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On the equation X +X =1in finitely
generated groups in positive characteristic

Peter Koymans, Carlo Pagano






ON THE EQUATION XI + Xz = I IN FINITELY GENERATED GROUPS IN POSITIVE CHARACTERISTIC

On the equation x1 + 9 = 1 in finitely generated
groups in positive characteristic

Peter Koymans, Carlo Pagano

1 Introduction

Let G be a subgroup of C* x C* with coordinatewise multiplication. Assume that
the rank dimg G ®z Q = r is finite. Beukers and Schlickewei [1] proved that the
equation
T+ 19 =1

in (71,22) € G has at most 25+8 solutions. A key feature of their upper bound is
that it depends only on 7.

In this paper we will analyze the characteristic p case. To be more precise, let
p > 0 be a prime number and let K be a field of characteristic p. Let G be a
subgroup of K* x K* with dimg G ®; Q = r finite. Then Voloch proved in [5]
that an equation

ary +bl‘2 =1in (l‘hl’g) cG

for given a,b € K* has at most p"(p" +p—2)/(p—1) solutions (z1,22) € G, unless
(a,b)" € G for some n > 1.

Voloch also conjectured that this upper bound can be replaced by one depend-
ing only on r. Our main theorem answers this conjecture positively.

Theorem 1.1. Let K, G, r, a and b be as above. Suppose that there is no positive
integer n with ged(n,p) = 1 such that (a,b)™ € G. Then the equation

axy +bre =1 in (x1,22) € G (1)
has at most 31 - 19" solutions.

Our main theorem will be a consequence of the following theorem.

Theorem 1.2. Let K be a field of characteristic p > 0 and let G be a finitely
generated subgroup of K* x K* of rank r. Then the equation

x1+ =11 (v1,22) € G (2)
has at most 31 - 19" solutions (x1,x2) satisfying (x1,x2) & GP.

Clearly, the last condition is necessary to guarantee finiteness. Indeed if we have
any solution to x; + x5 = 1, then we get infinitely many solutions xfk + xgk =1
for k € Z>( due to the Frobenius operator.

The set-up of the paper is as follows. We start by introducing the basic theory
about valuations that is needed for our proofs. Then we derive Theorem 1.2 by
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generalizing the proof of Beukers and Schlickewei [1] to positive characteristic. We
remark that their proof heavily relies on techniques from diophantine approxima-
tion. Most of the methods from diophantine approximation can not be transferred
to positive characteristic, so that this is possible with the method of Beukers and
Schlickewei is a surprising feat on its own. It was more convenient for us to follow
[2], which is directly based on the proof of Beukers and Schlickewei. Theorem 1.1
is a simple consequence of Theorem 1.2.

2 Valuations and heights

Our goal in this section is to recall the basic theory about valuations and heights
without proofs. To prove Theorem 1.2 we may assume without loss of generality
that K = IF,(G). Thus, K is finitely generated over F,. Note that Theorem 1.2
is trivial if K is algebraic over F,, so from now on we further assume that K
has positive transcendence degree over IF,. The algebraic closure of F, in K is a
finite field, which we denote by F,. Then there is an absolutely irreducible, normal
projective variety V' defined over F, such that its function field F, (V) is isomorphic
to K.

Fix a projective embedding of V' such that V' C Pﬁg for some positive integer
M. A prime divisor p of V over F, is by definition an irreducible subvariety of V'
of codimension one. Recall that for a prime divisor p the local ring O, is a discrete
valuation ring, since V' is non-singular in codimension one. Following [3] we will
define heights on V. To do this, we start by defining a set of normalized discrete
valuations

My := {ord, : p prime divisor of V'},

where ord, is the normalized discrete valuation of K corresponding to O,. If
v = ord, € Mg, we define for convenience degv := degyp with degp being the
projective degree in P&, Then the set M satisfies the sum formula

Z v(xz)degv =0

veEM

for x € K*. This is indeed a well-defined sum, since for x € K* there are only
finitely many valuations v satisfying v(x) # 0. Furthermore, we have v(x) = 0 for
all v € M if and only if 2 € F;. If P is a point in A"*!(K)\ {0} with coordinates
(Yo, - - -, yn) in K, then its homogeneous height is

H}l{olll(P) — Z Illlln{v(yz)} degv

vEME

and its height
Hy(P) = Hi™ (Lo, -, Yn)-

We will need the following properties of the height.

Lemma 2.1. Let P € A"Y(K)\ {0}. The height defined above has the following
properties:

1) Hom(AP) = H™(P) for A € K*.

2) Hkm™(P) > 0 with equality if and only if P € P"(F,).
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3 Proof of Theorem 1.1.2

This section is devoted to the proof of Theorem 1.2. We will follow the proof in
[2], see Section 6.4, with some crucial modifications to take care of the presence of
the Frobenius map. The general strategy of the proof in characteristic 0, and how
we adapt it to characteristic p, will be explained after Lemma 3.9. Let us start
with a simple lemma.

Lemma 3.1. The equation
1+ =11n (x1,22) € G (3)
has at most p" solutions (x1,x2) satisfying x1 ¢ KP and xo & KP.

Proof. Let © = (x1,29) and y = (y1,92) be two solutions of (3). We claim that
r =y mod GP implies x = y. Indeed, if x =y mod GP, we can write y; = x1v”
and yo = x20? with (v,0) € G. In matrix form this means that

) (2)-0)
)

If A is invertible, we find that x1,xo € KP? contrary to our assumptions. So A is
not invertible, which implies that v = § = 1. This proves the claim.

The claim implies that the number of solutions is at most |G/GP|. Let F, be
the algebraic closure of F), in K. It is a finite extension of IF,, since K is finitely
generated over F,,. It follows that G** C F; x F. Hence |G**| | (¢ — 1)?, which
is co-prime to p. We conclude that |G/GP| = p" as desired. O

For convenience we define

Lemma 3.1 gives the following corollary.
Corollary 3.2. The equation
1+ =114 (x1,22) € G (4)
has at most p" solutions (x1,x2) satisfying (1, x2) & GP.
Proof. Define
G = {(x1,73) € K x K : (2, 2)) € G for some N € Z-¢}.

It is a well known fact that G’ is finitely generated if G and K are. It follows
that G’ is a finitely generated group of rank r. Our goal is to give an injective
map from the solutions (x1,z2) € G of (4) satisfying (x1,z2) & GP to the solutions
(x},xh) € G’ of (3) satisfying (z,2%) ¢ KP and then apply Lemma 3.1.

So let (z1,22) € G be a solution of (4) satisfying (z1,22) € GP. We start by
remarking that z1, 2y € IF,. Hence we can repeatedly take p-th roots until we get
x, x4 & KP. Using heights one can prove that this indeed stops after finitely many
steps. Then it is easily verified that (2, 25) € G’ is a solution of (3) and that the
map thus defined is injective. Now apply Lemma 3.1. O
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By Corollary 3.2 we may assume that p is sufficiently large throughout, say
p > 7. Both the proof in [2] and our proof rely on very special properties of the
family of binary forms {Wx(X,Y)}nez., defined by the formula

Wx(X,Y) = i <2N - m> (N N m) XN-m(_yym,

N —m m

m=0

We have for all positive integers N that Wy (X,Y) € Z[X,Y]. Furthermore,
setting Z = —X — Y, the following statements hold in Z[X,Y].

Lemma 3.3. 1) Wx(Y, X) = (—=1)"Wx(X,Y).
2) XNTWN (Y, Z) + YN TIWN(Z, X)) + Z2N T TWN (X, Y) = 0.

3) There exist a non-zero integer ¢y such that

d6t< ZQN+1WN(X7 Y) Y2N+1WN(Z, X)

— 2N+1 2 2
ST Y ) =YD XY )

Proof. This is Lemma 6.4.2 in [2], which is a variant of Lemma 2.3 in [1]. O

Since the formulas in the previous lemma hold in Z[X,Y] they hold in every
field K. But if char(K) = p > 0 and p | ¢y, then part 3) of Lemma 3.3 tells us

that
det ZANHWN(X)Y) Y2NHWN(Z, X) _0
N2 Wy (XY) Y2 (Z,X))

in K[X,Y]. The following remarkable identity will be handy later on, when we
need that cy does not vanish modulo p.

Lemma 3.4. For every positive integer N, one has Wy(2,—1) = 4N(%\1,V).

Proof. Tt is enough to evaluate Ei\io (2%_i) (NX,'Z) 2-% We have

N . .
2N — 1\ [N +1 i 2N 1
;( N >( N )2 (N>F< N,N +1, 2N,2>,

where F'(a,b,c,z) is the hypergeometric function defined by the power series

F(a,b,c,z) == >, (‘Z!)Zc()bj’z". Here we define for a real ¢t and a non-negative
integer i (t); = 1if ¢ = 0 and for ¢ positive (t); = t(t+1)-...- (t+i—1). Now the
desired result follows from Bailey’s formulas where special values of the function
F are expressed in terms of values of the I-function, see [4] page 297. |

We obtain the following corollary.

Corollary 3.5. Let p be an odd prime number and let N be a positive integer with
N < £ —2. Then cy #0 mod p.

Proof. Indeed one has that

det Z2N+1WN(X, Y) Y2N+1WN(Z, X)
ZN W 1 (X,Y) YNy (Z, X)

evaluated at (X,Y,Z) = (2,—1, —1) gives up to sign 2Wy (2, —1)Wy,1(2, —1). By
the previous proposition, this is a power of 2 times the product of two binomial
coefficients whose top terms are less than p, hence it can not be divisible by p. O

10
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We now state and prove the analogues of Lemmata 6.4.3-6.4.5 from [2] for
function fields of positive characteristic. These are variants of respectively Lemma
2.1, Corollary 2.2 and Lemma 2.3 from [1].

Lemma 3.6. Let a,b, ¢ be non-zero elements of K, and let («, B, ;) fori=1,2
be two K -linearly independent vectors from K?® such that acy; + bB3; + cy; = 0 for
i=1,2. Then

H;L(om(a’ b7 C) < H;L(‘””(Oq,ﬁh%) + H;?)m((l%ﬁ%r)?)'

Proof. The vector (a,b,c) is K-proportional to the vector (5172 — 7102, 1102 —
a17y2, 109 — frae). So we have

H};Ol[l(a7 b, C) _ H}l(om(ﬁl’w _ 71[32’ Y1Qa — Q17Ya, 011/32 - 61042)
= Z —min(v(B1v2 — 11 62), v(na2 — ary2), v(aafr — Brag)) degv

vEMg
< Z —min(v(51), v(m),v(a1)) degv + Z —min(v(y2), v(ag),v(F2)) deg v
veEM vEM

= H;](()m(ah 617 f}/l) =+ H?{OIH(OQ? 52772)7

which was the claimed inequality. O
We apply Lemma 3.6 to the equation x; + 25 = 1.

Lemma 3.7. Suppose x = (x1,79) € G and y = (y1,y2) € G satisfy x1 + 29 = 1
and yy + yo = 1. Then we have Hy(x) < Hg(yx™).

Proof. Apply Lemma 3.6 with (a,b, ¢) = (21, 2, —1), (a1, 81,71) = (1, 1,1), (g, f2,72) =
(127t o5 ', 1) and use the fact that HE™(1,1,1) = 0. O

The next Lemma takes advantage of the properties of Wy (X,Y) listed in
Lemma 3.3 and the non-vanishing of ¢y modulo p obtained in Corollary 3.5.

Lemma 3.8. Let w,y be as in Lemma 3.7. Let N < £ —2. Then there erists

M € {N,N + 1} such that Hg(v) < 75 Hi (yz M),

Proof. The proof is almost the same as in Lemma 6.4.5 in [2], with only few
necessary modifications. For completeness we give the full proof.

If 21, and thus both z; and x4y are roots of unity, we have that Hx(x) = 0 so
the lemma is trivially true. By Lemma 3.3 part 2) we get that

MW (g, —1) + 22T W (=1, 21) — Wy, 29) = 0
for M € {N, N + 1} as well as
G2V (MY g 2 (g 201y g )
Now we claim that there is M € {N, N + 1} such that the vectors

(yh Y2, _1) and (xlww-'—lwf\f(x% _l)a ‘T22M+1WM(_L 131)., —W]\4(.I‘17 IZ)) (5)

II



PETER KOYMANS, CARLO PAGANO

are linearly independent. Clearly, to prove the claim it is enough to prove that the
two vectors

(@MW (g, 1), 22 W (=1, 20), =W (21, 20)) (M € {N,N +1}) (6)

are linearly independent. But we know that for M € {N, N + 1} we have that
cy # 0 mod p by Corollary 3.5 and the assumption that N < £ —2. Furthermore,
x1 and zo are not algebraic over F,. Thus the identity Lemma 3.3 part 3) gives
us the non-vanishing of the first 2 x 2 minor of the vectors in 6, which proves the
claimed independence. So by applying to (5) the diagonal transformation that

divides the first coordinate by z?*! and the second by 22!, we deduce that
the two vectors
(a2 a7 1)

and
(War(wg, =1), War(=1, 1), =War(w1, 22)) =: (w1, ws, w3)

are linearly independent. So by Lemma 3.6 we get that
(2M + 1) Hp(x) < Hye(yz M1 + HE™ (wy, we, ws)
But now the inequality
HE™ (wy, wy, ws) < M - Hg ()

follows immediately from the non-archimedean triangle inequality. So we indeed
get
(M + 1) Hg () < Hyg(yo™ 271,

completing the proof. O

Define
Sol(G) = {(w1,72) € G\ G 1 2y + 29 = 1}

and

Prim-Sol(G) := {(z1,22) € G\ G? : &1 + x5 = 1}.
It is easily seen that Prim-Sol(G) C Sol(G). Finally define

S :={v € Mg : there is (z1,22) € G with v(z1) # 0 or v(zs) # 0}.

The set S is clearly finite. Write s := [S|, S = {v1,...,vs}. Then we have a
homomorphism ¢ : G — Z* x Z° C R® x R® defined by sending (g1, ¢g2) € G to

(v1(g1) deg vy, ..., vs(g1) degus, v1(g2) deg vy, . .., vs(go) deguvy).

Note that ¢(G) is a subgroup of Z* x Z° of rank r.

Let u,v € Sol(G) be such that ¢(u) = ¢(v). Suppose that u # v. Then
Lemma 3.7 implies that Hg(u) < 0. Hence by Lemma 2.1 part 2) it follows that
uw and thus v are in G**. This implies that the restriction of ¢ to Sol(G) is
injective. In particular the restriction of ¢ to Prim-Sol(G) is injective. We now
call § := ¢(Sol(G)) and PS := ¢(Prim-Sol(G)). To prove Theorem 1.2 it suffices
to bound the cardinality of PS.

I2
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Let || - || be the norm on R x R* that is the average of the || - ||; norms on R*.
More precisely, we define for u = (uy, uz) € R® x R®

1
llull = 5 ([l + [[wal]).

We now state the most important properties of S.

Lemma 3.9. The set S C Z° x Z° has the following properties:

1) For any two distinct u,v € S, we have that ||u|| < 2|Jv — ul|.

2) For any two distinct u,v € S and any positive integer N such that N < & —2,
there is M € {N, N + 1} such that ||u]| < (2M + 1)ul|.

3)pSCS.

]b[il”v -

Proof. Let x = (x1,x2) € G. By construction we have
lp(@)l| = HR™ (1, 21) + H™ (1, 22).
Note the basic inequalities
HIE™ (a1, 22) < HY (L) + Y™ (Lna) < 2HE (01, 22)

It is now clear that Lemma 3.7 implies part 1) and Lemma 3.8 implies part 2).
Finally, part 3) is due to the action of the Frobenius operator. 0

Denote by V' the real span of ¢(G). Then V is an r-dimensional vector space
over R. We will keep writing || - || for the restriction of || - || to V.

Recall that our goal is to bound |PS|. We sketch the ideas behind our strategy
here. Let us first describe the strategy in characteristic 0 as used in [1] and [2].
In their work the set S satisfies part 1) of Lemma 3.9 and part 2) of Lemma 3.9
without the condition N < £ —2.

To finish the proof, they subdivide the vector space V' in B" cones for some
absolute constant B. In each cone one can use part 1) of Lemma 3.9 to show that
two distinct points u,v € S are not too close. But part 2) of Lemma 3.9 shows
that inside the same cone two points u,v € S can not be too far apart. Together
with a lower bound for the height of w,v € S, this proves that there are at most
finitely many points u € S, say A, in each cone. Hence we get an upper bound of
the shape A- B".

Now we describe how to modify this to characteristic p. Again we subdivide V'
in B” cones for some absolute constant B. From now on we only consider points
u € PS inside a fixed cone C. Our goal is to show that there are at most A points
u € PSNC, where A is an absolute constant. It follows that then all points
v € SN C are of the shape v = p*u for u € PS and k € Zx.

Part 1) of Lemma 3.9 tells us that two distinct points u,v € PS are not too
close. Using part 3) of Lemma 3.9 we can multiply two points u,v € PS with a
power of p in such a way that the then obtained u',v" € S satisfy 1 < H‘“,l‘l N2
Then we are in the position to apply part 2) of Lemma 3.9, which shows that ||«/||
and ||v'|| are not too far apart. This allows us to deduce that PS N C contains at
most A points.

The following lemma subdivides the vector space V' in B” cones for some ab-
solute constant B.

13
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Lemma 3.10. Given a positive real number 0, one can find a set £ C {u €V :
[|ul| = 1} satisfying

DI0E<A+3),

2) for all 0 # w € V' there exists ¢ € € satisfying || — el < 0.

Proof. See Lemma 6.3.4 in [2], which is an improvement of Corollary 3.8 in [1]. O

Let 6 € (0, %) be a parameter and fix a corresponding choice of a set & satisfying
the above properties. Given e € £, we define the cone

< 9}, PS, =S, NPS.

Se:—{ueS:‘L—e

Fix e € £. We proceed to bound |[PS.|. We start by deducing a so-called gap
principle from part 1) of Lemma 3.9.

Lemma 3.11. Let uy,us be distinct elements of Se, with ||ua|| > |Jui||. Then
[lual| > 35511l

Proof. Write \; := ||u;]| for i = 1,2. Then we have u; = A\;e+uj} where ||uj|] < 0X;,
by definition of S,. Part 1) of Lemma 3.9 gives

)\1 S 2||()\2 — )\1)6 + (u/2 — UII)H S 2()\2 - )\1) + Q(AQ + )\1),

and after dividing by A; we get that

This can be rewritten as ‘;’—H < 22 O
+6 A1

From part 2) of Lemma 3.9 we can deduce the following crucial Lemma.

Lemma 3.12. Let uy, uy be distinct elements of S.. Suppose that ”qu %p - 3.

Then HUQH < 190

Proof. We follow the proof of Lemma 6.4.9 of [2] part (ii) with a few modifications.
For completeness we write out the full proof.

Again define \; = ||u;|| and «} = u; — Ae, for i = 1,2. Assume that /\2 DA
Let N be the positive integer with 2N +1 < ’\2 < 2N+3. Then2N+1 < 3p 3 and
hence N < £—2. Applying part 2) of Lemma 3.9 gives an integer M € {N, N+1}
satisfying

AL <

M (/\2 (2M + 1)Ay)e +uy — (2M + Duy|.

Furthermore, we have that
Ao — (2M + 1)A] < 2N

and M > 3 from the assumption Ay > 2)\;. Hence

2
2
< — = .

14



ON THE EQUATION XI + Xz = I IN FINITELY GENERATED GROUPS IN POSITIVE CHARACTERISTIC

It follows that )\1 < ﬁ. Now observe that for any non-negative integer h the
elements p"uy, p "ug of S, satisfy all the assumptions made so far. We conclude that
also p"\; < - 90 for every non-negative integer h, which implies that ||u;|| = 0.

This contradicts the fact that u; € S, completing the proof. O

Remark 3.13. In characteristic O the analogue of Lemma 3.12 holds only when
both uy,uy have norms at least — 90 Then one deals with the remaining points
in S, by using the analogue of part 1) of Lemma 3.9, together with a separate
argument to deal with the “very small” solutions. In characteristic p, it is because
of the additional tool givcn by the action of Frobenius that the condition that

uy, up have norm at least 99 has disappeared.

Assume without loss of generality that PS. is not empty, and fix a choice of
uy € PS. with ||ug|| minimal. For any u € PS,, denote by k(u) the smallest
non-negative integer such that pk““l)u\‘\‘uo\\ < p and denote \(u) := ,C(TU)“‘I‘LO”

We define PS.(1) := {u € PS. : AMu) < /p} and PS.(2) := {u € PS.
A(u) > \/p}. Since we may assume p > 7 by Corollary 3.2, we have 23> \/_

Lemma 3.14. 1) Let i € {1,2} and let uq, us be distinct elements of PS.(i) with
AMuz) > Mug). Then A(uz) > g+§/\(u1) and Muz) < 2\ (uy).

2) MPS.(2)) C [5.p).

3) X is an injective map on PS..

Proof. 1) Let u := pFu2)=kwiy, ol = g if k(ug) > k(uy) and o) = uy, uh :=
pF) =Ry, if k(uy) < k(up). Now apply Lemma 14 and Lemma 15 to u),u)
instead of uy, us. We stress that u), ujy are distinct elements of S, since uy, uy are
distinct elements of PS,(7).

2) This follows from Lemma 3.12 applied to the pair (uy, p*(“1)*1ug) for each u; in
PS.(2).

3) Use part 1) and the fact that 3% > 1 for 6 € (0, §). O

Proof of Theorem 1.2. By part 3) of Lemma 3.14 it suffices to bound |[A(PS.)].
By part 1) and 2) of Lemma 3.14 it will follow that we can bound |A(PS.)| purely
in terms of #: thus collecting all the bounds for e varying in £ we obtain a bound
depending only on r. We now give all the details.
For any 6 € (0, §) we have
3-46 26

> TS
2+0
Then we find that [A\(PS.(1))] is at most the biggest n such that

26\""" 10
- < =
19 -0
and similarly for [A(PS.(2))|. We conclude that

log(+)

|PSe| <2+2—3
log

5
Multiplying by |€] gives that for every 6 € (0, é)

) (1, 2)"

log(23)

733|§2<1+

15
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So letting 6 increase to ;1) we obtain

log(90)
log(35)

19

|PS| <2 (1 + ) 19" < 31-19".

This completes the proof of Theorem 1.2. O

4 Proof of Theorem 1.1.1

First suppose that G and K are finitely generated. Before we can start with the
proof of Theorem 1.1, we will rephrase Theorem 1.2. Recall that we write F, for
the algebraic closure of IF,, in K.

Then Theorem 1.2 implies that there is a finite subset 7" of G with |T| < 31-19"
such that any solution of

T+ xy=1,(21,29) € G

with 2, ¢ F, and x, ¢ F, satisfies (x1,25) = (v,6)” for some t € Z, and
(v,0) €T
Now let (z1,22) € G be a solution to

axy + bxy = 1.

If axy € Fy or by € Fy, it follows that both az, € F, and bz, € I, which implies
that (a,b)"! € G. This contradicts the condition on (a,b) in Theorem 1.1.

Hence ax, ¢ F, and bzy ¢ F,. Define G’ to be the group generated by G and
the tuple (a,b). Then the rank of G’ is at most r + 1. Let ' C G’ be as above, so
|T| <31-19""!. We can write

(azy,bxa) = (7, 5)pt

with ¢ € Zsq and (,0) € T. Since T' C G’, we can write
(7,0) = (a"y1,b"ys)
with k € Z and (y1,y2) € G. This means that
(azy, bas) = (ayy, Pan)?',

which implies (a,b)*”'~' € G. If kp! — 1 is co-prime to p, we have a contradiction
with the condition on (a,b) in Theorem 1.1. But p can only divide kp' —1if t = 0.
Then we find immediately that there are at most |T| < 31 - 19" solutions as
desired.

