them will be different
than for the 1

8
totally ramified that locally at 3 become Q3p

?
3q. Clearly for all p ą 3 there

is no p-th root of unity in a quadratic extension of Qp, so, as we will see, in that case the
contribution from the two R ramified at p will be the same.
Assume p “ 3. The contribution from powers of 3 starting from 9 is

9

8
` 3

8
` 9

4
“ 15

4
,

where the first contribution is from Q3pζ3q, the second from Q3p
?
3q and the third from

unramified R. This gives a prediction that was previously verified by Varma [18, Th.1.(b)].

Theorem 2.14 (Varma). The average value of #ClpK, cqr3s as K ranges through imaginary
quadratic number fields ordered by their discriminant is:
(1)

3#tl prime: l|c,l”1pmod 3qu
´

1 `
ź

l|c

´

1 ` l

l ` 1

¯¯

if 3 does not divide c,
(2)

3#tl prime: l|c,l”1pmod 3qu
´

1 ` 6

7

ź

l|c

´

1 ` l

l ` 1

¯¯

if 3 divides c but 9 does not divide c,
(3)

3#tl prime: l|c,l”1pmod 3qu`1
´

1 ` 15

7

ź

l|c

´

1 ` l

l ` 1

¯¯

if 9 divides c.

Now assume that p ą 3. Then we get

p

p ` 1
` p2

p ` 1
,

where the first contribution is from the R ramified at p and the second from R unramified
at p. Collecting everything together we get the following prediction.

2R is said unramified at l if R{lR does not contain non-zero nilpotents. Otherwise R is said ramified at l.
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Conjecture 2.15. Suppose p ą 3. Then the average value of #ClpK, cqrps as K ranges
over imaginary quadratic number fields ordered by their discriminant is:
(1)

p#tl prime: l|c,l”1pmod pqu
´

1 `
ź

l|c,p|l2´1

´

1 ` p ´ 1

2

l

l ` 1

¯¯

if p does not divide c,
(2)

p#tl prime: l|c,l”1pmod pqu
´

1 `
´ 2p

p ` 1

¯

ź

l|c,p|l2´1

´

1 ` p ´ 1

2

l

l ` 1

¯¯

if p divides c but p2 does not divide c,
(3)

p#tl prime: l|c,l”1pmod pqu
´

1 `
´p ` p2

p ` 1

¯

ź

l|c,p|l2´1

´

1 ` p ´ 1

2

l

l ` 1

¯¯

if p2 divides c.

It would be desirable to extend Varma’s arguments to prove Conjecture 2.12 for p “ 3.
In particular, it would be informative to see how the proof distinguishes between the cases
R{3m “ OQ3pζ3q{3m and R{3m “ OQ3p

?
3q{3m, for m ě 2.

3. Heuristic and conjectures for p “ 2

Let c be an odd positive integer. In this section we explain a heuristic model for the
2-part of ray class sequences of conductor c, in the case that no primes dividing c ramify
in the fields. The additional difficulty with respect to the case of p odd, is that ClpKqr28s
does not behave like a random 2-group (in the sense of Cohen and Lenstra), but instead
(as conjectured by Gerth [9]), 2 ClpKqr28s is believed to behave like a random 2-group:
the behavior of ClpKqr2s is governed instead by genus theory which trivially excludes any
Cohen–Lenstra behavior for ClpKqr28s, when K varies among usual families of imaginary
quadratic number fields.
Our approach will be as follows: we will see that for ‘most’ discriminants of type R,

2 ClpK, cq is an extension of 2ClpKq with a certain subgroup of R˚

x´1y , which we will call WR.

Nevertheless, one cannot completely ignore the presence of the class group, since it leaves
an additional restriction on such extensions. Namely it forces them to belong to a certain

subgroup of the Ext, that we will call ĄExt. From there we will proceed in analogy with the

previous section replacing Ext with ĄExt. Using this heuristic we will offer several predictions
which are proved in the subsequent sections.
Since we will only consider the case that no primes dividing c ramify in the imaginary

number fieldsK, and since we assume that c is odd, we do not lose generality in assuming that
c is also square-free: indeed, in our setting, the 2-part of pOK{cq˚{x´1y is no different from the
one of pOK{c1q˚{x´1y, where c1 is the square-free part of c. Therefore the choice of a ring type
at c amounts to the choice of a partition of the set Sc :“ tl prime : l|cu in the disjoint union
of two sets Scpinertq and Scpsplitq. Then one takes R :“ p

ś

lPScpinertq Fl2qˆp
ś

l1PScpsplitqpFl1q2q.
For such an R, the C2-action is given by l-Frobenius on the non-split components, and by
swapping on the split components. We will call such R, unramified at c. By a small abuse
of notation, we denote by Z{cZ the natural image of Z{cZ in R.

28 C. PAGANO AND E. SOFOS

For R unramified at c, we define

WR :“ pZ{cZq˚

x´1y

ˆ

R˚

x´1y

˙2

Ď R˚

x´1y . (3.1)

Now fix some R unramified at c. For the remainder of this section we will assume, for
simplicity, the imaginary quadratic number field K to have an odd discriminant. We shall
prove that one has an exact sequence

2SpKq :“ p0 Ñ WR Ñ 2ClpK, cq Ñ 2ClpKq Ñ 0q,

for all imaginary quadratic number fields of type R with the exception of Opxplog xq´1{ϕpcqq
discriminants up to x. Indeed, by the theory of ambiguous ideals, one has that

pOK{cq˚

x´1y X 2ClpK, cq “ xtq prime and q|DpKquy
´pOK{cq˚

x´1y

¯2

.

Therefore it is enough to show that the set of positive square-free D ď x such that

tq pmod cq : q prime and q|Du ‰ pZ{cZq˚

is Opxplog xq´1{ϕpcqq. This cardinality is

ď
ÿ

aPpZ{cZq˚

ÿ

1ďDďX
p|Dñp‰apmod cq

µpDq2 ! x

plog xq1{ϕpcq ,

where the last bound is easily derived by using [12, Eq.(1.85)] with f being the characteristic
function of integers all of whose prime divisors are not a pmod cq. Identifying OK{c with R
via a ring isomorphism gives an identification between WR and

pZ{cZq˚

x´1y

´pOK{cq˚

x´1y

¯2

.

Definition 3.1. Among the imaginary quadratic number fields of type R, we call strongly
of type R, those satisfying

pOK{cq˚

x´1y X 2ClpK, cq “ pZ{cZq˚

x´1y

´pOK{cq˚

x´1y

¯2

.

Let Epxq denote the cardinality of negative discriminants 1 pmod 4q of absolute value at
most x and which are of type R but not strongly of type R. The analysis above can be
summarised by the bound

Epxq ! x

plog xq1{ϕpcq . (3.2)

One could be tempted to think of the sequence S2pKq :“ 2SpKqr28s as a ‘random’ sequence,
just as in the previous section. This would be incorrect, since the way the sequences S2pKq are
produced naturally puts on them an additional restriction. Namely one has a commutative
diagram of ZrC2s-modules:

0 Ñ pOK{cq˚

x´1y Ñ
Ò i1

0 Ñ pZ{cZq˚

x´1y p pOK{cq˚

x´1y q2 Ñ

ClpK, cq πÑ ClpKq Ñ 0
Ò i2 Ò i3

2ClpK, cq Ñ 2ClpKq Ñ 0

c. pagano and e. sofos
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Conjecture 2.15. Suppose p ą 3. Then the average value of #ClpK, cqrps as K ranges
over imaginary quadratic number fields ordered by their discriminant is:
(1)

p#tl prime: l|c,l”1pmod pqu
´

1 `
ź

l|c,p|l2´1

´

1 ` p ´ 1

2

l

l ` 1

¯¯

if p does not divide c,
(2)

p#tl prime: l|c,l”1pmod pqu
´

1 `
´ 2p

p ` 1

¯

ź

l|c,p|l2´1

´

1 ` p ´ 1

2

l

l ` 1

¯¯

if p divides c but p2 does not divide c,
(3)

p#tl prime: l|c,l”1pmod pqu
´

1 `
´p ` p2

p ` 1

¯

ź

l|c,p|l2´1

´

1 ` p ´ 1

2

l

l ` 1

¯¯

if p2 divides c.

It would be desirable to extend Varma’s arguments to prove Conjecture 2.12 for p “ 3.
In particular, it would be informative to see how the proof distinguishes between the cases
R{3m “ OQ3pζ3q{3m and R{3m “ OQ3p

?
3q{3m, for m ě 2.

3. Heuristic and conjectures for p “ 2

Let c be an odd positive integer. In this section we explain a heuristic model for the
2-part of ray class sequences of conductor c, in the case that no primes dividing c ramify
in the fields. The additional difficulty with respect to the case of p odd, is that ClpKqr28s
does not behave like a random 2-group (in the sense of Cohen and Lenstra), but instead
(as conjectured by Gerth [9]), 2 ClpKqr28s is believed to behave like a random 2-group:
the behavior of ClpKqr2s is governed instead by genus theory which trivially excludes any
Cohen–Lenstra behavior for ClpKqr28s, when K varies among usual families of imaginary
quadratic number fields.
Our approach will be as follows: we will see that for ‘most’ discriminants of type R,

2 ClpK, cq is an extension of 2ClpKq with a certain subgroup of R˚

x´1y , which we will call WR.

Nevertheless, one cannot completely ignore the presence of the class group, since it leaves
an additional restriction on such extensions. Namely it forces them to belong to a certain

subgroup of the Ext, that we will call ĄExt. From there we will proceed in analogy with the

previous section replacing Ext with ĄExt. Using this heuristic we will offer several predictions
which are proved in the subsequent sections.
Since we will only consider the case that no primes dividing c ramify in the imaginary

number fieldsK, and since we assume that c is odd, we do not lose generality in assuming that
c is also square-free: indeed, in our setting, the 2-part of pOK{cq˚{x´1y is no different from the
one of pOK{c1q˚{x´1y, where c1 is the square-free part of c. Therefore the choice of a ring type
at c amounts to the choice of a partition of the set Sc :“ tl prime : l|cu in the disjoint union
of two sets Scpinertq and Scpsplitq. Then one takes R :“ p

ś

lPScpinertq Fl2qˆp
ś

l1PScpsplitqpFl1q2q.
For such an R, the C2-action is given by l-Frobenius on the non-split components, and by
swapping on the split components. We will call such R, unramified at c. By a small abuse
of notation, we denote by Z{cZ the natural image of Z{cZ in R.
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For R unramified at c, we define

WR :“ pZ{cZq˚

x´1y

ˆ

R˚

x´1y

˙2

Ď R˚

x´1y . (3.1)

Now fix some R unramified at c. For the remainder of this section we will assume, for
simplicity, the imaginary quadratic number field K to have an odd discriminant. We shall
prove that one has an exact sequence

2SpKq :“ p0 Ñ WR Ñ 2ClpK, cq Ñ 2ClpKq Ñ 0q,

for all imaginary quadratic number fields of type R with the exception of Opxplog xq´1{ϕpcqq
discriminants up to x. Indeed, by the theory of ambiguous ideals, one has that

pOK{cq˚

x´1y X 2ClpK, cq “ xtq prime and q|DpKquy
´pOK{cq˚

x´1y

¯2

.

Therefore it is enough to show that the set of positive square-free D ď x such that

tq pmod cq : q prime and q|Du ‰ pZ{cZq˚

is Opxplog xq´1{ϕpcqq. This cardinality is

ď
ÿ

aPpZ{cZq˚

ÿ

1ďDďX
p|Dñp‰apmod cq

µpDq2 ! x

plog xq1{ϕpcq ,

where the last bound is easily derived by using [12, Eq.(1.85)] with f being the characteristic
function of integers all of whose prime divisors are not a pmod cq. Identifying OK{c with R
via a ring isomorphism gives an identification between WR and

pZ{cZq˚

x´1y

´pOK{cq˚

x´1y

¯2

.

Definition 3.1. Among the imaginary quadratic number fields of type R, we call strongly
of type R, those satisfying

pOK{cq˚

x´1y X 2ClpK, cq “ pZ{cZq˚

x´1y

´pOK{cq˚

x´1y

¯2

.

Let Epxq denote the cardinality of negative discriminants 1 pmod 4q of absolute value at
most x and which are of type R but not strongly of type R. The analysis above can be
summarised by the bound

Epxq ! x

plog xq1{ϕpcq . (3.2)

One could be tempted to think of the sequence S2pKq :“ 2SpKqr28s as a ‘random’ sequence,
just as in the previous section. This would be incorrect, since the way the sequences S2pKq are
produced naturally puts on them an additional restriction. Namely one has a commutative
diagram of ZrC2s-modules:

0 Ñ pOK{cq˚

x´1y Ñ
Ò i1

0 Ñ pZ{cZq˚

x´1y p pOK{cq˚

x´1y q2 Ñ

ClpK, cq πÑ ClpKq Ñ 0
Ò i2 Ò i3

2ClpK, cq Ñ 2ClpKq Ñ 0
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where i1, i2, i3 are the natural inclusion maps, so i2 and i3 consist of isomorphisms between
the source groups and the double of the target groups. The top sequence has two obvious
properties that are automatically satisfied:

πpClpK, cqr28s´q “ ClpKqr28s and πpClpK, cqr28s`q “ ClpKqr2s.

The first property is equivalent to the sequence remaining exact after taking p1` τq-torsion,
where τ is the generator of C2. Indeed, this is equivalent to the natural map

ClpKqr28s Ñ
R˚

x´1y

pτ ` 1q R˚

x´1y

being the 0-map, which holds since the norm of an integral ideal is always an integer. The
second property follows from the fact that we are looking at families of discriminants coprime
to c. Therefore we are allowed to lift a prime ideal q lying above a prime q dividing DpKq,
using the class of the ideal q in ClpK, cq: this class will still be a fixed point, since it is the
class of a τ -invariant ideal. This motivates the following:

Definition 3.2. Let G be a finite abelian 2-group, viewed as a C2 module with the ´id-
action. We say that an element θ of ExtZ2rC2spG,WRr28sq:

θ : 1 Ñ WRr28s Ñ B Ñ G Ñ 1

is embeddable if there is an exact sequence of Z2rC2s-modules

1 Ñ R˚

x´1yr28s Ñ B̃ Ñ G̃ Ñ 1

and a commutative diagram of Z2rC2s-modules

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ G Ñ 0

where:
‚ The map π : B̃ Ñ G̃ Ñ 1 satisfies

πpB̃´q “ G̃ and πpB̃`q “ G̃r2s.

‚ The maps i2 and i3 are isomorphisms between the source groups and the double of the
target groups. The map i1 is the natural inclusion.

We denote the set of embeddable extensions by ĄExtZ2rC2spG,WRr28sq. It will be clear by
Proposition 3.5, that the two following sets do not always coincide:

ĄExtZ2rC2spG,WRr28sq,ExtZ2rC2spG,WRr28sq.

On the other hand, the set of embeddable extensions has the algebraic structure that allows
us to proceed in perfect parallel with the previous section.

Proposition 3.3. One has that ĄExtZ2rC2spG,WRr28sq is a subgroup of ExtZ2rC2spG,WRr28sq
stable under the action of AutringpRq ˆ Autab.gr.pGq.
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Proof. Let

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ

f
G Ñ 0

and

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃1 π1
Ñ G̃1 Ñ 0

Ò i1
2 Ò i1

3

B1 Ñ
f 1

G Ñ 0

be two embeddable extensions equipped with their respective diagrams. We now consider
the following commutative diagram of Z2rC2s-modules,

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

pB̃ ˆG B̃1q{Y 1 πˆπ1
Ñ G̃ ˆG G̃1 Ñ 0

Ò i2 ˆ i1
2 Ò i3 ˆ i1

3

pB ˆG B1q{Y Ñ
fˆf 1

G Ñ 0

where B̃ ˆG B̃1 :“ tpb1, b2q P B̃ ˆ B̃1 : 2πpb1q “ 2π1pb2qu, while Y 1 denotes the antidiagonal

embedding of pRq˚

x´1y r28s in B̃ ˆG B̃1. Similarly B ˆGB1 :“ tpb1, b2q P B ˆB1 : fpg1q “ f 1pg2qu,
with Y denoting the anti-diagonal embedding of WRr28s, and

G̃ ˆG G̃1 :“ tpg1, g2q P G̃ ˆ G̃1 : 2g1 “ 2g2u.

There is an obviously induced compatible C2 action on each terms and one can deduce that

pπ ˆ π1qpppB̃ ˆG B̃1q{Y 1q´q “ G̃ ˆG G̃1 and pπ ˆ π1qpppB̃ ˆG B̃1q{Y 1q`q “ pG̃ ˆG G̃1qr2s

using the fact that individually π and π1 satisfy the respective property.
On the other hand, by construction one has that i2ˆi1

2 and i3ˆi1
3 are isomorphisms between

the source groups and the double of the targets. This shows that ĄExtZ2rC2spG,WRr28sq is
closed under addition because the sequence 0 Ñ WRr28s Ñ pBˆGB

1q{Y Ñ G Ñ 0 represents
the class of the Baer sum of the two embeddable sequences in ExtZ2rC2spG,WRr28sq. Since

ExtZ2rC2spG,WRr28sq is finite, in order to conclude that ĄExtZ2rC2spG,WRr28sq is a subgroup,

one is only left to show that ĄExtZ2rC2spG,WRr28sq is non-empty. To this end we refer the

reader to Proposition 3.5, which in particular implies that ĄExtZ2rC2spG,WRr28sq is non-empty
(alternatively one could also directly prove that the split sequence is embeddable, which one
can indeed show using the same steps of the proof of Proposition 3.5). Finally, given an
embeddable sequence

0 Ñ pRq˚

x´1y r28s gÑ
Ò i1

0 Ñ WRr28s hÑ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ

f
G Ñ 0

and a pair pϕ1, ϕ2q P AutringpRq ˆ Autab.gr.pGq, we can consider

0 Ñ pRq˚

x´1y r28s gϕ1Ñ
Ò i1

0 Ñ WRr28s hϕ1Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3ϕ
´1
2

B Ñ
ϕ2f

G Ñ 0

c. pagano and e. sofos
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where i1, i2, i3 are the natural inclusion maps, so i2 and i3 consist of isomorphisms between
the source groups and the double of the target groups. The top sequence has two obvious
properties that are automatically satisfied:

πpClpK, cqr28s´q “ ClpKqr28s and πpClpK, cqr28s`q “ ClpKqr2s.

The first property is equivalent to the sequence remaining exact after taking p1` τq-torsion,
where τ is the generator of C2. Indeed, this is equivalent to the natural map

ClpKqr28s Ñ
R˚

x´1y

pτ ` 1q R˚

x´1y

being the 0-map, which holds since the norm of an integral ideal is always an integer. The
second property follows from the fact that we are looking at families of discriminants coprime
to c. Therefore we are allowed to lift a prime ideal q lying above a prime q dividing DpKq,
using the class of the ideal q in ClpK, cq: this class will still be a fixed point, since it is the
class of a τ -invariant ideal. This motivates the following:

Definition 3.2. Let G be a finite abelian 2-group, viewed as a C2 module with the ´id-
action. We say that an element θ of ExtZ2rC2spG,WRr28sq:

θ : 1 Ñ WRr28s Ñ B Ñ G Ñ 1

is embeddable if there is an exact sequence of Z2rC2s-modules

1 Ñ R˚

x´1yr28s Ñ B̃ Ñ G̃ Ñ 1

and a commutative diagram of Z2rC2s-modules

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ G Ñ 0

where:
‚ The map π : B̃ Ñ G̃ Ñ 1 satisfies

πpB̃´q “ G̃ and πpB̃`q “ G̃r2s.

‚ The maps i2 and i3 are isomorphisms between the source groups and the double of the
target groups. The map i1 is the natural inclusion.

We denote the set of embeddable extensions by ĄExtZ2rC2spG,WRr28sq. It will be clear by
Proposition 3.5, that the two following sets do not always coincide:

ĄExtZ2rC2spG,WRr28sq,ExtZ2rC2spG,WRr28sq.

On the other hand, the set of embeddable extensions has the algebraic structure that allows
us to proceed in perfect parallel with the previous section.

Proposition 3.3. One has that ĄExtZ2rC2spG,WRr28sq is a subgroup of ExtZ2rC2spG,WRr28sq
stable under the action of AutringpRq ˆ Autab.gr.pGq.
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Proof. Let

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ

f
G Ñ 0

and

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃1 π1
Ñ G̃1 Ñ 0

Ò i1
2 Ò i1

3

B1 Ñ
f 1

G Ñ 0

be two embeddable extensions equipped with their respective diagrams. We now consider
the following commutative diagram of Z2rC2s-modules,

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

pB̃ ˆG B̃1q{Y 1 πˆπ1
Ñ G̃ ˆG G̃1 Ñ 0

Ò i2 ˆ i1
2 Ò i3 ˆ i1

3

pB ˆG B1q{Y Ñ
fˆf 1

G Ñ 0

where B̃ ˆG B̃1 :“ tpb1, b2q P B̃ ˆ B̃1 : 2πpb1q “ 2π1pb2qu, while Y 1 denotes the antidiagonal

embedding of pRq˚

x´1y r28s in B̃ ˆG B̃1. Similarly B ˆGB1 :“ tpb1, b2q P B ˆB1 : fpg1q “ f 1pg2qu,
with Y denoting the anti-diagonal embedding of WRr28s, and

G̃ ˆG G̃1 :“ tpg1, g2q P G̃ ˆ G̃1 : 2g1 “ 2g2u.

There is an obviously induced compatible C2 action on each terms and one can deduce that

pπ ˆ π1qpppB̃ ˆG B̃1q{Y 1q´q “ G̃ ˆG G̃1 and pπ ˆ π1qpppB̃ ˆG B̃1q{Y 1q`q “ pG̃ ˆG G̃1qr2s

using the fact that individually π and π1 satisfy the respective property.
On the other hand, by construction one has that i2ˆi1

2 and i3ˆi1
3 are isomorphisms between

the source groups and the double of the targets. This shows that ĄExtZ2rC2spG,WRr28sq is
closed under addition because the sequence 0 Ñ WRr28s Ñ pBˆGB

1q{Y Ñ G Ñ 0 represents
the class of the Baer sum of the two embeddable sequences in ExtZ2rC2spG,WRr28sq. Since

ExtZ2rC2spG,WRr28sq is finite, in order to conclude that ĄExtZ2rC2spG,WRr28sq is a subgroup,

one is only left to show that ĄExtZ2rC2spG,WRr28sq is non-empty. To this end we refer the

reader to Proposition 3.5, which in particular implies that ĄExtZ2rC2spG,WRr28sq is non-empty
(alternatively one could also directly prove that the split sequence is embeddable, which one
can indeed show using the same steps of the proof of Proposition 3.5). Finally, given an
embeddable sequence

0 Ñ pRq˚

x´1y r28s gÑ
Ò i1

0 Ñ WRr28s hÑ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ

f
G Ñ 0

and a pair pϕ1, ϕ2q P AutringpRq ˆ Autab.gr.pGq, we can consider

0 Ñ pRq˚

x´1y r28s gϕ1Ñ
Ò i1

0 Ñ WRr28s hϕ1Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3ϕ
´1
2

B Ñ
ϕ2f

G Ñ 0
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which gives an embeddability diagram for the sequence

pϕ1, ϕ2qp0 Ñ WRr28s Ñ B Ñ G Ñ 0q

showing that ĄExtZ2rC2spG,WRr28sq is stable under the action of AutringpRqˆAutab.gr.pGq. �

Denote by G2 a set of representatives of isomorphism classes of finite abelian 2-groups,
viewed as C2-modules under the action of ´ Id. For an imaginary quadratic number field
K, denote by G2pKq the unique representative of 2ClpKqr28s in G2. Suppose K is strongly
of type R. Then pOK{cq˚{x´1y can be identified with R˚{x´1y via any restriction of a ring
isomorphism, that is via any element of IsomringpOK{c, Rq. Furthemore, we can identify
2ClpKqr28s and G2pKq via any element of Isomab.gr.pClpKqr28s, Gq. Therefore applying
IsomringpOK{c, Rq ˆ Isomab.gr.p2ClpKqr28s, G2pKqq to S2pKq, we obtain a unique orbit

Oc,2pKq P ĄExtZ2rC2spG2pKq,WRr28sq{pAutringpRq ˆ Autab.gr.pGqq.
For K strongly of type R we use the notation

S 1
2pKq :“ pG2pKq, Oc,2pKqq.

If K is not strongly of type R, we set S 1
2pKq to be the symbol ‚. We now proceed by offering

a heuristic model for S 1
2pKq as K varies among imaginary quadratic number fields of type R.

Let R be an unramified ring at c and denote by G2 a set of representatives of isomorphism
classes of finite abelian 2-groups, viewed as C2-modules under the action of ´ Id. Denote
by S2pRq the union of the singleton t‚u and of the set of equivalence classes of pairs pG, θq,
where G P G2, θ P ĄExtZ2rC2spG,WRr28sq and the equivalence is defined as follows: two pairs
pG1, θ1q, pG2, θ2q are identified if G1 “ G2 and θ1, θ2 are in the same AutringpRqˆAutab.gr.pGq-
orbit. Denote by ĂS2pRq the union of the singleton t‚u and the set of pairs pG, θq, where
G P G2 and θ P ĄExtZ2rC2spG,WRr28sq, thus bringing into play the quotient map

π : ĂS2pRq Ñ S2pRq.

Consider the sigma algebra generated by all subsets on ĂS2pRq, as well as on S2pRq, and
equip ĂS2pRq with the measure

rµseqppG, θqq :“ µCLpGq
#ĄExtZ2rC2spG,WRr28sq

, rµseqpt‚uq “ 0,

where µCL denotes, as usual, the Cohen–Lenstra probability measure on G2 that gives to
each abelian 2-group G weight inversely proportional to the size of the automorphism group
of G. Push forward, via π, the measure rµseq to a measure µseq on S2pRq. It is clear by
construction that rµseq and µseq are probability measures.

The heuristic assumption that we propose for the 2-part of ray class sequences of conductor
c of imaginary quadratic fields of type R is as follows.

Heuristic assumption 3.4. For any ‘reasonable’ function f : S2pRq Ñ R one has that,
as K varies among imaginary quadratic number fields of type R, the following equality of
averages takes place

lim
XÑ8

ř

´DpKqďX fpS 1
2pKqq

#t´DpKq ď Xu “
ÿ

SPS2pRq

fpSqµseqpSq.
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As a consistency check, observe that the above identity of average takes place if one chooses
as f the indicator function of t‚u: indeed, since the number of K with DpKq ď X that are
not strongly of type R is at most !c XplogXq´1{ϕpcq, we see that we obtain 0 in the left
side, while in the right side we obtain 0 by definition. Clearly one can readily formulate the
analogues of Conjectures 2.5 and 2.6. We shall instead opt to devote the rest of the section
to the analogues of Conjectures 2.8-2.10.
If α P R˚{x´1y then α2Npαq P WR, where Np¨q is the norm-function with respect to the

C2-action prescribed to R˚{x´1y: indeed both α2 and Npαq are in WR. We define the map
gR : R˚{x´1y Ñ WR given by α ÞÑ α2Npαq. With a small abuse of notation, we use the

same notation for the induced map gR : R˚{x´1y
pR˚{x´1yq2 Ñ WR{2WR and we denote by ImpgRq the

image of gR in WR{2WR.

Proposition 3.5. The image of the natural map

ĄExtZ2rC2spG,WRq Ñ HomF2rC2spGr2s,WR{2WRq
is

HomF2rC2spGr2s, ImpgRqq p“ HomF2pGr2s, ImpgRqqq.

Proof. Consider θ an embeddable sequence

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ

f
G Ñ 0

and pick b P Gr2s. By definition of embeddability there exist b in B̃` such that πpbq “ i3pbq.
On the other hand we can find x P B̃ such that πp2xq “ i3pbq. Therefore there exists

an element α P pRq˚

x´1y r28s such that bα´1 “ x2, which implies that b2Npαq´1 “ Npxq2.
Furthermore, 2x is in B, hence we have that δ2pθqpbq “ b2α´2 as an element of WR{2WR.
However note that Npxq2 P 2WR: indeed, by definition of embeddability, we can always write
x “ x´β with x´ an anti-fixed point and β P R˚

x´1y , so that Npxq2 “ Npβq2 P WR. Therefore

we find that δ2pθqpbq “ Npαqα2, i.e. δ2pθqpbq P ImpgRq.
Conversely, we prove that given a C2-map δ0 : Gr2s Ñ ImpgRq, there exists a θ P ĄExtZ2rC2s

such that δ2pθq “ δ0. Firstly observe that HomF2rC2spGr2s, ImpgRqq “ HomF2pGr2s, ImpgRqqq,
since τ clearly fixes Npαq for any α in R and α2τpα2q “ Npαq2 P 2WR, therefore τ acts triv-
ially on ImpgRq (see Lemma 3.6 for a more general fact). Thus pick δ0 P HomF2pGr2s, ImpgRqqq.
We divide the construction of θ and its embedding in four steps:
Step 1: Observe that α2Npαq “ α2

NpαqNpαq2 “ α
τpαqNpαq2. Since Npαq2 P 2WRr28s, we con-

clude that any element of ImpgRq can be represented as α
τpαq for some α P R˚

x´1yr28s.
Step 2: Write G “ xe1y ‘ . . . ‘ xejy, with the order of ei being 2mi for a positive integer mi,
for each i P t1, . . . , ju. Therefore Gr2s “ x2m1´1e1y ‘ . . .‘ x2mj´1ejy and now, use Step 1 for

each i P t1, . . . , ju to construct αi P R˚

x´1yr28s such that δ0p2mi´1eiq “ αi

τpαiq .

Step 3: Embed G in a group G̃ “ xẽ1y‘. . .‘xẽjy‘xd1y‘. . .‘xdhy, with the rules 2ẽi “ ei for
every i in t1, . . . , ju, 2ds “ 0 for every s P t1, . . . , hu and h ě rk2ppZ{cZ˚qq´1. Take an exten-
sion θ P ExtZ2pG̃, R˚

x´1yq such that for every i P t1, . . . , ju one has that δ2mi`1pθqpẽiq “ αi

τpαiq and

such that xtδ2pθqpd1q, . . . , δ2pθqpdhquy “ ImppZ{cZq˚ Ñ WR{2WRq. Call B̃ the middle term
of this extension. Pick ẽ1

1, . . . , ẽ
1
j liftings of e1, . . . , ej with the property that 2mi`1ẽ1

i “ αi

τpαiq
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which gives an embeddability diagram for the sequence

pϕ1, ϕ2qp0 Ñ WRr28s Ñ B Ñ G Ñ 0q

showing that ĄExtZ2rC2spG,WRr28sq is stable under the action of AutringpRqˆAutab.gr.pGq. �

Denote by G2 a set of representatives of isomorphism classes of finite abelian 2-groups,
viewed as C2-modules under the action of ´ Id. For an imaginary quadratic number field
K, denote by G2pKq the unique representative of 2ClpKqr28s in G2. Suppose K is strongly
of type R. Then pOK{cq˚{x´1y can be identified with R˚{x´1y via any restriction of a ring
isomorphism, that is via any element of IsomringpOK{c, Rq. Furthemore, we can identify
2ClpKqr28s and G2pKq via any element of Isomab.gr.pClpKqr28s, Gq. Therefore applying
IsomringpOK{c, Rq ˆ Isomab.gr.p2ClpKqr28s, G2pKqq to S2pKq, we obtain a unique orbit

Oc,2pKq P ĄExtZ2rC2spG2pKq,WRr28sq{pAutringpRq ˆ Autab.gr.pGqq.
For K strongly of type R we use the notation

S 1
2pKq :“ pG2pKq, Oc,2pKqq.

If K is not strongly of type R, we set S 1
2pKq to be the symbol ‚. We now proceed by offering

a heuristic model for S 1
2pKq as K varies among imaginary quadratic number fields of type R.

Let R be an unramified ring at c and denote by G2 a set of representatives of isomorphism
classes of finite abelian 2-groups, viewed as C2-modules under the action of ´ Id. Denote
by S2pRq the union of the singleton t‚u and of the set of equivalence classes of pairs pG, θq,
where G P G2, θ P ĄExtZ2rC2spG,WRr28sq and the equivalence is defined as follows: two pairs
pG1, θ1q, pG2, θ2q are identified if G1 “ G2 and θ1, θ2 are in the same AutringpRqˆAutab.gr.pGq-
orbit. Denote by ĂS2pRq the union of the singleton t‚u and the set of pairs pG, θq, where
G P G2 and θ P ĄExtZ2rC2spG,WRr28sq, thus bringing into play the quotient map

π : ĂS2pRq Ñ S2pRq.

Consider the sigma algebra generated by all subsets on ĂS2pRq, as well as on S2pRq, and
equip ĂS2pRq with the measure

rµseqppG, θqq :“ µCLpGq
#ĄExtZ2rC2spG,WRr28sq

, rµseqpt‚uq “ 0,

where µCL denotes, as usual, the Cohen–Lenstra probability measure on G2 that gives to
each abelian 2-group G weight inversely proportional to the size of the automorphism group
of G. Push forward, via π, the measure rµseq to a measure µseq on S2pRq. It is clear by
construction that rµseq and µseq are probability measures.

The heuristic assumption that we propose for the 2-part of ray class sequences of conductor
c of imaginary quadratic fields of type R is as follows.

Heuristic assumption 3.4. For any ‘reasonable’ function f : S2pRq Ñ R one has that,
as K varies among imaginary quadratic number fields of type R, the following equality of
averages takes place

lim
XÑ8

ř

´DpKqďX fpS 1
2pKqq

#t´DpKq ď Xu “
ÿ

SPS2pRq

fpSqµseqpSq.
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As a consistency check, observe that the above identity of average takes place if one chooses
as f the indicator function of t‚u: indeed, since the number of K with DpKq ď X that are
not strongly of type R is at most !c XplogXq´1{ϕpcq, we see that we obtain 0 in the left
side, while in the right side we obtain 0 by definition. Clearly one can readily formulate the
analogues of Conjectures 2.5 and 2.6. We shall instead opt to devote the rest of the section
to the analogues of Conjectures 2.8-2.10.
If α P R˚{x´1y then α2Npαq P WR, where Np¨q is the norm-function with respect to the

C2-action prescribed to R˚{x´1y: indeed both α2 and Npαq are in WR. We define the map
gR : R˚{x´1y Ñ WR given by α ÞÑ α2Npαq. With a small abuse of notation, we use the

same notation for the induced map gR : R˚{x´1y
pR˚{x´1yq2 Ñ WR{2WR and we denote by ImpgRq the

image of gR in WR{2WR.

Proposition 3.5. The image of the natural map

ĄExtZ2rC2spG,WRq Ñ HomF2rC2spGr2s,WR{2WRq
is

HomF2rC2spGr2s, ImpgRqq p“ HomF2pGr2s, ImpgRqqq.

Proof. Consider θ an embeddable sequence

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ

f
G Ñ 0

and pick b P Gr2s. By definition of embeddability there exist b in B̃` such that πpbq “ i3pbq.
On the other hand we can find x P B̃ such that πp2xq “ i3pbq. Therefore there exists

an element α P pRq˚

x´1y r28s such that bα´1 “ x2, which implies that b2Npαq´1 “ Npxq2.
Furthermore, 2x is in B, hence we have that δ2pθqpbq “ b2α´2 as an element of WR{2WR.
However note that Npxq2 P 2WR: indeed, by definition of embeddability, we can always write
x “ x´β with x´ an anti-fixed point and β P R˚

x´1y , so that Npxq2 “ Npβq2 P WR. Therefore

we find that δ2pθqpbq “ Npαqα2, i.e. δ2pθqpbq P ImpgRq.
Conversely, we prove that given a C2-map δ0 : Gr2s Ñ ImpgRq, there exists a θ P ĄExtZ2rC2s

such that δ2pθq “ δ0. Firstly observe that HomF2rC2spGr2s, ImpgRqq “ HomF2pGr2s, ImpgRqqq,
since τ clearly fixes Npαq for any α in R and α2τpα2q “ Npαq2 P 2WR, therefore τ acts triv-
ially on ImpgRq (see Lemma 3.6 for a more general fact). Thus pick δ0 P HomF2pGr2s, ImpgRqqq.
We divide the construction of θ and its embedding in four steps:
Step 1: Observe that α2Npαq “ α2

NpαqNpαq2 “ α
τpαqNpαq2. Since Npαq2 P 2WRr28s, we con-

clude that any element of ImpgRq can be represented as α
τpαq for some α P R˚

x´1yr28s.
Step 2: Write G “ xe1y ‘ . . . ‘ xejy, with the order of ei being 2mi for a positive integer mi,
for each i P t1, . . . , ju. Therefore Gr2s “ x2m1´1e1y ‘ . . .‘ x2mj´1ejy and now, use Step 1 for

each i P t1, . . . , ju to construct αi P R˚

x´1yr28s such that δ0p2mi´1eiq “ αi

τpαiq .

Step 3: Embed G in a group G̃ “ xẽ1y‘. . .‘xẽjy‘xd1y‘. . .‘xdhy, with the rules 2ẽi “ ei for
every i in t1, . . . , ju, 2ds “ 0 for every s P t1, . . . , hu and h ě rk2ppZ{cZ˚qq´1. Take an exten-
sion θ P ExtZ2pG̃, R˚

x´1yq such that for every i P t1, . . . , ju one has that δ2mi`1pθqpẽiq “ αi

τpαiq and

such that xtδ2pθqpd1q, . . . , δ2pθqpdhquy “ ImppZ{cZq˚ Ñ WR{2WRq. Call B̃ the middle term
of this extension. Pick ẽ1

1, . . . , ẽ
1
j liftings of e1, . . . , ej with the property that 2mi`1ẽ1

i “ αi

τpαiq
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for all i in t1, . . . , ju. Choose also d1
1, . . . , d

1
h liftings of d1, . . . , dh in B̃ and put 2B̃ “ B.

Observe that by construction the kernel of B Ñ G is WRr28s. This gives a commutative
diagram of Z2-modules,

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ

f
G Ñ 0.

By construction i2 and i3 are isomorphisms between the source groups and the double of the
target groups.
Step 4: Define A1 :“ xtẽ1

1, . . . , ẽ
1
jy, A2 :“ xtd1

1, . . . , d
1
huy and A :“ xA1, A2y. Consider A1 as a

C2-module with the ´Id-action and A2 with the Id-action. Observe that, by construction, the
C2-action on A1 and A2 restrict to the same C2-action on A1 X A2. Therefore the C2-action
extend to an action on A. Observe that, by construction, the C2-action on A and R˚

x´1yr28s
restricts to the same C2-action on A X R˚

x´1yr28s. It is also clear that xA, R˚

x´1yr28sy “ B̃.

Therefore one can put on B̃ a C2-action which restricted to A is ´Id and restricted to R˚

x´1y
is the usual action. This turns the above diagram into a diagram of C2-modules, and we
want to prove that the top sequence remains exact when we take p1 ` τq-torsion and when
we take p1 ´ τq-torsion. But by construction

p1 ` τqpB̃q “ p1 ` τq
´

xA1, A2, R
˚{x´1yy

¯

“ p1 ` τq
´

xA2, R
˚{x´1yy

¯

“ x2A2, p1 ` τqpR˚{x´1yqy Ď xp1 ` τqpR˚{x´1yqy
and

p1 ´ τqpπ´1pG̃r2sq “ p1 ´ τqpxA1 X kerp2πq, R˚{x´1yyq
“ x2pA1 X kerp2πqq, p1 ´ τqpR˚{x´1yqy
Ď p1 ´ τqpR˚{x´1yq,

where the last two inclusions follow from Step 3. This shows that δ0 can be realized as δ2pθq
for some θ in ĄExtZ2rC2spG,WRr28sq (i.e. 0 Ñ WRr28s Ñ B

fÑ G Ñ 0). �

If K is strongly of type R, we denote by δ2pKq the map δ2pS2pKqq. By choosing any
ring identification in IsomringpOK{c, Rq and any identification in Isomab.gr.p2ClpKq, G2pKqq
we obtain an AutringpRq-orbit of subspaces of WR{2WR. On the other hand this orbit is
composed of a single element due to the following fact:

Lemma 3.6. The action of AutringpRq on ImpgRq is trivial.