We still need to deal with the case that K is an arbitrary field of characteristic
p and G is a subgroup of K* x K* with dimg G ®z Q = r finite. Suppose that
azy + bry = 1 has more than 31 - 19"*! solutions (z1,23) € G. Then we can
replace G by a finitely generated subgroup of G with the same property. We can
also replace K by a subfield, finitely generated over its prime field, containing the
coordinates of the new G and a,b. This gives the desired contradiction.
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On the 22nd October of 2018 Professor Felipe Voloch brought to our attention
the unpublished master thesis of Yi-Chih Chiu, written under the supervision of
Professor Ki-Seng Tan. In this work, Chiu establishes a special case of our main
theorems [4, Theorem 1.1, Theorem 1.2]. We shall begin by explaining his result,
and we will next compare it to our result.

Let p be a prime number. For a field extension K of F, with transcendence
degree equal to 1, we let k& be the algebraic closure of F,, in K. Denote by Qx the
set of valuations of K. Let S be a finite subset of Q and fix o, 8 € K*. The
following theorem is proven in Chiu’s master thesis.

Theorem 1. The S-unit equation to be solved in x,y € OF
ar+ Py =1,

has at most 3 - 725172 pairwise inequivalent non-trivial solutions if o, f € O%. If
instead o, B are not both in OF, then it has at most 39721812 non-trivial solutions.

Here a solution (x,y) is called trivial if €2 € k. Two solutions (z1, y1), (22, y2)
are said to be equivalent if there exists n € Z>( with

(Oéﬂh)pn = Xy, (/ﬁh)pn =pPy2 or ((1962)17” = 0y, (ﬁyz)pn = Py

This result is a special case with slightly better constants of our theorems that we
state now for the reader’s convenience, see [4, Theorem 1.1, Theorem 1.2].

Theorem 2. Let K be a field of characteristic p > 0. Take o, f € K* and let G
be a finitely generated subgroup of K* x K* of rank r := dimg G ® Q. Then the
equation

az + Py =1,
to be solved in (x,y) € G, has at most 31 - 19" pairwise inequivalent non-trivial

solutions if (o, B)" € G for some n > 0. If instead (o, B)" & G for all n > 0, then
it has at most 31 - 19"T! non-trivial solutions.

Note that Theorem 2 applies to any finitely generated subgroup in any field of
characteristic p. In contrast, Chiu’s theorem applies only to the case of S-units of
fields of transcendence degree 1 (with some care Chiu’s theorem can be extended
to S-units of function fields of projective varieties).

21



PETER KOYMANS, CARLO PAGANO

The reason for this difference in generality comes from the fact that Chiu’s
work is an adaptation of Evertse’s work [3] to characteristic p. Our work is instead
an adaptation of the work of Beukers and Schlickewei [1] to characteristic p. In
both works [1, 3], there is a key use of a certain set of identities coming from
hypergeometric functions, see [4, Lemma 3.3, Lemma 3.4]. In characteristic p
these identities can be used only in a limited range, see [2, Proposition 2] and [4,
Corollary 3.5] respectively.

Correspondingly, the solutions to the unit equations need to be counted only
up to equivalence. Omne of the most important steps is to use this equivalence
relation in such a way that one is inside this limited range. It is this step that
allows one to obtain an upper bound that is independent of p. The reader can find
this step in the two papers respectively at [2, Lemma 4] and at [4, Lemma 3.9].
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4-RANKS AND THE GENERAL MODEL FOR STATISTICS OF RAY
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ABSTRACT. We use homological algebra to extend the Cohen—Lenstra heuristics to the set-
ting of ray class groups of imaginary quadratic number fields, viewed as exact sequences of
Galois modules. By asymptotically estimating the mixed moments governing the distribu-
tion of a cohomology map, we prove these conjectures in the case of 4-ranks.
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4. Special divisors and 4-rank 46
5. Main theorems on the 2-part of ray class sequences 50
6. Main theorems on special divisors 54
7. From the mixed moments to the distribution 63
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1. INTRODUCTION

Let ¢ be a positive odd square-free integer. Partition the set of its prime divisors, S, into
S1 U Ss, where if [ € S; then [ = i (mod 4). For an imaginary quadratic number field K,
denote by CI(K ¢) the ray class group of K of conductor ¢, and by D(K) the discriminant
of K. Let j; and j be two non-negative integers. The following theorem will be shown to
be a special case of the present work.

Theorem 1.1. Consider all imaginary quadratic number fields K such that D(K) = 1 (mod 4)
and Ok /¢ =ying | |1 Fiz. When such K are ordered by the size of their discriminants the
fraction of them that satisfy

rky(CU(K)) = ji1, tky(CUK, ) = jo

approaches

15(2)  #{p € Homg, (F)', F§™) : tk(p) = #S — (jo — j1)}
15, (2)2291 # Homg, (F}', F5) '

For M € Z>; and s € Z=; U {o0}, ns(M) denotes [ [}_,(1— M 7). For the statement in full
generality see Theorem 5.4.

Date: November 7, 2018.
2010 Mathematics Subject Classification. 11R65, 11R29, 11R11, 11R45.
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The special case ¢ = 1 of Theorem 1.1 recovers a result of Fouvry and Kliiners [7, Cor.
1] (in the subfamily of imaginary quadratic number fields above). The theorem of Fouvry
and Kliiners on 4-ranks is one of the strongest pieces of evidence for the heuristic of Cohen—
Lenstra and Gerth about the distribution of the p-Sylow subgroup of the class group of an
imaginary quadratic number field.

Indeed, for odd primes p, Cohen and Lenstra [4] constructed a heuristic model to predict
the outcome of any statistic on the p-Sylow of the class group of imaginary quadratic number
fields. For every prime p they equipped the set of isomorphism classes of abelian p-groups,
%, with the only probability measure that gives to each abelian p-group G a weight inversely
proportional to # Aut(G). This measure is now often called the Cohen—Lenstra measure on
¢,, and denoted by pcr. Their heuristic model, for odd primes p, consisted in predicting
the equidistribution of CI(K)[p*] in ¥, as K ranges through natural families of imaginary
quadratic number fields. Later, Gerth [9] adapted this heuristic model for p = 2. His idea was
that the only obstruction for C1(K)[2%] to behave like a random abelian 2-group in the sense
of Cohen—Lenstra comes from Cl(K)[2]; therefore his heuristic model is that 2 C1(K)[2%]
behaves like a random abelian 2-group. The result of Fouvry and Kliiners can then be
formulated by saying that, consistently with Gerth’s conjecture, the 2-torsion of 2 Cl(K)
behaves like the 2-torsion of a random abelian 2-group in the sense of Cohen—Lenstra.

Before the present paper, no analogue of any of these heuristics has been proposed for
ray class groups. Our second main achievement, aside from the proof of Theorem 1.1, is
to provide an extension of the Cohen—Lenstra and Gerth heuristics for ray class groups.
We obtain this by means of two innovations, one of a rather conceptual nature and one
of a technical nature. Namely we first introduce the novel viewpoint of using homological
algebra to weight the possible occurrences of ray class groups, as explained in §2. Secondly, to
overcome the difficulties imposed by p = 2, we introduce in §3 the new notion of embeddable
extensions (see Definition 3.2). This notion allows us to take care of the additional structure
of this case, furnishing a natural way to define the adjusted weights for the 2-part of ray class
groups. Theorem 1.1 will then be a strong evidence supporting our new heuristic for ray class
groups and precisely in the case where our heuristic has the most demanding algebraic shape.
The agreement of Theorem 1.1 and our heuristic at p = 2 is established in Proposition 3.5.

With our model we can provide the conjectural analogue of Theorem 1.1 for all odd primes
p. Partition S into Sy U ... U S, 1, where [ € S; if I = ¢ (mod p).

Conjecture 1.2. Let p be an odd prime. Consider all imaginary quadratic number fields
K having the property Or/c =ying | [jcsFiz. When such K are ordered by the size of their
discriminants the fraction of them that satisfy

rk,(CI(K)) = j1, 1k, (CL(K, c)) = j2
approaches
No(p)  #{ip € Homg, (F F) ™) : 1k(p) = #81 + #8,11 — (2 — 1)}
15, (p)*p # Homg, (F3!, FY )

For the statement in the general case see Conjecture 2.10, in particular, in the main body
of the paper, we shall allow any admissible ring structure for 0 /c. From our model in its
full generality we shall derive conjectural formulas for the average size of the p-torsion of ray
class groups of imaginary quadratic number fields.
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Conjecture 1.3. Let p be an odd prime. The average value of # CI(K, ¢)[p] as K ranges over
imaginary quadratic number fields with ged(D(K),c) = 1 and ordered by their discriminant

18:
(1)
il prime: lle1=1(mod p)} (1 L (p + 1)#“ prime: ljel=1 or —1(mod P”)

if p? does not divide c,
(2)

p#{l prime: I|c,l=1(mod p)}+1 (1 + p(p'; 1)#{1 prime: l|c,/=1 or —1(mod p)})
if p* divides c.

For p = 3 this conjecture was recently proved by Varma [18] using geometry of numbers.
In [18, §1] she asked whether one can formulate an extension of the Cohen-Lenstra heuristic
that explains her result. Our model for ray class groups settles this for imaginary quadratic
number fields (for the full comparison with Varma’s result see §2.2).

Our main theorems and conjectures are not merely about the group CI(K,c) but also
about the entire exact sequence naturally attached to it:

*
1— M — Cl(K,¢) - CI(K) — 1.
Ok
For simplicity, in this section we will continue to assume that all the primes in S are inert
in K. Then one can show that there is a long exact sequence whose first terms are

1= () 21— ooz - @aum)i =¥ 11 E
((aggc;*)z P2

To obtain the last map one chooses any identification between + and HZES ]F% via
12

(“exp=)

an identification of the rings Ok /c and [[,.gFp. The resulting set of maps is an orbit

under Autyiyg (] [,cq Fi2), acting by post-composition. But Autyg(] [,cq Fi2) acts trivially on
*2

¥ L. . .
HleS3 =7, 50 one has a canonical identification.
12

%2
Let Y be a subspace of | [, S %ﬁ; and j a non-negative integer. In this setting we manage to
s 5
control the statistical distribution of (#2 C1(K))[2], Im(d2(K)), thus providing a considerable
refinement of Theorem 1.1. Our result is as follows.

Theorem 1.4. Consider all imaginary quadratic number fields K such that D(K) = 1 (mod 4)
and O /¢ Zing | |1cgFrz. When such K are ordered by the size of their discriminants the
fraction of them that satisfy

(2CI(K))[2] = F), Tm(5(K)) = ¥
approaches
1 (2) # Epig, (F}, Y)
12 g Home, (7 T, 5)
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This means that (#(2Cl(K))[2],Im(d2(K))) behaves like (#G[2],Im(0)), where G is a
random abelian 2-group in the Cohen-Lenstra sense, and § : G[2] — F¥™ is a random map.
For the statement in full generality see Theorem 5.2. We show in §3 that this result is also
predicted by our heuristic model. Our model enables us to provide a conjectural analogue
of Theorem 1.4 for all odd p. Its formulation is in Conjecture 2.8.

Theorem 1.4 determines the joint distribution of the pair (#(2 Cl(K))[2], Im(d2(K))).
Theorem [7, Cor.1] of Fouvry and Kliiners determines the distribution of the first component,
#(2CI(K))[2] via the use of another result of the two authors, [8, Theorem 3|, where they
obtained asymptotics for all moments of #(2 C1(K))[2]. A surprising feature of our work is
that we establish the joint distribution of the pair (#(2 C1(K))[2], Im(02(K))) by means of
the moment-method, despite the fact that Im(d2(K)) is not a number. Although the general
philosophy of using moments to study distributions is standard in the literature related to
the Cohen—Lenstra heuristics (see, for example, [22]), we stress that no object like the image
of the §-map has been treated in the subject. It is instructive to see how we incorporate
the image-data into the Fouvry—Kliiners method. We do this by introducing for every real
character y : ]_[le S IF‘;;Z — R*, the random variable

my (02(K)) = #ker(x(62(K)))-
To know the pair (#(2 Cl(K))[2], Im(d2(K))) is equivalent to knowing (m,(d2(K))),. How-
ever, the advantage is that the latter is a numerical vector and therefore one can hope to
apply the method of moments to control its distribution. This is precisely what we achieve
in Theorem 5.6. The expressions that appear during the proof of Theorem 5.6 are of the

shape

> [ImG:@(v=D)),

D<X x
where D ranges over all positive square-free integers with D = 3 (mod 4) and y ranges
over all real characters x : [[,.g, Fp — R*. As explained in §6.1, the additional complex-
ity of these expressions compared to the classical case settled by Fouvry and Kliiners, is
tempered by the fact that, with our heuristic model for ray class groups, we already have
a candidate main term. In particular, the shape of its expression suggests a way to sub-
divide the sum, with the benefit of hindsight, in many smaller sub-sums. For each of these
sub-sums it turns out that the techniques of Fouvry and Kliiners are applicable with only
minor modifications. After proving Theorem 5.6 we turn our attention to the distribution
of (#(2 CU(K))[2], Im(d2(K))), which we reconstruct from the mixed moments by following
an argument of Heath-Brown [10].

We stress that Theorem 1.4 is stronger than Theorem 1.1. Here the finer information
(which is the image of the d-map), is obtained precisely owing to the fact that we use ring
identifications rather than merely group identifications'. Using the latter we could have
studied only the size of Im(d2(K)), which is precisely what occurs in Theorem 1.1. On the
other hand, it is important to note that the techniques employed in the proof of Theorem 1.4
are not applicable in studying directly the moments of the isolated quantity #(2 C1(X ¢))[2]:
we can access the distribution of the quantity #(2 Cl(X, c))[2] only by the moments of a
finer object, the J-map. This contrast reflects the fact that the natural algebraic structure
attached to the ray class group is the entire exact sequence naturally attached to it, rather
than just the isolated group CI(K,c). It is precisely this phenomenon that leads us to

IWe thank Hendrik Lenstra for having suggested this.
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formulate a general heuristic for ray class sequences of conductor ¢. In this framework,
Theorem 1.4 gives compelling evidence that our heuristic model predicts correct answers
also when it is challenged to produce the outcome of statistics about the ray class sequence,
and not only when, less directly, one isolates the group CI(K, ¢).

Encouraged by this corroboration, we formulate our heuristic to predict the outcome of any
statistical question about the p-part of the ray class sequence, viewed as an exact sequence
of Galois modules. A positive side effect of this enhanced generality is the consequent logical
simplification of our conjectural framework: our heuristic is based on a simple unifying
principle, which, if true, implies at once all our conjectures. This heuristic principle is stated
in §2 for an odd prime p, and in §3 for p = 2.

Let p be an odd prime and G a finite abelian p-group. The following is an attractive and
easy example of the conjectural conclusions that are available in this new model:

Conjecture 1.5. Consider all imaginary quadratic number fields K having the property
that O /c =ing [ [1eg Fiz. When such K are ordered by the size of their discriminants, the
fraction of them having the properties that the p-part of the ray class sequence of modulus ¢
splits and

CI(K)[pJO] ;ab.gr. G7
approaches

1 (P) 1
# Autahgr. (G) # Honlab4gr.(G> Hles,,,l Fl*z)

1.1. Comparison with the literature. The present work sits in an active area of research
focused on extending the classical Cohen—Lenstra heuristics to other interesting arithmetical
objects and on establishing the correctness of these statistical models in cases where an
‘analytically-friendly’ description of the problem is available. Developments along this line
of research can be found in the very recent work by Wood [21], which provides a heuristic
for the average number of unramified G-extensions of a quadratic number field for any
finite group G: the Cohen-Lenstra heuristics are recovered by taking G to be an abelian
group. It would be interesting to reach the generality of both the present paper and [21], by
considering G-extensions with prescribed ramification data. The evidence provided in [21] is
over function fields, by means of the approach of Ellenberg, Venkatesh and Westerland [6]. In
a recent preprint, Alberts and Klys [1] offered evidence for the heuristics in Wood’s work [21]
over number fields using the approach of Fouvry and Kliiners. It is interesting to note that
in a previous work Klys [14] extended the work of Fouvry and Kliiners to the p-torsion of
cyclic degree p extensions. These last two examples, together with the present work, show
the remarkable versatility of the method used in [8] and pioneered (in the context of Selmer
groups) by Heath-Brown [10].

The case of narrow class groups was investigated by Bhargava and Varma [3] and by
Dummit and Voight [5]. The latter work provides, among other things, a conjectural formula
for the average size of the 2-torsion of narrow class groups among the family of S,-number
fields, for odd n. For n = 3, this was a theorem of Bhargava and Varma [3].

Very recently, Jordan, Klagsbrun, Poonen, Skinner and Zaytman [13] made a conjecture for
the distribution of the p-torsion of K-groups of real and imaginary quadratic number fields.
Building on the recent improvement of the work of Bhargava, Shankar and Tsimerman [2],
they established their conjecture for the average size of the 3-torsion. Incidentally, the
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work [2] is also employed by Varma [18] on the average 3-torsion of ray class groups, which
is placed in a general conjectural framework by the present paper.

Despite this rich context of developments, the present paper is, to the best of our knowl-
edge, the first one to propose a heuristic model for the ray class sequence of imaginary
quadratic number fields and to prove its correctness for the pair (#(2 C1(K))[2], Im(d2(K))),
establishing, as a corollary, the joint distribution of the 4-ranks of C1(K) and CI(K, c).

1.2. Organization of the material. The remainder of this paper is organized as follows:
In §2 we explain our heuristic model for the distribution of the p-part of ray class sequences
of imaginary quadratic number fields, for odd primes p. We draw several conjectures from
this heuristic principle and verify its consistency with the theorems of Varma [18] in the
imaginary quadratic case.

In §3 we examine the case p = 2. This case requires some additional work to isolate
the ‘random’ part of the 2-Sylow of the ray class sequences of imaginary quadratic number
fields. This additional difficulty arises already for the ordinary class group as can be seen
in the work of Gerth [9]. However, for ray class sequences overcoming such difficulties is
much more intricate due to the more articulate underlying algebraic structures. This will
allow us to formulate a number of predictions that will be proved in §§5-7. A key step
in these proofs is the reformulation of the problem about 4-ranks into a purely analytic
problem about mixed moments. For this we introduce the notion of special divisors in §4
and certain related statistical questions that will be subsequently answered. This statistic is
a special case of a ray class group statistic, as subsequently established in §5. Therefore the
material of §3 would implicitly provide a heuristic for it. Nevertheless, in §4 we present the
problem and the heuristic in a direct way using the language of special divisors. This has
the advantage that §4, Theorems 5.6-5.7, §6 and §7 are mostly analytic in nature and can
be read independently of the algebraic considerations in §2 and §3.

In §5 we state the main theorems about the 2-part of the ray class sequences and reduce
their proof so as to establish the predictions in §4. The section ends with the statement of
the corresponding main theorems on special divisors. In §6 we prove the main theorem on
mixed moments attached to the maps on special divisors introduced in §4. Finally, in §7 we
reconstruct the distribution from the mixed moments, concluding the proof of all theorems
stated in §5.

Notation. The symbol D(K') will always refer to the discriminant of a number field K. Let
us furthermore denote

F = {K imaginary quadratic number field}.

Acknowledgements. We are very grateful to Hendrik Lenstra for several insightful discus-
sions and for useful feedback during the course of this project. In particular, we thank him
for suggesting to consider the first terms of the ray class sequences only up to ring automor-
phisms, which turned out to be a natural level of greater generality where we could prove our
main theorems on 4-ranks. We thank Alex Bartel for many stimulating discussions about
our work, as well as organizing an inspiring conference on the Cohen—Lenstra heuristics in
Warwick in July 2016, where this project started. We also wish to thank Djordjo Milovic
and Peter Koymans for useful discussions and Ila Varma and Peter Stevenhagen for prof-
itable feedback. Furthermore, we thank Alex Bartel, Joseph Gunther and Peter Koymans
for helpful remarks on earlier versions of this paper.
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2. HEURISTICS AND CONJECTURES FOR p ODD

Let p be an odd prime number and ¢ a positive integer. Denote by Cy a group with 2
elements and denote by 7 its generator. In this section we provide a heuristic model that
predicts the statistical behavior of the exact sequence of Z,[Cs]-modules attached to the ray
class group of conductor ¢ of an imaginary quadratic number field K. Denote it by

. (ﬁK/C)* 0 0 o0
Sy(E) = (1= =5 l] = QUK 7] = CUE)[p7] = 1), (2.1)
where the Ch-action comes from the natural action of Gal(K/Q) on each term of the sequence.
The reader is referred to [15, §IV] for related background material. We shall call S,(K) the p-
part of the ray class sequence of conductor ¢. We shall henceforth ignore the fields K = Q(i)
and K = Q(+/=3), to ensure that 0} = (—1). Owing to p # 2 we furthermore have
(O /e)* [{=1)[p*] = (Ok/c)*[p™], thus allowing us to write

Sp(K) := (1 = (Ok/c)*[p”] — CUK, )[p”] — CUK)[p*] = 1).

Denote by ¥, a set of representatives of isomorphism classes of finite abelian p-groups,
viewed as Cy-modules under the action of —Id and call G,(K) the unique representative
of CI(K)[p™] in %,. Any family of imaginary quadratic fields can be partitioned in finitely
many subfamilies where the isomorphism class of the ring O /c is fixed, by imposing finitely
many congruence conditions on the discriminants. Therefore we can always assume that
(Ok/c)* has been fixed as the unit group of some ring that is independent of K.

Definition 2.1. Let K, ¢ be as above and R a finite commutative ring. We shall say that
K is of type R if O /char(R) = R as rings. With this definition in mind let us denote

Z(R) := {K imaginary quadratic number field of type R}.

From now on we will assume that R is of the form R := O, /c, where O, is the integral
closure of H”C Z;in o = ]_[”C E;, with F; being an etale Q;-algebra of degree 2. Under this
assumption, a positive fraction of all discriminants lies in % (R).

Suppose K is of type R. Then (Ok/c)* can be identified with R* via any restriction of a
ring isomorphism, that is via any element of Isom,in (O /¢, R). Furthermore, we can identify
CI(K)[p™] and G,(K) via any element of Isom,y, . (C1(K)[p*], G,(K)). Therefore applying
Isomying (Ok /¢, R) % Isomyy, ¢ (C1(K)[p™], Gp(K)) to S,(K), we obtain a unique orbit

Ocp(K) € Exty, ) (Gp(K), B*[p™])/(Autring (R) x Autap g (Gp(K)))-

We refer the reader to [19, §3] for definition and properties of Extg(A, B), where S is a ring
and A, B are S-modules. For the remainder of the paper, given S-modules A, B,C, A’, B’
and C’, we call a commutative diagram of S-modules, a diagram of maps of S-modules

0 — Bl—> Cl g A1—>0

f1 g1
Vi L 13
0 g BQ i CQ i A2 g 07
fa g2
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with 9 0 fi = fa oty and 930 g1 = g2 092, Note that CI(K1)[p™] =ap g CL(K2)[p*] and
Ocp(K1) = O, p(K>) if and only if there is a commutative diagram of Z,[Cs| modules
0 — (Ok /)" [p"] — CUKy, o[p"] — CUK)[p*] -0
X L o2 1 o3
0 = (Ok,/c)*[p"] = ClUK20)[p”] — CUK;)[p*] -0,

with ¢ being the restriction of a ring isomorphism and @3 being an isomorphism of abelian

groups.

Definition 2.2. Define .7,(R) as the set of equivalence classes of pairs (G, ¢), where
Ge%9,, e Exty c,)(G,R*[p”])

under the following equivalence relation: two pairs (G, 0;), (G, 05) are identified if Gy = G4
and #; and 6, are in the same Autyi,g(R) X Autyp, g (G1)-orbit.

Let us denote by %(R) the set of pairs (G, 6) where G € 4, and 0 € Exty, (c,)(G, R*[p*]),
thus bringing into play the quotient map 7 : %(R) — Z,(R). We are interested in studying
the distribution of S,(K') given by the pair

K — S)(K) := (Gy(K), Ocp(K)) € S(R).

Definition 2.3. Let picr, be the unique probability measure on ¢, which gives to each abelian
p-group G a weight inversely proportional to the size of the automorphism group of G.