Proof. Consider the ring decomposition R “
ś

l|c R{lR. It is clear that the following holds,

AutringpRq “
ś

l|c AutringpR{lRq. On the other hand, this decomposition is compatible with

gR, i.e. gR “
ś

l|c gR{lR, where
ś

of maps is to be thought of as the map obtained by
applying the maps coordinatewise. This reduces the claim to c “ l a prime number. In that
case one has that α2τpαq2 “ Npαq2, but Npαq2 is in 2WR, therefore, modulo 2WR, one has
that α2Npαq is fixed by τ . �

Hence we see that Impδ2pKqq can be identified with a well-defined subgroup of ImpgRq. We
will keep denoting this subgroup as Impδ2pKqq. Moreover, thanks to Proposition 3.5 and the
fact that the pushforward, via an epimorphism, of the counting probability measure induces
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the counting probability measure on the target group, we readily obtain the prediction of
the distribution of the pair p#p2ClpKqqr2s, Impδ2pKqqq.

Fix a subspace Y Ď ImpgRq and a non-negative integer j.

Prediction 3.7. As K varies among imaginary quadratic number fields of type R, we have
the following equality

lim
XÑ8

#tK : ´DpKq ď X,#p2ClpKqqr2s “ 2j and Impδ2pKqq “ Y u
#tK : ´DpKq ď Xu

“ µCLpG P G2 : #Gr2s “ 2jq
#EpiF2

pFj
2, Y q

#HomF2pFj
2, ImpgRqq

.

This will be proved in Theorem 5.2, but see also Theorem 5.4 for a more explicit statement.
A crucial step is to deduce it from a statement about mixed moments. Indeed, observe that
to know the pair

p#Gr2s, Impδ : Gr2s Ñ ImpgRqqq

is equivalent to knowing for each χ in the dual group {ImpgRq, the value of

mχpδq :“ #kerpχpδqq.

For each χ P {ImpgRq, fix a non-negative integer kχ.

Notation. For any function {ImpgRq Ñ Zě0, χ ÞÑ kχ, we will use the notation

|k|1 :“
ÿ

χP {ImpgRq

kχ.

Pick a random subset of {ImpgRq by choosing each character χ independently at random
with the rule that χ is not in the set with probability 1

2kχ
and that χ is in the set with

probability 2kχ´1
2kχ

. For a subspace Y Ď {ImpgRq denote by PpkχqpY q the probability that such
a random subset generates Y . Observe that if dimpY q ą |k|1 then PpkχqpY q “ 0: indeed, in
that case we select with probability 1 less characters than dimF2pY q, so they they generate
Y with zero probability. Denote by N2pjq the number of vector subspaces of Fj

2. If j ă 0,
we shall make sense of the expression 0 ¨ N2pjq by setting it equal to 0.

The following proposition reveals the value predicted by the heuristic model for the
pkχq

χP {ImpgRq-mixed moment. In what follows we use the convention mχpδSq “ 0 if we have

S “ ‚ P S2pRq.

Proposition 3.8. One has that
ÿ

SPS2pRq

µseqpSq
ź

χP {ImpgRq

mχpδSqkχ “
ÿ

Y Ď {ImpgRq

PpkχqpY qN2p|k|1 ´ dimpY qq.

We do not spell out the proof of Proposition 3.8 because it is identical to the proof of
Proposition 4.8 which we will provide in §4.
Proposition 3.8 leads to the following prediction.
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for all i in t1, . . . , ju. Choose also d1
1, . . . , d

1
h liftings of d1, . . . , dh in B̃ and put 2B̃ “ B.

Observe that by construction the kernel of B Ñ G is WRr28s. This gives a commutative
diagram of Z2-modules,

0 Ñ pRq˚

x´1y r28s Ñ
Ò i1

0 Ñ WRr28s Ñ

B̃
πÑ G̃ Ñ 0

Ò i2 Ò i3
B Ñ

f
G Ñ 0.

By construction i2 and i3 are isomorphisms between the source groups and the double of the
target groups.
Step 4: Define A1 :“ xtẽ1

1, . . . , ẽ
1
jy, A2 :“ xtd1

1, . . . , d
1
huy and A :“ xA1, A2y. Consider A1 as a

C2-module with the ´Id-action and A2 with the Id-action. Observe that, by construction, the
C2-action on A1 and A2 restrict to the same C2-action on A1 X A2. Therefore the C2-action
extend to an action on A. Observe that, by construction, the C2-action on A and R˚

x´1yr28s
restricts to the same C2-action on A X R˚

x´1yr28s. It is also clear that xA, R˚

x´1yr28sy “ B̃.

Therefore one can put on B̃ a C2-action which restricted to A is ´Id and restricted to R˚

x´1y
is the usual action. This turns the above diagram into a diagram of C2-modules, and we
want to prove that the top sequence remains exact when we take p1 ` τq-torsion and when
we take p1 ´ τq-torsion. But by construction

p1 ` τqpB̃q “ p1 ` τq
´

xA1, A2, R
˚{x´1yy

¯

“ p1 ` τq
´

xA2, R
˚{x´1yy

¯

“ x2A2, p1 ` τqpR˚{x´1yqy Ď xp1 ` τqpR˚{x´1yqy
and

p1 ´ τqpπ´1pG̃r2sq “ p1 ´ τqpxA1 X kerp2πq, R˚{x´1yyq
“ x2pA1 X kerp2πqq, p1 ´ τqpR˚{x´1yqy
Ď p1 ´ τqpR˚{x´1yq,

where the last two inclusions follow from Step 3. This shows that δ0 can be realized as δ2pθq
for some θ in ĄExtZ2rC2spG,WRr28sq (i.e. 0 Ñ WRr28s Ñ B

fÑ G Ñ 0). �

If K is strongly of type R, we denote by δ2pKq the map δ2pS2pKqq. By choosing any
ring identification in IsomringpOK{c, Rq and any identification in Isomab.gr.p2ClpKq, G2pKqq
we obtain an AutringpRq-orbit of subspaces of WR{2WR. On the other hand this orbit is
composed of a single element due to the following fact:

Lemma 3.6. The action of AutringpRq on ImpgRq is trivial.

Proof. Consider the ring decomposition R “
ś

l|c R{lR. It is clear that the following holds,

AutringpRq “
ś

l|c AutringpR{lRq. On the other hand, this decomposition is compatible with

gR, i.e. gR “
ś

l|c gR{lR, where
ś

of maps is to be thought of as the map obtained by
applying the maps coordinatewise. This reduces the claim to c “ l a prime number. In that
case one has that α2τpαq2 “ Npαq2, but Npαq2 is in 2WR, therefore, modulo 2WR, one has
that α2Npαq is fixed by τ . �

Hence we see that Impδ2pKqq can be identified with a well-defined subgroup of ImpgRq. We
will keep denoting this subgroup as Impδ2pKqq. Moreover, thanks to Proposition 3.5 and the
fact that the pushforward, via an epimorphism, of the counting probability measure induces
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the counting probability measure on the target group, we readily obtain the prediction of
the distribution of the pair p#p2ClpKqqr2s, Impδ2pKqqq.

Fix a subspace Y Ď ImpgRq and a non-negative integer j.

Prediction 3.7. As K varies among imaginary quadratic number fields of type R, we have
the following equality

lim
XÑ8

#tK : ´DpKq ď X,#p2ClpKqqr2s “ 2j and Impδ2pKqq “ Y u
#tK : ´DpKq ď Xu

“ µCLpG P G2 : #Gr2s “ 2jq
#EpiF2

pFj
2, Y q

#HomF2pFj
2, ImpgRqq

.

This will be proved in Theorem 5.2, but see also Theorem 5.4 for a more explicit statement.
A crucial step is to deduce it from a statement about mixed moments. Indeed, observe that
to know the pair

p#Gr2s, Impδ : Gr2s Ñ ImpgRqqq

is equivalent to knowing for each χ in the dual group {ImpgRq, the value of

mχpδq :“ #kerpχpδqq.

For each χ P {ImpgRq, fix a non-negative integer kχ.

Notation. For any function {ImpgRq Ñ Zě0, χ ÞÑ kχ, we will use the notation

|k|1 :“
ÿ

χP {ImpgRq

kχ.

Pick a random subset of {ImpgRq by choosing each character χ independently at random
with the rule that χ is not in the set with probability 1

2kχ
and that χ is in the set with

probability 2kχ´1
2kχ

. For a subspace Y Ď {ImpgRq denote by PpkχqpY q the probability that such
a random subset generates Y . Observe that if dimpY q ą |k|1 then PpkχqpY q “ 0: indeed, in
that case we select with probability 1 less characters than dimF2pY q, so they they generate
Y with zero probability. Denote by N2pjq the number of vector subspaces of Fj

2. If j ă 0,
we shall make sense of the expression 0 ¨ N2pjq by setting it equal to 0.

The following proposition reveals the value predicted by the heuristic model for the
pkχq

χP {ImpgRq-mixed moment. In what follows we use the convention mχpδSq “ 0 if we have

S “ ‚ P S2pRq.

Proposition 3.8. One has that
ÿ

SPS2pRq

µseqpSq
ź

χP {ImpgRq

mχpδSqkχ “
ÿ

Y Ď {ImpgRq

PpkχqpY qN2p|k|1 ´ dimpY qq.

We do not spell out the proof of Proposition 3.8 because it is identical to the proof of
Proposition 4.8 which we will provide in §4.
Proposition 3.8 leads to the following prediction.
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Prediction 3.9. As K varies among imaginary quadratic number fields of type R, the fol-
lowing equality of averages takes place

lim
XÑ8

ř

´DpKqďX

ś

mχpδ2pKqqkχ

#tK : ´DpKq ď Xu “
ÿ

V Ď {ImpgRq

PpkχqpV qN2p|k|1 ´ dimpV qq.

A stronger statement will be proved in Theorem 5.1.
As a cruder result, one derives a prediction for the joint-distribution of the 4-ranks of the

class group and the ray class group. Let j1, j2 be two non-negative integers. Then we have
the following prediction.

Prediction 3.10. As K varies among imaginary quadratic number fields of type R, we have
the following equality

lim
XÑ8

#tK : ´DpKq ď X, rk4pClpKqq “ j1, rk4pClpK, cqq “ j2u
#tK : ´DpKq ď Xu

“ µCLpG P G2 : dimF2pGr2sq “ j1q
#tϕ P HomF2pFj1

2 , ImpgRqq : rkpϕq “ rk2pWRq ´ pj2 ´ j1qu
#HomF2pFj1

2 , ImpgRqq
.

This will be proved in Theorem 5.3, but see also Theorem 5.4 for a more explicit law.
Similarly, the heuristic of the present section can be used to conjecturally predict the distri-
bution of the pair prk2mpClpKqq, rk2mpClpK, cqqq among imaginary quadratic number fields
K with gcdpDpKq, cq “ 1. For reasons of space we do not explicitly state such a conjecture
but it is implicitly given in the present section; such a conjecture might be within reach
given the recent work of Smith [16].

4. Special divisors and 4-rank

Let D be a square-free odd positive integer. In this section we introduce the notion of
special divisors of D, which will be instrumental in our proof of Theorems 5.1, 5.2, 5.3,
and 5.4. We call a positive divisor d of D special if d is a square modulo D{d and D{d is
a square modulo d. We denote by SpDq the set of special divisors of D, and by T pDq the
set of all divisors of D. The set T pDq has naturally the structure of a vector space over F2

under the operation

d1 d d2 :“
d1d2

gcdpd1, d2q2
.

Lemma 4.1. The set SpDq is a subspace of T pDq over F2.

Proof. We need to show that if d1, d2 are special then d1 d d2 is special as well. This amount
to showing firstly that if a prime q divides D but q � d1 d d2 then d1 d d2 is a square pmod qq
and secondly that if a prime q divides d1 d d2 then D{d1 d d2 is a square pmod qq.
For the proof of the first claim, suppose that q|D but q � d1dd2. Then either gcdpd1d2, qq “

1 or q| gcdpd1, d2q. In the first case we know that, since both d1 and d2 are special, d1 and d2
are both squares pmod qq, thus showing that d1 d d2 is a square pmod qq. In the second case
we know that, since both d1 and d2 are special, D{d1 and D{d2 are both squares pmod qq.
This shows that

D

d1

D

d2
“ pd1 d d2q

˜

D
d1d2

gcdpd1,d2q

¸2
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is a square pmod qq, hence d1 d d2 is a square pmod qq.
Next, suppose that q | d1 d d2. Then, either q | d1 and q � d2, or q | d2 and q � d1: by

symmetry we are allowed to focus on the former case. Then, since both d1 and d2 are special,
we have that both D{d1 and d2 are squares pmod qq. Therefore

D

d1

1

d2
gcdpd1, d2q2 “ D

pd1 d d2q
is a square pmod qq, thus concluding our proof. �

Let n be another square-free odd positive integer with gcdpn,Dq “ 1 and consider the
group Gn :“ pZ{nZq˚{pZ{nZq˚2. One has a natural map ϕn,D : SpDq Ñ Gn by reducing
pmod nq and then modulo squares.

Lemma 4.2. The map ϕn,D is a homomorphism of F2-vector spaces.

Proof. By definition we have d1 d d2 “ d1d2
gcdpd1,d2q2 and reducing this equality pmod nq and

then modulo squares, the right side yields d1d2. Thus ϕn,Dpd1 d d2q “ ϕn,Dpd1qϕn,Dpd2q. �

Observe that SpDq always contains the subgroup t1, Du. It is then a consequence of
the work of Fouvry and Klüners [8] that SpDq{t1, Du behaves like the 2-torsion of a random
abelian 2-group, in the sense of Cohen and Lenstra. In other words, for every positive integer
j we have

lim
XÑ8

#t1 ď D ď X,D square-free : SpDq{t1, Du – Fj
2u

#t1 ď D ď X,D square-freeu “ µCLpA P G2 : Ar2s – Fj
2q,

where G2 is a set of representatives of isomorphism classes of finite abelian 2-groups. The
present section in addition to Theorems 5.6-5.7, §6 and §7 are devoted to the determination
of the distribution of the pair

p#SpDq, Impϕn,Dqq.
The general heuristic constructed in §3 specializes to a heuristic model for this pair,

thanks to the commutative diagram after Lemma 5.5. However, we choose to give here a
direct presentation of this heuristic avoiding ray class groups. Therefore the present section,
Theorems 5.6-5.7, §6 and §7 are completely self-contained.
Before proceeding we introduce a modification of ϕn,D which will be required in the ray

class group applications in §5. Denote by Ln the subgroup of Gn generated by an integer

which is a quadratic non-residue modulo every prime dividing n and write rGn :“ Gn{Ln.
Now let n1, n2 be two integers such that 2Dn1n2 is square-free and assume that D is a square
modulo n1 and generates Ln2 pmod n2q. Denote by ϕn1,n2,D the natural map

ϕn1,n2,D : SpDq{t1, Du Ñ Gn1 ˆ rGn2 .

Our goal is to understand the statistical behavior of the pair

p#SpDq, Impϕn1,n2,Dqq,
asD varies through positive square-free integers coprime to n1n2, which are squares pmod n1q
and non-squares modulo every prime dividing n2. There is an obvious guess: namely that,
once dimF2pSpDq{t1, Duq “ j is fixed, then Impϕn1,n2,Dq should distribute as the image of

a random map ϕ : Fj
2 Ñ Gn1 ˆ rGn2 . We formalize this guess in a more general heuristic

principle.
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Prediction 3.9. As K varies among imaginary quadratic number fields of type R, the fol-
lowing equality of averages takes place

lim
XÑ8

ř

´DpKqďX

ś

mχpδ2pKqqkχ

#tK : ´DpKq ď Xu “
ÿ

V Ď {ImpgRq

PpkχqpV qN2p|k|1 ´ dimpV qq.

A stronger statement will be proved in Theorem 5.1.
As a cruder result, one derives a prediction for the joint-distribution of the 4-ranks of the

class group and the ray class group. Let j1, j2 be two non-negative integers. Then we have
the following prediction.

Prediction 3.10. As K varies among imaginary quadratic number fields of type R, we have
the following equality

lim
XÑ8

#tK : ´DpKq ď X, rk4pClpKqq “ j1, rk4pClpK, cqq “ j2u
#tK : ´DpKq ď Xu

“ µCLpG P G2 : dimF2pGr2sq “ j1q
#tϕ P HomF2pFj1

2 , ImpgRqq : rkpϕq “ rk2pWRq ´ pj2 ´ j1qu
#HomF2pFj1

2 , ImpgRqq
.

This will be proved in Theorem 5.3, but see also Theorem 5.4 for a more explicit law.
Similarly, the heuristic of the present section can be used to conjecturally predict the distri-
bution of the pair prk2mpClpKqq, rk2mpClpK, cqqq among imaginary quadratic number fields
K with gcdpDpKq, cq “ 1. For reasons of space we do not explicitly state such a conjecture
but it is implicitly given in the present section; such a conjecture might be within reach
given the recent work of Smith [16].

4. Special divisors and 4-rank

Let D be a square-free odd positive integer. In this section we introduce the notion of
special divisors of D, which will be instrumental in our proof of Theorems 5.1, 5.2, 5.3,
and 5.4. We call a positive divisor d of D special if d is a square modulo D{d and D{d is
a square modulo d. We denote by SpDq the set of special divisors of D, and by T pDq the
set of all divisors of D. The set T pDq has naturally the structure of a vector space over F2

under the operation

d1 d d2 :“
d1d2

gcdpd1, d2q2
.

Lemma 4.1. The set SpDq is a subspace of T pDq over F2.

Proof. We need to show that if d1, d2 are special then d1 d d2 is special as well. This amount
to showing firstly that if a prime q divides D but q � d1 d d2 then d1 d d2 is a square pmod qq
and secondly that if a prime q divides d1 d d2 then D{d1 d d2 is a square pmod qq.
For the proof of the first claim, suppose that q|D but q � d1dd2. Then either gcdpd1d2, qq “

1 or q| gcdpd1, d2q. In the first case we know that, since both d1 and d2 are special, d1 and d2
are both squares pmod qq, thus showing that d1 d d2 is a square pmod qq. In the second case
we know that, since both d1 and d2 are special, D{d1 and D{d2 are both squares pmod qq.
This shows that

D

d1

D

d2
“ pd1 d d2q

˜

D
d1d2

gcdpd1,d2q

¸2
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is a square pmod qq, hence d1 d d2 is a square pmod qq.
Next, suppose that q | d1 d d2. Then, either q | d1 and q � d2, or q | d2 and q � d1: by

symmetry we are allowed to focus on the former case. Then, since both d1 and d2 are special,
we have that both D{d1 and d2 are squares pmod qq. Therefore

D

d1

1

d2
gcdpd1, d2q2 “ D

pd1 d d2q
is a square pmod qq, thus concluding our proof. �

Let n be another square-free odd positive integer with gcdpn,Dq “ 1 and consider the
group Gn :“ pZ{nZq˚{pZ{nZq˚2. One has a natural map ϕn,D : SpDq Ñ Gn by reducing
pmod nq and then modulo squares.

Lemma 4.2. The map ϕn,D is a homomorphism of F2-vector spaces.

Proof. By definition we have d1 d d2 “ d1d2
gcdpd1,d2q2 and reducing this equality pmod nq and

then modulo squares, the right side yields d1d2. Thus ϕn,Dpd1 d d2q “ ϕn,Dpd1qϕn,Dpd2q. �

Observe that SpDq always contains the subgroup t1, Du. It is then a consequence of
the work of Fouvry and Klüners [8] that SpDq{t1, Du behaves like the 2-torsion of a random
abelian 2-group, in the sense of Cohen and Lenstra. In other words, for every positive integer
j we have

lim
XÑ8

#t1 ď D ď X,D square-free : SpDq{t1, Du – Fj
2u

#t1 ď D ď X,D square-freeu “ µCLpA P G2 : Ar2s – Fj
2q,

where G2 is a set of representatives of isomorphism classes of finite abelian 2-groups. The
present section in addition to Theorems 5.6-5.7, §6 and §7 are devoted to the determination
of the distribution of the pair

p#SpDq, Impϕn,Dqq.
The general heuristic constructed in §3 specializes to a heuristic model for this pair,

thanks to the commutative diagram after Lemma 5.5. However, we choose to give here a
direct presentation of this heuristic avoiding ray class groups. Therefore the present section,
Theorems 5.6-5.7, §6 and §7 are completely self-contained.
Before proceeding we introduce a modification of ϕn,D which will be required in the ray

class group applications in §5. Denote by Ln the subgroup of Gn generated by an integer

which is a quadratic non-residue modulo every prime dividing n and write rGn :“ Gn{Ln.
Now let n1, n2 be two integers such that 2Dn1n2 is square-free and assume that D is a square
modulo n1 and generates Ln2 pmod n2q. Denote by ϕn1,n2,D the natural map

ϕn1,n2,D : SpDq{t1, Du Ñ Gn1 ˆ rGn2 .