This measure was introduced by Cohen and Lenstra in [4] to predict the distribution of
Gp(K), the first component of S} (/). We shall introduce a measure on .%,(R) that enables
us to predict the joint distribution of the vector S(K’). Consider the discrete o-algebra on

both 5’;,/(}?)7 Zp(R) and equip %(R) with the following measure,

~ toL(G)
weq((G, 0
/L q(( )) #EXth Cz (G R [ ])
Let figeq 1= Ta(fiseq) be the pushforward measure of [iseq on .7,(R) via m. It is evident

that fiseq and piseq are probability measures. We now formulate a heuristic which roughly
states that ray class sequences equidistribute within the set of isomorphism classes of exact
sequences with respect to the measure figeq.

Heuristic assumption 2.4. For any ‘reasonable’ function f : .%,(R) — R we have

lim ${K e F(R): D) < X} Y] [(S,(K) = Y, S(S)usea(S
KeZ (R Se.7p(R)
| D( K)|<X

Letting f be the indicator function of a singleton yields the following statement.
Conjecture 2.5. For any S € .%,(R) we have

1oy PHE € F(R): | DK)| < X, Si(K) = 5} )
= #{K e Z(R):|D(K)| < X} = Hseq(5).

A special concrete example is the case of split sequences.
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Conjecture 2.6. The fraction of K € .Z(R), ordered by the size of their discriminant,
Jor which CI(K)[p*] Zaber. G and the p-part of the ray class sequence of modulus ¢ splits,
approaches
per(G)
# Homab.gn(Gv R* [p@],) ’
where (R*[p™])~ denotes the minus part of R*[p™]| under the action of Cs.
Indeed, Exty, [c,)(G, R*[p”]) = Exty, (G, (R*[p®])~) holds, hence Conjecture 2.6 is derived

from Conjecture 2.5 by recalling that for two finite abelian p-groups A, B, there is a non-
canonical isomorphism Exty (A, B) Zap.g. Homy, (A4, B).

2.1. Conjectures on the p-torsion. We next state certain consequences of Heuristic as-
sumption 2.4 regarding the p-torsion of the ray class sequences. Taking p-torsion in (2.1)
provides us with a long exact sequence whose first four terms are given by

) (Or/c)"
(Gx/e)*) )

where the map §,(K) is defined as follows: given a class « € CI(K)[p] pick a representative
ideal .# of x which is coprime to ¢, take a generator of #? and reduce it modulo ¢. The
choice of another representative does not change it modulo p-th powers. More generally,
taking p-torsion in any short exact sequence of Z,[C5]-modules

S:=(0—A—B—C—0)

S(E)[p] = (1 = (Ok/c)"[p] = CUK, c)[p] — CUK)[p]

provides us with a long exact sequence whose first terms are

() A
= |1— Alp] — B[p] — = —,
S[p] ( [p] = Blp] = CIp] pA),
where 0,,(5) is defined in the same way as explained above (in particular we have 0,(S,(K)) =
0p(K)). Thus this provides a map sending an element 6 of Extz, [¢,)(C, A) to a map §,(0) :
C[p] — A/pA. We will make repeatedly use of the following fact.

Proposition 2.7. The map sending 0 to 6,(0), from Exty, [c,)(C, A) to Homy, c,)(Clp], A/pA),
is a surjective group homomorphism.

The reader interested in a proof of Proposition 2.7, can look at the proof of the analogous,
but more complicated, Proposition 3.5: all the ingredients for the proof of Proposition 2.7
are contained in the proof of Proposition 3.5.

Next we shall define j := dimg, (CI(K)[p]) and apply any pair of identifications from
Isomg, (CI(K)[p], F}) x Isomyg(Ok/c, R). Therefore, we obtain a unique orbit of maps
¢ € Homg, (FJ, (%)_) under the action of GL;(F,) x Aut,,g(R). This is tantamount to
having a Aut,,g(R)-orbit of images in (%)’ of 0,(K’) via any of the previous identifications.
We denote this orbit by [Im(d,(K))]. The assignment K — [Im(d,(K))] attaches to each
imaginary quadratic field K € .Z.(R) a well-defined Aut,i,,(R)-orbit of vector sub-spaces of
(7) -

By Proposition 2.7, the map

EXth(G, R*[poo]—) N HOIHZP(G[])], (R*/R*p)—)

33



C. PAGANO AND E. SOFOS

induces, by pushforward, the counting probability measure from EthP(G, (R*[p™])7) to
Homgz, (G[p], (R*/R*)~). Therefore, fixing a sub-F,-space Y of ( R*p)’ and a non-negative
integer j, Heuristic assumption 2.4 supplies us w1th the following.

Conjecture 2.8. The proportion of K € Z (R) ordered by the size of their discriminant, for
which dimg, (CL(K)[p]) = j and [Im(6,(K))] is O(Y), the Autyyg(R)-orbit of Y, approaches

# Epig, (F,Y) - #0(Y)
# Homg, (F), (R*/R*)~)’

We will prove the analogous statement of this Conjecture 2.8 for p = 2 in Theorem 5.2. A
concrete special case is given by the following

pen(G € 9, - dimg, (G[p]) = J)

Conjecture 2.9. The proportion of K € F(R) ordered by the size of their discriminant,
for which dimg, (CY(K)[p]) = j and Cl(K, c)[p] splits as the direct sum of Cl(K)[p] and
(Ox/c)*[p], approaches

poL(G € 9, - dimg, (G[p]) = 7)

# Homg, (F}, (R*/R*)~)

More generally, as a cruder result, one derives a conjectural formula for the joint dis-
tribution of the p-rank of CI(K) and of CI(K,c), as follows. Fix jj,j2 two non-negative
integers.

Conjecture 2.10. As K wvaries among imaginary quadratic number fields of type R, the
proportion of them for which dimg, (C1(K)[p]) = j1 and dimg, (C1(K, ¢)[p]) = j» approaches

#lo By — (R/R™) :1k(p) = 1y (R7) — (2 — 1))}
# Homg, (FJ', (R*/R*)") '

The statements analogous to Conjectures 2.8 and 2.10 for p = 2 will be proved in Theo-
rem 5.3, with a more explicit version provided by Theorem 5.4.

e (G € 9, « dimg, (Glp]) = ji1)

2.2. Agreement with Varma’s results. In this section we make a certain choice for f
in Heuristic assumption 2.4 with the aim of stating conjectures for the average of p-torsion
of ray class groups. These statements were previously proved for p = 3 by Varma [18]. In
fact, the present paper partly began as an effort to fit her results into a general heuristic
framework.

For an element S € .%,(R), denote by M(S) the isomorphism class of the middle term
of the sequence corresponding to S. Similarly, for § € Extz,[c,) we denote by M (6) the
isomorphism class of the middle term of the equivalence class of sequences corresponding to
0. We will adopt the standard notation A for the dual of a finite abelian group A.

Proposition 2.11. We have

D #M(S)[plpsea(S) = #( 5;)+ (1 * #(R*p)_)'

Se7y(R)

Proof. By the definition of gy we obtain equality of the sum in our proposition with

poL(G)
2, # Ext, Cj] G, R*[p™]) 2, #M(6)[p]-

Ged, 0cExtz, [0y (G R*[p])
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Again by Proposition 2.7 we know that the map # — §,(#) is a surjective homomorphism
Extzp[cz](G, R*[p”]) — HOIan(G[p], (R*/R*")")

Thus we can rewrite the last sum as

pen(G #G[p]
Z # Homy, (G[p], R*/R*p Z #R* #Im( ) (2.2)

Ge9,

where the sum ;" is taken over ¢ in Homg (G[p], (R*/R*?)~). For each x in the dual of
(R*/R*)~ denote by 1, the indicator function of those ¢ for which x vanishes on the image
of 0. This allows us to recast (2.2) in the following manner,

Z # Homy,, (G = 5 ()R* R#p)~ Z #(R/R*) " #Gp] Z 1,(0),

Ge9, G(Rﬂ;@p)_
where ¢ varies over all elements in Homg, (G[p], ( %)‘). Exchanging the order of summation
yields
isettons, (G1pL( )7 ()
#(R/R) #Gpluci(G) ST :
G;% Z*\ # Homzp (G[p]7 (R*”) )

xe(£p) ™

The x-th summand in the last expression equals 1 if y is the trivial character and equals

#G%[p] otherwise, thus obtaining
R*/R*)™ —1
Ge% #(R*/R*) " #Gp] (1 + %)“CL(G)

Recalling the classical equality > ., #G[p]ucL(G) = 2 provides us with

R (R 24 (R R)™ 1) = (R R (L4 (1) ).

which concludes our proof. O

Combining Proposition 2.11 and Heuristic Assumption 2.4 offers the following.

Conjecture 2.12. The average value of # Cl(K, c)[p], as K ranges among imaginary qua-
dratic number fields of type R ordered by their discriminant, is given by

R* _
#(m) (1+#(55) )
In particular we can now derive conjectural formulas for the average size of CI(K ¢)[p]
with K varying in larger families.
We next consider here two cases: in §2.2.1 the case when all the primes dividing ¢ are

required to be unramified in K, and in §2.2.2 the case where K ranges through all discrimi-
nants. The letter [ will refer to a prime until the end of §2.
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2.2.1. Collecting unramified discriminants. Observe that if R correspond to a splitting type
where all the primes dividing ¢ are unramified in K, and if p? does not divide ¢ (so there is
no contribution to the p-part from p itself in case it divides ¢) then we have that

R* N+ R* N\~ ~ _
e _ o #{l prime: I|c, I=1(mod p)} wr(c)
#(gm) (14 #(5) ) =0 RS
where wg(c) is defined by

#{l prime : l|¢c, (I =1 (mod p) and [ is split in R) or (I = —1 (mod p) and [ is inert in R)}.

Therefore when we average over all 2°(¢) choices of R, using the binomial formula we get
p#{l prime: I|c,/=1(mod p)} (1 + (p + 1)#{l prime: []e,l=1 or —1(mod p)})

as average value of the size of CI(K, ¢)[p] when K ranges over imaginary quadratic number
fields unramified at all primes dividing ¢, as long as p? { ¢. Instead, if p? | ¢ there is an
additional contribution from the principal units modulo p? to #( g:p )+(1 + #(%)_), which
gives

p#{l prime: [|e,/=1(mod p)}+1 (1 + p(p ‘; 1
This leads to the Conjecture 1.3 that we stated in the introduction. The special case p = 3

of Conjecture 1.3 was recently proved by Varma [18, Th.2.(b)].

)#{l prime: [|¢,/=1 or —1(mod p)})

Theorem 2.13 (Varma). The average value of # Cl(K, ¢)[3] as K ranges over imaginary
quadratic number fields with ged(D(K),c) =1 is:
(1)

3#{l prime: l|¢,/=1(mod 3)}(1 + 2#{1 prime: Ilc, l¢3})

if 9 does not divide c.

(2)

3#{l prime: I|c,/=1(mod ’3)}+1(1 +3- 2#{[ prime: llc, 1#3})
if 9 divides c.

2.2.2. Collecting all discriminants. We now consider the case where K is allowed to ramify
at the primes dividing ¢. Now we have to evaluate

SH(E) (14 Jetn
where R varies between all the possible types of ring at ¢, and

w(R) := lim #{K e Z.(R) : |D(K)| < X}
T Xt #{Ke.Z:|DK)| <X}

First observe that if p* { ¢ then

#< R* )+ _ p#{l prime: l|c,/=1(mod p)}
R ’

while if p?|c then

#< R* )Jr _ #{l prime: ¢ l=1(mod p)}+1
rew) ~F '
Therefore we are left with computing the average of #(%)7, over all R. But this, as a
function of ¢, is multiplicative, thus we only have to deal with prime powers, i.e. ¢ = [" for
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some prime [ and some positive integer n. Clearly, the value of this average is 1 if [ is such
that ged(p, I3 — 1) = 1. Instead, if p|/?> — 1 the value of the average is

p+1
[+1 [+1 2 [+1
where the first contribution comes from the R ramified at [, and the second from the R
unramified at I. 2 Meanwhile, the value of the average for p = ¢ is
L
p+1 p+1’
where the first contribution comes from R ramified at p and the second from R unramified
at p. Lastly, we consider the case p*lc. Remarkably enough, one observes that the case
p = 3 acquires a special status in the computation of this average: indeed % of the imaginary
quadratics locally at 3 give the extension Q3((3)/Qs, and the result for them will be different
than for the % totally ramified that locally at 3 become Q3(v/3). Clearly for all p > 3 there
is no p-th root of unity in a quadratic extension of Q,, so, as we will see, in that case the
contribution from the two R ramified at p will be the same.
Assume p = 3. The contribution from powers of 3 starting from 9 is

9 3 9 15

sTsTiT T
where the first contribution is from Qs(Cs), the second from Qs(v/3) and the third from
unramified R. This gives a prediction that was previously verified by Varma [18, Th.1.(b)].

Theorem 2.14 (Varma). The average value of # CI(K, ¢)[3] as K ranges through imaginary
quadratic number fields ordered by their discriminant is:

(1) I
3#{1 prime: l|¢c,/=1(mod 3)} (1 (1 —))
" 1;[ Y

if 3 does not divide c,
(2) l
. _ . (8]
3#{1 prime: l|c,/=1(mod 3)} (1 4 = (1 + ))
7H I+1
if 3 divides ¢ but 9 does not divide c,
(3)

; _ 15 l
3#{1 prime: l|c,/l=1(mod 3)}+1 (1 4+ = (1 ))
L0

if 9 divides c.

Now assume that p > 3. Then we get
p v
—_— + s
p+1 p+1
where the first contribution is from the R ramified at p and the second from R unramified
at p. Collecting everything together we get the following prediction.

2R is said unramified at [ if R/IR does not contain non-zero nilpotents. Otherwise R is said ramified at [.
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Conjecture 2.15. Suppose p > 3. Then the average value of # CI(K,c)[p] as K ranges
over imaginary quadratic number fields ordered by their discriminant is:

(1)

; - -1 1
#{l prime: I|c,I=1(mod p)} (1 (1 P ))
P - H M I+1
l|e,pli2—1

if p does not divide c,

(2)
p#{l prime: I|c,/=1(mod p)} (1 + ( 2p ) H (1 + p— 11 ))

p+1

if p divides ¢ but p* does not divide c,

(3) )
) _ -1 1
#{l prime: [|c,/=1(mod p)} (1 + (p tp (1 + p ))
P pt1 ”CEL 2 1+1

if p* divides c.

It would be desirable to extend Varma’s arguments to prove Conjecture 2.12 for p = 3.
In particular, it would be informative to see how the proof distinguishes between the cases
R/3m = ﬁ@s({g)/z)’m and R/3m = ﬁ@3(\/§>/3m7 for m > 2.

3. HEURISTIC AND CONJECTURES FOR p = 2

Let ¢ be an odd positive integer. In this section we explain a heuristic model for the
2-part of ray class sequences of conductor ¢, in the case that no primes dividing ¢ ramify
in the fields. The additional difficulty with respect to the case of p odd, is that Cl1(K)[2*]
does not behave like a random 2-group (in the sense of Cohen and Lenstra), but instead
(as conjectured by Gerth [9]), 2 CI(K)[2*] is believed to behave like a random 2-group:
the behavior of CI(K)[2] is governed instead by genus theory which trivially excludes any
Cohen—Lenstra behavior for C1(K)[2*], when K varies among usual families of imaginary
quadratic number fields.

Our approach will be as follows: we will see that for ‘most’ discriminants of type R,
2 CI(K,c) is an extension of 2 C1(K') with a certain subgroup of %, which we will call Wkg.
Nevertheless, one cannot completely ignore the presence of the class group, since it leaves
an additional restriction on such extensions. Namely it forces them to belong to a certain
subgroup of the Ext, that we will call Ext. From there we will proceed in analogy with the
previous section replacing Ext with Ext. Using this heuristic we will offer several predictions
which are proved in the subsequent sections.

Since we will only consider the case that no primes dividing ¢ ramify in the imaginary
number fields K, and since we assume that ¢ is odd, we do not lose generality in assuming that
¢ is also square-free: indeed, in our setting, the 2-part of (0 /c)* /(—1) is no different from the
one of (O /c')* /(—1), where ¢ is the square-free part of ¢. Therefore the choice of a ring type
at ¢ amounts to the choice of a partition of the set S, := {l prime : I|c} in the disjoint union
of two sets S¢(inert) and Se(split). Then one takes R := (] [;cs, (ierty F12) ¥ (I [yes, spiie) (Fr)?).
For such an R, the Cs-action is given by [-Frobenius on the non-split components, and by
swapping on the split components. We will call such R, unramified at ¢. By a small abuse
of notation, we denote by Z/cZ the natural image of Z/cZ in R.
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For R unramified at ¢, we define

* * 2 *

Wy = 2 ( L ) < (3.1)
1 =D -1

Now fix some R unramified at ¢. For the remainder of this section we will assume, for

simplicity, the imaginary quadratic number field K to have an odd discriminant. We shall

prove that one has an exact sequence

25(K) = (0 — W — 2CI(K, ¢) — 2 CI(K) — 0),

for all imaginary quadratic number fields of type R with the exception of O(x(logz)~/#())
discriminants up to x. Indeed, by the theory of ambiguous ideals, one has that

(/o) . (Gr/oy?
W N 2CI(K, c) = {{q prime and ¢| D(K)}>( (1) ) :

Therefore it is enough to show that the set of positive square-free D < x such that
{q (mod ¢) : ¢ prime and ¢q|D} # (Z/cZ)*

is O(z(logz)~"#(9)). This cardinality is
x

2
< Z Z ,U/(D) < W,

ae(Z/cL)* 1<D<sX
p|D=>p#a(mod c)

where the last bound is easily derived by using [12, Eq.(1.85)] with f being the characteristic
function of integers all of whose prime divisors are not a (mod ¢). Identifying 0k /c with R
via a ring isomorphism gives an identification between Wx and

(Z/cZ)* ((ﬁK/C)*)2
—n U
Definition 3.1. Among the imaginary quadratic number fields of type R, we call strongly
of type R, those satisfying
% * Z/cZ)* /(O *\ 2
(ORI i ) - D" O/
% <D N =D
Let E(zx) denote the cardinality of negative discriminants 1 (mod 4) of absolute value at

most = and which are of type R but not strongly of type R. The analysis above can be
summarised by the bound

x
One could be tempted to think of the sequence Sy(K) := 2S(K)[2] as a ‘random’ sequence,
just as in the previous section. This would be incorrect, since the way the sequences Sy (K) are
produced naturally puts on them an additional restriction. Namely one has a commutative
diagram of Z[Cs]-modules:

E(x) « (3.2)

0 — L= CUK, ) & CIK) -0
Ti IKZ Tis
0 — %(%yﬂﬂ 2CI(K,c) — 2CIK)—0
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where i1, 19, i3 are the natural inclusion maps, so i, and i3 consist of isomorphisms between
the source groups and the double of the target groups. The top sequence has two obvious
properties that are automatically satisfied:

7(CI(K, ¢)[2°]7) = CI(K)[2] and 7(CI(K, c)[2*]*) = CI(K)[2].

The first property is equivalent to the sequence remaining exact after taking (1 + 7)-torsion,
where 7 is the generator of (5. Indeed, this is equivalent to the natural map
_R*
CUK)[2*] » — 2
(t+ 1)%

being the 0-map, which holds since the norm of an integral ideal is always an integer. The
second property follows from the fact that we are looking at families of discriminants coprime
to ¢. Therefore we are allowed to lift a prime ideal ¢ lying above a prime ¢ dividing D(K),
using the class of the ideal q in CI(K, ¢): this class will still be a fixed point, since it is the
class of a 7-invariant ideal. This motivates the following:

Definition 3.2. Let G be a finite abelian 2-group, viewed as a Cy module with the —id-
action. We say that an element ¢ of Extz,c,|(G, Wg[2¥]):

0:1—->Wg[2*] > B—>G—1
is embeddable if there is an exact sequence of Zy[Cs]-modules

[2°] - B -G —1

R*
ey

and a commutative diagram of Zs[Cs]-modules

* ~ T ~
o I B 5 G
T4y 11y T3

where: ~ R
e The map 7 : B — G — 1 satisfies

7(B7) = G and n(BT) = G[2].

e The maps iy and i3 are isomorphisms between the source groups and the double of the
target groups. The map ¢, is the natural inclusion.

We denote the set of embeddable extensions by ]:];(/tzz[cz](G, Wg[2%]). It will be clear by
Proposition 3.5, that the two following sets do not always coincide:

Extz,(0,](G, Wr[27]), Exta,(o,(G, Wr[27]).

On the other hand, the set of embeddable extensions has the algebraic structure that allows
us to proceed in perfect parallel with the previous section.

Proposition 3.3. One has that }’E\XJtZZ[CZ](G, Wr[2%]) is a subgroup of Exty,(c,)(G, Wr[27])
stable under the action of Auting(R) X Autap.g (G).

40



4-RANKS AND THE GENERAL MODEL OF RAY CLASS GROUPS

Proof. Let
® ~ ™ ~
0 - > B 5 G0
T i T L2 T i3
0 — Wg[2*]—- B 7 G—0
and
* ~ ’ ~
0 - E5R271—> B 5 G0
T 15 Ty
0 — Wg[2*]—> B I G—0

be two embeddable extensions equipped with their respective diagrams. We now consider
the following commutative diagram of Z,[Cs]-modules,

0 — g’j{;[zw]_) (BxgB))Y' ™5 GxgG —0
T/Ll TZ2><Z/2 Tlgxlé
0 — WR[2OO]—> (B XGBI)/Y f*}" G"O

where B xg B’ := {(by,by) € B x B’ : 2r(by) = 27'(by)}, while Y’ denotes the antidiagonal

embedding of %[2"0] in B x¢g B. Similarly B xg B’ := {(b1,bs) € Bx B": f(g1) = f'(92)},

with Y denoting the anti-diagonal embedding of Wx[2%], and
Gxe@G = {(g1,92) € GxG:2g = 2ga}.
There is an obviously induced compatible Cy action on each terms and one can deduce that
(mx 7Y (B xg B)/Y")") =G xg G and (7 x 7') (B x¢ B)/Y")) = (G x¢ G)[2]
using the fact that individually 7w and 7 satisfy the respective property.
On the other hand, by construction one has that iy x i}, and i3 x4 are isomorphisms between
the source groups and the double of the targets. This shows that Exty,(c,)(G, Wgr[2¥]) is

closed under addition because the sequence 0 — Wx[2¥] — (BxgB’)/Y — G — 0 represents
the class of the Baer sum of the two embeddable sequences in Extgz,[cy)(G, Wr[2%]). Since

Exty,[cy](G, Wg[2%]) is finite, in order to conclude that I:D;(/tZZ[CQ](G., Wg[2%]) is a subgroup,
one is only left to show that E;;tzz[cz](G, Wg[2%]) is non-empty. To this end we refer the
reader to Proposition 3.5, which in particular implies that E;(TBZQ (c2] (G, Wr[2%]) is non-empty
(alternatively one could also directly prove that the split sequence is embeddable, which one
can indeed show using the same steps of the proof of Proposition 3.5). Finally, given an
embeddable sequence

0 — WgP*]h B

=
Q
l

and a pair (1, p2) € Autyng(R) X Autyy g (G), we can consider
0 — EE[2#]% B 5 G0
tir 14 Mgy’

p2f
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which gives an embeddability diagram for the sequence
(p1,92)(0 > Wg[2"] - B - G —0)
showing that ]:];;tzz[gz] (G, Wg[2%]) is stable under the action of Autyie(R) X Autap g (G). O

Denote by % a set of representatives of isomorphism classes of finite abelian 2-groups,
viewed as Cy-modules under the action of —Id. For an imaginary quadratic number field
K, denote by Go(K) the unique representative of 2 C1(K)[2°] in %. Suppose K is strongly
of type R. Then (Ok/c)*/{—1) can be identified with R*/{—1) via any restriction of a ring
isomorphism, that is via any element of Isomy(Ok/c, R). Furthemore, we can identify
2CHK)[2°] and G5(K) via any element of Isomyy, g, (CI(K)[2*],G). Therefore applying
Isomying (Ok /¢, R) x Isomyy, . (2 C1(K)[27], Go(K)) to S3(K'), we obtain a unique orbit

O.2(K) e E,S&Zz[cz](Gz(K), Wg[27])/(Autying(R) x Autap.gr. (Q)).
For K strongly of type R we use the notation
S5(K) := (Ga2(K), Oc2(K)).
If K is not strongly of type R, we set S5(K) to be the symbol e. We now proceed by offering
a heuristic model for S4(K) as K varies among imaginary quadratic number fields of type R.
Let R be an unramified ring at ¢ and denote by % a set of representatives of isomorphism

classes of finite abelian 2-groups, viewed as Cy-modules under the action of —Id. Denote
by #(R) the union of the singleton {e} and of the set of equivalence classes of pairs (G, 6),

where G € %, 6 € I:];;tzz 0)(G, Wg[2]) and the equivalence is defined as follows: two pairs
(G1,6h), (Ga,0y) are 1dent1ﬁed if Gy = G and 0, 65 are in the same Aut,ing(R) X Aty g0 (G)-

orbit. Denote by ,72( ) the union of the singleton {e} and the set of pairs (G, 0), where
G € %, and 0 € Extg,[c,)(G, Wr[2%]), thus bringing into play the quotient map

T %(R) — S(R).