Our goal is to understand the statistical behavior of the pair

p#SpDq, Impϕn1,n2,Dqq,
asD varies through positive square-free integers coprime to n1n2, which are squares pmod n1q
and non-squares modulo every prime dividing n2. There is an obvious guess: namely that,
once dimF2pSpDq{t1, Duq “ j is fixed, then Impϕn1,n2,Dq should distribute as the image of

a random map ϕ : Fj
2 Ñ Gn1 ˆ rGn2 . We formalize this guess in a more general heuristic

principle.
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Definition 4.3. Consider the set Mn1,n2 consisting of equivalence classes of pairs pA, V q,
where A is a vector space over F2 and V is a vector subspace of Gn1 ˆ rGn2 : declare
pA1, V1q, pA2, V2q identified, if A1 and A2 have the same F2-dimension and V1 “ V2. De-
note this equivalence relation by „. Each representative pair pFj

2, V q is equipped with the
following mass,

µppFj
2, V qq :“ µCLpA P G2 : Ar2s – Fj

2q
#EpiF2

pFj
2, V q

#HomF2pFj
2, Gn1 ˆ rGn2q

.

By construction, this is a probability measure on Mn1,n2 .

Now we formulate the following.

Heuristic assumption 4.4. For any ‘reasonable’ function f : Mn1,n2 Ñ R one has

lim
XÑ8

ř

DďX fppSpDq{t1, Du, Impϕn1,n2,Dqqq
ř

DďX 1
“

ÿ

TPMn1,n2

fpT qµpT q,

where in both sums D varies among square-free positive integers which are squares pmod n1q
and non-squares modulo any prime divisor of n2. Furthermore, for any positive integers a, r
with gcdpr, an1n2q “ 1 the same holds if we have the additional restriction D ” a pmod rq.

The simple case where f is the indicator function of an element pFj
2, V q P Mn1,n2 yields

the following prediction.

Prediction 4.5. We have

lim
XÑ8

#tD ď X, pSpDq{t1, Du, ϕn1,n2,Dq „ T u
#tD ď Xu “ µpT q,

where D varies among square-free positive integers which are squares pmod n1q and non-
squares modulo every prime divisor of n2.

This prediction will be confirmed in Theorem 5.7.
Despite the fact that the ‘random variable’ pSpDq, Impϕn1,n2,Dqq does not consist of two

numbers, we achieve its distribution by means of the moment-method. For this we shall
replace the pair pSpDq, Impϕn1,n2,Dqq by a higher-dimensional numerical ‘random variable’,

which we proceed to define. For each character χ in the dual of Gn1 ˆ rGn2 define

mχpDq :“ #td P SpDq : χpϕn1,n2,Dpdqq “ 1u (4.1)

and recall that Impϕn1,n2,DqK is the set of all character χ with χ ˝ ϕn1,n2,D being trivial.
Clearly for each χ P Impϕn1,n2,DqK we have mχpDq “ m1pDq “ #SpDq, while for the
remaining characters we have mχpDq “ #SpDq{2. Therefore the knowledge of the pair

p#SpDq, Impϕn1,n2,Dqq
is equivalent to the knowledge of

pmχpDqq
χP pGn1ˆx

ĂGn2

.

It will transpire that this shift in focus will be advantageous since it will allow us to study
the asymptotic behaviour of the latter vector by the method of moments.
We conclude this section by providing a prediction regarding the mixed moments of

pmχpDqq. This will be later used in the proof of Theorem 5.6.
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Notation 4.6. For any function pGn1 ˆ p

rGn2 Ñ Zě0, χ ÞÑ kχ, we will use the notation

k :“ pkχq
χP pGn1ˆx

ĂGn2

and |k|1 :“
ÿ

χP pGn1ˆx

ĂGn2

kχ.

Definition 4.7. For any subspace Y Ď pGn1 ˆ p

rGn2 , denote by PpkχqpY q the probability that

a random subset of pGn1 ˆ p

rGn2 generates Y , where the characters χ are chosen independently
and with probability 1 ´ 2´kχ .

For any pair pFj
2, Y q in Mn1,n2 , definemχppFj

2, Y qq to be 2j if χpY q “ 1, and 2j´1 otherwise.
Observe that if dimpY q ą |k|1 then PpkχqpY q “ 0. Denote by N2pjq the number of vector

subspaces of Fj
2. If j ă 0 we define N2pjq :“ 1. It is important to note that every time

N2pjq appears for some negative j then it will always appear multiplied by zero.

Proposition 4.8. One has that
ÿ

TPMn1,n2

´

ź

χP pGn1ˆx

ĂGn2

mχpT qkχ
¯

µpT q “
ÿ

WĎ pGn1ˆx

ĂGn2

PpkχqpW qN2p|k|1 ´ dimpW qq.

Proof. We want to compute
ÿ

pFj
2,δq

´

ź

χP pGn1ˆx

ĂGn2

mχppFj
2, δqqkχq

¯

µppFj
2, δqq,

where j ranges over non-negative integers, δ ranges over HompFj
2, Gn1 ˆ rGn2q and

µppFj
2, δqq “ µCLpA P G2 : #Ar2s “ 2jq

#HompFj
2, Gn1 ˆ rGn2q

.

Therefore the sum becomes

ÿ

V Ď pGn1ˆx

ĂGn2

ÿ

jě0

2j|k|1

2
ř

χRV kχ

#EpipFj
2, V

Kq
#HompFj

2, Gn1 ˆ rGn2q
µCLpA P G2 : #Ar2s “ 2jq.

We assume familiarity of the reader with Möbius inversion in posets, see [17, Chapter 3],
for example. Writing EpipFj

2, V
Kq via inclusion-exclusion on the poset of vector subspaces of

Gn1 ˆ rGn2 and exchanging the order of summation we obtain

ÿ

WĂ pGn1ˆx

ĂGn2

´

ÿ

V ĂW

µpV,W q
2

ř

χRV kχ

¯´

ÿ

GPG2

#Gr2s|k|1´dimpW qµCLpGq
¯

.

By applying Möbius inversion with respect to the poset of vector subspaces, to the obvious
relation

2´
ř

χRW kχ “ PpkχqpV Ď W q “
ÿ

V ĂW

PpkχqpV q

we obtain

PpkχqpW q “
ÿ

V ĂW

µpV,W q
2

ř

χRV kχ
.

c. pagano and e. sofos

48

Carlo Pagano-BNW.indd   48 20-11-18   19:40



4-RANKS AND THE GENERAL MODEL OF RAY CLASS GROUPS 37

Definition 4.3. Consider the set Mn1,n2 consisting of equivalence classes of pairs pA, V q,
where A is a vector space over F2 and V is a vector subspace of Gn1 ˆ rGn2 : declare
pA1, V1q, pA2, V2q identified, if A1 and A2 have the same F2-dimension and V1 “ V2. De-
note this equivalence relation by „. Each representative pair pFj

2, V q is equipped with the
following mass,

µppFj
2, V qq :“ µCLpA P G2 : Ar2s – Fj

2q
#EpiF2

pFj
2, V q

#HomF2pFj
2, Gn1 ˆ rGn2q

.

By construction, this is a probability measure on Mn1,n2 .

Now we formulate the following.

Heuristic assumption 4.4. For any ‘reasonable’ function f : Mn1,n2 Ñ R one has

lim
XÑ8

ř

DďX fppSpDq{t1, Du, Impϕn1,n2,Dqqq
ř

DďX 1
“

ÿ

TPMn1,n2

fpT qµpT q,

where in both sums D varies among square-free positive integers which are squares pmod n1q
and non-squares modulo any prime divisor of n2. Furthermore, for any positive integers a, r
with gcdpr, an1n2q “ 1 the same holds if we have the additional restriction D ” a pmod rq.

The simple case where f is the indicator function of an element pFj
2, V q P Mn1,n2 yields

the following prediction.

Prediction 4.5. We have

lim
XÑ8

#tD ď X, pSpDq{t1, Du, ϕn1,n2,Dq „ T u
#tD ď Xu “ µpT q,

where D varies among square-free positive integers which are squares pmod n1q and non-
squares modulo every prime divisor of n2.

This prediction will be confirmed in Theorem 5.7.
Despite the fact that the ‘random variable’ pSpDq, Impϕn1,n2,Dqq does not consist of two

numbers, we achieve its distribution by means of the moment-method. For this we shall
replace the pair pSpDq, Impϕn1,n2,Dqq by a higher-dimensional numerical ‘random variable’,

which we proceed to define. For each character χ in the dual of Gn1 ˆ rGn2 define

mχpDq :“ #td P SpDq : χpϕn1,n2,Dpdqq “ 1u (4.1)

and recall that Impϕn1,n2,DqK is the set of all character χ with χ ˝ ϕn1,n2,D being trivial.
Clearly for each χ P Impϕn1,n2,DqK we have mχpDq “ m1pDq “ #SpDq, while for the
remaining characters we have mχpDq “ #SpDq{2. Therefore the knowledge of the pair

p#SpDq, Impϕn1,n2,Dqq
is equivalent to the knowledge of

pmχpDqq
χP pGn1ˆx

ĂGn2

.

It will transpire that this shift in focus will be advantageous since it will allow us to study
the asymptotic behaviour of the latter vector by the method of moments.
We conclude this section by providing a prediction regarding the mixed moments of

pmχpDqq. This will be later used in the proof of Theorem 5.6.
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Notation 4.6. For any function pGn1 ˆ p

rGn2 Ñ Zě0, χ ÞÑ kχ, we will use the notation

k :“ pkχq
χP pGn1ˆx

ĂGn2

and |k|1 :“
ÿ

χP pGn1ˆx

ĂGn2

kχ.

Definition 4.7. For any subspace Y Ď pGn1 ˆ p

rGn2 , denote by PpkχqpY q the probability that

a random subset of pGn1 ˆ p

rGn2 generates Y , where the characters χ are chosen independently
and with probability 1 ´ 2´kχ .

For any pair pFj
2, Y q in Mn1,n2 , definemχppFj

2, Y qq to be 2j if χpY q “ 1, and 2j´1 otherwise.
Observe that if dimpY q ą |k|1 then PpkχqpY q “ 0. Denote by N2pjq the number of vector

subspaces of Fj
2. If j ă 0 we define N2pjq :“ 1. It is important to note that every time

N2pjq appears for some negative j then it will always appear multiplied by zero.

Proposition 4.8. One has that
ÿ

TPMn1,n2

´

ź

χP pGn1ˆx

ĂGn2

mχpT qkχ
¯

µpT q “
ÿ

WĎ pGn1ˆx

ĂGn2

PpkχqpW qN2p|k|1 ´ dimpW qq.

Proof. We want to compute
ÿ

pFj
2,δq

´

ź

χP pGn1ˆx

ĂGn2

mχppFj
2, δqqkχq

¯

µppFj
2, δqq,

where j ranges over non-negative integers, δ ranges over HompFj
2, Gn1 ˆ rGn2q and

µppFj
2, δqq “ µCLpA P G2 : #Ar2s “ 2jq

#HompFj
2, Gn1 ˆ rGn2q

.

Therefore the sum becomes

ÿ

V Ď pGn1ˆx

ĂGn2

ÿ

jě0

2j|k|1

2
ř

χRV kχ

#EpipFj
2, V

Kq
#HompFj

2, Gn1 ˆ rGn2q
µCLpA P G2 : #Ar2s “ 2jq.

We assume familiarity of the reader with Möbius inversion in posets, see [17, Chapter 3],
for example. Writing EpipFj

2, V
Kq via inclusion-exclusion on the poset of vector subspaces of

Gn1 ˆ rGn2 and exchanging the order of summation we obtain

ÿ

WĂ pGn1ˆx

ĂGn2

´

ÿ

V ĂW

µpV,W q
2

ř

χRV kχ

¯´

ÿ

GPG2

#Gr2s|k|1´dimpW qµCLpGq
¯

.

By applying Möbius inversion with respect to the poset of vector subspaces, to the obvious
relation

2´
ř

χRW kχ “ PpkχqpV Ď W q “
ÿ

V ĂW

PpkχqpV q

we obtain

PpkχqpW q “
ÿ

V ĂW

µpV,W q
2

ř

χRV kχ
.
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On the other hand, one has that whenever |k|1 ´ dimpW q ě 0, then
ÿ

GPG2

#Gr2s|k|1´dimpW qµCLpGq “ N2p|k|1 ´ dimpW qq.

Instead, when |k|1 ´ dimpW q ă 0, we have that PpkχqpW q “ 0. In conclusion we get that the
total sum equals

ÿ

WĎ pGn1ˆx

ĂGn2

PpkχqpW qN2p|k|1 ´ dimpW qq. �

Choosing fpT q “
ś

χP pGn1ˆx

ĂGn2

mχpT qkχ in Heuristic assumption 4.4 suggests the following

prediction by means of Proposition 4.8.

Prediction 4.9. We have

lim
XÑ8

ř

DďX

ś

χP pGn1ˆx

ĂGn2

mχpDqkχ
ř

DďX 1
“ 2|k|1

ÿ

WĎ pGn1ˆx

ĂGn2

PpkχqpW qN2p|k|1 ´ dimpW qq,

where in both sums D varies among square-free positive integers which are squares pmod n1q
and non-squares modulo every prime divisors of n2.

A version of Prediction 4.9 with an explicit error term is proved in Theorem 5.6. This
prediction has a noteworthy feature: it realizes the pkχq-mixed moments of pmχpDqq as an

average over all subspaces of pGn1 ˆ p

rGn2 of ordinary moments of #SpDq and in doing so, it
suggests the first step of the proof of Theorem 5.6, see (6.2).

5. Main theorems on the 2-part of ray class sequences

Throughout the section we keep the notation used in §3. We begin by stating Theo-
rems 5.1,5.2 and 5.3 that corroborate Predictions 3.7,3.9 and 3.10 when DpKq ” 1 pmod 4q.
We restrict our attention to the cases with DpKq ” 1 pmod 4q only for the sake of brevity, the
remaining case being amenable to a similar analysis. Our main task in this section will then
be to reduce Theorems 5.1, 5.2, 5.3 and 5.4 that are about ray class groups to Theorems 5.6
and 5.7 which regard only special divisors.

Theorem 5.1. For any β P R satisfying 0 ă β ă mint2´|k|1 , ϕpcq´1u we have
ř

´DpKqďX

ś

χP pGn1ˆx

ĂGn2

mχpδ2pKqqkχ
ř

´DpKqďX 1
“

ÿ

V Ď {ImpgRq

PpkχqpV qN2p|k|1 ´ dimpV qq ` OpplogXq´βq,

where in both sums K varies among imaginary quadratic number fields of type R, having
DpKq ” 1 pmod 4q and the implied constant depends at most on c and pkχqχ.
Theorem 5.2. We have

lim
XÑ8

#tK : ´DpKq ď X,#p2ClpKqqr2s “ 2j and Impδ2pKqq “ Y u
#tK : ´DpKq ď Xu

“µCLpG P G2 : #Gr2s “ 2jq
#EpiF2

pFj
2, Y q

#HomF2pFj
2, ImpgRqq

,

where K varies among imaginary quadratic number fields with DpKq ” 1 pmod 4q and of
type R.
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Recall the definition of WR in (3.1) and the definition of the map gR before the statement
of Proposition 3.5.

Theorem 5.3. We have

lim
XÑ8

#tK : ´DpKq ď X, rk4pClpKqq “ j1, rk4pClpK, cqq “ j2u
#tK : ´DpKq ď Xu

“µCLpG P G2 : dimF2pGr2sq “ j1q
#tϕ P HomF2pFj1

2 , ImpgRqq : rkpϕq “ rk2pWRq ´ pj2 ´ j1qu
#HomF2pFj1

2 , ImpgRqq
,

where K varies among imaginary quadratic number fields with DpKq ” 1 pmod 4q and of
type R.

We will prove a stronger version of Theorems 5.1, 5.2 and 5.3. Namely, the fact that we
deal with progressions a pmod qq in Theorems 5.6 and 5.7 yields results analogous to the ones
in Theorems 5.1, 5.2 and 5.3 when one imposes finitely many unramified local conditions
at primes independent of c on the discriminants DpKq. This supports the point of view
in Wood’s recent work [20] that local conditions on the quadratic field do not affect the
distribution of class groups, with the obvious modification that for ray class groups such
conditions must be taken independently of the primes dividing c.
We proceed to restate Theorem 5.3 in a more explicit way. Recalling that c is square-free

we let n1pRq be the product of the prime divisors of c which are either 3 pmod 4q and inert
in R, or 1 pmod 4q and split. Furthermore, let n2pRq be the product of the prime divisors of
c that are 3 pmod 4q and split in R. Recall that

η8p2q
ηj1p2q22j21

“ µCLpG P G2 : dimF2pGr2sq “ j1q.

Theorem 5.4. We have

lim
XÑ8

#tK : ´DpKq ď X, rk4pClpKqq “ j1, rk4pClpK, cqq “ j2u
#tK : ´DpKq ď Xu

“ η8p2q
ηj1p2q22j21

#tϕ P HomF2pFj1
2 , Gn1pRq ˆ rGn2pRqq : rkpϕq “ rk2pWRq ´ pj2 ´ j1qu
#HomF2pFj1

2 , Gn1pRq ˆ Gn2pRqq
,

where K varies among imaginary quadratic number fields with DpKq ” 1 pmod 4q and of
type R.

The congruence conditions pmod 4q related to the definition of n1pRq and n2pRq in The-
orem 5.4 are analogous to the congruences pmod 3q for the primes l appearing in the first
part of Varma’s Theorem 2.13.
Our next goal is to realise the δ2-map

δ2pQp
?

´Dqq : p2ClpQp
?

´Dqqqr2s Ñ ImpgRq

with the map on special divisors introduced in §4,

ϕn1pRq,n2pRq,D :
SpDq
t1, Du Ñ Gn1pRq ˆ rGn2pRq.
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On the other hand, one has that whenever |k|1 ´ dimpW q ě 0, then
ÿ

GPG2

#Gr2s|k|1´dimpW qµCLpGq “ N2p|k|1 ´ dimpW qq.

Instead, when |k|1 ´ dimpW q ă 0, we have that PpkχqpW q “ 0. In conclusion we get that the
total sum equals

ÿ

WĎ pGn1ˆx

ĂGn2

PpkχqpW qN2p|k|1 ´ dimpW qq. �

Choosing fpT q “
ś

χP pGn1ˆx

ĂGn2

mχpT qkχ in Heuristic assumption 4.4 suggests the following

prediction by means of Proposition 4.8.

Prediction 4.9. We have

lim
XÑ8

ř

DďX

ś

χP pGn1ˆx

ĂGn2

mχpDqkχ
ř

DďX 1
“ 2|k|1

ÿ

WĎ pGn1ˆx

ĂGn2

PpkχqpW qN2p|k|1 ´ dimpW qq,

where in both sums D varies among square-free positive integers which are squares pmod n1q
and non-squares modulo every prime divisors of n2.

A version of Prediction 4.9 with an explicit error term is proved in Theorem 5.6. This
prediction has a noteworthy feature: it realizes the pkχq-mixed moments of pmχpDqq as an

average over all subspaces of pGn1 ˆ p

rGn2 of ordinary moments of #SpDq and in doing so, it
suggests the first step of the proof of Theorem 5.6, see (6.2).

5. Main theorems on the 2-part of ray class sequences

Throughout the section we keep the notation used in §3. We begin by stating Theo-
rems 5.1,5.2 and 5.3 that corroborate Predictions 3.7,3.9 and 3.10 when DpKq ” 1 pmod 4q.
We restrict our attention to the cases with DpKq ” 1 pmod 4q only for the sake of brevity, the
remaining case being amenable to a similar analysis. Our main task in this section will then
be to reduce Theorems 5.1, 5.2, 5.3 and 5.4 that are about ray class groups to Theorems 5.6
and 5.7 which regard only special divisors.

Theorem 5.1. For any β P R satisfying 0 ă β ă mint2´|k|1 , ϕpcq´1u we have
ř

´DpKqďX

ś

χP pGn1ˆx

ĂGn2

mχpδ2pKqqkχ
ř

´DpKqďX 1
“

ÿ

V Ď {ImpgRq

PpkχqpV qN2p|k|1 ´ dimpV qq ` OpplogXq´βq,

where in both sums K varies among imaginary quadratic number fields of type R, having
DpKq ” 1 pmod 4q and the implied constant depends at most on c and pkχqχ.
Theorem 5.2. We have

lim
XÑ8

#tK : ´DpKq ď X,#p2ClpKqqr2s “ 2j and Impδ2pKqq “ Y u
#tK : ´DpKq ď Xu

“µCLpG P G2 : #Gr2s “ 2jq
#EpiF2

pFj
2, Y q

#HomF2pFj
2, ImpgRqq

,

where K varies among imaginary quadratic number fields with DpKq ” 1 pmod 4q and of
type R.
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Recall the definition of WR in (3.1) and the definition of the map gR before the statement
of Proposition 3.5.

Theorem 5.3. We have

lim
XÑ8

#tK : ´DpKq ď X, rk4pClpKqq “ j1, rk4pClpK, cqq “ j2u
#tK : ´DpKq ď Xu

“µCLpG P G2 : dimF2pGr2sq “ j1q
#tϕ P HomF2pFj1

2 , ImpgRqq : rkpϕq “ rk2pWRq ´ pj2 ´ j1qu
#HomF2pFj1

2 , ImpgRqq
,

where K varies among imaginary quadratic number fields with DpKq ” 1 pmod 4q and of
type R.

We will prove a stronger version of Theorems 5.1, 5.2 and 5.3. Namely, the fact that we
deal with progressions a pmod qq in Theorems 5.6 and 5.7 yields results analogous to the ones
in Theorems 5.1, 5.2 and 5.3 when one imposes finitely many unramified local conditions
at primes independent of c on the discriminants DpKq. This supports the point of view
in Wood’s recent work [20] that local conditions on the quadratic field do not affect the
distribution of class groups, with the obvious modification that for ray class groups such
conditions must be taken independently of the primes dividing c.
We proceed to restate Theorem 5.3 in a more explicit way. Recalling that c is square-free

we let n1pRq be the product of the prime divisors of c which are either 3 pmod 4q and inert
in R, or 1 pmod 4q and split. Furthermore, let n2pRq be the product of the prime divisors of
c that are 3 pmod 4q and split in R. Recall that

η8p2q
ηj1p2q22j21

“ µCLpG P G2 : dimF2pGr2sq “ j1q.

Theorem 5.4. We have

lim
XÑ8

#tK : ´DpKq ď X, rk4pClpKqq “ j1, rk4pClpK, cqq “ j2u
#tK : ´DpKq ď Xu

“ η8p2q
ηj1p2q22j21

#tϕ P HomF2pFj1
2 , Gn1pRq ˆ rGn2pRqq : rkpϕq “ rk2pWRq ´ pj2 ´ j1qu
#HomF2pFj1

2 , Gn1pRq ˆ Gn2pRqq
,

where K varies among imaginary quadratic number fields with DpKq ” 1 pmod 4q and of
type R.

The congruence conditions pmod 4q related to the definition of n1pRq and n2pRq in The-
orem 5.4 are analogous to the congruences pmod 3q for the primes l appearing in the first
part of Varma’s Theorem 2.13.
Our next goal is to realise the δ2-map

δ2pQp
?

´Dqq : p2ClpQp
?

´Dqqqr2s Ñ ImpgRq

with the map on special divisors introduced in §4,

ϕn1pRq,n2pRq,D :
SpDq
t1, Du Ñ Gn1pRq ˆ rGn2pRq.

4-ranks and the general model of ray class groups

51

Carlo Pagano-BNW.indd   51 20-11-18   19:40



4-RANKS AND THE GENERAL MODEL OF RAY CLASS GROUPS 41

5.1. Realizing δ2pQp
?

´Dqq as ϕn1pRq,n2pRq,D. Let D be a square-free positive integer with
D ” 3 pmod 4q. and denote its its prime factorization by D “ p1 ¨ ¨ ¨ pj. Let p1, . . . , pj be
the corresponding prime ideals in Qp

?
´Dq, i.e. p2i “ ppiq). Recall that ClpQp

?
´Dqqr2s is

generated by p1, . . . , pj subject only to the relation p1 ¨ ¨ ¨ pj “ p
?

´Dq. For any b positive
divisor of D, denote by b the ideal of Qp

?
´Dq with b2 “ pbq. Let us now recall from [8,

Lem.16] that given a positive divisor b of D, we have b P 2ClpQp
?

´Dq if and only if
b P SpDq. The assignment b ÞÑ b gives an isomorphism

p2ClpQp
?

´Dqqqr2s – SpDq{t1, Du.
Indeed, from the proof of [8, Lem.16], we know that b P SpDq if and only if there exists a
primitive element (i.e. not divisible by any m P Zě2) α P OQp

?
´Dq and w P Z‰0 such that

bw2 “ NQp
?

´Dq{Qpαq. (5.1)

In that case the factorization of pαq gives an integral ideal hpbq such that pαq “ hpbq2b.
We rewrite this as bpα{bq “ hpbq2 and observe that this shows in particular that b P
2ClpQp

?
´Dqq.

By weak approximation for conics, one has that such an α can be found with pα, cq “ 1, i.e.
a primitive point on (5.1) such that gcdpw, cq “ 1. Therefore both pαq, hpbq are coprime to
pcq. Therefore the fractional ideal bpα

b
q can be employed as a lifting of b to 2ClpQp

?
´Dq, cq.

Therefore the definition of the δ2-map gives us that

δ2pQp
?

´Dqqpbq “ b
α2

b2
.

However squares of integers in WR{2WR give rise to the trivial element, therefore by (5.1)
we obtain that δpbq “ gRpαq Recalling that Np¨q is the norm-function with respect to the
C2-action prescribed to R˚{x´1y we see that gRpαq “ α2Npαq. Next, we provide a more
concrete description of ImpgRq. The proof of the following result is straightforward and
therefore omitted.

Lemma 5.5. There is an isomorphism ϕR : ImpgRq Ñ Gn1pRq ˆ Gn2pRq such that

ϕRpgRpxqq “ Npxq
for every x P R˚

x´1yr28s.

Since Npαq “ bw2 and w2 is trivial in WR{2WR, we get a commutative diagram

p2ClpQp
?

´Dqqr2s δÑ ImpgRq
Ó Ó ϕR

SpDq
t1,Du Ñ

ϕn1,n2,D

Gn1pRq ˆ rGn2pRq

where the vertical rows are isomorphisms. This gives us precisely the realization of the
δ2-map in terms of special divisors that we were looking for.

5.2. Reduction to special divisors. Our next result holds for integers a, q, n1, n2 satisfy-
ing

4n1n2 divides q, a ” 3 pmod 4q , gcdpa, qq “ 1, (5.2)

a is a square pmod n1q (5.3)

and
p prime, p | n2 ñ a is a non-square pmod pq . (5.4)
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Theorem 5.6. Let a, q, n1, n2 be positive integers satisfying (5.2), (5.3) and (5.4). Then for
every δ P p0, 2´|k|1q we have

ř

DďX

ś

χP pGn1ˆx

ĂGn2

mχpDqkχ
ř

DďX 1
´ 2|k|1

´

ÿ

WĎ pGn1ˆx

ĂGn2

PpkχqpW qN2p|k|1 ´ dimpW qq
¯

! plogXq´δ,

where in both sums D varies among square-free positive integers which are congruent to
a pmod qq and the implied constant depends at most on a, q, n1, n2, δ and pkχqχ.

This proves Prediction 4.9 with an explicit error term.
Recall Definition 4.3. We shall use Theorem 5.6 in §7 to deduce the following.

Theorem 5.7. Let a, q, n1, n2 be positive integers satisfying (5.2), (5.3) and (5.4). Then

lim
XÑ8

#tD ď X, pSpDq{t1, Du, ϕn1,n2,Dq „ T u
#tD ď Xu “ µpT q,

where D varies among positive square-free integers satisfying D ” a pmod qq.

This confirms the Prediction 4.5.
We are finally in place to explain why Theorems 5.6 and 5.7 imply Theorems 5.1, 5.2,

5.3 and 5.4. Owing to the final diagram of the previous subsection, we have the following
implications. Theorems 5.2, 5.3 and 5.4 follow immediately from Theorem 5.7 because the
family of fields K that are strongly of type R has zero proportion.
To deduce Theorem 5.1 from Theorem 5.6 recall the definition of EpXq given prior to (3.2)

and that mχpδ2pKqq coincides with mχp´DpKqq if DpKq R EpXq and that it vanishes oth-
erwise. We thus obtain

ÿ

´DpKqďX

ź

χP pGn1ˆx

ĂGn2

mχpδ2pKqqkχ ´
ÿ

DďX

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ “ ´
ÿ

DPEpXq

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ .

(5.5)
Fixing any γ P p0, 1{ϕpcqq we can pick a positive integer p1 which satisfies γϕpcq ă 1´1{p1 ă 1
and define q1 via 1{p1 ` 1{q1 “ 1. Using Hölder’s inequality we see that the quantity in (5.5)
has modulus

ÿ

DPEpXq

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ “
ÿ

DďX

1EpXqpDq
´

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ
¯

ď
´

ÿ

DďX

1EpXqpDqq1
¯1{q1´

ÿ

DďX

ź

χP pGn1ˆx

ĂGn2

mχpDqp1kχ
¯1{p1

“ EpXq1{q1
´

ÿ

DďX

ź

χP pGn1ˆx

ĂGn2

mχpDqp1kχ
¯1{p1

.

Observe that the obvious bound mχpDq ď #SpDq shows that the second sum is

ď
ÿ

DďX

#SpDqp1|k|1
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5.1. Realizing δ2pQp
?

´Dqq as ϕn1pRq,n2pRq,D. Let D be a square-free positive integer with
D ” 3 pmod 4q. and denote its its prime factorization by D “ p1 ¨ ¨ ¨ pj. Let p1, . . . , pj be
the corresponding prime ideals in Qp

?
´Dq, i.e. p2i “ ppiq). Recall that ClpQp

?
´Dqqr2s is

generated by p1, . . . , pj subject only to the relation p1 ¨ ¨ ¨ pj “ p
?

´Dq. For any b positive
divisor of D, denote by b the ideal of Qp

?
´Dq with b2 “ pbq. Let us now recall from [8,

Lem.16] that given a positive divisor b of D, we have b P 2ClpQp
?

´Dq if and only if
b P SpDq. The assignment b ÞÑ b gives an isomorphism

p2ClpQp
?

´Dqqqr2s – SpDq{t1, Du.
Indeed, from the proof of [8, Lem.16], we know that b P SpDq if and only if there exists a
primitive element (i.e. not divisible by any m P Zě2) α P OQp

?
´Dq and w P Z‰0 such that

bw2 “ NQp
?

´Dq{Qpαq. (5.1)

In that case the factorization of pαq gives an integral ideal hpbq such that pαq “ hpbq2b.
We rewrite this as bpα{bq “ hpbq2 and observe that this shows in particular that b P
2ClpQp

?
´Dqq.

By weak approximation for conics, one has that such an α can be found with pα, cq “ 1, i.e.
a primitive point on (5.1) such that gcdpw, cq “ 1. Therefore both pαq, hpbq are coprime to
pcq. Therefore the fractional ideal bpα

b
q can be employed as a lifting of b to 2ClpQp

?
´Dq, cq.

Therefore the definition of the δ2-map gives us that

δ2pQp
?

´Dqqpbq “ b
α2

b2
.

However squares of integers in WR{2WR give rise to the trivial element, therefore by (5.1)
we obtain that δpbq “ gRpαq Recalling that Np¨q is the norm-function with respect to the
C2-action prescribed to R˚{x´1y we see that gRpαq “ α2Npαq. Next, we provide a more
concrete description of ImpgRq. The proof of the following result is straightforward and
therefore omitted.

Lemma 5.5. There is an isomorphism ϕR : ImpgRq Ñ Gn1pRq ˆ Gn2pRq such that

ϕRpgRpxqq “ Npxq
for every x P R˚

x´1yr28s.

Since Npαq “ bw2 and w2 is trivial in WR{2WR, we get a commutative diagram

p2ClpQp
?

´Dqqr2s δÑ ImpgRq
Ó Ó ϕR

SpDq
t1,Du Ñ

ϕn1,n2,D

Gn1pRq ˆ rGn2pRq

where the vertical rows are isomorphisms. This gives us precisely the realization of the
δ2-map in terms of special divisors that we were looking for.

5.2. Reduction to special divisors. Our next result holds for integers a, q, n1, n2 satisfy-
ing

4n1n2 divides q, a ” 3 pmod 4q , gcdpa, qq “ 1, (5.2)

a is a square pmod n1q (5.3)

and
p prime, p | n2 ñ a is a non-square pmod pq . (5.4)
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Theorem 5.6. Let a, q, n1, n2 be positive integers satisfying (5.2), (5.3) and (5.4). Then for
every δ P p0, 2´|k|1q we have

ř

DďX

ś

χP pGn1ˆx

ĂGn2

mχpDqkχ
ř

DďX 1
´ 2|k|1

´

ÿ

WĎ pGn1ˆx

ĂGn2

PpkχqpW qN2p|k|1 ´ dimpW qq
¯

! plogXq´δ,

where in both sums D varies among square-free positive integers which are congruent to
a pmod qq and the implied constant depends at most on a, q, n1, n2, δ and pkχqχ.

This proves Prediction 4.9 with an explicit error term.
Recall Definition 4.3. We shall use Theorem 5.6 in §7 to deduce the following.

Theorem 5.7. Let a, q, n1, n2 be positive integers satisfying (5.2), (5.3) and (5.4). Then

lim
XÑ8

#tD ď X, pSpDq{t1, Du, ϕn1,n2,Dq „ T u
#tD ď Xu “ µpT q,

where D varies among positive square-free integers satisfying D ” a pmod qq.

This confirms the Prediction 4.5.
We are finally in place to explain why Theorems 5.6 and 5.7 imply Theorems 5.1, 5.2,

5.3 and 5.4. Owing to the final diagram of the previous subsection, we have the following
implications. Theorems 5.2, 5.3 and 5.4 follow immediately from Theorem 5.7 because the
family of fields K that are strongly of type R has zero proportion.
To deduce Theorem 5.1 from Theorem 5.6 recall the definition of EpXq given prior to (3.2)

and that mχpδ2pKqq coincides with mχp´DpKqq if DpKq R EpXq and that it vanishes oth-
erwise. We thus obtain

ÿ

´DpKqďX

ź

χP pGn1ˆx

ĂGn2

mχpδ2pKqqkχ ´
ÿ

DďX

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ “ ´
ÿ

DPEpXq

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ .

(5.5)
Fixing any γ P p0, 1{ϕpcqq we can pick a positive integer p1 which satisfies γϕpcq ă 1´1{p1 ă 1
and define q1 via 1{p1 ` 1{q1 “ 1. Using Hölder’s inequality we see that the quantity in (5.5)
has modulus

ÿ

DPEpXq

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ “
ÿ

DďX

1EpXqpDq
´

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ
¯

ď
´

ÿ

DďX

1EpXqpDqq1
¯1{q1´

ÿ

DďX

ź

χP pGn1ˆx

ĂGn2

mχpDqp1kχ
¯1{p1

“ EpXq1{q1
´

ÿ

DďX

ź

χP pGn1ˆx

ĂGn2

mχpDqp1kχ
¯1{p1

.

Observe that the obvious bound mχpDq ď #SpDq shows that the second sum is

ď
ÿ

DďX

#SpDqp1|k|1
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hence by [8, Th.9] it is Op1,kpXq. Using (3.2) we conclude that the quantity in (5.5) is

!
´ X

plogXq1{ϕpcq

¯1{q1

X1{p1 “ X

plogXq1{pq1ϕpcqq ! X

plogXqγ ,

This concludes our argument that shows that Theorem 5.6 implies Theorem 5.1.

6. Main theorems on special divisors

This section is devoted to the proof of Theorem 5.6.

6.1. Pre-indexing trick. In the present subsection we reduce Theorem 5.6 into a statement
that can be proved with the method of Fouvry and Klüners. Recall the definition of the set

of special divisors SpDq given in the beginning of §4. For a character χ P pGn1 ˆ p

rGn2 we bring
into play the sum

AχpDq :“
ÿ

a1b1“D

χpa1q
´

ÿ

c1|b1

´a1

c1

¯¯´

ÿ

d1|a1

´ b1

d1

¯¯

(6.1)

and let ApDq :“ A1pDq. By definition (4.1) we see that mχpDq is the cardinality of elements
a1 P SpDq such that χpa1q “ 1. Detecting the latter condition via p1 ` χpa1qq{2 we obtain

mχpDq “ 2´ωpDq pApDq ` AχpDqq
2

.

Recalling Notation 4.6 we obtain

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ “ 2´|k|1ωpDq

ś

χP pGn1ˆx

ĂGn2

pApDq ` AχpDqqkχ

2|k|1
. (6.2)

Letting |piχq|1 be the �1-norm of the vector piχqχ we see that the right side equals

2´|k|1ωpDq
ÿ

piχqχ
0ďiχďkχ

λpiχq

2|k|1
ApDq|k|1´|piχq|1

ź

χP pGn1ˆx

ĂGn2

AχpDqiχ

for some integers λpiχq. To each vector piχq we attach the space

Ypiχq :“ xtχ : iχ ‰ 0uy Ď pGn1 ˆ p

rGn2

and recalling Definition 4.7 we see that for a fixed subspace Y Ď pGn1 ˆ p

rGn2 we have
ÿ

piχq:Ypiχq“Y

0ďiχďkχ

λpiχq

2|k|1
“ PpkχqpY q.

Hence Theorem 5.6 would follow from proving that for any ε ą 0, any integers a, q, n1, n2

satisfying (5.2), (5.3) and (5.4), any B Ď pGn1 ˆ p

rGn2 ´ t1u and any choice of a function
i : B Ñ Zą0 with iχ ď kχ, one has that

ÿ

DďX

2´|k|1ωpDqApDq|k|1´
ř

χPB iχ
ź

χPB
AχpDqiχ

“2|k|1N2p|k|1 ´ dimpYpiχqqq
´

ÿ

DďX

1
¯

` OpXplogXqε´2´|k|1 q,
(6.3)
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where in both sums D varies among positive square-free integers which are congruent to
a pmod qq. Here N2phq denotes as usual the number of vector subspaces of Fh

2 . To prove (6.3)
we will use the approach in the proof of [8, Th.6]. In the present notation their result
corresponds to the case B “ ∅ in (6.3).

6.2. Indexing trick. We begin by performing the following change of variables in (6.1),

a1 “ D10D11, b
1 “ D00D01, c

1 “ D00, d
1 “ D11.

Letting Φ1pu,vq :“ pu1 ` v1qpu1 ` v2q and Ψpuq :“ u1 we can thus conclude that

AχpDq “
ÿ

D“D10D11D00D01

ź

pu,vqPpF2
2q2

´Du

Dv

¯Φ1pu,vq ź

uPF2
2

χpDuqΨpuq.

Next, if xBy is not the zero subspace we choose a basis T Ă B of xBy. Now suppose we
choose in each factor of

ApDq|k|1´
ř

χPB iχ
ź

χPB
AχpDqiχ

a decomposition of D as follows,

D “
ź

up1qPF2
2

D
p1q
up1q “ . . . “

ź

up|k|1qPF2
2

D
p|k|1q
u|k|1 .