Consider the sigma algebra generated by all subsets on 572/(}%)7 as well as on 7 (R), and
equip % (R) with the measure

fiseq (G, 0)) := poL(G)

#Extz,[0,1 (G, Wr[27])
where pcr, denotes, as usual, the Cohen—Lenstra probability measure on % that gives to
each abelian 2-group G weight inversely proportional to the size of the automorphism group

of G. Push forward, via 7, the measure [l to a measure pieeq on “(R). It is clear by
construction that flgeq and fiseq are probability measures.

7ﬁseq({.}) =0

The heuristic assumption that we propose for the 2-part of ray class sequences of conductor
¢ of imaginary quadratic fields of type R is as follows.

Heuristic assumption 3.4. For any ‘reasonable’ function f : % (R) — R one has that,
as K wvaries among imaginary quadratic number fields of type R, the following equality of
averages takes place

i Z D(K)<X f(SQ 2 f

X TR DK <X} ol S

Se#5(R)
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As a consistency check, observe that the above identity of average takes place if one chooses
as f the indicator function of {e}: indeed, since the number of K with D(K) < X that are
not strongly of type R is at most «, X (log X)~1#() we see that we obtain 0 in the left
side, while in the right side we obtain 0 by definition. Clearly one can readily formulate the
analogues of Conjectures 2.5 and 2.6. We shall instead opt to devote the rest of the section
to the analogues of Conjectures 2.8-2.10.

If o € R*/{—1) then o®’N(a) € Wg, where N(- ) is the norm-function with respect to the
Cy-action prescribed to R*/(—1): indeed both o and N(«) are in Wx. We define the map

g R*/(—=1) — Wg given by a — a?N(a). With a small abuse of notation, we use the

same notation for the induced map gg : ﬁ — Wgr/2Wg and we denote by Im(gg) the

image of gg in Wg/2Wkg.
Proposition 3.5. The image of the natural map
Extz,(0y)(G, Wg) — Homg,(c,)(G[2], Wa/2Wg)
18
Hom,[c,)(G[2], Im(gr)) (= Homp, (G[2], Im(gr)))-
Proof. Consider § an embeddable sequence
* ~ ™ =~
0 - ] > B 5 G0
T i1 T 12 T 13

and pick b e G[2]. By definition of embeddability there exist b in B* such that 7(b) = i5(b).
On the other hand e can find € B such that 7(2z) = is(b). Therefore there exists
an element o € 2 5 [2*] such that ba™! = z% which implies that b>N(a)™! = N(z)%
Furthermore, 2z is in B, hence we have that d»(6)(b) = b2a~2 as an element of Wg/2Wg.
However note that N (z)? € 2Wg: indeed, by definition of embeddability, we can always write
z = x~ [ with z~ an anti-fixed point and 3 € %, so that N(z)? = N(83)? € Wg. Therefore
we find that d,(0)(b) = N(a)a?, ie. 5,(0)(b) € Im(gg).

Conversely, we prove that given a Co-map &y : G[2] — Im(gg), there exists a 0 € mzz[cz]
such that d5(6) = dy. Firstly observe that Homp,[c,](G[2],Im(gr)) = Homg, (G[2], Im(gg))),
since 7 clearly fixes N(a) for any « in R and o®7(a?) = N(«)? € 2Wg, therefore 7 acts triv-
ially on Im(gr) (see Lemma 3.6 for a more general fact). Thus pick dy € Homp, (G[2], Im(gr))).
We divide the construction of § and its embedding in four steps:

Step 1: Observe that a®?N(a) = #Z)N(ay = T(D;)N(a)2. Since N(a)? € QWR[2°O] we con-
clude that any element of Im(gg) =) < TS ~[27].

Step 2: Write G = {e1)@® ... D {e;), with the order of ¢; being 2™ for a positive integer m;,
for each i € {1,...,j}. Therefore G[2 ] @2m=ley@... 2™ e;) and now, use Step 1 for

< 5 “_[2] such that 6o(2™ e;) = s

Step 3: Embed G in a group G = (E1)®...®E;)D{(d)®. .. {d), with the rules 2¢; = ¢; for
every iin {1,... ,j} 2dy = 0 forevery s € {1,...,h} and h > rky((Z/cZ*))—1. Take an exten-
sion # € Exty, (G, £ - >) such that for every i € {1 ..., j} one has that dym+1(0)(¢&;) = Ty and

such that ({62(0)(dy), ..., 02(0)(dn)}> = Im((Z/cZ)* — Wg/2Wg). Call B the middle term

of this extension. Pick &}, ..., ¢’ liftings of e, ..., e; with the property that omitlel = %L)

each i € {1,...,j} to construct a; €
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for all 7 in {1,...,j}. Choose also d},...,d}, liftings of dy,...,ds in B and put 2B = B.
Observe that by construction the kernel of B — G is Wg[2®]. This gives a commutative
diagram of Zy-modules,

® ~ - ~

0 - - B 5 G0
Til T7'2 TZQS

0 — Wg[2*]—> B 7 G —0.

A

By construction iy and i3 are isomorphisms between the source groups and the double of the
target groups.

Step 4: Define Ay 1= ({&,...,&), Ay := {{dy,...,d,}) and A := (A;, Ay). Consider A, as a
Cy-module with the —Id-action and A, with the Id-action. Observe that, by construction, the
Cy-action on A; and A, restrict to the same Cy-action on A; N Ay. Therefore the Cy-action

extend to an action on A. Observe that, by construction, the Cs-action on A and %[2‘”]

restricts to the same Cy-action on A N <Ij’j>[2°c]4 It is also clear that (A, <IET> [2°]) = B.

Therefore one can put on B a Cy-action which restricted to A is —Id and restricted to %

is the usual action. This turns the above diagram into a diagram of Cy-modules, and we
want to prove that the top sequence remains exact when we take (1 + 7)-torsion and when
we take (1 — 7)-torsion. But by construction

(L4 7)(B) = (14 7) (CAL, Az, B (=13)) = (1+7)((Ag, R (-1))
= A, (1+ 1) (R /(=1))) = (1 + 7)(R*/(=1)))
and
(1 =)@ 1 (G[2]) = (1 = 7)((Ar 0 ker(2m), R*{(~1)))
= 2(A1 nker(27)), (1 = 7)(R*/(=1)))
< (I =7)(R*/(-1)),
where the last two inclusions follow from Step 3. This shows that dy can be realized as d5(6)
for some 6 in I:D?(Jtzz[cz](G, Wg[2%]) (i.e. 0 > Wg[2¥] - B 5a- 0). O
If K is strongly of type R, we denote by d2(K) the map d2(S2(K)). By choosing any
ring identification in Isomyi,e(Ok/c, R) and any identification in Isomgy g (2 CI(K), Go(K))

we obtain an Aut,,e(R)-orbit of subspaces of Wr/2Wg. On the other hand this orbit is
composed of a single element due to the following fact:

Lemma 3.6. The action of Autying(R) on Im(gg) is trivial.

Proof. Consider the ring decomposition R = Huc R/IR. Tt is clear that the following holds,
Autying(R) = ]_[”C Autying(R/IR). On the other hand, this decomposition is compatible with
Jr, i.6. gr = H”CgR/lR, where [] of maps is to be thought of as the map obtained by
applying the maps coordinatewise. This reduces the claim to ¢ = [ a prime number. In that

case one has that o?7(«)? = N(a)?, but N(«)? is in 2Wg, therefore, modulo 2Wg, one has
that o®>N(«) is fixed by 7. O

Hence we see that Im(d2(K)) can be identified with a well-defined subgroup of Im(gg). We
will keep denoting this subgroup as Im(dy(K)). Moreover, thanks to Proposition 3.5 and the
fact that the pushforward, via an epimorphism, of the counting probability measure induces
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the counting probability measure on the target group, we readily obtain the prediction of
the distribution of the pair (#(2 Cl(K))[2], Im(d2(K))).
Fix a subspace Y < Im(gg) and a non-negative integer j.

Prediction 3.7. As K wvaries among imaginary quadratic number fields of type R, we have
the following equality
i 7 = D) < X #(2CUK))[2] = 2
im
X #{K:-D(K) < X}
# Epig, (F3,Y)
# HOIH]FQ (IFJ27 Im(gR))
This will be proved in Theorem 5.2, but see also Theorem 5.4 for a more explicit statement.

A crucial step is to deduce it from a statement about mized moments. Indeed, observe that
to know the pair

and Tm(65(K)) =Y}

= /LCL(G € gg : #G[Q] = 2j)

(#G[2], Tm(0 - G[2] — Im(gr)))
is equivalent to knowing for each y in the dual group In/l(g\R)7 the value of
my(6) 1= #ker(x(8)).
For each y € IH/I(g\R), fix a non-negative integer k.

Notation. For any function I@) — Zi=0, X — ky, we will use the notation

K= > ky

X€lm(gr)

Pick a random subset of Im(gg) by choosing each character x independently at random
with the rule that x is not in the set with probability 2%){ and that y is in the set with

2kx 1 =

probability == For a subspace ¥ < Im(gg) denote by P(; )(Y') the probability that such
a random subset generates Y. Observe that if dim(Y") > [k[; then P, y(Y) = 0: indeed, in
that case we select with probability 1 less characters than dimg,(Y'), so they they generate
Y with zero probability. Denote by .45(j) the number of vector subspaces of Fj. If j < 0,
we shall make sense of the expression 0 - 45(j) by setting it equal to 0.

The following proposition reveals the value predicted by the heuristic model for the

(kx)xeh@)—mixed moment. In what follows we use the convention m, (dg) = 0 if we have

S =ee.%(R).

Proposition 3.8. One has that
O mealS) [T mi@s)™ = 3 Puy(¥) Akl - dim(Y)).
Se2(R) xelm(gr) Y<im(gn)

We do not spell out the proof of Proposition 3.8 because it is identical to the proof of
Proposition 4.8 which we will provide in §4.
Proposition 3.8 leads to the following prediction.
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Prediction 3.9. As K wvaries among imaginary quadratic number fields of type R, the fol-

lowing equality of averages takes place
lim ZfD(K)SX [Ty (d2(5)™
Xow K —D(K) < X}

= % P (VA5 — dim(V))

Velm(gr)

A stronger statement will be proved in Theorem 5.1.

As a cruder result, one derives a prediction for the joint-distribution of the 4-ranks of the
class group and the ray class group. Let j1, j2 be two non-negative integers. Then we have
the following prediction.

Prediction 3.10. As K wvaries among imaginary quadratic number fields of type R, we have
the following equality
i #{K : —D(K) < X,rky(Cl(K)) = j1,rks(ClI(K, ¢)) = jo}
X0 #{K:-D(K) < X}
#{; € Homg, (F}', Tm(g)) : tk() = rko(Wr) = (o — j1)}
# Homp, (F3', Tm(gr)) .

This will be proved in Theorem 5.3, but see also Theorem 5.4 for a more explicit law.
Similarly, the heuristic of the present section can be used to conjecturally predict the distri-
bution of the pair (rkom (Cl(K)), rkem (CI(K, ¢))) among imaginary quadratic number fields
K with ged(D(K),¢) = 1. For reasons of space we do not explicitly state such a conjecture
but it is implicitly given in the present section; such a conjecture might be within reach
given the recent work of Smith [16].

= pcr(G € %, : dimg, (G[2]) = j1)

4. SPECIAL DIVISORS AND 4-RANK

Let D be a square-free odd positive integer. In this section we introduce the notion of
special divisors of D, which will be instrumental in our proof of Theorems 5.1, 5.2, 5.3,
and 5.4. We call a positive divisor d of D special if d is a square modulo D/d and D/d is
a square modulo d. We denote by S(D) the set of special divisors of D, and by T'(D) the
set of all divisors of D. The set T'(D) has naturally the structure of a vector space over Fy
under the operation

didy
ng(dl, d2)2 ’

Lemma 4.1. The set S(D) is a subspace of T(D) over F.

d1 @dg =

Proof. We need to show that if dy, dy are special then d; ®ds is special as well. This amount
to showing firstly that if a prime ¢ divides D but ¢ t dy @ ds then d; ©ds is a square (mod ¢)
and secondly that if a prime ¢ divides d; ® dy then D/d; ® dy is a square (mod q).

For the proof of the first claim, suppose that ¢|D but ¢ f d;®Ods. Then either ged(d;dz, ¢) =
1 or gq| ged(dy, dz). In the first case we know that, since both d; and dy are special, d; and ds
are both squares (mod ¢), thus showing that d; ©®ds is a square (mod ¢). In the second case
we know that, since both d; and dy are special, D/d; and D/ds are both squares (mod q).
This shows that

2
DD D

—— = (d1 O dy) <—>
di dy gcdd(d(f,dz)
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is a square (mod ¢), hence d; © dy is a square (mod q).

Next, suppose that g | d; © da. Then, either ¢ | di and ¢ { da, or ¢ | dy and g 1 di: by
symmetry we are allowed to focus on the former case. Then, since both d; and dy are special,
we have that both D/d; and dy are squares (mod ¢q). Therefore

D1 D
——gcd(dy,dy)* = ————
dl dg & ( ! 2) (dl @ d2)
is a square (mod ¢), thus concluding our proof. O

Let n be another square-free odd positive integer with ged(n, D) = 1 and consider the
group Gy, := (Z/nZ)*/(Z/nZ)**. One has a natural map ¢, p : S(D) — G, by reducing
(mod n) and then modulo squares.

Lemma 4.2. The map @, p is a homomorphism of Fa-vector spaces.

Proof. By definition we have d; © dy = ﬁ and reducing this equality (mod n) and

then modulo squares, the right side yields didy. Thus ¢, p(di ©ds) = @n,.p(d1)enp(ds). O

Observe that S(D) always contains the subgroup {1, D}. It is then a consequence of
the work of Fouvry and Kliiners (8] that S(D)/{1, D} behaves like the 2-torsion of a random
abelian 2-group, in the sense of Cohen and Lenstra. In other words, for every positive integer
j we have

. #{1 < D < X, D square-free : S(D)/{1, D} = F}} ;
1 : : = A€, A[2] =T
X #{1 < D < X, D square-free} no(A € %z A2 = Fy),
where %, is a set of representatives of isomorphism classes of finite abelian 2-groups. The
present section in addition to Theorems 5.6-5.7, §6 and §7 are devoted to the determination

of the distribution of the pair
(#S(D), Im(en,p))-

The general heuristic constructed in §3 specializes to a heuristic model for this pair,
thanks to the commutative diagram after Lemma 5.5. However, we choose to give here a
direct presentation of this heuristic avoiding ray class groups. Therefore the present section,
Theorems 5.6-5.7, §6 and §7 are completely self-contained.

Before proceeding we introduce a modification of ¢, p which will be required in the ray
class group applications in §5. Denote by L, the subgroup of GG, generated by an integer
which is a quadratic non-residue modulo every prime dividing n and write C:’n = Gp/L,.
Now let n1,ny be two integers such that 2Dnqns is square-free and assume that D is a square
modulo n; and generates L, (mod ny). Denote by ¢, », p the natural map

Pny,na,D - S(D)/{la D} - Gm X Gng-
Our goal is to understand the statistical behavior of the pair

(#S(D)v hn(<pn1,n2,D)):

as D varies through positive square-free integers coprime to nyns, which are squares (mod n,)
and non-squares modulo every prime dividing ny. There is an obvious guess: namely that,
once dimp, (S(D)/{1,D}) = j is fixed, then Im(y,, »,.p) should distribute as the image of
a random map ¢ : F) — G, x én2~ We formalize this guess in a more general heuristic
principle.
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Definition 4.3. Consider the set .#,, ,, consisting of equivalence classes of pairs (A4, V),
where A is a vector space over Fy and V is a vector subspace of G,, x ém: declare
(A1, V1), (A2, V3) identified, if A; and Ay have the same Fo-dimension and V; = V5. De-
note this equivalence relation by ~. Each representative pair (F}, V) is equipped with the
following mass,

# Epig, (F3,V)
# Homp, (F}, G, x Gpy)

By construction, this is a probability measure on .4, ,,.

(B, V) i= pe(A € % : A[2] = )

Now we formulate the following.
Heuristic assumption 4.4. For any ‘reasonable’ function f : My, n, — R one has
S(D)/{1, D}, Im(n,
iy Zoex SOV Db lonime)) 52
Ao Yipex 1 Tty o

where in both sums D varies among square-free positive integers which are squares (mod ny)
and non-squares modulo any prime divisor of ny. Furthermore, for any positive integers a,r
with ged(r,aning) = 1 the same holds if we have the additional restriction D = a (mod r).

The simple case where f is the indicator function of an element (F}, V) € 4, ., yields
the following prediction.
Prediction 4.5. We have
D < X,(S(D)/{1, D}, ¢nyn ~T
lim #{ ( ( )/{ } Pna, 2,D) } _ :U/(T)
X #D <X}
where D waries among square-free positive integers which are squares (mod ny) and non-
squares modulo every prime divisor of ns.

This prediction will be confirmed in Theorem 5.7.

Despite the fact that the ‘random variable’ (S(D),Im(pn, n,,p)) does not consist of two
numbers, we achieve its distribution by means of the moment-method. For this we shall
replace the pair (S(D),Im(@n, ny,p)) by a higher-dimensional numerical ‘random variable’,

which we proceed to define. For each character x in the dual of G,,, x C:'nz define

my(D) := #{d € S(D) : X(¢ny.ns.0(d)) = 1} (4.1)
and recall that Tm(pn, n,.p)t is the set of all character x with x © ¢, n,.p being trivial.
Clearly for each x € Im(pn, n,.p)" we have m, (D) = my(D) = #S(D), while for the
remaining characters we have m, (D) = #5(D)/2. Therefore the knowledge of the pair

(#S(D)7 Im(‘ﬁmsz))

is equivalent to the knowledge of
(m(D)), g, &,

It will transpire that this shift in focus will be advantageous since it will allow us to study
the asymptotic behaviour of the latter vector by the method of moments.

We conclude this section by providing a prediction regarding the mixed moments of
(my(D)). This will be later used in the proof of Theorem 5.6.
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Notation 4.6. For any function C:'nl X @nz — Z=0, X — k,, we will use the notation

ki= (k) . = and [klii= > k.

XEGn, XGny
XEGn, X Gy
Definition 4.7. For any subspace Y < @nl X én2, denote by P, y(Y") the probability that
a random subset of C:’m X CNY'M generates Y, where the characters x are chosen independently

and with probability 1 — 2%

For any pair (F},Y) in .4y, n,, define m, ((F},Y)) to be 27 if x(Y) = 1, and 2/~ otherwise.
Observe that if dim(Y) > [k|; then Py )(Y) = 0. Denote by .45(j) the number of vector
subspaces of F. If j < 0 we define 45(j) := 1. It is important to note that every time
A3(7) appears for some negative j then it will always appear multiplied by zero.

Proposition 4.8. One has that

Yo TT md@)um = Y Buy (W)l — dim(W)).

TeMny ny XEém xaw W;énl xanz
Proof. We want to compute

N T (08 60 )l (¥4, ),

(F2:0) xeGny % Cny

where j ranges over non-negative integers, d ranges over Hom(IF}, G,,, x G,,) and

(¥}, ) = Herd o #A4[2] = )
#HOHI(F27GH1 X an)

Therefore the sum becomes

27kl # Epi(F) F VJ_)
Z Z Qngv " 4 Hom(F, G,,, én ) cu(A e %y #A[2] = 2).

VG, xCny 7™

We assume familiarity of the reader with Mobius inversion in posets, see [17, Chapter 3],
for example. Writing Epi(F3, V*) via inclusion-exclusion on the poset of vector subspaces of
G, x Gy, and exchanging the order of summation we obtain

Z i ( w(V, W) )( 2 G2 dlm(W)uCL(G))

QZXeV
WCC:‘n1 X,va
By applying Mébius inversion with respect to the poset of vector subspaces, to the obvious
relation
27 Baw b = Py (VS W) = 3 Py (V
Vew

we obtain
n(V, W)

P(kx)(W) = ey Fx

Vcw
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On the other hand, one has that whenever |k|; — dim(WW) > 0, then
> #GRM W e (G) = A(Ky — dim(W)).
GE%Q
Instead, when |k|; — dim(W) < 0, we have that P y(1W) = 0. In conclusion we get that the
total sum equals
D1 Py (W) Aa([k|y — dim(W)). O

WEGny xGny

Choosing f(T) =1]] N my(T)" in Heuristic assumption 4.4 suggests the following
XEGny Xy

prediction by means of Proposition 4.8.
Prediction 4.9. We have

2p<x Il my (D)
. Gy XCin, .
)}III;O XEZD 1 2 = 2lkh E Py (W) A5(|k[y — dim(W)),

W‘;énl xanz

where in both sums D varies among square-free positive integers which are squares (mod ny)
and non-squares modulo every prime divisors of ns.

A version of Prediction 4.9 with an explicit error term is proved in Theorem 5.6. This
prediction has a noteworthy feature: it realizes the (k,)-mixed moments of (m, (D)) as an

average over all subspaces of @m X G’M of ordinary moments of #S5(D) and in doing so, it
suggests the first step of the proof of Theorem 5.6, see (6.2).

5. MAIN THEOREMS ON THE 2-PART OF RAY CLASS SEQUENCES

Throughout the section we keep the notation used in §3. We begin by stating Theo-
rems 5.1,5.2 and 5.3 that corroborate Predictions 3.7,3.9 and 3.10 when D(K) = 1 (mod 4).
We restrict our attention to the cases with D(K) = 1 (mod 4) only for the sake of brevity, the
remaining case being amenable to a similar analysis. Our main task in this section will then
be to reduce Theorems 5.1, 5.2, 5.3 and 5.4 that are about ray class groups to Theorems 5.6
and 5.7 which regard only special divisors.

Theorem 5.1. For any (€ R satisfying 0 < 3 < min{2-*1 (c)~'} we have
2pa<x 11 5 x(52(K))k
EG _
S o = 20 Py (V)Ax(ky = dim(V)) + O((log X)?),
D

velm(gr)

where in both sums K wvaries among imaginary quadratic number fields of type R, having
D(K) = 1(mod 4) and the implied constant depends at most on ¢ and (ky)y.
Theorem 5.2. We have

. #{K : —D(K) < X, #(2CIK))[2] = 2 and Im(02(K)) =Y}

im

X—m #{K:-D(K) < X}
2j # Epi]Fz (]Féy Y)

# Homg, (Fy, Im(gr))

where K wvaries among imaginary quadratic number fields with D(K) = 1 (mod 4) and of
type R.

=pcL(G e % : #G[2] =
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Recall the definition of Wx in (3.1) and the definition of the map gr before the statement
of Proposition 3.5.
Theorem 5.3. We have
o #E - D(K) < X aky(C(K) = i, v (CUK, ) = )
X—0 #{K:-D(K) < X}
#{p € Hom, (F}', Im(gr)) : rk(p) = rka(Wg) — (j2 — j1)}
# Homy, (F}', Im(gr))

where K wvaries among imaginary quadratic number fields with D(K) = 1 (mod 4) and of
type R.

=pcy(G € % : dimg, (G[2]) = j1)

)

We will prove a stronger version of Theorems 5.1, 5.2 and 5.3. Namely, the fact that we
deal with progressions a (mod ¢) in Theorems 5.6 and 5.7 yields results analogous to the ones
in Theorems 5.1, 5.2 and 5.3 when one imposes finitely many unramified local conditions
at primes independent of ¢ on the discriminants D(K). This supports the point of view
in Wood’s recent work [20] that local conditions on the quadratic field do not affect the
distribution of class groups, with the obvious modification that for ray class groups such
conditions must be taken independently of the primes dividing c.

We proceed to restate Theorem 5.3 in a more explicit way. Recalling that ¢ is square-free
we let n1(R) be the product of the prime divisors of ¢ which are either 3 (mod 4) and inert
in R, or 1 (mod 4) and split. Furthermore, let ny(R) be the product of the prime divisors of
¢ that are 3 (mod 4) and split in R. Recall that

Moo (2 i .
mlé% = (G € %« dimy, (G[2]) = j1).
Theorem 5.4. We have
#{K 1 — D(K) < X, 1ky(CUK)) = ji, 1ka(CU(K, ) = jo}

lim

e #{K : —D(K) < X}
__1=(2) #{p € Homp, (F}, G,y (r) X Gry(my) = k() = tha(Wg) — (j2 — j1)}
n;,(2)2271 # Homp, (3, Gy (r) X Gy(m)) 7

where K wvaries among imaginary quadratic number fields with D(K) = 1(mod 4) and of
type R.

The congruence conditions (mod 4) related to the definition of ny(R) and ny(R) in The-
orem 5.4 are analogous to the congruences (mod 3) for the primes [ appearing in the first
part of Varma’s Theorem 2.13.

Our next goal is to realise the dy-map

52(Q(vV-D)) : (2CHQ(v—-D)))[2] — Im(gr)
with the map on special divisors introduced in §4,

S(D) ~
Pra(Rna(RD Ty Gri(r) X Gra(m)-
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5.1. Realizing 6,(Q(v—D)) as ¢, (r)na(r),p- Let D be a square-free positive integer with
D = 3(mod 4). and denote its its prime factorization by D = p;---p;. Let py,...,p; be
the corresponding prime ideals in Q(v/—D), i.e. p? = (p;)). Recall that C1(Q(v/—D))[2] is
generated by py,...,p; subject only to the relation p; - p; = (v/=D). For any b positive
divisor of D, denote by b the ideal of Q(v/—D) with b2 = (b). Let us now recall from [8,
Lem.16] that given a positive divisor b of D, we have b € 2Cl(Q(v/~D) if and only if
be S(D). The assignment b — b gives an isomorphism

(2CUQ(V=D))[2] = S(D)/{1, D}.

Indeed, from the proof of [8, Lem.16], we know that b € S(D) if and only if there exists a
primitive element (i.e. not divisible by any m € Z=,) a € O, /=p, and w € Z,, such that

In that case the factorization of (@) gives an integral ideal h(b) such that (a) = h(b)2b.
We rewrite this as b(a/b) = h(b)? and observe that this shows in particular that b €

2C1Q(V=D)).

By weak approximation for conics, one has that such an « can be found with (o, ¢) = 1, i.e.
a primitive point on (5.1) such that ged(w, ¢) = 1. Therefore both («), h(b) are coprime to
(¢). Therefore the fractional ideal b($) can be employed as a lifting of b to 2 CI(Q(v/—D), c).
Therefore the definition of the do-map gives us that

5:(QV=D))(b) = b

However squares of integers in Wx/2Wpy give rise to the trivial element, therefore by (5.1)
we obtain that §(b) = gr(«) Recalling that N(-) is the norm-function with respect to the
Cy-action prescribed to R*/{—1) we see that gr(a) = o®N(a). Next, we provide a more
concrete description of Im(ggr). The proof of the following result is straightforward and
therefore omitted.

Lemma 5.5. There is an isomorphism ¢g : Im(gr) — Gn,(r) X Grar) such that
¢r(gr(z)) = N(z)

for every x € %[2"0].

Since N(a) = bw? and w? is trivial in Wg/2Wg, we get a commutative diagram
s

2CQ(W-D))[l2] - Im(gr)
iD I ¥r

p 8
s = Guyr) X Gy
$ny,ng,D

N

~
-

where the vertical rows are isomorphisms. This gives us precisely the realization of the
do-map in terms of special divisors that we were looking for.

5.2. Reduction to special divisors. Our next result holds for integers a, ¢, nq, ny satisfy-
ing

4niny divides ¢,a = 3 (mod 4) , ged(a, q) = 1, (5.2)
a is a square (mod ny) (5.3)

and
p prime, p | ng = a is a non-square (mod p) . (5.4)
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Theorem 5.6. Let a,q,ny,ny be positive integers satisfying (5.2), (5.3) and (5.4). Then for
every 6 € (0,27 %1) we have

Spex [l e 5. (D)
ZDgX

S (N By (W) Akl — dim(1)) ) < (log X) ",

WCGn1 X an

where in both sums D wvaries among square-free positive integers which are congruent to
a(mod ¢q) and the implied constant depends at most on a,q,n1,m2,6 and (ky)y.

This proves Prediction 4.9 with an explicit error term.
Recall Definition 4.3. We shall use Theorem 5.6 in §7 to deduce the following.

Theorem 5.7. Let a,q,ny,ny be positive integers satisfying (5.2), (5.3) and (5.4). Then

lim #{D <X, (S(D)/{17 D}7 ‘Pnan,D) ~ T}

Jim D <X = u(T),

where D wvaries among positive square-free integers satisfying D = a (mod q).

This confirms the Prediction 4.5.

We are finally in place to explain why Theorems 5.6 and 5.7 imply Theorems 5.1, 5.2,
5.3 and 5.4. Owing to the final diagram of the previous subsection, we have the following
implications. Theorems 5.2, 5.3 and 5.4 follow immediately from Theorem 5.7 because the
family of fields K that are strongly of type R has zero proportion.

To deduce Theorem 5.1 from Theorem 5.6 recall the definition of E(X) given prior to (3.2)
and that m, (d2(K)) coincides with m, (—D(K)) if D(K) ¢ E(X) and that it vanishes oth-
erwise. We thus obtain

I NGO EED Y | IR R W § U

D(K)<X D<X DeE(X)

x€Giny ><Gn2 XE€Gny xCny x€Gn,y xan

(5.5)
Fixing any v € (0, 1/¢(c)) we can pick a positive integer p’ which satisfies yp(c) < 1—-1/p’ < 1
and define ¢’ via 1/p’ + 1/¢' = 1. Using Holder’s inequality we see that the quantity in (5.5)
has modulus

Z H mx(D)k'x = Z 1E(X)(D)( HA mX(D)kx)

DeB(X) XEG,,l ><G,,2 b<X Xeé7L1 ><5,,2
1/q o\ U
<( X ew@) (X [T m(oy™)
D<X D<X 4
XeGnlenz
’ l/p/
l/q ( Z H mX(D)p kx) )

)(EGn1 XGT,Z

Observe that the obvious bound m, (D) < #5(D) shows that the second sum is

< Z #S(D)p,‘k‘l

D<X
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hence by [8, Th.9] it is O, x(X). Using (3.2) we conclude that the quantity in (5.5) is
X N X X
« (—) = . & ,
(]og X)l/LP(C) (]og X)l/(q #(c)) (log X)"/

This concludes our argument that shows that Theorem 5.6 implies Theorem 5.1.

6. MAIN THEOREMS ON SPECIAL DIVISORS
This section is devoted to the proof of Theorem 5.6.

6.1. Pre-indexing trick. In the present subsection we reduce Theorem 5.6 into a statement
that can be proved with the method of Fouvry and Kliiners. Recall the definition of the set

of special divisors S(D) given in the beginning of §4. For a character y € C:’m X @nz we bring

into play the sum ) /
EERGIONCHIONC) 1

! &’
and let A(D) := A;(D). By definition (4.1) we see that m, (D) is the cardinality of elements
a’ € S(D) such that x(a’) = 1. Detecting the latter condition via (1 + x(a’))/2 we obtain
A(D) + A (D
mX(D) :27w(D)( ( )—‘; X( ))

Recalling Notation 4.6 we obtain
(A(D) + Ay (D))"
2lk[1

1. =
[ (D) = 2 hsp) 3Gy <
XEBn; XCny
Letting |(4y)|1 be the ¢-norm of the vector (i, ), we see that the right side equals

A , .
9=Ikhw(D) Z ﬁA(D)'kh_WX)h H A, (D)
0si D, XEGony %Gy

for some integers A(; ). To each vector (i,) we attach the space
Yiiy i= {x iy # 0}) € G, x G,
and recalling Definition 4.7 we see that for a fixed subspace Y < C:'m X C:’m we have

Aliy)
> o = Lo ()
(ix):Y(iy) =Y
0<iy <y

Hence Theorem 5.6 would follow from proving that for any ¢ > 0, any integers a, g, n1, no
satistying (5.2), (5.3) and (5.4), any B < CA}M x G, — {1} and any choice of a function
1: B — Z-o with i, < ky, one has that

N o) g(p)khi-Zaen i [T A, (D)

D<X xeB

=2l A5 (|k|y — dim(Y(iX)))< > 1) +O(X (log X)=27 ™),

D<X

(6.3)

54



4-RANKS AND THE GENERAL MODEL OF RAY CLASS GROUPS

where in both sums D varies among positive square-free integers which are congruent to
a(mod ¢). Here 45(h) denotes as usual the number of vector subspaces of F4. To prove (6.3)
we will use the approach in the proof of [8, Th.6]. In the present notation their result
corresponds to the case B = @ in (6.3).

6.2. Indexing trick. We begin by performing the following change of variables in (6.1),
a' = DDy, b = DogDoy, ¢ = Dyo,d" = D.
Letting ®4(u,v) := (u; + vy)(u; + va) and \I!(u) :=u; we can thus conclude that

A= 3] [T x(00".

D=D10D11DooDo1 (u,v)e(F3)?2 Dy uelf3

Pq(u,v)

Next, if (B) is not the zero subspace we choose a basis T < B of (B). Now suppose we

choose in each factor of ,
A(D)\kh_zxes x 1_[ AX(D) X
xeB
a decomposition of D as follows,

) ()
D= H Dy =...= ]_[ DN

u(MeF? u(\kh)g]y‘g

We change variables and write D,a) (ki) 1= gcd(D ys - - - ,D‘(J:TLI‘E)), where one can recon-
struct the old variables with tho help of

u(f) n H Dy, a®,.. ulxD

1<n<|k[1 u(®eF3
n#l

as in [8, Eq.(23)]. Thus we can write
i i D\ @)y (uv)
K| *ZXE x Ix — u 1
A(D)*ienix TT A (D) 3 ( I1 <Dv) )( T T
xep Huer‘k‘l Du=D uve]Fz‘k‘l ue]Fg‘k‘l xeT
2
where

k|1

D, (u,v) Z y(u), v

. 2/k .
and U, are linear maps from IFQ‘ o F 2, which we next describe. Decompose

2|k 2[k[1—23% cpi 2i
FQ‘ h_ F, XeB X HFQZX

xeB
and we denote a vector in this space as u := (1, (u¥),cp), where u™ := (u(f‘)7 o 7111(':))
and for every j we have u&X) € F3. Next, write
ix
() = 30 (w)
=1

and note that we have

= > W(w), (6.4)

X'€Bx
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where B, denotes the set of characters ' € B, such that x is used in writing x’ in the basis
T. In particular, this implies that x € B,. The construction of ¥, depends on 7" and (i, ),
but we suppress this dependency to simplify the notation.

Let us observe that there are #7° = dim({B)) many linear maps ¥, and that they are
independent. Indeed, given x € T, all maps ¥, with x’ € T'— {x} vanish on the vectors u
with u® = 0 for each ¥ # x, while U, evaluated in such u equals \I!;((u(X))7 which does not
vanish identically.

We can therefore rewrite the first sum over D in (6.3) as

ST oD 4Dy h—Seemix [T A, (D)

D<X xeB
Dy iy (wv) (6.5)

“S (I )T G)™ )L Tvow)

(Du)  yep2leh uver2lkh Dy uep2lkt xeT

where the second sum is over positive integers D, such that Huewz"“l D, varies among
2
positive square-free integers which are congruent to a (mod ¢) and at most X.
Our goal in §§6.3-6.5 is to prove an asymptotic for the sum over D, in (6.5) under the
assumptions on the integers a, ¢, n1,n9 in Theorem 5.6. For a real number X > 1 we bring
into play the following subset of N‘ﬂkh,

§ [1,, Du is square-free,
(X, [k1:q,a):=4 (Du)u € N u=u® . . ul*)e (F2)*: bounded by X and
congruent to a (mod q)

We are interested in asymptotically evaluating the succeeding average,

Sy (X, |K|1: g, a):= 2 2k|1u(D)< 1—[ (g_L,)@kl(UV)( H HX x(u>

(Du)e2(X,|k|1:q.a) u,ve(F2) & ue(F2)/klt xeT

and in doing so we shall not keep track of the dependence of the implied constants on
T, (iy),k, X, @, q¢,n1,n2. The sum Sy, also depends on (,) and the choice of T but we suppress
this in the notation. The function Sy, should be compared with [8, Eq.(26)]; we will verify in
§6.3 that the presence of the characters x does not affect the analysis of Fouvry-Kliiners [§]
in the error term and we shall see in §§6.4-6.5 how their presence influences the main term.

6.3. The four families of sums of Fouvry and Kliiners. We begin by restricting the
summation in Sy (X, [k|1; ¢, a) to variables having a suitably small number of prime factors
as in [8,§5.3]. Letting Q := 21+1|k|; ' loglog X we shall study the contribution, say 3,
towards Sy (X, [k|1; ¢, a) of elements not fulfilling

w(Dy) < Q, for all ue F2H,

Writing m = [ ], Du and bounding each character by 1 provides us with

pi(m)? k|10 pi(m)? [k[1w(m1)
Yy« Z W Z 1 <47 Z W Z 4ihwima)
m<X

M =M M =
w(my)>Q
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Invoking [12, Eq.(1.82)] to bound the sum over m makes the following estimate available,
5 « X (log X) 12 log(d/e) -2l (6.6)

We continue in the footsteps laid out in [8, §5.4], where four families of elements in N4 are
shown to make a negligible contribution towards a quantity that resembles S, (X, [k|1; ¢, @).
Using the trivial bound

[T []x)™™ <1 (6.7)
ue(]}?%)lkh xeT

allows us to adopt in a straightforward manner the arguments leading to [8, Eq.(34),(39)]
and we proceed to briefly explain how. Let

A:=1+ (log X)2*"

and let A, denote numbers of the form A™ where m € Z-,. For A = (4,)

ue(]F%)'k‘l we let
k|1w(D Dy \ ") w
S = Y ko T (2 [T TTxpa™e
(Du)eZ(X,|kl|159,a) u,ve(F2)lki1 v ue(F2)lkl xeT
Va(Au<Du<AAy)
Vu(w(Du)<Q)

and note that, in light of (6.6), we can deduce as in [8, Eq.(32)] that

Se(X,Klig,a) = >0 Sy(X, [Kliig,0;A) + O(X (log X) 7). (6.8)
A:HuAuSX

The contribution towards (6.8) of the first family, defined through

HAu > A_4‘k‘lX,

can be proved to be « X (log X)~! with a similar argument as the one leading to [8, Eq.(34)].
We now let

X*:= min {AZ > exp ((log X)Eleh)}.
The contribution towards (6.8) of those A fulfilling that
at most 21 — 1 of the A, are larger than X* (6.9)

can be shown to be « X (log X)=2™" as in [8, Eq.(39)].

We next pass to arguments related to cancellation due to oscillation of characters, in this
case (6.7) is not enough. The exponents ®;(u,v) will now play a role. Following Fouvry
and Kliiners we call two indices u, v linked if @, (0, v) + P, (v, u) = 1. We next define

xt.= (logX)3[1+4|k\1(1+2\k\1)]
and consider the contribution of A with

H Ay < A" X and for two linked u and v we have min{Ay, A,} > XT. (6.10)
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Fouvry and Kliiners treat this case by drawing upon the important work of Heath-Brown [11]
in the form stated in [8, Lem.12]. Specifically for A as in (6.10) we have

Sk aa)< Y (] 2Meta) 3 o),
(Dw)wifuvy wWE{u,v} a1,a26(Zn(0,q])?
a102 [ [y (u,vy Pw=a(mod q)

where b
MDD = 3 (52) 9D (Pudustast) D Do)
Du,Dy v
14, 4(Dy) D, Py, (u,w) Dy Py (wu) .
g(Dw (Dw)w¢{u,v}) = mn (D—w) H D—u HX(DU)‘I’X( )7

wé{u,v} xeT

1,5 denotes the indicator function of the set {m € Z : m = a (mod §)} and similarly for

9(Dy, (Dw)wetuvy)- Since |g(Du, (Dw)weguvy)]s [9(Dv, (Dw)weguvy)| < 1 the argument in [8,
p.476] that validates [8, Eq. (42)] can be adopted in the obvious way to yield

D IS(X, Kl a;A)| « X (log X))~

A fulfils (6.10)

wi{uv}

Note that we have used [8, Lem.15] for sequences satisfying |a,|,|b,| < 1 rather than
laml,1bn] < 1, however using [8, Lem.15] for a,,/2,b,/2 in place of a,,,b, proves a ver-
sion of [8, Lem.15] under the more general assumption |a,,|, |b,| < 2 and with the same
conclusion.

The fourth family consists of A fulfilling [], Au < A4 X , any linked u, v satisfy the
inequality min{A,, A,} < X' and there exist linked u,v with 2 < A, and A, > X*. Their
contribution towards Sy (X, |k|i;¢,a; A) is

& max 2 Z |M,|, (6.11)

o(mod q)

2 (D Dy
ged(o,q)=1 A( <WD)?<{HA‘XW A<D A,

where M, is defined through

Z )27|k‘1w(D“) < > H x(D ‘I’x(“ <H x(o ‘I’x(ﬂ )D Z 9~ lkhw(Du) (g_z) )

Dy=c(mod q xeT xeT' u=c(mod q)
Au<Dy<AAy Au<Dy<AAy

Letting P*(m) denote the largest prime factor of a positive integer m > 1 and setting
P*(1) :=1,m:= Dy,/P*(D,) we obtain

Mo« 3 REEL S e [T0w)? ()|

mPt(m)<AAy mp=c(mod q) w#u
(m,q)=1

where the inner sum is over primes p with max{A./m, P*(m)} < p < AA,/m. We may
now use Dirichlet characters to modulus ¢ to detect the congruence condition on p. We will
subsequently be faced with ¢(¢q) new sums over p, each one of which can be bounded via [8,
Lem.13]. This furnishes

A2 4, el
> u(pm [ ] Dw) ( ) —— (log X)~Ne2 Mt 4 o

mp=c(mod q) w#u
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valid for each large enough positive N that is independent of A and m. The term 2 accounts
for the presence of the p?-terms. Indeed, by (6.6) the number of distinct prime divisors of
m and each Dy, is at most 2. A moment’s thought now reveals that once the last bound is
injected into (6.11) and N is suitably increased in comparison to |k|;, the contribution of A
in the fourth case is « X (log X)7!, as in [8, Eq.(47)].
Let us now introduce the conditions

H‘E(F%)k Au < A_4\k\1 X,

at least 2/¥I" indices satisfy A, > X*,

two indices u and v with Ay, A, > XT are always linked, (6.12)

if A, and A, with A, < A, are linked, then either

A, =1lor (2< A, < XTand 4, < 4, < X¥).

Increasing the value of A in comparison to |k|; and assorting all estimates so far yields
Sy (X, k|15 ¢,a) = Z Sy (X, k|15 q,a; A) + O(X(logX)E_T‘kh), (6.13)
A satisfies (6.12)
which is in analogy with [8, Prop.2].
6.4. The main term. We can now obtain the following as in [8, Prop.3],
Se(X,IKkhiga) = Y Su(XKhig.a A) + O(X(log X)=2 ™), (6.14)
A satisfies (6.15)

where

{ U :={u: A, > X*} is a maximal subset of unlinked indices, (6.15)

[ Tueqz)mn Au < AN X and A, =1 foru¢ %.

Similarly to [8, Eq.(50)] we will say that A is admissible for % if A, > X} < ue %,
Auv=1<=u¢ % and Hue(mg)\kh Ay < A" X Assume that A is admissible for % and
note that #% = 21, By quadratic reciprocity we obtain that S, (X, [k|;; ¢, a; A) equals

2 < H (1)¢’k1(u,v)i“2_1,ﬂ%> .

(h'“)E(Z/‘LZ)z‘kh I Tuea, Pu=3(mod 4) u,ve#

5 (n N x(guw) .

(90)e(2/a2)?™ [Tueq, gu=a(mod q) ¥ XT
Yue? (hu=gu(mod 4))

s () foe)

(Du)eNZ‘kh Yu (w(Dw)<Q) uev” uev”
Yu (Du=gu(mod q),Au<Du<AAy)

We can evaluate the sum over D, via the estimate,

S = s St +0a (AR ) o)

I
meNn[y,Y] (q) meNn[y,Y] Yyt
w(m)=t w(m)=¢
m=g(mod q) ged(m,q)=1

valid for each square-free integer ny that is coprime to ¢, A > 0,Y >y > 1,{ € Z~(, where
the implied constant depends at most on A. This can be proved in a similar way as [8,
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Lem.19] by replacing the congruence condition to modulus 4 on py in [8, Eq.(53)] by one to
modulus ¢. Applying (6.16) repeatedly as in [8, p.g.481-482] to estimate the sums over Dy

leads us to
2 (H 2_“'1“”“)) 2 (]_[ Du>
(Du)GNzlk‘1 Vu(w(Dy)<Q) ue% ey

Vu(Dy=gu(mod ¢q),Au<Du<AAy)

= @(Q)_Z‘kh Z (H 9~ Ikl1w(Du) ) ( H D ) X (log X) 1_4\k\1(1+2\k\1)).
)<Q)

(Du)eNz‘kh Vu(w(Du)< uew uew
Vu(Au<Du<AAy)

Using this we obtain as in [8, Eq.(55)] that for any fixed admissible % we have

Y S [khigaA) =2 M@ Y (H(l)i’klﬂ"vv%—l}ﬂ%)x
u,vew

A admissible for % (hu)e(Z/4Z)2‘k‘1

ez, Pu=3(mod 4)

» (n nx<gu>wu>) .

k! g T
(9w)e(Z/a2)*" ! [Taeq, gu=a(mod g) “U<¥ X
Yue? (hu=gu(mod 4))

Kl (Dy X
Z (1_!/2 k1w (D )) (rad I_J/D ) <logX) ,
) Q) ue ue

(Dw)eN2™! v (w(Du)<
Yu (AusDu<AAy)

where the radical rad(m) stands for the product of the distinct prime divisors of an integer
m > 1. We can now see that the condition w(D,) < € can be ignored at the cost of an error
term of size « X (log X)~! as in the beginning of §6.3. We can furthermore show as in [8,
p.2.482] that

Z <H 2|k1“’(D“)> (rad H D ) Z u(rad(q)m)2+O(X(logX)S’Z_‘kh).