We change variables and write Dup1q,...,up|k|1q :“ gcdpDp1q
up1q , . . . , D

p|k|1q
up|k|1qq, where one can recon-

struct the old variables with the help of

D
p�q
up�q “

ź

1ďnď|k|1
n‰�

ź

upnqPF2
2

Dup1q,...,up�q,...,up|k|1q

as in [8, Eq.(23)]. Thus we can write

ApDq|k|1´
ř

χPB iχ
ź

χPB
AχpDqiχ “

ÿ

ś

uPF2|k|1
2

Du“D

´

ź

u,vPF2|k|1
2

´Du

Dv

¯Φ|k|1 pu,vq¯´

ź

uPF2|k|1
2

ź

χPT
χpDuqΨχpuq

¯

,

where

Φ|k|1pu,vq :“
|k|1
ÿ

j“1

Φ1pupjq,vpjqq

and Ψχ are linear maps from F2|k|1
2 to F2, which we next describe. Decompose

F2|k|1
2 “ F2|k|1´2

ř

χPB iχ
2 ˆ

ź

χPB
F2iχ
2

and we denote a vector in this space as u :“ pu0, pupχqqχPBq, where upχq :“ pupχq
1 , . . . ,u

pχq
iχ

q
and for every j we have u

pχq
j P F2

2. Next, write

Ψ
1

χpuq “
iχ
ÿ

j“1

Ψpupχq
j q

and note that we have
Ψχpuq “

ÿ

χ1PBχ

Ψ1
χ1puq, (6.4)
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hence by [8, Th.9] it is Op1,kpXq. Using (3.2) we conclude that the quantity in (5.5) is

!
´ X

plogXq1{ϕpcq

¯1{q1

X1{p1 “ X

plogXq1{pq1ϕpcqq ! X

plogXqγ ,

This concludes our argument that shows that Theorem 5.6 implies Theorem 5.1.

6. Main theorems on special divisors

This section is devoted to the proof of Theorem 5.6.

6.1. Pre-indexing trick. In the present subsection we reduce Theorem 5.6 into a statement
that can be proved with the method of Fouvry and Klüners. Recall the definition of the set

of special divisors SpDq given in the beginning of §4. For a character χ P pGn1 ˆ p

rGn2 we bring
into play the sum

AχpDq :“
ÿ

a1b1“D

χpa1q
´

ÿ

c1|b1

´a1

c1

¯¯´

ÿ

d1|a1

´ b1

d1

¯¯

(6.1)

and let ApDq :“ A1pDq. By definition (4.1) we see that mχpDq is the cardinality of elements
a1 P SpDq such that χpa1q “ 1. Detecting the latter condition via p1 ` χpa1qq{2 we obtain

mχpDq “ 2´ωpDq pApDq ` AχpDqq
2

.

Recalling Notation 4.6 we obtain

ź

χP pGn1ˆx

ĂGn2

mχpDqkχ “ 2´|k|1ωpDq

ś

χP pGn1ˆx

ĂGn2

pApDq ` AχpDqqkχ

2|k|1
. (6.2)

Letting |piχq|1 be the �1-norm of the vector piχqχ we see that the right side equals

2´|k|1ωpDq
ÿ

piχqχ
0ďiχďkχ

λpiχq

2|k|1
ApDq|k|1´|piχq|1

ź

χP pGn1ˆx

ĂGn2

AχpDqiχ

for some integers λpiχq. To each vector piχq we attach the space

Ypiχq :“ xtχ : iχ ‰ 0uy Ď pGn1 ˆ p

rGn2

and recalling Definition 4.7 we see that for a fixed subspace Y Ď pGn1 ˆ p

rGn2 we have
ÿ

piχq:Ypiχq“Y

0ďiχďkχ

λpiχq

2|k|1
“ PpkχqpY q.

Hence Theorem 5.6 would follow from proving that for any ε ą 0, any integers a, q, n1, n2

satisfying (5.2), (5.3) and (5.4), any B Ď pGn1 ˆ p

rGn2 ´ t1u and any choice of a function
i : B Ñ Zą0 with iχ ď kχ, one has that

ÿ

DďX

2´|k|1ωpDqApDq|k|1´
ř

χPB iχ
ź

χPB
AχpDqiχ

“2|k|1N2p|k|1 ´ dimpYpiχqqq
´

ÿ

DďX

1
¯

` OpXplogXqε´2´|k|1 q,
(6.3)
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where in both sums D varies among positive square-free integers which are congruent to
a pmod qq. Here N2phq denotes as usual the number of vector subspaces of Fh

2 . To prove (6.3)
we will use the approach in the proof of [8, Th.6]. In the present notation their result
corresponds to the case B “ ∅ in (6.3).

6.2. Indexing trick. We begin by performing the following change of variables in (6.1),

a1 “ D10D11, b
1 “ D00D01, c

1 “ D00, d
1 “ D11.

Letting Φ1pu,vq :“ pu1 ` v1qpu1 ` v2q and Ψpuq :“ u1 we can thus conclude that

AχpDq “
ÿ

D“D10D11D00D01

ź

pu,vqPpF2
2q2

´Du

Dv

¯Φ1pu,vq ź

uPF2
2

χpDuqΨpuq.

Next, if xBy is not the zero subspace we choose a basis T Ă B of xBy. Now suppose we
choose in each factor of

ApDq|k|1´
ř

χPB iχ
ź

χPB
AχpDqiχ

a decomposition of D as follows,

D “
ź

up1qPF2
2

D
p1q
up1q “ . . . “

ź

up|k|1qPF2
2

D
p|k|1q
u|k|1 .

We change variables and write Dup1q,...,up|k|1q :“ gcdpDp1q
up1q , . . . , D

p|k|1q
up|k|1qq, where one can recon-

struct the old variables with the help of

D
p�q
up�q “

ź

1ďnď|k|1
n‰�

ź

upnqPF2
2

Dup1q,...,up�q,...,up|k|1q

as in [8, Eq.(23)]. Thus we can write

ApDq|k|1´
ř

χPB iχ
ź

χPB
AχpDqiχ “

ÿ

ś

uPF2|k|1
2

Du“D

´

ź

u,vPF2|k|1
2

´Du

Dv

¯Φ|k|1 pu,vq¯´

ź

uPF2|k|1
2

ź

χPT
χpDuqΨχpuq

¯

,

where

Φ|k|1pu,vq :“
|k|1
ÿ

j“1

Φ1pupjq,vpjqq

and Ψχ are linear maps from F2|k|1
2 to F2, which we next describe. Decompose

F2|k|1
2 “ F2|k|1´2

ř

χPB iχ
2 ˆ

ź

χPB
F2iχ
2

and we denote a vector in this space as u :“ pu0, pupχqqχPBq, where upχq :“ pupχq
1 , . . . ,u

pχq
iχ

q
and for every j we have u

pχq
j P F2

2. Next, write

Ψ
1

χpuq “
iχ
ÿ

j“1

Ψpupχq
j q

and note that we have
Ψχpuq “

ÿ

χ1PBχ

Ψ1
χ1puq, (6.4)

4-ranks and the general model of ray class groups

55

Carlo Pagano-BNW.indd   55 20-11-18   19:40



4-RANKS AND THE GENERAL MODEL OF RAY CLASS GROUPS 45

where Bχ denotes the set of characters χ1 P B, such that χ is used in writing χ1 in the basis
T . In particular, this implies that χ P Bχ. The construction of Ψχ depends on T and piχq,
but we suppress this dependency to simplify the notation.
Let us observe that there are #T “ dimpxByq many linear maps Ψχ and that they are

independent. Indeed, given χ P T , all maps Ψχ1 with χ1 P T ´ tχu vanish on the vectors u
with uprχq “ 0 for each rχ ‰ χ, while Ψχ evaluated in such u equals Ψ1

χpupχqq, which does not
vanish identically.
We can therefore rewrite the first sum over D in (6.3) as

ÿ

DďX

2´|k|1ωpDqApDq|k|1´
ř

χPB iχ
ź

χPB
AχpDqiχ

“
ÿ

pDuq

´

ź

uPF2|k|1
2

2´|k|1ωpDuq
¯´

ź

u,vPF2|k|1
2

´Du

Dv

¯Φ|k|1 pu,vq¯´

ź

uPF2|k|1
2

ź

χPT
χpDuqΨχpuq

¯

,
(6.5)

where the second sum is over positive integers Du such that
ś

uPF2|k|1
2

Du varies among

positive square-free integers which are congruent to a pmod qq and at most X.
Our goal in §§6.3-6.5 is to prove an asymptotic for the sum over Du in (6.5) under the

assumptions on the integers a, q, n1, n2 in Theorem 5.6. For a real number X ą 1 we bring
into play the following subset of N4|k|1 ,

DpX, |k|1; q, aq:“

$

&

%

pDuqu P N4|k|1,u“pup1q, . . . ,up|k|1qq P pF2
2q|k|1 :

ś

u Du is square-free,
bounded by X and
congruent to a pmod qq

,

.

-

.

We are interested in asymptotically evaluating the succeeding average,

SχpX, |k|1; q, aq:“
ÿ

pDuqPDpX,|k|1;q,aq

2´|k|1ωpDq

˜

ź

u,vPpF2
2q|k|1

´Du

Dv

¯Φ|k|1 pu,vq
¸̃

ź

uPpF2
2q|k|1

ź

χPT
χpDuqΨχpuq

¸

and in doing so we shall not keep track of the dependence of the implied constants on
T, piχq,k,χ, a, q, n1, n2. The sum Sχ also depends on piχq and the choice of T but we suppress
this in the notation. The function Sχ should be compared with [8, Eq.(26)]; we will verify in
§6.3 that the presence of the characters χ does not affect the analysis of Fouvry–Klüners [8]
in the error term and we shall see in §§6.4-6.5 how their presence influences the main term.

6.3. The four families of sums of Fouvry and Klüners. We begin by restricting the
summation in SχpX, |k|1; q, aq to variables having a suitably small number of prime factors

as in [8,§5.3]. Letting Ω :“ 2|k|1`1|k|1´1 log logX we shall study the contribution, say Σ1,
towards SχpX, |k|1; q, aq of elements not fulfilling

ωpDuq ď Ω, for all u P F2|k|1
2 .

Writing m “
ś

u Du and bounding each character by 1 provides us with

Σ1 !
ÿ

mďX

µpmq2

τpmq|k|1

ÿ

m1¨¨¨m
4|k|1 “m

ωpm1qąΩ

1 ď 4´|k|1Ω
ÿ

mďX

µpmq2

τpmq|k|1

ÿ

m1¨¨¨m
4|k|1 “m

4|k|1ωpm1q.
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Invoking [12, Eq.(1.82)] to bound the sum over m makes the following estimate available,

Σ1 ! XplogXq´1´2|k|1`1 logp4{eq´2|k|1 . (6.6)

We continue in the footsteps laid out in [8, §5.4], where four families of elements in N4|k|1 are
shown to make a negligible contribution towards a quantity that resembles SχpX, |k|1; q, aq.
Using the trivial bound

ˇ

ˇ

ˇ

ˇ

ˇ

ź

uPpF2
2q|k|1

ź

χPT
χpDuqΨχpuq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1 (6.7)

allows us to adopt in a straightforward manner the arguments leading to [8, Eq.(34),(39)]
and we proceed to briefly explain how. Let

∆ :“ 1 ` plogXq´2|k|1

and let Au denote numbers of the form ∆m where m P Zě0. For A “ pAuquPpF2
2q|k|1 we let

SχpX, |k|1; q, a;Aq :“
ÿ

pDuqPDpX,|k|1;q,aq
@upAuďDuă∆Auq

@upωpDuqďΩq

2´|k|1ωpDq

¨

˝

ź

u,vPpF2
2q|k|1

ˆ

Du

Dv

˙Φ|k|1 pu,vq
˛

‚

ź

uPpF2
2q|k|1

ź

χPT
χpDuqΨχpuq

and note that, in light of (6.6), we can deduce as in [8, Eq.(32)] that

SχpX, |k|1; q, aq “
ÿ

A:
ś

u AuďX

SχpX, |k|1; q, a;Aq ` OpXplogXq´1q. (6.8)

The contribution towards (6.8) of the first family, defined through
ź

u

Au ě ∆´4|k|1X,

can be proved to be ! XplogXq´1 with a similar argument as the one leading to [8, Eq.(34)].
We now let

X; :“ min
�

∆� ě exp
`

plogXqε2´|k|1˘(

.

The contribution towards (6.8) of those A fulfilling that

at most 2|k|1 ´ 1 of the Au are larger than X; (6.9)

can be shown to be ! XplogXqε´2´|k|1 as in [8, Eq.(39)].
We next pass to arguments related to cancellation due to oscillation of characters, in this

case (6.7) is not enough. The exponents Φkpu,vq will now play a rôle. Following Fouvry
and Klüners we call two indices u,v linked if Φ|k|1pu,vq ` Φ|k|1pv,uq “ 1. We next define

X: :“ plogXq3r1`4|k|1 p1`2|k|1 qs

and consider the contribution of A with
ź

u

Au ă ∆´4|k|1X and for two linked u and v we have mintAu, Avu ě X:. (6.10)
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where Bχ denotes the set of characters χ1 P B, such that χ is used in writing χ1 in the basis
T . In particular, this implies that χ P Bχ. The construction of Ψχ depends on T and piχq,
but we suppress this dependency to simplify the notation.
Let us observe that there are #T “ dimpxByq many linear maps Ψχ and that they are

independent. Indeed, given χ P T , all maps Ψχ1 with χ1 P T ´ tχu vanish on the vectors u
with uprχq “ 0 for each rχ ‰ χ, while Ψχ evaluated in such u equals Ψ1

χpupχqq, which does not
vanish identically.
We can therefore rewrite the first sum over D in (6.3) as

ÿ

DďX

2´|k|1ωpDqApDq|k|1´
ř

χPB iχ
ź

χPB
AχpDqiχ

“
ÿ

pDuq

´

ź

uPF2|k|1
2

2´|k|1ωpDuq
¯´

ź

u,vPF2|k|1
2

´Du

Dv

¯Φ|k|1 pu,vq¯´

ź

uPF2|k|1
2

ź

χPT
χpDuqΨχpuq

¯

,
(6.5)

where the second sum is over positive integers Du such that
ś

uPF2|k|1
2

Du varies among

positive square-free integers which are congruent to a pmod qq and at most X.
Our goal in §§6.3-6.5 is to prove an asymptotic for the sum over Du in (6.5) under the

assumptions on the integers a, q, n1, n2 in Theorem 5.6. For a real number X ą 1 we bring
into play the following subset of N4|k|1 ,

DpX, |k|1; q, aq:“

$

&

%

pDuqu P N4|k|1,u“pup1q, . . . ,up|k|1qq P pF2
2q|k|1 :

ś

u Du is square-free,
bounded by X and
congruent to a pmod qq

,

.

-

.

We are interested in asymptotically evaluating the succeeding average,

SχpX, |k|1; q, aq:“
ÿ

pDuqPDpX,|k|1;q,aq

2´|k|1ωpDq

˜

ź

u,vPpF2
2q|k|1

´Du

Dv

¯Φ|k|1 pu,vq
¸̃

ź

uPpF2
2q|k|1

ź

χPT
χpDuqΨχpuq

¸

and in doing so we shall not keep track of the dependence of the implied constants on
T, piχq,k,χ, a, q, n1, n2. The sum Sχ also depends on piχq and the choice of T but we suppress
this in the notation. The function Sχ should be compared with [8, Eq.(26)]; we will verify in
§6.3 that the presence of the characters χ does not affect the analysis of Fouvry–Klüners [8]
in the error term and we shall see in §§6.4-6.5 how their presence influences the main term.

6.3. The four families of sums of Fouvry and Klüners. We begin by restricting the
summation in SχpX, |k|1; q, aq to variables having a suitably small number of prime factors

as in [8,§5.3]. Letting Ω :“ 2|k|1`1|k|1´1 log logX we shall study the contribution, say Σ1,
towards SχpX, |k|1; q, aq of elements not fulfilling

ωpDuq ď Ω, for all u P F2|k|1
2 .

Writing m “
ś

u Du and bounding each character by 1 provides us with

Σ1 !
ÿ

mďX

µpmq2

τpmq|k|1

ÿ

m1¨¨¨m
4|k|1 “m

ωpm1qąΩ

1 ď 4´|k|1Ω
ÿ

mďX

µpmq2

τpmq|k|1

ÿ

m1¨¨¨m
4|k|1 “m

4|k|1ωpm1q.
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Invoking [12, Eq.(1.82)] to bound the sum over m makes the following estimate available,

Σ1 ! XplogXq´1´2|k|1`1 logp4{eq´2|k|1 . (6.6)

We continue in the footsteps laid out in [8, §5.4], where four families of elements in N4|k|1 are
shown to make a negligible contribution towards a quantity that resembles SχpX, |k|1; q, aq.
Using the trivial bound

ˇ

ˇ

ˇ

ˇ

ˇ

ź

uPpF2
2q|k|1

ź

χPT
χpDuqΨχpuq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1 (6.7)

allows us to adopt in a straightforward manner the arguments leading to [8, Eq.(34),(39)]
and we proceed to briefly explain how. Let

∆ :“ 1 ` plogXq´2|k|1

and let Au denote numbers of the form ∆m where m P Zě0. For A “ pAuquPpF2
2q|k|1 we let

SχpX, |k|1; q, a;Aq :“
ÿ

pDuqPDpX,|k|1;q,aq
@upAuďDuă∆Auq

@upωpDuqďΩq

2´|k|1ωpDq

¨

˝

ź

u,vPpF2
2q|k|1

ˆ

Du

Dv

˙Φ|k|1 pu,vq
˛

‚

ź

uPpF2
2q|k|1

ź

χPT
χpDuqΨχpuq

and note that, in light of (6.6), we can deduce as in [8, Eq.(32)] that

SχpX, |k|1; q, aq “
ÿ

A:
ś

u AuďX

SχpX, |k|1; q, a;Aq ` OpXplogXq´1q. (6.8)

The contribution towards (6.8) of the first family, defined through
ź

u

Au ě ∆´4|k|1X,

can be proved to be ! XplogXq´1 with a similar argument as the one leading to [8, Eq.(34)].
We now let

X; :“ min
�

∆� ě exp
`

plogXqε2´|k|1˘(

.

The contribution towards (6.8) of those A fulfilling that

at most 2|k|1 ´ 1 of the Au are larger than X; (6.9)

can be shown to be ! XplogXqε´2´|k|1 as in [8, Eq.(39)].
We next pass to arguments related to cancellation due to oscillation of characters, in this

case (6.7) is not enough. The exponents Φkpu,vq will now play a rôle. Following Fouvry
and Klüners we call two indices u,v linked if Φ|k|1pu,vq ` Φ|k|1pv,uq “ 1. We next define

X: :“ plogXq3r1`4|k|1 p1`2|k|1 qs

and consider the contribution of A with
ź

u

Au ă ∆´4|k|1X and for two linked u and v we have mintAu, Avu ě X:. (6.10)
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Fouvry and Klüners treat this case by drawing upon the important work of Heath-Brown [11]
in the form stated in [8, Lem.12]. Specifically for A as in (6.10) we have

|SχpX, |k|1; q, a;Aq| ď
ÿ

pDwqwRtu,vu

´

ź

wRtu,vu

2´|k|1ωpDwq
¯

ÿ

a1,a2PpZXp0,qsq2

a1a2
ś

wRtu,vu Dw”apmod qq

ˇ

ˇ

ˇ
MppDwqq

ˇ

ˇ

ˇ
,

where

MppDwqq :“
ÿ

Du,Dv

ˆ

Du

Dv

˙

gpDu, pDwqwRtu,vuqgpDv, pDwqwRtu,vuq,

gpDu, pDwqwRtu,vuq :“ 1a1,qpDuq
2|k|1ωpDuq

ź

wRtu,vu

ˆ

Du

Dw

˙Φ|k|1 pu,wq
ź

wRtu,vu

ˆ

Dw

Du

˙Φ|k|1 pw,uq
ź

χPT
χpDuqΨχpuq,

1α,β denotes the indicator function of the set tm P Z : m ” α pmod βqu and similarly for
gpDv, pDwqwRtu,vuq. Since |gpDu, pDwqwRtu,vuq|, |gpDv, pDwqwRtu,vuq| ď 1 the argument in [8,
p.476] that validates [8, Eq.(42)] can be adopted in the obvious way to yield

ÿ

A fulfils (6.10)

|SχpX, |k|1; q, a;Aq| ! XplogXq´1.