(D )ENQ\kh ue% uev m<X
u
Vu(Au<Du<AAy)

It is easily proved via Mobius inversion that for fixed a,q > 0 with ged(a, q) = 1 we have

3 utdgmp? = 22 (T -p)x + 0 (VX)

m<X plg

S u(m)? - 1(H(1 )X +0(VX).

msX R
m=a(mod q)

and

Combining these yields

> wlrad@m)?® = pa) Y, um)?+0 (VX).

m<X m<X
m=a(mod q)
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We thus obtain the following for every maximal unlinked subset %,

2. Sx(X"k'“q’“;AFM( 2 u<m>2>+0(><<logx>“‘”),

k|1 2lkl1—1
A admissible for % 2 (P(q) m<X
m=a(mod q)

where

(%)= ). ( I1 (—1)<I>k|1<usv>’i‘*z—”ﬂ%> 3 (H Hx(gu)\PX(u)) .
u,ve%

k ki 5

(hu)e(Z/4Z)2‘ 1 (gu)e(Z/qZ)Q‘ 1 \ue? xeT
[Tuca hu=3(mod 4) wea, Ju=a(mod q)
Yue? (hu=gu(mod 4))

We can now infer via (6.14) that the last equation proves

SX(Xv ‘k‘l;qv a) _
#{me[l,X]:q|m—a,um)?=1}

where % ranges over maximal unlinked subsets of F

1—2lkl1
ZWJ(%)) % + O((log)()sﬂ—\kh)7
u

2k1

6.5. Simplifying -, (% ). Introduce the following Dirichlet character (mod nins),
pui=[ [
xeT’
We will call a maximal set of unlinked indices % stable if
VxeT,Yue % (¥ (u) =0)orVxeT,YVue % (¥, (u) =1).

Let us now prove that

olkli 1
Z 1_[ Pu(gu) = 1 stamie(% ) <@> ‘

(gw)e(z/qm)? !t V<
ez Ju=a(mod q)
Vue? (hu=gu(mod 4))

Write ¢ = 2°ngm, where b := 15(q), ged(ng,ning) = 1 and ng has radical equal to ning.
Define

Ui(ng) := {u e Z/nyZ : w =1 (mod nyny)} and U, (2°) := {u e Z/2°Z : u =1 (mod 4)}.

Recalling the identification of groups (Z/qZ)* = Uy(2°) x (Z/AZ)* x Ui(ng) x (Z/ninaZ)*,
we see that

> [ pulgw) = GO #U (o) (m)? 1 ) [T pulma).

k k 9
(gu>e<Z/qZ()2‘ N : ue H(mu)E(Z/m(nsz‘ " )‘“
eq Ju=almod q cqy Mu=a(mod ninz
Vueu%(huzgu(mod 4)) "

Note that we have [[,cy Puo(mu) = pus(a) = 1 owing to (5.2)-(5.4). Therefore, fixing
ug € %, we have the following equality for any choice of m,, in the above sum

[Tralm) = pugli) [T puwy= [T (Lol

m
uev ue?Z —{uo} ue?% —{uo} puO( u)
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Therefore

[ putma) = 3 [ Lulmw)

b , My)
(mw)e(@/mnyz)2 It U (ma)e((2/mymazy )1 1 0 ~{uo} o (M)

ey Mu=a(mod ning)
But the last clearly splits as
pu(mu) _
(.2 )= T (X T im).
ueZ —{uo}  (mu)e(Z/nin22)* Puo (Ta Ue% —{up}  (mu)e(Z/ninsZ)* X€T

Using that the set of x in T consists of a set of linearly independent characters, we obtain
that each factor of the last product vanishes if and only if ¢, is not constant on %, i.e. if
and only if % is not stable. In the stable case its value is cp(nmg)ﬂkh_l
proved that

. Therefore we have

2 H Pulgu) = (#Ul(2b)#U1(no)gﬁ(m)cp(nlnz))zlkh,11% ()
(gu)e(Z/qz>2\kI1 =4

wea Ju=a(mod q)
Yue% (hu=gu(mod 4))

= (@)Z‘khill% stable (% ),

from which we deduce that

olkl1 1
Swe=(52) %X ( [T <—1>‘Pk1<"~>%—“%> ,
K4 olkly

U stable (hu)wear €(Z/AZ) u,ve%
[Tuez hu=3(mod 4)

where the pairs u, v are unordered. The inner sum is identical to the one appearing in the
work of Fouvry and Kliiners, however the outer sum does not appear in their work. Define

W)=} (H(—l)(blkl(“vw’”ﬁ—”ﬂ%).
u,ve#

(ha)uen €(2/42)? !

weay hu=3(mod 4)

We are left with proving
O ) = 2T (e - #T) (6.17)
« stable

and this will be our aim in §6.6.

6.6. Combinatorics. From [8, Lem.18] we know that the maximal unlinked sets of indices
% consist precisely of cosets of |k|;-dimensional subspaces of Fg‘kh. Therefore stable % are
cosets of |k|;-dimensional subspace of Fglkh, where all the ¥, vanish.
Next, introduce the bilinear form on F ;‘k‘l via
[k

L(u,v) = Z u2j+1(V2j+1 + V2j+2)-
=0
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Using the the terminology from [8], we say that a |k|;-dimensional subspace, %, of F. 3“"1 is

good if
Loy = 0-

2%
Recall that the upshot of [8, Lem.22-25] is that y vanishes on all cosets of non-good subspaces,
meanwhile the total contribution from the set of cosets of a fixed good subspace is 22" +/kli~1,

This provides us with

Z %) = 22““]*“‘“’1#{%0 good : U, (%) = 0 for each x € T'}.
U stable

Now, following the proof of [8, Lem.26], if {eq, - - - , egx), } denotes the standard basis of Fglkh,

choose a new basis via
{br, - ,bz\kh} ={e1+es,e0, €251 + €95, €5, , €2)k)y—1 T €21k 62\k|1}~

Then, with respect to the new basis, L assumes the form

j-1

L(x,y) = D Xaj11¥2540.

j=0
In the proof of part (i) of [8, Lem.25] it is verified that, if X consists of the subspace generated
by {b; : i odd} and Y consists of the subspace generated by {b; : i even}, the map sending
Uy — x (%) where Ty is the projection map ]Fg‘k‘1 = X@Y — X gives a bijection between
good subspaces of F;‘kh and vector subspaces of F‘Qkh. On the other hand, we are counting
only good subspaces where W, vanishes for each xy € T'. Observe that owing to (6.4) we
have that W, are all constantly 0 on Y, hence they define #7" linearly independent linear
functions from X to Fy which we will denote by the same letters. Therefore % — 7x (%)
provides a bijection between good subspaces where all ¥, vanish and subspaces of X where
all ¥, vanish. Given that ¥, : X — F, are independent we find that the cardinality of such
subspaces is precisely A5(|k|; — #7"). This substantiates (6.17), which concludes the proof
of Theorem 5.6.

7. FROM THE MIXED MOMENTS TO THE DISTRIBUTION

This section is devoted to deduce Theorem 5.7 from Theorem 5.6. We will follow an
adaptation of a method used by Heath-Brown in [10].
As explained in §4, Theorem 5.7 can be equivalently rephrased as a theorem about the
distribution of the vector

D — ('rrLX(D))énleé:nQ.
Namely consider for any positive integer j and subspace Y < G’m X énw the vector

JY é"l X Gingy
viY) g Loy ,

(3,Y

defined as vy ) =jif yeY and V§(J¥Y) _

j—1if x ¢ Y. Assign to v&Y) mass
# Epi(F V)
#Hom(Fy ™", Gy x Goy)

n(vO) = pen(A e 4 #AR2] = 27
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Gn1 xGn2

On the other hand, assign to all other Vectors v e Z mass equal to 0. In Propo-

nl xGn,y

sition 4.8 it is shown that this equips Z with a probability measure satisfying the

following moment equations:
Z 2"‘ku(v) = Ck,

G ><G
VEZL, nl "2

Gn1 X an

where for any k € Z_ we define

Ciei=2M0 Y Py (V) Aa([k|y — dim(Y))
Y €Gy %Gy

and where v - k denotes the inner product.
We begin the proof of Theorem 5.7 by showing that the distribution p is characterized
by the moment equations given above. Indeed we show more, namely assume z is a map

Zggl <G — [0, 1] satisfying for any k € ZG’” <o the moment relations
Z vk (v) = Ch. (7.1)
GZGM ><Gn2

Observe that one has the trivial bound Cj « 2K #5(|k|,), which leads to Cx « QM.

Letting F(t) := [[_,(1 — t27"), we therefore see that for any k € ZG"1 xGng

series is absolutely convergent,

, the following

> anCu2K, (7.2)

nEZGnl ><an

where a, is the n-coefficient of the Taylor expansion of

Fl(z) = HN F(z,).

N

Injecting (7.1) into (7.2), expanding in terms of x and exchanging the order of summation,

we obtain
S aG2 e =Y F(@m)a(m).

Gnl ><('n2 (’nl ><Gn2

nez.

If for all x we have m, < k, then F((2™ %)) # 0, otherwise we have F((2™x&x)) = 0.
Therefore, the right side is a finite sum supported in the region m, < k, for every x. Hence,
using the triangular system of relations above one can successively reconstruct the function
2(m) from the moments C. Therefore, we necessarily have x(m) = p(m) described above.

Let a,q be integers as in Theorem 5.7 and for any j € ZG"l Gna and X € R.q, define
the quantity d;(X) as the proportion of all positive square- free integers D < X satisfying
D = a(mod q) and m, (D) = 2¥x for all x. Therefore, Theorem 5.6 shows that for any

Kk e ZGn1 ><Gn2

meZ_,

we have Y. do(X)2"% = Ci + o(1), as X — +o0, where the sum is taken
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Gy xCin Gy xGin
over v € Zzy" ™. The argument concludes as follows: fix any vector v € ZZ5'" ™ by

compactness of the interval [0,1] and a standard diagonal argument, one can choose a
sequence {Y, }nen tending to infinity, such that d,(Y;) converges to any of the limit points of
{dy(X) : X € Ry}, call it d,, while for every other w the sequence d.,(Y},) is also converging

S Gy X G, . .
to some limit point d,. Next, we fix h e Z_¢"" ", and we use the previous moment relation

for k = 2h, trivially bounding each terms with the total sum, providing d.(Y,) <y 275
This enables us to apply the dominated convergence theorem to exchange the sum and the
limit in the expression of the h-th moment, from which we deduce that d, satisfies the
following moment equations as well:

>, v, = Ch.

We must therefore have dl, = p(w) for all w € ZSSIXG"Z. Note that d, was an arbitrary

limit point of dy(X), hence we deduce that
lim dy(X) = u(v).
X—w0

Since v was chosen arbitrarily in ZSSIXGW we have thus shown that Theorem 5.7 holds,
thereby concluding the proof of Theorem 5.7.
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JUMP SETS IN LOCAL FIELDS
C. PAGANO

ABSTRACT. We show how to use the combinatorial notion of jump sets to parametrize the
possible structures of the group of principal units of local fields, viewed as filtered modules.
We establish a natural bijection between the set of jump sets and the orbit space of a
p-adic group of filtered automorphisms acting on a free filtered module. This, together
with a Markov process on Eisenstein polynomials, culminates into a mass-formula for unit
filtrations. As a bonus the proof leads in many cases to explicit invariants of Eisenstein
polynomials, yielding a link between the filtered structure of the unit group and ramification
theory. Finally, with the basic theory of filtered modules developed here, we recover, with
a more conceptual proof, a classification, due to Miki, of the possible sets of upper jumps
of a wild character: these are all jump sets, with a set of exceptions explicitly prescribed by
the jump set of the local field and the size of its residue field.
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In this paper we introduce jump sets, elementary combinatorial objects, and use them to
establish several fundamental results concerning two natural filtrations in the theory of local
fields. These are the unit filtration and the ramification filtration. We subdivide our main
results into three themes and introduce each of the themes with a basic question. We use
the answer to each question as a starting point to explain our main results.

1.1. Three questions.

Date: November 7, 2018.
2010 Mathematics Subject Classification. 11F85.
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1.1.1. Principal units. Let p be a prime number. A non-archimedean local field is a field K,
equipped with a non-archimedean absolute value | - |, such that K is a non-discrete locally
compact space with respect to the topology induced by | -|. Write O := {x € K : |z| < 1} for
the ring of integers and m := {z € K : |x| < 1} for its unique maximal ideal. We assume that
p is the residue characteristic of K, i.e. the characteristic of the finite field O/m. Denote by
fx the positive integer satisfying p/x = #0/m. Recall that O is a discrete valuation ring,
and denote by v : K* — 7Z the valuation that maps any generator of the ideal m to 1.

The inclusions K* 2 O* 2 U;(K) = 1 + m = {principal units} split in the category of
topological groups. So, as topological groups, we have K* ~,, ., Z x O*, O* = (O/m)* x
Uy(K), where Z is taken with the discrete topology. This paper focuses on U;(K). The
profinite group U;(K) is a pro-p group, thus, being abelian, it has a natural structure of
Z,-module. As a topological Z,-module U;(K) is very well understood. If char(K) = 0 then
Uy (K) ~ Z%) « iy (), while if char(K') = p then U, (K) ~ Zy. Here w denotes the first
infinite ordinal number and g~ (K) denotes the p-part of the group of roots of unity of K.
In both cases the isomorphism is meant in the category of topological Z,-modules. For a
reference see [3, Chapter 1, Section 6]

The Z,-module U, (K) comes naturally with some additional structure, namely the filtra-
tion Uy (K) 2 Uy(K) 2 ... 2 U(K) = ..., where U;(K) = 1+ m’. In order to take into
account this additional structure we make the following definition. A filtered Z,-module is
a sequence of Z,-modules, My 2 My 2 ... 2 M; 2 ..., with (,.,_ M; = {0}. We will
use the symbol M, to denote a filtered Z,-module. A morphism of filtered Z,-modules is
a morphism of Z,-modules ¢ : M; — N; such that ¢(M;) < N; for each positive integer i.
A filtered module can be also described in terms of its weight map w : My — Zsqy U {00}
attaching to each = the sup of the set of integers i such that x € M;.

Question (1) What does Uy (K) look like as a filtered Z,-module?

In other words, we ask what is, as a function of K, the isomorphism class of U;(K) in
the category of filtered Z,-modules. We will sometimes use the symbol U,(K) to stress the
presence of the additional structure present in U; (K), coming from the filtration. Denote by
Gk the absolute Galois group of K. Thanks to local class field theory, the above question
is essentially asking to describe G2 as a filtered group, where the filtration is given by the
upper numbering on GE}?. Equipping any quotient of Gk with the upper numbering filtration
and studying it in the category of filtered groups is a natural thing to do. Indeed it is a fact
that the local field K can be uniquely determined from the filtered group Gy, see [7].

1.1.2. Galois sets. Fix K5 a separable closure of K. Denote by G := Gal(K*P/K) the
absolute Galois group. Denote by | - | the unique extension of |- | to K. Take L/K finite
separable. Thus L naturally comes with a Galois set: I';, = {K-embeddings L — K*P}.
Recall by Galois theory that this is a transitive Gg-set with |I';| = [L : K. This holds for
any field K. But, if K is a local field, there is an additional piece of structure, namely a
G k-invariant metric on I'y, defined as follows: d(o,T) = max,eo,|o(z) — 7(x)| (0,7 € T').
Here Oy, denotes the ring of integers of L. Observe that the maximum is attained since Oy,
is compact and the function in consideration is continuous. If L/K is unramified then the
metric space I'y, is a simple one: d(o,7) = 1 whenever o # 7. Since every finite separable
extension of local fields splits canonically as an unramified one and a totally ramified one,
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we go to the other extreme of the spectrum and consider L/K totally ramified: in other
words we put L = K(7), with g(w) = 0, where g € K[z] is Fisenstein. We can now phrase
the second question.

Question (2) Which invariants does the metric space impose on the coefficients of g7

As we shall see, the answer to our second question comes often with a surprising link to
the answer to our first question.

1.1.3. Jumps of characters. A character of Uy(K) is a continuous group homomorphism
vt U(K) — Qy/Z, ~ pyo(C). Define J, = {i € Zsy : \(U(K)) # x(Upn(K))} =
{jumps for x}. Since U;(K) is a profinite group, a character x has always finite image.
Moreover it is easy to check that at each jump the size of the image gets divided exactly by
p. So one has that order(y) = pMxl < co. In particular J, is always a finite subset of Z;.
We can now phrase our third question.

Question (3) Given a local field K, which subsets of Zs; occur as J, for a character of
Uy(K)?

Thanks to local class field theory this question is essentially asking to determine which
sets A € Zs; occur as the set of jumps in the upper filtration of Gal(L/K), for some L, a
finite cyclic totally ramified extension of K, with [L : K] a power of p. This connection is
articulated in Section 6.

1.2. Shifts and jump sets. The goal of this subsection is to explain the notion of a jump
set. Jump sets are defined using shifts. A shift is a strictly increasing function p : Zs1 — Zs1,
with p(1) > 1. If T, = Z>1 — p(Z>1) is finite, put e* = max(7),) + 1. The example of shift
relevant for local fields is the following:

Pep(i) = min{i + e, pi} for p prime, e € Z~ U {0}.

In this example one has that if e # oo, then e* = [-£%]. The case e # o0 will be used for local
fields of characteristic 0, and the case ¢ = oo will be used for local fields of characteristic p.

The following property explains how this shift can be used to express how p-powering in
U; changes the weights in the filtration.

Crucial property: If K is local field, e = vi(p), then
Ul < Uy for p = peyp.
This follows at once inspecting valuations in the binomial expansion (1+z)? = 1+px+...+aP.
For a local field K we denote by px the shift pe .
We can now provide the notion of a jump set for a shift p and respectively, in case T, is

finite, of an extended jump set for p. A jump set for p (resp. an extended jump set for p) is
a finite subset A € Z-,, satisfying the following two conditions:

(C1)ifa,be A, and a < b then p(a) < b,
(C.2) one has that A — p(A) € T, (resp. A—p(A) = Ty =T,u {e*}).

Write Jump, = {jump sets for p} (resp. Jump; = {extended jump sets for p}). The jump
set A can be reconstructed from the following data.
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(a) In = A—p(A).
(b) The function 4 : A — p(A) = Zs1, i — |[i,0) n Al

The pair (14, 84) satisfies the following three conditions.

(C.1)" One has that Iy < T, (vesp. 14 € T}),
(C.2)" the map (4 is a strictly decreasing map 5 : [y — Zs1,
(C.3)" the map i — p?@ (i) from I, to Zs, is strictly increasing.

Conversely, given any pair (I, 3) satisfying properties (C.1),(C.2)" and (C.3)"; we can
attach to it a jump set for p denoted by A (resp. an extended jump set for p). The
assignments A — (14, 34) and (I, 3) — A g) are inverses to each other. Namely we have

Ay pa) = 4,

and
(IA(Iﬂ)’ﬁA([,ﬁ)) = (Ivﬁ)

We will refer also to the pair (7, 3) as a jump set.

1.2.1. Answer to question (1). We will answer question (1) exploiting the following analogy
with usual Z,-modules. We denote by pu,(K) := {a € K : o? = 1}. It is not difficult to show
that p,(K) = {1} if and only if

Ul(K) 2Zp—mod 1_[ ZZJ:K

1€T}
Suppose that p1,(K) # {1}. Then U;(K) has a presentation:
0— Z, — ZEWIH L 1 (K) - 0.

Denote by vy the image of 1 in the inclusion of Z, into ZLK:QP]H. One can obtain a differ-

ent presentation using the natural action of AutZP(Z,[,K:Qp]H) on EpiZP(ZLK:Q”]+1 Uy (K)),

which denotes the set of surjective morphisms of Z,-modules from Zz[jK:QP]H to Up(K).

In this way all presentations are obtained. That is, Autz, (Z,[DK:QP]H) acts transitively on

Epin(ZLK:Qp]H, Ui(K)). Thus knowing U;(K) as a Z,-module is tantamount to knowing

the orbit of the vector vy under the action of AutZP(Zz[jK:QP]H). But recall that for all

Z}[}K:Qﬂﬁ»l

V1,09 € one has that

UL ~Autg, V2 < ord(vy) = ord(vy).
Here ord of a vector v € Z,[,K:Q”]+1 denotes the minimum of vg,(a) as a varies among the
coordinates of v with respect to the standard basis of Z[[,K:Qp]“. Therefore we have that
{U . ZE)K:QP]JA/ZPU ~ Ul(K)} _ {’U . |Mp°c (K)| _ pord(v)}.

We will see that in the finer category of filtered Z,-modules the story is very similar. To
reach an analogous picture we need to introduce the analogues of the actors appearing above.
Namely we need a notion of a “free-filtered-module” .
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As we shall explain in section 3.2.1, with filtered modules one can do the usual operations of
direct sums, direct product, and when the modules are finitely generated of taking quotients.
Having this in mind, one defines what may be thought of as the building blocks for “free-
filtered-modules”, namely the analogue of rank 1 modules over Z, (but now there will be
many different rank 1 filtered modules), as follows. Let p be a shift, and let 7 be a positive
integer.

Definition 1.1. The i-th standard filtered module, S;, for p, is given by setting S; = Z,,
with weight map
U}(I) _ pordz,(.'l:)(i)‘

The analogues of a “free-filtered-module” used to describe Uy (K') will be

M, =[5

€T,

My =] s

P
i€T)

We have the following theorem.

Theorem 1.2. Let K be a local field, with |O/m| = p/%. Then U, ~ ]W[{';j as filtered
Z,-modules if and only if p1,(K) = {1}.

So we are left with the case p1,(K) # {1}. In particular we have that char(X) = 0. We
proceed in analogy with the case of Z,-modules described above.

To describe U, as a filtered Z,-module one constructs a filtered presentation:

-1
MK @ ME - U(K).

Just as with Z,-modules, one can obtain a different presentation using the natural action of
Autg (M= @M ) on Epig (MIx*@ M  U,(K)). As established in Proposition 3.32 we
obtain a statement in perfect analogy with the case of Z,-modules explained above. Namely

we have the following crucial proposition.

Proposition 1.3. Let K be a local field with pi,(K) # {1}. Then the action of Autg,(M]5~'®
M) upon the set Epig (M1~ @ M* _ U,(K)) is transitive.

For a local field K as in Proposition 1.3 knowing the filtered module U, (K) is tantamount
to knowing the set of vectors v e M ;{ 1M . such that
(M7 @ M2 )/ Zyv ~g1 Us(K).
Thanks to Proposition 1.3 the set of such vectors v consists of a single orbit under the action of
the group Autﬁlt(l\l‘{'fj’lCJaM:K). Thus we are led to study the orbits of Autﬁlt(Ml{Ifj’l@Mg‘K)
acting on M Zg oM icr just as we did above in the case of Z,-modules. In particular we
are led to find the filtered analogue of the function ord. It is in this context that jump sets

come into play. For two vectors vy, v, € M [{"1 ® M, we will use the notation
V1 ~Autgy, V2
to say that v; and vq are in the same orbit under the action of Autgy (M /{ oM ;f) Observe

that if ¢ € Epig, (M/5~' @ M _,U,(K)), then in particular ker(¢) < p - (MIx~' @ M¥ ).

PK’

Therefore we proceed to describe only orbits of Autﬁlt(Mpf’l ® M) acting upon p- (Mpf*1 @
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M :) However there is no loss of generality in doing so. Indeed it is clear that given vy, vo
in ]V[pf’l (&) ]W,j‘ one has that vy ~autg, v2 if and only if p- v ~ayg, P - v2. We attach to each
extended jump set (7, ) a vector in p - (Mf{Ll ® M) defined as follows:

v = (@)jerg ep- My = [ p-S;
JeT
by z; =0if j¢ I, z; = pPV if je I

Theorem 1.4. (Jump sets parametrize orbits) Let p be any shift with #T, < © and f be
a positive integer. Then there exists a unique map

filt-ord : p - (]V[F{Ll ® M) — Jumpy
having the following two properties.
(1) For all vy,vs € p- (M~ @ M?) one has
V1 ~Autg, V2 < filt-ord(vy) = filt-ord(vs).
(2) For each (I, 3) € Jumpy, we have that
filt-ord (v, g)) = (I, 5).

In fact the proof of Theorem 1.4, as given in Section 3, provides us with an effective way
to compute the map filt-ord. This goes as follows. Let v be in p - (Mpf*1 ® My). Firstly
define the following subset of Z2,

SU = {(Z’ Ord(vi))}iET;kivy‘,#O7

where v; is the projection of v on the factor Sif if ¢ < e and on Sex in case i = e;. Next, for
any shift p consider the following partial order <, defined on ZZ2,. We let (a1,b1) <, (as,b2)
if and only if

by = by and p"(az) > p" (ar).
Finally define S, to be the set of minimal points of .S, with respect to <,. One can easily
show that there is a unique extended jump set (1, 3,) € Jumpj such that

S, = Graph(p,).

It is shown in Section 3 that filt-ord(v) = (I,, 8,). This phenomenon of a jump set arising
as the set of minimal or maximal elements of some finite subset of Z2, is a leitmotif of
this paper. Another instance of this phenomenon will emerge at the end of this sub-section
in Theorem 1.13, in the context of Eisenstein polynomials. We mention that this way of
computing filt-ord is used in [1] where, among other things, algorithmic problems of this
subject are explored.

From Theorem 1.4 one concludes the following.

Theorem 1.5. Let K be a local field, with ju,(K) # {1} and |O/m| = p’~. Then there is a
unique (I, Bx) € Jumpy —such that

Ui(K) >~ MJE™' @ (M [ Zyviy i)
as filtered Z,-modules.
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So when p,(K) # {1}, knowing U, (K) as a filtered module is tantamount to knowing the
extended pg-jump set (I, Br).

The next theorem tells us, for given e, f, which orbits of the action of Autﬁlt(j\4 /-1 @M b p)
on MJ~1® M} are realized by a local field K with p,(K) # {1}, ex = e and jK =f. In
other Words togcthcr with Theorem 1.2 this provides a complete classification of the filtered
Z,-modules M, such that

U.(K) iy Mu

for some local field K, therefore answering Question (1).

Theorem 1.6. Let p be a prime number, let e, f € Z~, and let (I,5) be an extended pe -
Jjump set. Then the following are equivalent.
(1) There exists a local field K with residue characteristic p and

pp(K) # {1}, fx = f, e =vk(p), Uk, Bx) = (I,0).
(2) We have that p —1le, I # & and
Pl min(D) =~ (= ).

For a shift p such that 7, is finite, the extended jump sets (7, 3) € Jumpj, such that [ # &
and p?min() (min(7)) = e* are said to be admissible. The implication (2) — (1), in the
above theorem, is proved in Section 5 in Theorem 5.4. The implication (1) — (2) follows
from Proposition 5.1 and Theorem 3.38 combined.

Our next main result provides a quantitative strengthening of Theorem 1.6. Once we fix
e € (p—1)Zx; and a positive integer f, then, thanks to Theorem 1.6, we know precisely which
({,8) € Jumpy, occur as (Ix, B) for some local field K with pu,(K) # {1}, ex =€, fx = f.
But Theorem 1. 6 doesn’t tell us “how often” each (I, 3) occurs. To make this point precise
we should firstly agree in which manner we weight local fields. A very natural way to do
this is provided by Serre’s Mass formula [10]. We briefly recall how this works.

Let E be a local field. Write ¢ = |Og/mg|. Let e be a positive integer. Let S(e, E) be
the set of isomorphism classes of separable totally ramified degree e extensions K/E. To
K € S(e, E) one gives mass fi. p(K) := WM(K)V where ¢(K/E) = vg(dg/e) — e + 1,
and dx/p denotes the different of the extension K/E. Serre’s Mass formula [10] states that
He, iz 1S a probability measure on S(e, E), i

Z :U/eE =1

KeS(e,E)

Now we can make the “how often” written above precise. Namely given e € (p—1)Z=1, f €
Zsy and (I, 8) € Jumpy, write Ey := Q,((,). Here Qs denotes the degree f unramified
extension of Q,. We can ask to evaluate

M By (K)v

p—1
KeS(55,E):(Ik Br)=(1,8)
in words we are asking to evaluate the probability that a random K, totally ramified degree
-5 extension of Ey, has (Ix, Bx) = (I, ).
Observe that, thanks to Proposition 1.3 and Theorems 1.4 and 1.5 combined, we know

that for K e S( o, Ey) the set of vectors O := {v e MK @ M : UJ(K) ~g¢ (M5! @
M )/ Zyv} is precmely equal to the orbit of the vector v, g,) under Autg (M @ M ).
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Moreover M /{;13 oM . viewed as a topological group is compact, and hence has a Haar
measure. It is then natural to think that, for a given admissible extended pe -jump set
(I,53), a randomly chosen totally ramified degree zﬁ extension K of Ey, satisfies

(Ixc, Brc) = (1, )

with probability proportional to the Haar measure of the orbit of v(; ). Our next theorem
shows that this turns out to be exactly right.
For (I, 8) € Jumpj, ., with I # @, it is easy to see that the set filt-ord ™' ((I, 3)) is an open

subset of M g;pl eM :fw. Normalize figaar, imposing that

paa( ) filtcord (I, B)) =

(1,8) admissible

In other words, choose the unique normalization of the Haar measure that induces a proba-
bility measure on the union of the orbits of the vectors v(; g as (I, ) runs among admissible
extended jump sets for p.,. We call admissible those orbits of M /er ;1 ® M, . under the
action of Autﬁlt(]\/[‘f S) M, ) that contain a vector v(; g with (I, 3) admissible. Let £y
be Q¢ (¢p), the unramified extensmn of @,(¢p) of degree f.

Theorem 1.7. Let e € (p— 1)Zz1, f € Zz1 and (1, 3) € Jump,  be an admissible jump set.
Then the probability that a random totally ramified degree ) “extension K of Ey satisfies

(Ik, Br) = (1, 8), is equal to the probability that a vector v € Mf 1(—B]\/[* ,» randomly chosen
among admissible orbits, is in the orbit of v(rg). In other words

Z Mp%l,Ef(K) = UHaar(ﬁlt‘Ordil(L B)).
KeS(55,85):(Ik ,Br)=(1,8)

From the first proof given by Serre [10], Theorem 1.7 can be equivalently expressed as
a volume computation in a space of Eisenstein polynomials. Namely for e € (p — 1)Zx,
and f € Z-1, denote by Eis(ﬁ, Q,7(¢p)) the set of degree ~57-Eisenstein polynomials over
Q,7(¢p). This can be viewed as a topological space equipped with a natural probability
measure, simply by using the Haar measure on the coefficients. For a g(z) € Eis(55, Q,(G)),
denote by Fyuy = Qur(¢)[x]/(g(x)). We can reformulate Theorem 1.7 in the following
manner.

Theorem 1.8. Let e € (p — 1)Zz1, f € Zz1 and (I,) € Jumpy,  be an admissible jump

set. Then the volume of the set of g(x) € Els(p_l,(@p/((p)) satzsfymg (UF s BFy) = (1, B),
equals

ttaar (filt-ord ™4 (1, ).

The above two Theorems are implied by Theorem 9.1. As a bonus, the method of the proof
of Theorem 9.1 allows us to explicitly compute the jump set (IFQ(I) , ﬁpg(z)) out of the valuation
of the coefficients of g(z), for a large class of Eisenstein polynomials g(x). This will be the
class of strongly separable Fisenstein polynomials, which are defined right after Proposition
1.10. To state our next Theorem, we begin attaching to any g(z) € Eis(557, Qs ((y)), an ele-
ment (Iy(), By(x)) € Jump, . Under certain conditions, given below, we have that actually
(Ly(@), By()) € Jump;P and (15, ), Br,,)) = (Lg(), Bo(z))- We shall begin by explaining the
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construction of (Iy), By)). Write

.
g(x) = Z a;x’.
i=0
Firstly consider the following subset of Z?

ve,(a;) =5 41
Sy = H(——=L5—

pV@p<i)
Recall the definition of the partial order <, attached to a shift p given right after Theorem
1.4. We denote by S, the set of minimal elements of Sy with respect to the order <, .

7va(i) + 1)}1Si<]ﬁZVQP(i)<VQp(e) and a;#0-

One can prove that there is a unique pair

(y(z): By(z)) € Jump,

such that S;(I) = Graph(fy()). It turns out that if g(x) is strongly separable, a notion that
we are going to provide right after Proposition 1.10, then the pair (Iyw), fyw)) is also in
Jumppw.

We next make a definition that will have the effect of sub-dividing the characteristic 0
local field extensions into two sub-categories. Loosely speaking, when the ramification of
E/F will not be “too big” compared to vg(p), then the arithmetic of this extension will be,
for our purposes, indistinguishable from the arithmetic of a characteristic p extension. We
make this notion precise in the following definition, while the relation with characteristic
p fields will only become visible in Theorem 1.14. For an extension of local fields F'/E we
denote by ¢/p the different of the extension.

Definition 1.9. Let F//FE be any extension of local fields of residue characteristic p. We say
that F/E is strongly separable if

VF((SF/E) < VF(p).

Observe that in characteristic p the notions of strongly separable and separable coincide.
One can easily show the following general fact.

Proposition 1.10. Let n be a positive integer. Consider F/E a monogenic degree n exten-
sion given by an Eisenstein polynomial g(x) :== Y, a;x’. Then F/E is strongly separable if
and only if there exists i € {1,...,n} such that (i,p) = 1 and vg(a;) < vg(p).

An Eisenstein polynomial g(x) € Eis(n, E) giving rise to a strongly separable extension
is itself called strongly separable. So Proposition 1.10 says that g(x) is strongly separable
if and only if it has a coefficient a; with (i,p) = 1 and vg(a;) < vg(p). We can now state
our next result. For a positive integer f, recall that Ey denotes Q,r((p), the unramified
extension of Q,((,) of degree f.

Theorem 1.11. Let e € (p — 1)Zz1, f € Zz1 and g(x) € Bis(3%, Ey) be strongly separable.
Then
Uy Bow)) = ULnsla)/g(@): Prglat/o)-
As explained at the end of Section 10, the assumption of being strongly separable cannot
be omitted. Theorem 1.11 is deduced in Section 10 from a slightly finer result. Moreover

in that Section we provide a procedure that allows one to compute (14, By)) very quickly,
even by hand. See [1] for an actual implementation of this as well.
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The moral of Theorem 1.11 is that in a portion of the space of Eisenstein polynomials,
the assignment K +— (Ig, k) can be read off very explicitly from the valuations of the
coefficients of an Eisenstein polynomial giving the field K. In general this is not the case,
but nevertheless one is able to establish the exact counting formula as in Theorem 1.7 by
means of a genuinely probabilistic argument.

1.2.2. Answer to question (2). Let n be a positive integer and let L/K be a degree n totally
ramified separable extension of local fields with residue characteristic p. Suppose L/K is
given by g(z) € Eis(n, K), i.e. L = K[z]/g(x). Denote by I'j, the metric space introduced in
1.1.2. One can find invariants of g(z) from the structure of the metric space I';, as follows.
Fix m € K*P a root of g(x). Denote by o, € I'y the corresponding embedding

ox(x) =T.

Consider the polynomial

Giwist(t) = g(m -t + 7) € K[r][t].
The knowledge of the Newton polygon of guisi(t) tells us precisely how the distances are
disposed around o, in I'y,. But recall that I'y is a transitive Gg-set, and every element of
Gk acts as an isometry on I'p. Hence the Newton polygon of guyist (7 - @ + 7) is an invariant
of the metric space 'y, independent of the choice of m and of g. Denote this polygon by

Newt(L/K).

Observe that in case L/K is Galois, then the knowledge of Newt(L/K) amounts to the
knowledge of the map Z.g — Z-

u— |Gal(L/K),|, (u€ Zso)

where Gal(L/K), denotes the lower u-th ramification group as defined in [9]. But Newt(L/K)
makes sense also for non-Galois extensions.

This Newton polygon is called the ramification polygon in the literature, and, among other
things, a complete survey on this subject can be found in [13]. In that paper the polynomial
in consideration is instead g(tf—:”). Of course this has simply the effect of shifting the polygon
vertically by —n. As it will become clear to the reader in a moment, we have chosen our
normalization since the form of our results is slightly more pleasant with our convention.

The following fact, certainly folklore, can be shown by direct inspection. We refer the
reader to Section 10 for how to calculate in practice (I, Bg(x)): this together with the
basic properties of Newt(L/K'), which can be found in [13], gives the following fact quite
rapidly.

Theorem 1.12. Let n be a positive integer and let K be a local field with residue character-
istic p. Let g(x) € Eis(n, K) be a strongly separable polynomial. Then

Lower-Convex-Hull({(p”s« @~ ps =1y i e Iy} U {(n,n)}) = Newt(K[2]/g(z)/K).

In other words Theorem 1.12 gives us a way to read off Newt(K[z]/g(x)/K) from (Iy), By(z))-
in case g(z) is strongly separable. Hence combined with Theorem 1.11 we obtain the follow-
ing surprising result.

Theorem 1.13. Let L/Q,((,) be a strongly separable totally ramified extension. Then
Lower-Convex-Hull({(p?*@=1 pPrO=1) sie I} U {(n,n)}) = Newt(L/Q,r((p))-
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Hence for a strongly separable extension L/Q,(,) the knowledge of the filtered Z,-module
U.(L) implies the knowledge of the ramification polygon Newt(L/Q,s((p)). Moreover we see
something else going on: for such an extension the full object (Iy(), By(z)) is an invariant of
the extension. This indeed follows from Theorem 1.11: that Theorem is telling us that the
object (Iyw), By(z)) encodes the structure of Us(Q,s((,p)[x]/g(2)) as a filtered Z,-module. But
in the more general case of Theorem 1.12 we see a priori only a way to deduce an invariant
from (Ig(a), By(x)), without any structural information provided for (Iya), By()) itself. In
particular it gives us no a priori guarantees that (Iy(s), Bg(z)) is the same as g(x) varies
among polynomials representing the same field. In Section 11 we pinpoint this additional
structural information. Namely to any strongly separable extension L/K of local fields,
we will attach (I1/x, Br/k), & poop-jump set that encodes structural information about the
filtered inclusion

UK) < U, (L).

In particular, if p,(L) = {1} then (I1/x, Br/x) has the following simple interpretation. In this
case one can attach, essentially by means of Theorem 1.4, to any element u of Uy (K) —Us(K)
a e, p-jump set (Ir/x(u), Br/i(u)). The jump set (Ir/x(u), Br/i(w)) tells us the orbit of u
under the action of Autgy(U.(L)). Let u be any element of U (K) — Ua(K) and let g(x) be
any Eisenstein polynomial giving L/K™, where K™ is the maximal unramified extension of
K in L. Tt turns out that (Ir/x(u), Br/x(v)) = (Ig(x), Be(z))- In particular all the elements of
Ui (K) — Uy(K) are in the same orbit for the action of Autg,(U.(L)). This orbits correspond
to a single jump set (I1/x, Br/k)-

For general strongly separable extensions of local fields we have the following joint gener-
alization of Theorem 1.11 and Theorem 1.13.

Theorem 1.14. Let L/K be a strongly separable totally ramified extension of local fields of
residue characteristic p. Then

Lower-Convex-Hull({(p?r/x =1 pfrx®=17) e Ip ied O {(n,n)}) = Newt(L/K).
Moreover if L/K is given by an Fisenstein polynomial g(x), then
(/i Bryic) = (Lg(ays Bo))-

Therefore Theorem 1.14 provides an intrinsic description of (Iy(), B4(x)) as a filtered in-
variant of the corresponding inclusion of groups of principal units. In particular this says
that (g, Bg(x)) is an invariant of the Eisenstein polynomial g(x) as long as g(z) is strongly
separable.

1.2.3. Answer to question (3). Denote by Zx the set of possible sets of jump for a character
of Uy(K). Clearly fZ is determined by the structure of U;(K) as a filtered Z,-module. So
one can use the answer to question (1) in order to answer question (3). The first step is
answering the same problem for free filtered modules. The main idea for doing this is again

to exploit the action of the group of filtered automorphisms. Denote by M,,f the group

of characters of M g . There is a natural action of Autgy (M /f ) on ]MZ,C . The action clearly
preserves the set of jumps of each character. It turns out that conversely one can reconstruct

the orbit of the character from the set of jumps: two characters in ]V[,f are in the same orbit
under the action of Autgy (M Z ) if and only if they have the same set of jumps. Moreover the
possible sets of jumps are exactly the p-jump sets. This fact is expressed in the following
theorem.
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Theorem 1.15. (Jump sets parametrize orbits of characters) Let p be a shift, and f be
a positive integer. Then the set of possible sets of jumps of characters of the free-filtered
Z,-module M;f is ezactly Jump,. Moreover two characters have the same set of jumps if and
only if they are in the same orbit under the group Autﬁlt(Mg).

So in particular we have the following result.
Theorem 1.16. Let K be a local field with p,(K) = {1}, then #x = Jump,,, .

We now consider the case pi,(K) # {1}. By Theorem 1.5, we first look at the possible sets
of jumps of characters of M pf oM . These are precisely the extended jump sets, as we
next explain.

Theorem 1.17. (Jump sets parametrize orbits of characters—part 2) Let p be a shift with
#T, < oo. Let [ be a positive integer. Then the set of possible sets of jumps of characters of
the free-filtered Z,-module ]Vfg‘1 ® M} is exactly Jump}. Moreover two characters have the
same set of jumps if and only if they are in the same orbit under the group Autﬁlt(Mg’l@]W:).

We then show that this, essentially thanks to Proposition 3.11, implies that #x < J ump;K
always, i.e. a set of jumps for a character is always an extended pg-jump set. The remaining
task is to classify which orbits of characters of M /{ oM , admit a representative killing
a given element of M [f oM > In this way we obtain the final classification, which is
Theorem 6.2. This Theorem says that _#x consists of the elements of Jump:K that are
(Ix, Bk, [, p)-compatible. Compatibility is an explicit combinatorial criterion that consists
in a comparison between a jump set (I, ) and the jump set of the field (I, Sk): in the
comparison an important role is played by the case distinction of whether fr > 2 or not and
whether p = 2 or not. For a precise definition see Definition 6.1. In the rest of Section 6 we
establish several explicit applications of this criterion, stressing especially the first dichotomy.
As an example we give here the following result.

Theorem 1.18. Let K1, K> be two totally ramified extensions of Q,(¢,). Then Fx, = Fk,
if and only if Uy(Ky) ~gz,a¢ Us(K2).

In other words, for totally ramified extensions K/Q,((,), not only do we have an ex-
plicit criterion to compute Zj from the filtered Z,-module U,(K’), but we can conversely
reconstruct the filtered Z,-module U,(K) from Zx.

Finally we remark that, by the reciprocity map, this criterion gives an explicit classification
of the possible sets of jumps in the upper numbering of a cyclic wild extension of a local
field. We explain this in further detail in Section 6.

1.3. Further results and questions. We hope to have shed some light on the role that
the jump set (Ix, Sk) plays in the arithmetic of the local field K. This makes some basic
questions about this invariant worth investigating. A very basic one is the following. Let K
be a local field with p,(K) # {1}. Let e be in exZs; and let f be in fxZ=;.

Question: For which (I, ) € Jumpzw does there exist an extension L of K such that
ep =e, fr=fand (I, B) = (I,8)?

We have made some progress on this question, see Section 12. In that Section we establish
some peculiarly specific rules that constraint the possible changes of a jump set under a
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totally ramified extension. As the reader will learn in that section, the interesting case,
among totally ramified extensions, is only that of wild extensions. In the present paper
we leave open a complete characterization of which jump sets occur under such extensions,
providing only necessary conditions. From further calculations, not included in the present
paper, we believe that a full classification might be within reach, but the final result might
look quite intricate.

In a different direction, we would like to mention that most of the results of the present
paper can be viewed as an investigation of the filtered Z,-modules arising from taking points
of one of the simplest formal groups, namely G,,. The theory in Section 3 should be general
enough to cover the case of other Lubin-Tate formal groups giving rise to filtered O x-modules
with cyclic torsion sub-module, where K is any other local field, and Ok its ring of integers.
It would be an interesting investigation to see which of the results of the present paper
extend to this context. For instance, it should be possible to provide a theorem on the lines
of Theorem 5.4.

Finally we would like to conclude with yet another potentially worthwhile direction of
investigation. Our mass formula, contained in Theorem 1.7, follows the first interpretation
of Serre’s weight for local fields, namely using volumes of Eisenstein polynomials. But Serre
[10] established also a different interpretation of these weights, by means of division algebras.
This suggests the possibility of studying the filtered pro-p group U, (D) of principal units of a
central division algebra over a local field, and to study the action of the group Autg(U. (D))
on the set of maximal abelian filtered Z,-sub-modules. It would be very elegant to reach in
this manner a different proof of Theorem 1.7.

1.4. Comparison with the literature. An explicit classification of the possible upper
jumps of wild characters of a local field K, i.e. of the set £k, was given in a series of
papers, by respectively Maus, Miki and Sueyoshi [5], [6], [11]. The first author has given the
criterion for characteristic p local fields. The full classification was given by Miki, and some
of Miki’s arguments in [6] were simplified by Suyeoshi in [11], where the reader can find also
a neat statement for Miki’s criterion. Two points come here in order. The first point is that
in [6] and [11] the invariant (I, fr) was already introduced. This is buried in [6, Lemma
17]. In the language of this paper, we can say that (I, k) was understood as the unique

pPR@-1

ielye Wi , where

€ Ik, then urex ¢ K*P. The uniqueness was proved in an
p—1

element of JumpZK such that there is an equation of the form ¢, = []
vi(u; — 1) = 4, and in case %
ad hoc manner in the above mentioned [6, Lemma 17]. The present work is the first place
in the literature where the structural meaning of the invariant (I, ) is established: it
gives, together with fx and p := char(Og/my), the structure of U,(K) as a filtered module.
Apart from being conceptually more satisfying, this slightly more abstract approach has
two practical advantages. Firstly it leads naturally to all the above mentioned additional
results: the interpretation of jump sets in terms of filtered orbits of vectors, see Theorem 1.4,
leads to the mass formula for unit filtrations, Theorem 1.7, which in turns leads naturally
to Theorem 1.13, which links the filtered structure of U,(K) with ramification theory. To
the best of our knowledge all these results are new. Secondly the interpretation of jump sets
as parametrizing filtered orbits of characters, see 1.15, makes it an easy job to deduce, from
first principles, our classification of the possible sets of jumps for a character, contained in
Theorem 6.2. This brings us to the second point. Namely the combinatorial criterion of
[6] is not tautologically equal to the one contained in Theorem 6.2. We check, by direct
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combinatorial inspection, that they coincide in Proposition 6.7, showing in this way that the
tools of this paper give, among other things, a simple unified approach to deduce all the
results in [5], [6] and [11], by means of a general theory of filtered modules.

Coming to more recent literature, in 2014, I. del Corso and L. Capuano [2] have obtained
a classification of all possible upper jumps in an exponent p extensions of a local field K.
It would be interesting to push this further obtaining a classification, for any finite abelian
p-group A, of the possible structures A, as filtered group on A such that Epig, (U.(K), As) #
@. For instance, this might be useful in counting the average number of extensions with
prescribed ramification data at p, in families of number fields containing ¢,. For a first work
in the direction of such counting with “prescribed ramification”, see [12].

Finally we would like to mention that the ramification polygon of an Eisenstein polynomial
has been the object of study of several papers [4], [8], [13], especially in relation to the problem
of calculating Galois groups of Eisenstein polynomials. In his Ph.D. thesis, D. Romano [§]
provided a characterization of strongly Fisenstein polynomials in terms of their Galois group.
In a sense these are the polynomials with the simplest possible ramification polygon. It is
then interesting that strongly Eisenstein polynomials g(x) over Q¢ () with (p, ) # (2,1)
and vg, (deg(g(z))) > j, can be also characterized in terms of filtered modules, see Theorem
10.3. Under the assumption (p,j) # (2,1) and vg,(deg(g(x))) > j, these polynomials are
the ones giving the simplest possible filtered module, which is also the most frequent one,

in the sense of Theorem 1.7: it occurs ’% of the times, just as the probability for an

Eisenstein polynomial over Q,s((,) to be strongly Eisenstein. The work of Romano has
been substantially refined by S. Pauli and C. Greve [4].
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2. JUMP SETS

The goal of this section is to define and explain the notion of a jump set, which is the key
object of this paper. Jump sets are defined in terms of shifts. A shift is a strictly increasing
function p : Zzy — Zx, with p(1) > 1. For a shift p, we denote by T), the set Zz; — p(Zz1).
If T, is finite, we denote by e* the positive integer max(7),) + 1. We denote by e/, the positive
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integer p~!(e*). The shifts that will be relevant for local fields are the ones explained in the
following.