Note that we have used [8, Lem.15] for sequences satisfying |am|, |bn| ď 1 rather than
|am|, |bn| ă 1, however using [8, Lem.15] for am{2, bn{2 in place of am, bn proves a ver-
sion of [8, Lem.15] under the more general assumption |am|, |bn| ă 2 and with the same
conclusion.
The fourth family consists of A fulfilling

ś

u Au ă ∆´4|k|1X, any linked u,v satisfy the
inequality mintAu, Avu ă X: and there exist linked u,v with 2 ď Av and Au ě X;. Their
contribution towards SχpX, |k|1; q, a;Aq is

! max
σpmod qq
gcdpσ,qq“1

ÿ

pDwqwRtu,vu
AwďDwă∆Aw

ÿ

Dv
AvďDvă∆Av

|Mσ|, (6.11)

where Mσ is defined through

ÿ

Du”σpmod qq
AuďDuă∆Au

2´|k|1ωpDuq
ˆ

Du

Dv

˙

ź

χPT
χpDuqΨχpuq“

˜

ź

χPT
χpσqΨχpuq

¸

ÿ

Du”σpmod qq
AuďDuă∆Au

2´|k|1ωpDuq
ˆ

Du

Dv

˙

.

Letting P`pmq denote the largest prime factor of a positive integer m ą 1 and setting
P`p1q :“ 1,m :“ Du{P`pDuq we obtain

Mσ !
ÿ

mP`pmqă∆Au

pm,qq“1

µpmq2

2|k|1ωpmq

ˇ

ˇ

ˇ

ÿ

mp”σpmod qq

µ
`

pm
ź

w‰u

Dw

˘2

ˆ

p

Dv

˙

ˇ

ˇ

ˇ
,

where the inner sum is over primes p with maxtAu{m,P`pmqu ď p ă ∆Au{m. We may
now use Dirichlet characters to modulus q to detect the congruence condition on p. We will
subsequently be faced with ϕpqq new sums over p, each one of which can be bounded via [8,
Lem.13]. This furnishes

ÿ

mp”σpmod qq

µ
`

pm
ź

w‰u

Dw

˘2

ˆ

p

Dv

˙

! A
1{2
v Au

m
plogXq´Nε2´|k|1`1 ` Ω,
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valid for each large enough positive N that is independent of A and m. The term Ω accounts
for the presence of the µ2-terms. Indeed, by (6.6) the number of distinct prime divisors of
m and each Dw is at most Ω. A moment’s thought now reveals that once the last bound is
injected into (6.11) and N is suitably increased in comparison to |k|1, the contribution of A
in the fourth case is ! XplogXq´1, as in [8, Eq.(47)].
Let us now introduce the conditions

$

’

’

’

’

&

’

’

’

’

%

ś

uPpF2
2qk Au ă ∆´4|k|1X,

at least 2|k|1 indices satisfy Au ą X;,
two indices u and v with Au, Av ą X: are always linked,
if Au and Av with Av ď Au are linked, then either
Av “ 1 or p2 ď Av ă X: and Av ď Au ă X;q.

(6.12)

Increasing the value of A in comparison to |k|1 and assorting all estimates so far yields

SχpX, |k|1; q, aq “
ÿ

A satisfies (6.12)

SχpX, |k|1; q, a;Aq ` OpXplogXqε´2´|k|1 q, (6.13)

which is in analogy with [8, Prop.2].

6.4. The main term. We can now obtain the following as in [8, Prop.3],

SχpX, |k|1; q, aq “
ÿ

A satisfies (6.15)

SχpX, |k|1; q, a;Aq ` OpXplogXqε´2´|k|1 q, (6.14)

where
"

U :“ tu : Au ą X;u is a maximal subset of unlinked indices,
ś

uPpF2
2q|k|1 Au ď ∆´4|k|1X and Au “ 1 for u R U .

(6.15)

Similarly to [8, Eq.(50)] we will say that A is admissible for U if Au ą X; ô u P U ,

Au “ 1 ô u R U and
ś

uPpF2
2q|k|1 Au ď ∆´4|k|1X. Assume that A is admissible for U and

note that #U “ 2|k|1 . By quadratic reciprocity we obtain that SχpX, |k|1; q, a;Aq equals

ÿ

phuqPpZ{4Zq2|k|1 ,
ś

uPU hu”3pmod 4q

˜

ź

u,vPU

p´1qΦ|k|1 pu,vqhu´1
2

hv´1
2

¸

ˆ

ÿ

pguqPpZ{qZq2|k|1 ,
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

˜

ź

uPU

ź

χPT
χpguqΨχpuq

¸

ˆ

ÿ

pDuqPN2|k|1 ,@u pωpDuqďΩq
@u pDu”gupmod qq,AuďDuă∆Auq

˜

ź

uPU

2´|k|1ωpDuq

¸

µ2

˜

ź

uPU

Du

¸

.

We can evaluate the sum over Du via the estimate,
ÿ

mPNXry,Y s
ωpmq“�

m”gpmod qq

µpn0mq2 “ 1

ϕpqq
ÿ

mPNXry,Y s
ωpmq“�

gcdpm,qq“1

µpn0mq2 ` OA

ˆ

p� ` 1qA

Y ´1plog 2Y qA ` ωpn0q
Y ´1` 1

�

˙

, (6.16)

valid for each square-free integer n0 that is coprime to q, A ą 0, Y ě y ě 1, � P Zě0, where
the implied constant depends at most on A. This can be proved in a similar way as [8,
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Fouvry and Klüners treat this case by drawing upon the important work of Heath-Brown [11]
in the form stated in [8, Lem.12]. Specifically for A as in (6.10) we have

|SχpX, |k|1; q, a;Aq| ď
ÿ

pDwqwRtu,vu

´

ź

wRtu,vu

2´|k|1ωpDwq
¯

ÿ

a1,a2PpZXp0,qsq2

a1a2
ś

wRtu,vu Dw”apmod qq

ˇ

ˇ

ˇ
MppDwqq

ˇ

ˇ

ˇ
,

where

MppDwqq :“
ÿ

Du,Dv

ˆ

Du

Dv

˙

gpDu, pDwqwRtu,vuqgpDv, pDwqwRtu,vuq,

gpDu, pDwqwRtu,vuq :“ 1a1,qpDuq
2|k|1ωpDuq

ź

wRtu,vu

ˆ

Du

Dw

˙Φ|k|1 pu,wq
ź

wRtu,vu

ˆ

Dw

Du

˙Φ|k|1 pw,uq
ź

χPT
χpDuqΨχpuq,

1α,β denotes the indicator function of the set tm P Z : m ” α pmod βqu and similarly for
gpDv, pDwqwRtu,vuq. Since |gpDu, pDwqwRtu,vuq|, |gpDv, pDwqwRtu,vuq| ď 1 the argument in [8,
p.476] that validates [8, Eq.(42)] can be adopted in the obvious way to yield

ÿ

A fulfils (6.10)

|SχpX, |k|1; q, a;Aq| ! XplogXq´1.

Note that we have used [8, Lem.15] for sequences satisfying |am|, |bn| ď 1 rather than
|am|, |bn| ă 1, however using [8, Lem.15] for am{2, bn{2 in place of am, bn proves a ver-
sion of [8, Lem.15] under the more general assumption |am|, |bn| ă 2 and with the same
conclusion.
The fourth family consists of A fulfilling

ś

u Au ă ∆´4|k|1X, any linked u,v satisfy the
inequality mintAu, Avu ă X: and there exist linked u,v with 2 ď Av and Au ě X;. Their
contribution towards SχpX, |k|1; q, a;Aq is

! max
σpmod qq
gcdpσ,qq“1

ÿ

pDwqwRtu,vu
AwďDwă∆Aw

ÿ

Dv
AvďDvă∆Av

|Mσ|, (6.11)

where Mσ is defined through

ÿ

Du”σpmod qq
AuďDuă∆Au

2´|k|1ωpDuq
ˆ

Du

Dv

˙

ź

χPT
χpDuqΨχpuq“

˜

ź

χPT
χpσqΨχpuq

¸

ÿ

Du”σpmod qq
AuďDuă∆Au

2´|k|1ωpDuq
ˆ

Du

Dv

˙

.

Letting P`pmq denote the largest prime factor of a positive integer m ą 1 and setting
P`p1q :“ 1,m :“ Du{P`pDuq we obtain

Mσ !
ÿ

mP`pmqă∆Au

pm,qq“1

µpmq2

2|k|1ωpmq

ˇ

ˇ

ˇ

ÿ

mp”σpmod qq

µ
`

pm
ź

w‰u

Dw

˘2

ˆ

p

Dv

˙

ˇ

ˇ

ˇ
,

where the inner sum is over primes p with maxtAu{m,P`pmqu ď p ă ∆Au{m. We may
now use Dirichlet characters to modulus q to detect the congruence condition on p. We will
subsequently be faced with ϕpqq new sums over p, each one of which can be bounded via [8,
Lem.13]. This furnishes

ÿ

mp”σpmod qq

µ
`

pm
ź

w‰u

Dw

˘2

ˆ

p

Dv

˙

! A
1{2
v Au

m
plogXq´Nε2´|k|1`1 ` Ω,
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valid for each large enough positive N that is independent of A and m. The term Ω accounts
for the presence of the µ2-terms. Indeed, by (6.6) the number of distinct prime divisors of
m and each Dw is at most Ω. A moment’s thought now reveals that once the last bound is
injected into (6.11) and N is suitably increased in comparison to |k|1, the contribution of A
in the fourth case is ! XplogXq´1, as in [8, Eq.(47)].
Let us now introduce the conditions

$

’

’

’

’

&

’

’

’

’

%

ś

uPpF2
2qk Au ă ∆´4|k|1X,

at least 2|k|1 indices satisfy Au ą X;,
two indices u and v with Au, Av ą X: are always linked,
if Au and Av with Av ď Au are linked, then either
Av “ 1 or p2 ď Av ă X: and Av ď Au ă X;q.

(6.12)

Increasing the value of A in comparison to |k|1 and assorting all estimates so far yields

SχpX, |k|1; q, aq “
ÿ

A satisfies (6.12)

SχpX, |k|1; q, a;Aq ` OpXplogXqε´2´|k|1 q, (6.13)

which is in analogy with [8, Prop.2].

6.4. The main term. We can now obtain the following as in [8, Prop.3],

SχpX, |k|1; q, aq “
ÿ

A satisfies (6.15)

SχpX, |k|1; q, a;Aq ` OpXplogXqε´2´|k|1 q, (6.14)

where
"

U :“ tu : Au ą X;u is a maximal subset of unlinked indices,
ś

uPpF2
2q|k|1 Au ď ∆´4|k|1X and Au “ 1 for u R U .

(6.15)

Similarly to [8, Eq.(50)] we will say that A is admissible for U if Au ą X; ô u P U ,

Au “ 1 ô u R U and
ś

uPpF2
2q|k|1 Au ď ∆´4|k|1X. Assume that A is admissible for U and

note that #U “ 2|k|1 . By quadratic reciprocity we obtain that SχpX, |k|1; q, a;Aq equals

ÿ

phuqPpZ{4Zq2|k|1 ,
ś

uPU hu”3pmod 4q

˜

ź

u,vPU

p´1qΦ|k|1 pu,vqhu´1
2

hv´1
2

¸

ˆ

ÿ

pguqPpZ{qZq2|k|1 ,
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

˜

ź

uPU

ź

χPT
χpguqΨχpuq

¸

ˆ

ÿ

pDuqPN2|k|1 ,@u pωpDuqďΩq
@u pDu”gupmod qq,AuďDuă∆Auq

˜

ź

uPU

2´|k|1ωpDuq

¸

µ2

˜

ź

uPU

Du

¸

.

We can evaluate the sum over Du via the estimate,
ÿ

mPNXry,Y s
ωpmq“�

m”gpmod qq

µpn0mq2 “ 1

ϕpqq
ÿ

mPNXry,Y s
ωpmq“�

gcdpm,qq“1

µpn0mq2 ` OA

ˆ

p� ` 1qA

Y ´1plog 2Y qA ` ωpn0q
Y ´1` 1

�

˙

, (6.16)

valid for each square-free integer n0 that is coprime to q, A ą 0, Y ě y ě 1, � P Zě0, where
the implied constant depends at most on A. This can be proved in a similar way as [8,
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Lem.19] by replacing the congruence condition to modulus 4 on p� in [8, Eq.(53)] by one to
modulus q. Applying (6.16) repeatedly as in [8, p.g.481-482] to estimate the sums over Du

leads us to

ÿ

pDuqPN2|k|1 ,@upωpDuqďΩq
@upDu”gupmod qq,AuďDuă∆Auq

˜

ź

uPU

2´|k|1ωpDuq

¸

µ2

˜

ź

uPU

Du

¸

“ ϕpqq´2|k|1
ÿ

pDuqPN2|k|1 ,@upωpDuqďΩq
@upAuďDuă∆Auq

˜

ź

uPU

2´|k|1ωpDuq

¸

µ2

˜

q
ź

uPU

Du

¸

` OpXplogXq´1´4|k|1 p1`2|k|1 qq.

Using this we obtain as in [8, Eq.(55)] that for any fixed admissible U we have

ÿ

A admissible for U

SχpX, |k|1; q, a;Aq “ 2´|k|1ϕpqq´2|k|1
ÿ

phuqPpZ{4Zq2|k|1
ś

uPU hu”3pmod 4q

˜

ź

u,vPU

p´1qΦ|k|1 pu,vqhu´1
2

hv´1
2

¸

ˆ

ÿ

pguqPpZ{qZq2|k|1 ,
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

˜

ź

uPU

ź

χPT
χpguqΨχpuq

¸

ˆ

ÿ

pDuqPN2|k|1 ,@u pωpDuqďΩq
@u pAuďDuă∆Auq

˜

ź

uPU

2´|k|1ωpDuq

¸

µ2

˜

radpqq
ź

uPU

Du

¸

` O

ˆ

X

logX

˙

,

where the radical radpmq stands for the product of the distinct prime divisors of an integer
m ą 1. We can now see that the condition ωpDuq ď Ω can be ignored at the cost of an error
term of size ! XplogXq´1 as in the beginning of §6.3. We can furthermore show as in [8,
p.g.482] that

ÿ

pDuqPN2|k|1

@upAuďDuă∆Auq

˜

ź

uPU

2´|k|1ωpDuq

¸

µ2

˜

radpqq
ź

uPU

Du

¸

“
ÿ

mďX

µpradpqqmq2`O
´

XplogXqε´2´|k|1
¯

.

It is easily proved via Möbius inversion that for fixed a, q ą 0 with gcdpa, qq “ 1 we have

ÿ

mďX

µpradpqqmq2 “ ϕpqq
q

´

ź

p�q

p1 ´ p´2q
¯

X ` O
´?

X
¯

and
ÿ

mďX
m”apmod qq

µpmq2 “ 1

q

´

ź

p�q

p1 ´ p´2q
¯

X ` O
´?

X
¯

.

Combining these yields
ÿ

mďX

µpradpqqmq2 “ ϕpqq
ÿ

mďX
m”apmod qq

µpmq2 ` O
´?

X
¯

.
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We thus obtain the following for every maximal unlinked subset U ,

ÿ

A admissible for U

SχpX, |k|1; q, a;Aq “ γψpU q
2|k|1ϕpqq2|k|1´1

˜

ÿ

mďX
m”apmod qq

µpmq2
¸

`O
´

XplogXqε´2´|k|1
¯

,

where

γψpU q :“
ÿ

phuqPpZ{4Zq2|k|1
ś

uPU hu”3pmod 4q

˜

ź

u,vPU

p´1qΦ|k|1 pu,vqhu´1
2

hv´1
2

¸

ÿ

pguqPpZ{qZq2|k|1
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

˜

ź

uPU

ź

χPT
χpguqΨχpuq

¸

.

We can now infer via (6.14) that the last equation proves

SχpX, |k|1; q, aq
#

�

m P r1, Xs : q | m ´ a, µpmq2 “ 1
( “

˜

ÿ

U

γψpU q
¸

ϕpqq1´2|k|1

2|k|1
` OpplogXqε´2´|k|1 q,

where U ranges over maximal unlinked subsets of F2|k|1
2 .

6.5. Simplifying γψpU q. Introduce the following Dirichlet character pmod n1n2q,

ρu :“
ź

χPT
χΨχpuq.

We will call a maximal set of unlinked indices U stable if

@χ P T, @u P U pΨχpuq “ 0q or @χ P T, @u P U pΨχpuq “ 1q.

Let us now prove that

ÿ

pguqPpZ{qZq2|k|1
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

ź

uPU

ρupguq “ 1U stablepU q
ˆ

ϕpqq
2

˙2|k|1´1

.

Write q “ 2bn0m, where b :“ ν2pqq, gcdpn0, n1n2q “ 1 and n0 has radical equal to n1n2.
Define

U1pn0q :“ tu P Z{n0Z : u ” 1 pmod n1n2qu and U1p2bq :“ tu P Z{2bZ : u ” 1 pmod 4qu.

Recalling the identification of groups pZ{qZq˚ “ U1p2bq ˆ pZ{4Zq˚ ˆ U1pn0q ˆ pZ{n1n2Zq˚,
we see that

ÿ

pguqPpZ{qZq2|k|1
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

ź

uPU

ρupguq “ p#U1p2bq#U1pn0qϕpmqq2|k|1´1
ÿ

pmuqPpZ{n1n2Zq2|k|1
ś

uPU mu”apmod n1n2q

ź

uPU

ρupmuq.

Note that we have
ś

uPU ρu0pmuq “ ρu0paq “ 1 owing to (5.2)-(5.4). Therefore, fixing
u0 P U , we have the following equality for any choice of mu in the above sum

ź

uPU

ρupmuq “ ρu0pu0q
ź

uPU ´tu0u

ρupuq “
ź

uPU ´tu0u

´ ρupmuq
ρu0pmuq

¯

.
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Lem.19] by replacing the congruence condition to modulus 4 on p� in [8, Eq.(53)] by one to
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ź
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ź
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@upAuďDuă∆Auq

˜

ź

uPU
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ź
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Du

¸

` OpXplogXq´1´4|k|1 p1`2|k|1 qq.

Using this we obtain as in [8, Eq.(55)] that for any fixed admissible U we have

ÿ
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¸
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ź
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˜
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Du

¸
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X

logX

˙

,

where the radical radpmq stands for the product of the distinct prime divisors of an integer
m ą 1. We can now see that the condition ωpDuq ď Ω can be ignored at the cost of an error
term of size ! XplogXq´1 as in the beginning of §6.3. We can furthermore show as in [8,
p.g.482] that
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uPU
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radpqq
ź

uPU

Du

¸

“
ÿ

mďX

µpradpqqmq2`O
´

XplogXqε´2´|k|1
¯

.

It is easily proved via Möbius inversion that for fixed a, q ą 0 with gcdpa, qq “ 1 we have

ÿ

mďX

µpradpqqmq2 “ ϕpqq
q

´

ź

p�q

p1 ´ p´2q
¯

X ` O
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¯

and
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q
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.

Combining these yields
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µpradpqqmq2 “ ϕpqq
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´?

X
¯
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We thus obtain the following for every maximal unlinked subset U ,

ÿ

A admissible for U

SχpX, |k|1; q, a;Aq “ γψpU q
2|k|1ϕpqq2|k|1´1

˜

ÿ

mďX
m”apmod qq

µpmq2
¸

`O
´

XplogXqε´2´|k|1
¯

,

where

γψpU q :“
ÿ

phuqPpZ{4Zq2|k|1
ś

uPU hu”3pmod 4q

˜

ź

u,vPU

p´1qΦ|k|1 pu,vqhu´1
2

hv´1
2

¸

ÿ
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ś
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@uPU phu”gupmod 4qq

˜

ź

uPU

ź

χPT
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¸

.

We can now infer via (6.14) that the last equation proves

SχpX, |k|1; q, aq
#

�

m P r1, Xs : q | m ´ a, µpmq2 “ 1
( “

˜

ÿ

U

γψpU q
¸

ϕpqq1´2|k|1

2|k|1
` OpplogXqε´2´|k|1 q,

where U ranges over maximal unlinked subsets of F2|k|1
2 .

6.5. Simplifying γψpU q. Introduce the following Dirichlet character pmod n1n2q,

ρu :“
ź

χPT
χΨχpuq.

We will call a maximal set of unlinked indices U stable if

@χ P T, @u P U pΨχpuq “ 0q or @χ P T, @u P U pΨχpuq “ 1q.

Let us now prove that

ÿ

pguqPpZ{qZq2|k|1
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

ź

uPU

ρupguq “ 1U stablepU q
ˆ

ϕpqq
2

˙2|k|1´1

.

Write q “ 2bn0m, where b :“ ν2pqq, gcdpn0, n1n2q “ 1 and n0 has radical equal to n1n2.
Define

U1pn0q :“ tu P Z{n0Z : u ” 1 pmod n1n2qu and U1p2bq :“ tu P Z{2bZ : u ” 1 pmod 4qu.

Recalling the identification of groups pZ{qZq˚ “ U1p2bq ˆ pZ{4Zq˚ ˆ U1pn0q ˆ pZ{n1n2Zq˚,
we see that

ÿ

pguqPpZ{qZq2|k|1
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

ź

uPU

ρupguq “ p#U1p2bq#U1pn0qϕpmqq2|k|1´1
ÿ

pmuqPpZ{n1n2Zq2|k|1
ś

uPU mu”apmod n1n2q

ź

uPU

ρupmuq.

Note that we have
ś

uPU ρu0pmuq “ ρu0paq “ 1 owing to (5.2)-(5.4). Therefore, fixing
u0 P U , we have the following equality for any choice of mu in the above sum

ź

uPU

ρupmuq “ ρu0pu0q
ź

uPU ´tu0u

ρupuq “
ź

uPU ´tu0u

´ ρupmuq
ρu0pmuq

¯

.
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Therefore
ÿ

pmuqPpZ{n1n2Zq2|k|1
ś

uPU mu”apmod n1n2q

ź

uPU

ρupmuq “
ÿ

pmuqPppZ{n1n2Zq˚q2|k|1´1

ź

uPU ´tu0u

ρupmuq
ρu0pmuq .

But the last clearly splits as

ź

uPU ´tu0u

´

ÿ

pmuqPpZ{n1n2Zq˚

ρupmuq
ρu0pmuq

¯

“
ź

uPU ´tu0u

´

ÿ

pmuqPpZ{n1n2Zq˚

ź

χPT
χψχpuq´ψχpu0qpmuq

¯

.

Using that the set of χ in T consists of a set of linearly independent characters, we obtain
that each factor of the last product vanishes if and only if ψχ is not constant on U , i.e. if

and only if U is not stable. In the stable case its value is ϕpn1n2q2
|k|1´1

. Therefore we have
proved that

ÿ

pguqPpZ{qZq2|k|1
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

ź

uPU

ρupguq “ p#U1p2bq#U1pn0qϕpmqϕpn1n2qq2|k|1´11U stablepU q

“
´ϕpqq

2

¯2|k|1´1

1U stablepU q,

from which we deduce that

ÿ

U

γψpU q “
ˆ

ϕpqq
2

˙2|k|1´1
ÿ

U stable

ÿ

phuquPU PpZ{4Zq2|k|1
ś

uPU hu”3pmod 4q

˜

ź

u,vPU

p´1qΦ|k|1 pu,vqhu´1
2

hv´1
2

¸

,

where the pairs u,v are unordered. The inner sum is identical to the one appearing in the
work of Fouvry and Klüners, however the outer sum does not appear in their work. Define

γpU q :“
ÿ

phuquPU PpZ{4Zq2|k|1
ś

uPU hu”3pmod 4q

˜

ź

u,vPU

p´1qΦ|k|1 pu,vqhu´1
2

hv´1
2

¸

.

We are left with proving
ÿ

U stable

γpU q “ 22
|k|1`|k|1´1N2p|k|1 ´ #T q (6.17)

and this will be our aim in §6.6.

6.6. Combinatorics. From [8, Lem.18] we know that the maximal unlinked sets of indices

U consist precisely of cosets of |k|1-dimensional subspaces of F2|k|1
2 . Therefore stable U are

cosets of |k|1-dimensional subspace of F2|k|1
2 , where all the Ψχ vanish.

Next, introduce the bilinear form on F2|k|1
2 via

Lpu,vq :“
|k|1
ÿ

j“0

u2j`1pv2j`1 ` v2j`2q.

52 C. PAGANO AND E. SOFOS

Using the the terminology from [8], we say that a |k|1-dimensional subspace, U0, of F2|k|1
2 is

good if

L|U0ˆU0
” 0.

Recall that the upshot of [8, Lem.22-25] is that γ vanishes on all cosets of non-good subspaces,

meanwhile the total contribution from the set of cosets of a fixed good subspace is 22
|k|1`|k|1´1.

This provides us with
ÿ

U stable

γpU q “ 22
|k|1`|k|1´1#tU0 good : ΨχpU0q “ 0 for each χ P T u.

Now, following the proof of [8, Lem.26], if te1, ¨ ¨ ¨ , e2|k|1u denotes the standard basis of F2|k|1
2 ,

choose a new basis via

tb1, ¨ ¨ ¨ , b2|k|1u “ te1 ` e2, e2, ¨ ¨ ¨ , e2j´1 ` e2j, e2j, ¨ ¨ ¨ , e2|k|1´1 ` e2|k|1 , e2|k|1u.

Then, with respect to the new basis, L assumes the form

Lpx,yq “
j´1
ÿ

j“0

x2j`1y2j`2.

In the proof of part (i) of [8, Lem.25] it is verified that, ifX consists of the subspace generated
by tbi : i oddu and Y consists of the subspace generated by tbi : i evenu, the map sending

U0 ÞÑ πXpU0q where πX is the projection map F2|k|1
2 “ X ‘Y Ñ X gives a bijection between

good subspaces of F2|k|1
2 and vector subspaces of F|k|1

2 . On the other hand, we are counting
only good subspaces where Ψχ vanishes for each χ P T . Observe that owing to (6.4) we
have that Ψχ are all constantly 0 on Y , hence they define #T linearly independent linear
functions from X to F2 which we will denote by the same letters. Therefore U0 Ñ πXpU0q
provides a bijection between good subspaces where all Ψχ vanish and subspaces of X where
all Ψχ vanish. Given that Ψχ : X Ñ F2 are independent we find that the cardinality of such
subspaces is precisely N2p|k|1 ´ #T q. This substantiates (6.17), which concludes the proof
of Theorem 5.6.

7. From the mixed moments to the distribution

This section is devoted to deduce Theorem 5.7 from Theorem 5.6. We will follow an
adaptation of a method used by Heath-Brown in [10].
As explained in §4, Theorem 5.7 can be equivalently rephrased as a theorem about the
distribution of the vector

D ÞÑ pmχpDqq
pGn1ˆĂ

xGn2

.

Namely consider for any positive integer j and subspace Y Ď pGn1 ˆ r

pGn2 , the vector

vpj,Y q P Z
pGn1ˆĂ

xGn2
ě0 ,

defined as v
pj,Y q
χ “ j if χ P Y and v

pj,Y q
χ “ j ´ 1 if χ R Y . Assign to vpj,Y q mass

µpvpj,Y qq “ µCLpA P G2 : #Ar2s “ 2j´1q #EpipFj´1
2 , Y q

#HompFj´1
2 , pGn1 ˆ r

pGn2q
.
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Therefore
ÿ

pmuqPpZ{n1n2Zq2|k|1
ś

uPU mu”apmod n1n2q

ź

uPU

ρupmuq “
ÿ

pmuqPppZ{n1n2Zq˚q2|k|1´1

ź

uPU ´tu0u

ρupmuq
ρu0pmuq .

But the last clearly splits as

ź

uPU ´tu0u

´

ÿ

pmuqPpZ{n1n2Zq˚

ρupmuq
ρu0pmuq

¯

“
ź

uPU ´tu0u

´

ÿ

pmuqPpZ{n1n2Zq˚

ź

χPT
χψχpuq´ψχpu0qpmuq

¯

.

Using that the set of χ in T consists of a set of linearly independent characters, we obtain
that each factor of the last product vanishes if and only if ψχ is not constant on U , i.e. if

and only if U is not stable. In the stable case its value is ϕpn1n2q2
|k|1´1

. Therefore we have
proved that

ÿ

pguqPpZ{qZq2|k|1
ś

uPU gu”apmod qq
@uPU phu”gupmod 4qq

ź

uPU

ρupguq “ p#U1p2bq#U1pn0qϕpmqϕpn1n2qq2|k|1´11U stablepU q

“
´ϕpqq

2

¯2|k|1´1

1U stablepU q,

from which we deduce that

ÿ

U

γψpU q “
ˆ

ϕpqq
2

˙2|k|1´1
ÿ

U stable

ÿ

phuquPU PpZ{4Zq2|k|1
ś

uPU hu”3pmod 4q

˜

ź

u,vPU

p´1qΦ|k|1 pu,vqhu´1
2

hv´1
2

¸

,

where the pairs u,v are unordered. The inner sum is identical to the one appearing in the
work of Fouvry and Klüners, however the outer sum does not appear in their work. Define

γpU q :“
ÿ

phuquPU PpZ{4Zq2|k|1
ś

uPU hu”3pmod 4q

˜

ź

u,vPU

p´1qΦ|k|1 pu,vqhu´1
2

hv´1
2

¸

.

We are left with proving
ÿ

U stable

γpU q “ 22
|k|1`|k|1´1N2p|k|1 ´ #T q (6.17)

and this will be our aim in §6.6.

6.6. Combinatorics. From [8, Lem.18] we know that the maximal unlinked sets of indices

U consist precisely of cosets of |k|1-dimensional subspaces of F2|k|1
2 . Therefore stable U are

cosets of |k|1-dimensional subspace of F2|k|1
2 , where all the Ψχ vanish.

Next, introduce the bilinear form on F2|k|1
2 via

Lpu,vq :“
|k|1
ÿ
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u2j`1pv2j`1 ` v2j`2q.
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Using the the terminology from [8], we say that a |k|1-dimensional subspace, U0, of F2|k|1
2 is

good if
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Recall that the upshot of [8, Lem.22-25] is that γ vanishes on all cosets of non-good subspaces,

meanwhile the total contribution from the set of cosets of a fixed good subspace is 22
|k|1`|k|1´1.

This provides us with
ÿ

U stable

γpU q “ 22
|k|1`|k|1´1#tU0 good : ΨχpU0q “ 0 for each χ P T u.
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Then, with respect to the new basis, L assumes the form

Lpx,yq “
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In the proof of part (i) of [8, Lem.25] it is verified that, ifX consists of the subspace generated
by tbi : i oddu and Y consists of the subspace generated by tbi : i evenu, the map sending
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2 “ X ‘Y Ñ X gives a bijection between
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2 and vector subspaces of F|k|1

2 . On the other hand, we are counting
only good subspaces where Ψχ vanishes for each χ P T . Observe that owing to (6.4) we
have that Ψχ are all constantly 0 on Y , hence they define #T linearly independent linear
functions from X to F2 which we will denote by the same letters. Therefore U0 Ñ πXpU0q
provides a bijection between good subspaces where all Ψχ vanish and subspaces of X where
all Ψχ vanish. Given that Ψχ : X Ñ F2 are independent we find that the cardinality of such
subspaces is precisely N2p|k|1 ´ #T q. This substantiates (6.17), which concludes the proof
of Theorem 5.6.

7. From the mixed moments to the distribution

This section is devoted to deduce Theorem 5.7 from Theorem 5.6. We will follow an
adaptation of a method used by Heath-Brown in [10].
As explained in §4, Theorem 5.7 can be equivalently rephrased as a theorem about the
distribution of the vector

D ÞÑ pmχpDqq
pGn1ˆĂ

xGn2

.

Namely consider for any positive integer j and subspace Y Ď pGn1 ˆ r

pGn2 , the vector

vpj,Y q P Z
pGn1ˆĂ

xGn2
ě0 ,

defined as v
pj,Y q
χ “ j if χ P Y and v

pj,Y q
χ “ j ´ 1 if χ R Y . Assign to vpj,Y q mass

µpvpj,Y qq “ µCLpA P G2 : #Ar2s “ 2j´1q #EpipFj´1
2 , Y q

#HompFj´1
2 , pGn1 ˆ r

pGn2q
.
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On the other hand, assign to all other vectors v P Z
pGn1ˆĂ

xGn2
ě0 mass equal to 0. In Propo-

sition 4.8 it is shown that this equips Z
pGn1ˆĂ

xGn2
ě0 with a probability measure satisfying the

following moment equations :
ÿ

vPZ
pGn1ˆĂ

xGn2
ě0

2v¨kµpvq “ Ck,

where for any k P Z
pGn1ˆĂ

xGn2
ě0 we define

Ck :“ 2|k|1
ÿ

Y Ď pGn1ˆĂ

xGn2

PpkqpY qN2p|k|1 ´ dimpY qq

and where v ¨ k denotes the inner product.
We begin the proof of Theorem 5.7 by showing that the distribution µ is characterized

by the moment equations given above. Indeed we show more, namely assume x is a map

Z
pGn1ˆĂ

xGn2
ě0 Ñ r0, 1s satisfying for any k P Z

pGn1ˆĂ

xGn2
ě0 the moment relations

ÿ

vPZ
pGn1ˆĂ

xGn2
ě0

2v¨kxpvq “ Ck. (7.1)

Observe that one has the trivial bound Ck ! 2|k|1N2p|k|1q, which leads to Ck ! 2
|k|21`4|k|1

4 .

Letting F ptq :“
ś8

n“0p1 ´ t2´nq, we therefore see that for any k P Z
pGn1ˆĂ

xGn2
ě0 , the following

series is absolutely convergent,
ÿ

nPZ
pGn1ˆĂ

xGn2
ě0

anCn2
´n¨k, (7.2)

where an is the n-coefficient of the Taylor expansion of

rF pzq :“
ź

χP pGn1ˆĂ

xGn2

F pzχq.

Injecting (7.1) into (7.2), expanding in terms of x and exchanging the order of summation,
we obtain

ÿ

nPZ
pGn1ˆĂ

xGn2
ě0

anCn2
´n¨k “

ÿ

mPZ
pGn1ˆĂ

xGn2
ě0

rF pp2mχ´kχqqxpmq.

If for all χ we have mχ ă kχ then rF pp2mχ´kχqq ‰ 0, otherwise we have rF pp2mχ´kχqq “ 0.
Therefore, the right side is a finite sum supported in the region mχ ă kχ for every χ. Hence,
using the triangular system of relations above one can successively reconstruct the function
xpmq from the moments Ck. Therefore, we necessarily have xpmq “ µpmq described above.

Let a, q be integers as in Theorem 5.7 and for any j P Z
pGn1ˆĂ

xGn2
ě0 and X P Rě1, define

the quantity djpXq as the proportion of all positive square-free integers D ď X satisfying
D ” a pmod qq and mχpDq “ 2jχ for all χ. Therefore, Theorem 5.6 shows that for any

k P Z
pGn1ˆĂ

xGn2
ě0 we have

ř

r drpXq2r¨k “ Ck ` op1q, as X Ñ `8, where the sum is taken
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over r P Z
pGn1ˆĂ

xGn2
ě0 . The argument concludes as follows: fix any vector v P Z

pGn1ˆĂ

xGn2
ě0 ; by

compactness of the interval r0, 1s and a standard diagonal argument, one can choose a
sequence tYnunPN tending to infinity, such that dvpYnq converges to any of the limit points of
tdvpXq : X P Rě1u, call it d1

v, while for every other w the sequence dwpYnq is also converging

to some limit point d1
w. Next, we fix h P Z

pGn1ˆĂ

xGn2
ě0 , and we use the previous moment relation

for k “ 2h, trivially bounding each terms with the total sum, providing drpYnq !h 2´r¨h.
This enables us to apply the dominated convergence theorem to exchange the sum and the
limit in the expression of the h-th moment, from which we deduce that d1

w satisfies the
following moment equations as well:

ÿ

wPZ
pGn1ˆĂ

xGn2
ě0

2w¨hd1
w “ Ch.

We must therefore have d1
w “ µpwq for all w P Z

pGn1ˆĂ

xGn2
ě0 . Note that d1

v was an arbitrary
limit point of dvpXq, hence we deduce that

lim
XÑ8

dvpXq “ µpvq.

Since v was chosen arbitrarily in Z
pGn1ˆĂ

xGn2
ě0 we have thus shown that Theorem 5.7 holds,

thereby concluding the proof of Theorem 5.7.
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On the other hand, assign to all other vectors v P Z
pGn1ˆĂ

xGn2
ě0 mass equal to 0. In Propo-

sition 4.8 it is shown that this equips Z
pGn1ˆĂ

xGn2
ě0 with a probability measure satisfying the

following moment equations :
ÿ

vPZ
pGn1ˆĂ

xGn2
ě0

2v¨kµpvq “ Ck,

where for any k P Z
pGn1ˆĂ

xGn2
ě0 we define

Ck :“ 2|k|1
ÿ

Y Ď pGn1ˆĂ

xGn2

PpkqpY qN2p|k|1 ´ dimpY qq

and where v ¨ k denotes the inner product.
We begin the proof of Theorem 5.7 by showing that the distribution µ is characterized

by the moment equations given above. Indeed we show more, namely assume x is a map

Z
pGn1ˆĂ

xGn2
ě0 Ñ r0, 1s satisfying for any k P Z

pGn1ˆĂ

xGn2
ě0 the moment relations

ÿ

vPZ
pGn1ˆĂ

xGn2
ě0

2v¨kxpvq “ Ck. (7.1)

Observe that one has the trivial bound Ck ! 2|k|1N2p|k|1q, which leads to Ck ! 2
|k|21`4|k|1

4 .

Letting F ptq :“
ś8

n“0p1 ´ t2´nq, we therefore see that for any k P Z
pGn1ˆĂ

xGn2
ě0 , the following

series is absolutely convergent,
ÿ

nPZ
pGn1ˆĂ

xGn2
ě0

anCn2
´n¨k, (7.2)

where an is the n-coefficient of the Taylor expansion of

rF pzq :“
ź

χP pGn1ˆĂ

xGn2

F pzχq.

Injecting (7.1) into (7.2), expanding in terms of x and exchanging the order of summation,
we obtain

ÿ

nPZ
pGn1ˆĂ

xGn2
ě0

anCn2
´n¨k “

ÿ

mPZ
pGn1ˆĂ

xGn2
ě0

rF pp2mχ´kχqqxpmq.

If for all χ we have mχ ă kχ then rF pp2mχ´kχqq ‰ 0, otherwise we have rF pp2mχ´kχqq “ 0.
Therefore, the right side is a finite sum supported in the region mχ ă kχ for every χ. Hence,
using the triangular system of relations above one can successively reconstruct the function
xpmq from the moments Ck. Therefore, we necessarily have xpmq “ µpmq described above.

Let a, q be integers as in Theorem 5.7 and for any j P Z
pGn1ˆĂ

xGn2
ě0 and X P Rě1, define

the quantity djpXq as the proportion of all positive square-free integers D ď X satisfying
D ” a pmod qq and mχpDq “ 2jχ for all χ. Therefore, Theorem 5.6 shows that for any

k P Z
pGn1ˆĂ

xGn2
ě0 we have

ř

r drpXq2r¨k “ Ck ` op1q, as X Ñ `8, where the sum is taken
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over r P Z
pGn1ˆĂ

xGn2
ě0 . The argument concludes as follows: fix any vector v P Z

pGn1ˆĂ

xGn2
ě0 ; by

compactness of the interval r0, 1s and a standard diagonal argument, one can choose a
sequence tYnunPN tending to infinity, such that dvpYnq converges to any of the limit points of
tdvpXq : X P Rě1u, call it d1

v, while for every other w the sequence dwpYnq is also converging

to some limit point d1
w. Next, we fix h P Z

pGn1ˆĂ

xGn2
ě0 , and we use the previous moment relation

for k “ 2h, trivially bounding each terms with the total sum, providing drpYnq !h 2´r¨h.
This enables us to apply the dominated convergence theorem to exchange the sum and the
limit in the expression of the h-th moment, from which we deduce that d1

w satisfies the
following moment equations as well:

ÿ

wPZ
pGn1ˆĂ

xGn2
ě0

2w¨hd1
w “ Ch.

We must therefore have d1
w “ µpwq for all w P Z

pGn1ˆĂ

xGn2
ě0 . Note that d1

v was an arbitrary
limit point of dvpXq, hence we deduce that

lim
XÑ8

dvpXq “ µpvq.

Since v was chosen arbitrarily in Z
pGn1ˆĂ

xGn2
ě0 we have thus shown that Theorem 5.7 holds,

thereby concluding the proof of Theorem 5.7.
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