Example 2.1. For p a prime, and e € Z- u {00} denote p,(i1) = min{i + e, pi}. It is a
shift. Clearly T}, , is finite iff e is finite. Indeed one has always e = [T, |. If e # o, then
e* = [ppTel]. The reason why these shifts will play a role is due to the following property.
Crucial property: let K local field, of residue characteristic p, let e = vg(p), then we have
that
UP < Uy,

for p = pep (= pr). One can see this by inspection of the valuations in the expansion
(I+z)P=1+pr+...+2aP

We now define p-jump sets (resp. extended p-jump sets).

Definition 2.2. A jump set for p (resp. an extended jump set for p) is a finite subset A € Z4
such that:

o ifa,be A, and a < b then p(a) < b,
o A—p(A) ST, (vesp. A—p(A) =Ty =T,u {e}).

Write Jump, = {jump sets for p} (resp. Jump, = {extended jump sets for p}).

A jump set for p will also be called p-jump set (resp. an extended jump set for p will also
be called an extended p-jump set).

If Ais a p-jump set (resp. an extended jump set) then we denote by 14 the set A — p(A),
and by 4 the map fa : [4 — Zs1, i — |[i,00) n A|. This allows us to express the notion
of jump sets in different, but equivalent, terms. Namely the pair (14, 54) evidently has the
following three properties.

(1) 1a €T, =Zsoo — p(Zso) (vesp. [n = Ty =T, U {e*}),
(2) B is a strictly decreasing map (: 14 — Zxy,
(3) the map i — p®@ (i) from I, to Zs; is strictly increasing.

Suppose now we have a pair (I, 3) with the three above properties (1),(2),(3). We can
attach to such an (I, ) an element A(; g of Jump, (resp. of Jumpy) defined as follows. If
I = @ then A3 = @. Suppose now that I is not empty. Then put

A gy = 10" (9) Yier—max(D},0<n<860)—(s()) Y {0 (max (1)) }ocn<pmax(1)):

where, for ¢ € I — {max(I)}, the element s(i) denotes the successor of ¢ in I. The following
proposition follows in a straightforward manner from the definitions.

Proposition 2.3. The assignments A — (14, 54) and (I,) — A p) are inverse to each
other yielding a bijection between Jump, (resp. Jumpy) and the set of pairs (I, ) having the
following properties:

o [ ST,="2-0—p(Zso) (resp. I =T =T, 0 {e*}),

o (3 is a strictly decreasing map B : I — Z=q,
o the map i — p®D (i) from I to Z, is strictly increasing.
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From now on, we shall often write (I, ) to denote a jump set (resp. an extended jump
set), meaning implicitly that we are identifying it with an actual jump set via the above
mentioned bijection.

Example 2.4. e There is a unique jump set having |/| = 0, namely the empty set A = & €
Jump,,.

e A p-jump set (resp. extended p-jump set) (I, ) with |I| = 1 is given by the choice of an
element, a, of T, (resp. 7)), and of a positive integer m = f(a). The actual jump set will
then be {a, p(a), ..., p" Ha)}.

e A p-jump set (resp. extended p-jump set) (I, 3) with || = 2 is given by the choice of two
elements, a < b, of T, (resp. 7)), and of two positive integers m, = B(a) > B(b) = my,
such that p"™~™2(a) < b (or equivalently p™ (a) < p™2(b)). The actual jump set will then
be {a, p(a),....p™ ™" a)} U {b, p(b), ..., p"2 7 (D)}

Example 2.5. We now explain a general procedure to inductively construct any jump set
A for p (resp. extended jump set). As a first step one decides whether A = & or not. In case
A = & one has obtained a jump set and stops. Suppose instead that one wants to construct
a jump set A # &. Then pick an ¢, € T), (resp. in T;) and a positive integer n;. Consider

the set _

A= {p’ (i1) }o<j<ns -
Now you can stop and have obtained a jump set A := A;. In this case I = {i;} and
B(i1) = ny. If you want instead a jump set with |[I| > 1, then you check whether there is a
y € T, (vesp. in T) such that p" (i) < y. If such a y doesn’t exist, then we set A := A,
and we stop having obtained a jump set (resp. an extended jump set). Otherwise you pick
any such y and put y := iy and pick a positive integer ny. Then write

Ay i= Ay U {p (i2) bo<j<ns
Now you can stop and have obtained a jump set A := Ay. In this case I = {iy,is} and
B(i1) = ny + ng, Biz) = ny. If you want instead a jump set with |/| > 2, then you check
whether there is a y € T}, (resp. T) such that p"*(iy) < y. If such a y doesn’t exist, then we
set A := Ay and we stop having obtained a jump set (resp. an extended jump set). Otherwise
you pick any such y and put y := i3 and pick a positive integer nz. Then write

Az 1= Ay U {p’ (i3) }o<j<ns-
In this case we have I = {iy,i2,43} and S(i1) = ny + na + ng, B(i2) = na + ng, B(iz) = ns.

One continues inductively as follows. Having arrived at Ay, together with i, ny, for

k € Z3, either we set A := Ay and we have obtained a jump set, or we verify whether there
exists a y € T, (resp. in 7)) such that p" (i) < y. If such a y doesn’t exist then we set
A := Aj, and we stop having obtained a jump set (resp. an extended jump set). Otherwise
we pick any such y and set y := i1, we choose a positive integer ny,; and write

Apr1 = A U {0 (iks1) Yozjcny -
The set Agyq is a jump set for p (resp. an extended jump set). In this case we have
I = {ila~--7ik+1} with 5(11) = n;y + ...+ nk+1,ﬁ(i2) = Ng + ... + 7lk+1,,..,5(ik) =
g + ey, Biks1) = Mg
Jump sets will often arise as the set of mazimal or minimal of certain sets, with respect
to the following partial order. This partial order will also play an important role in the
classification of the possible sets of jumps of a character.
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Definition 2.6. Let (ay,b1), (a2, b2) be in (Zs1)?. We let (a1,b1) <, (az,bs) if and only if
by = by and p”(az) = p" (ax).

Let now A be a subset of T}, (resp. of 7)), and let b : A — Zz,. Let Max(A, b) and Min(A4, b)
be the subsets of Graph(b) consisting of, respectively, the maximal and the minimal elements
with respect to <,. Then the following fact follows from the definition of a jump set.

Proposition 2.7. There are unique jump sets (I(+A b),ﬂ& b)) and (I{A b),B(Ab)) (resp. ex-
tended jump sets) such that Graph(ﬂa p) = Max(A,b) and Graph(f, ;) = Min(4,b).

Proposition 2.7 is repeatedly used throughout this paper. Moreover it occurs always in
the same manner, namely to recover an intrinsic description of an object presented in a non-
canonical fashion. This will firstly apply in the context of filtered modules in Proposition
3.34, to reconstruct from a coordinate representation, with respect to a filtered basis (see
3.24) the orbit of a vector of a free filtered module (see 3.26) acted upon by the group of
filtered automorphisms. Another example is given by Proposition 4.3, where Proposition
2.7 is used to determine the set of jumps of a character. Finally it is used in the context of
Eisenstein polynomials in Theorem 1.13 and Theorem 1.14.

3. FILTERED MODULES

3.1. Overview. The goal of this section is to use jump sets to parametrize quasi-free filtered
modules (see definition 3.27). As stated in Proposition 5.1, principal units give rise to a free
or quasi-free filtered module. So the material of this section will provide exactly the amount
of general (elementary) theory of filtered modules sufficient to classify, in terms of jump sets,
the possible structures of Uy, as a filtered module.

The rest of the section is organized as follows:

In 3.2 we will collect very general facts about filtered modules that will be applied in the
other sections.

In 3.3 we will specialize to the case where the base ring, R, is a complete DVR.

In 3.3.1 we explain how one can attach to a filtered module M a non-decreasing function
pur, by looking at the action of 7g, a uniformizer in R, on the filtration.

In 3.3.2 we introduce the notion of free filtered modules: in a precise sense they stand
as universal modules among those having a fixed p-map (see 3.22 for the precise universal
property). Next we will introduce the notion of quasi-free filtered modules, which in a
precise sense are just one step more complicated than the free ones. The goal of the rest of
the section is classifying quasi-free modules.

In 3.3.4 we will provide presentations of a quasi-free filtered module via a free filtered
module and exploit the action of the filtered automorphism group of the free filtered module
on the set of presentations of a given quasi-free filtered module.

In 3.3.5 we will parametrize the set of orbits of lines in a free filtered module, under the
filtered automorphism group, via jump sets.

In 3.3.6 we will use 3.3.4 and 3.3.5 to explain how jump sets parametrize the set of quasi-
free filtered modules.

In 3.3.7 we explain an internal procedure to reconstruct the jump set of a quasi-free filtered
module. This will suggest a generalization which will be exploited in later sections. This
will be used to detect a more general connection between phenomena in the filtration and
ramification theory. See also Theorem 1.14.
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3.2. General facts about filtered modules. Let R be a commutative ring with unity.

Definition 3.1. A filtered R-module is a sequence of R-modules, M1 2 My 2 ... 2 M; 2 ...
with N,ep, Mi = {0}.

We will usually denote by M, a filtered R-module M; 2 M, =2 ... 2 M;
filtered module comes with a weight map w : M; — Zs; U {00}, defined as w(z) := sup{i €
Zzy : x € M;}. The weight map w enjoys the following conditions: w™!({o0}) = {0} and
if x,y € My,a € R, then w(z + y) > min{w(x),w(y)} and w(ax) = w(x). Clearly one
can recover the filtration from the knowledge of w, and conversely given an R-module M,
together with a map w : M — Zs; u {0} enjoying the above conditions, one can define
the filtration M; := {z € M : w(xz) = }. It follows that one can equivalently speak of a
filtered R-module as a pair (M, w), where M is an R-module and w is a map with the above
properties. We will interchangeably denote a filtered module as M, and as a pair (M, w).

o ... A

Definition 3.2. Given M,, N, two filtered R-modules, a morphism of filtered R-modules
@ : M, — N, is a morphism of R-modules ¢ : M; — Ny, such that, for each positive integer

With definitions 3.1 and 3.2, filtered R-modules form a category, which we will denote as
Filt-R-mod. We next explain basic constructions in this category which we will use later in
this section.

3.2.1. Direct products and direct sums. Let { M}, }ner be a collection of filtered R-modules.
The filtration [[,c.r Mi1 2 [Lnewe Mr2 2 - 2 [ e Mpn =2 ... gives to [ [,cp Mp,1 the
structure of a filtered R-module. This filtered module behaves as a categorical direct product.
The filtration @heﬂ ]V[}LJ =2 @heéf Mh,g 2...2 @he% ]V[h?n 2 ... gives to (—Dhe%ﬂ Mh,l the
structure of a filtered R-module. This filtered module behaves as a categorical direct sum.

3.2.2. Metric structure. Let (M, w) be a filtered module. Fix a real number ¢ € (0,1). Then
we have a distance on M, defined as d(z,y) = ¢*(*=%), which gives to M the structure of a
metric space and of a Hausdorff topological group. In the notation M,, the topology can be
alternatively described by saying that the {M;};cz., form a fundamental system of neighbor-
hoods of 0y,

It is with respect to this metric that we will perform, in the rest of this paper, any metric or
topological operation on a filtered R-module. For instance a filtered module M, will be said to
be complete, if M7, with the above metric, is a complete metric space. There is a completion
functor from R-filt-mod to the full subcategory whose objects are complete filtered modules,
Compl-R-filt-mod, which consists simply of completing the underlying metric space. We
denote this functor by ~. Tt is left adjoint to the inclusion functor Compl-R-filt-mod <
R-filt-mod which is the identity on both objects and morphisms. Thus one has a natural
transformation of the identity, which we denote by compl : idg.fit-mod — - This natural
transformation consists of the natural inclusion of a filtered module M, in its completion,
which we denote by M,.

3.2.3. Sub-modules. If (M, w) is a filtered R-module, and N = M an R-sub-module of M,
then (N, wyy) is a filtered R-module. If the filtration for M is My 2 My 2 ... 2 M; 2 ..,
the one for Nis NnMi 2 NnMy>...2NnM>....Itisin this sense that we will
speak of a filtered R-sub-module.
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3.2.4. Quotients. Let M, be a filtered R-module and N € M; an R-sub-module of M. Then
the filtration M;/N = (M; + N)/N 2 (My+ N)/N = ... 2 (M; + N)/N > ..., gives to
M, /N the structure of a filtered R-module if and only if N is closed. Indeed this filtration
defines a fundamental system of neighbours of 05,/ corresponding to the quotient topology
coming from M;: the requirement of being a filtered module is equivalent to the requirement
that this topology is Hausdorff, and the quotient of a topological group by a normal subgroup
is Hausdorff iff the normal subgroup is closed, since a topological group is Hausdorff iff the
origin is closed.

We now introduce the functors which will play an important role in the rest of the section.

Definition 3.3. (a) Let M,, N, be two filtered R-modules, and 4, j two positive integers
with ¢ < j. Denote by F,;(M,) := M;/M;. Given a morphism of filtered R-modules
¢ : M, — N,, denote by Fj (), the induced morphism F; ;(¢) : M;/M; — N;/N;. Denote
by F;; the functor, F;; : Filt-R-mod — R-mod, obtained in this way. Denote by F; the
functor Fj ;1.

The rest of this section describes the relations between a morphism ¢ : M, — N, of filtered
R-modules and the sequence of morphisms {Fj;(y) : F;(M,) — Fj(N.)}jez, of R-modules.
We begin by describing the effect of F; on the completion morphism:

Remark 3.4. For every positive integer 4, the natural transformation compl induces an
isomorphism of functors F; o™ ~gctors Fi-

Next we determine basic properties when applying F}; to the inclusion of the direct sum
in the direct product.

3.2.5. More on direct sum and direct product.

Remark 3.5. For each positive integer j and {(M;,w;)}ie; any collection of filtered R-
modules, we have that

o Fi([Tie; M) = T 1o, F5(M,)

® F7(®1EI MZ) = @z’e] F}(MZ)

o [{(Pe; M; € [ Lic; Mi) = (B Fj(M;) < [ ies F5(M;)), where in both cases we mean the
natural inclusion of the direct sum in the direct product.

Proposition 3.6. Given {M;.}ier any collection of R-filtered modules, the following are
equivalent:

(a) The inclusion of filtered modules @,c; Mo = |lic; Miw induces a dense inclusion of
metric Spaces.

(b) For each m € Zxy there are only finitely many i € I such that min(wyy, , (M;1)) < m.

(c) We have that F,,(B,.; Mie < [ 1ic; Mie) is an isomorphism for all m € Z,.

Proof. (a) — (b) Fix m € Zz;. Pick a vector v = (v;);er € [ [,c; M;1 such that, for all i € I,
v; = 0 or wyy, ,(v;) < m holds. By assumption we can find a finite subset, J, of I, and a
vector (Y;)ier € | [,y Min, such that y; = 0if i ¢ J and (wH,gIMi,-)(”i —Yi)ier > m. It follows
that for all 4 ¢ .J, way,, (v;) > m. Thus for every v = (vi)ier € [ [;c; Ms, was, , (vi) < m holds
for only finitely many 7 € I, that is min(wyy, , (M;)) < m holds for only finitely many i € I.
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(b) — (a) Observe that assumption (b) implies that M; = 0 holds for all but countably
many ¢ € I: indeed, by assumption, the function M;, — min(w(M;,)) has finite fiber over
every positive integer, so, except for a countable set of indices, wyy, ,(M;1) = {o0} holds,
which is equivalent (by definition of filtered module) to M;; = 0 for all but countably many
indices. So we can assume that [ = Zz1. Thus fix v 1= (vp)nezo, € [ [z, Mia. Consider
the sequence {M}iez., = {(wi;)iezos biezo,, Where wy; = v; if @ < [, 0 otherwise. One has
that for all m € Zsq, (wl-[i€Z>1 a;) (v —wy) > m, holds for all but finitely many values of
I. This means exactly that h; — v as [ — oo. Thus the inclusion of filtered modules
(@Pier Miydey,_, a,..) S (I Lie; Mi,dpy,, m,.) induces a dense inclusion of metric spaces. For
the equivalence between (b) and (c) see Remark 3.16. O

Finally we look at the relation between injectivity/surjectivity of ¢ and the pointwise
injectivity /surjectivity of the sequence {F};(¢)} ez,

3.2.6. Surjectivity and injectivity.

Proposition 3.7. Let M,, N, be two filtered modules, and @ € HOHlﬁlt(M.7 N.). Then the
following holds:

(a) Assume M, complete. If for all i € Z, we have that coker(F;(p)) = 0, then coker(p) = 0.
(b) We have that for all i € Zy the module ker(F;(v)) is 0 if and only if for all x € M, the
weights wyr, (x) and wy, (@(x)) coincide.

(¢) If for all i € Z=y we have that ker(F;(¢)) = 0, then ker(p) = 0.

(d) If ¢ is an isomorphism then for all i € Zsy the map F;(p) is an isomorphism. If M, is
complete, the converse holds as well.

Proof. (a) Let z € Ny. We construct inductively sequences {@p}nez-os {Un tnez-, respectively
N1, Mi-valued, which will do for us the following: {D)/_ ¥i}tnez., will be a convergent se-
quence, with (377, yi) — = @41, with lim, .z, = 0. Since ¢ is a filtered morphism and
in particular continuous, and M, is complete, we can conclude then that ¢(3,7 v;) = .
The construction of {z,}nezy, {Un}nezo, goes as follows. Put zy = z,y9 = 0; construct
Tnil, Yns1 from z, in the following way. If z, = 0 put 2,11 = yny1 = 0. Otherwise
wy, () € Zz holds. Since the map F,, (a,)(¢) is surjective, pick y € M, (s,) such that
(©)(y) = 2, mod Ny, ()11, and denote y, 1 = y and 2,1 = —p(y) + z,,. By construction,
the sequences {x, }nez-os {Un tnez-, both converge to 0. So by the ultrametric inequality and
completeness of M, the series ZnEZ>n Yn converges to an element of M;, which we denote by
7. By construction 99(Z1gj<n Yj) —x = 41 — 0, so, since ¢ is continuous, ¢(y) = z. So
coker(p) = 0.

(b) By definition M; — M; 1 = {x € M;,wp, (x) = i}, on the other hand ker(y); = 0 iff
o(M; — M) © Ny — Niyp = {y € Nj,wy,(y) = i}, thus ker(p); = 0 for all i € Zsy iff
wy, (2) = wy, (¢(x)) for all z € M.

(c) Thanks to (b) the hypothesis in (c) is equivalent to ¢(M; — M;41) < N; — N;11, which
implies that ker(¢) (., M; = {0}.

(d) The first implication follows from the general fact that a functor preserves isomor-
phisms, applied to the functors F;. For the second implication: assume M, complete, then
(a) implies that ¢ is surjective. On the other hand (c) implies that ¢ is also injective. Thus
@ is a filtered isomorphism. O
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Remark 3.8. Suppose ¢ : M, — N, is a filtered epimorphism. Then Fj(p) is surjective.
Indeed by definition of filtered epimorphism, and the fact that 1 is minimal in Z-; we have
P 1(Ny — Ny) © M, — My: since ¢ is surjective, applying ¢ to both sizes of this relation one
gets Ny — Ny € (M — M,), which proves that Fi(p) is surjective.
Definition 3.9. Let ¢ be a positive integer and let M, be a filtered R-module. We define
M,.; to be the filtered R-module

]Vfi_'_l =2 ]\IZ’+2 =2 ...
Proposition 3.10. Let M,, N, be two filtered modules. Let ¢ : M, — N, be a filtered
epimorphism. Let i be a positie integer such that F;(y) is an isomorphism for every j
such that 1 < j <i. Then ., : Mey; — Nugi is a filtered epimorphism and Fiii(p) is
surjective.

o+i

Proof. Indeed, by Proposition 3.7, the hypothesis is equivalent to Fy;41(¢) being a filtered
isomorphism. Thus ¢(M; — M;1) € Ny — Ni41. Thus, since ¢ is an epimorphism, it follows
that o(Mjy1) = Niy1, in particular by remark 3.8 we have that Fi1(¢) = Fi(¢p,,,) is
surjective, proving the statement. ]

Proposition 3.11. Let M,, N, be two filtered modules with M, complete. Let p be an
element of Homgy (M., N.). The following are equivalent:

(a) For every positive integer i, we have that coker(F;(¢)) = 0.

(b) For every positive integer i, we have that coker(py, : M; — N;) = 0.

Proof. (a) — (b) Let ¢ be a positive integer. For a positive integer j > 4, the equality
Fi(pm.,,) = Firj—1(p) trivially holds. Thus assumption (a) is preserved by restriction of ¢
to the filtered submodule M,;. So Proposition 3.7 implies that coker(¢u, : M; — N;) = 0.

(b) — (a) The statement trivially follows applying remark 3.8 to every filtered morphism
O, - Mayi — Noyj since they are all assumed to be epimorphisms. O

Proposition 3.12. Let M,, N, be two filtered modules, M, complete, and ¢ € Homg, (M,, N,).
Assume 1 € Zz is such that ker(F;(¢)) = coker(Fj(p)) = 0 for all j > i. Then ker(p) n
wyi{i, 0} is an R-submodule, and the inclusion in M; induces an isomorphism ker(p) N
wip {1, 0} = ker(Fy()).

Proof. Since ker(Fj(p)) = 0 for all j > i, it follows that ker(¢) n M; = ker(p) n wj, {i, 0}
proving thus that is an R-submodule, and that the inclusion in F;(M,) is injective. Suppose
x € M;— M1, p(x) € N4y holds. Thanks to the assumption ker(F;(¢)) = coker(Fj(p)) =0
for all j > 4, and to Proposition 3.7, we see that ¢|ay, ., is an isomorphism and thus it follows
that there is exactly one y € M, such that p(z) = ¢(y). Thus, since x = z —y mod M; 1,
and = — y € ker(¢) we obtain that the natural map from ker(p) n wy/ {i, 00} to F;(M,) is
also surjective. ]
Corollary 3.13. Let M,, N, be two filtered modules, M, complete, and ¢ € Homgy (M., N,).
Assume i € Zzy ts such that coker(Fj(p)) = 0 for all j > i and ker(Fj(p)) = 0 for all
j #i. Then ker(p) € w)y;{i, 0}, and this inclusion induces an isomorphism ker(p) =~ pmod
ker(F;(¢p)).

Proof. Clearly the assumption that ker(F;(¢)) = 0 for all j # ¢ implies that ker(yp) <
w;} {i,00}. Thus lemma 3.12 implies that this inclusion induces an isomorphism

ker(p) = ker(p) 0wy {i, 90} = pamoa ker(Fi(¢)).
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O

Remark 3.14. Part (a),(c) of Proposition 3.7 do not hold without the assumption of com-
pleteness. An example is given as follows: take a collection of filtered modules {(M;, way;) }iez-,
such that for all m € Z-; there are only finitely many 7 € I such that min(w;(M;)) < m.
Now consider @, ;(M;,w;) < [ [,c;(M;,w;). Then F,,(M;) = 0 for all but finitely many 1.
Thus, by remark 3.5, we have that the inclusion of the direct sum of the direct product is
preserved by F,, but since it is over a finite set of indices (the ones where F,, does not
vanish) it is also an isomorphism. But if M; # 0 for infinitely many ¢ € Z-; the inclusion
of the direct sum in the direct product is not an isomorphism. This suggests the following
proposition.

Proposition 3.15. Let M,, N, be two filtered modules, and ¢ € Homgy (M., N,), denote by
Q: M — N the map induced on the completions. Then the following hold:

(a) If coker(F;(p)) = 0 for all i € Zx, then coker(¢) = 0.

(b) Ifker(Fi(p)) =0 for all i € Zy, then ker(¢) = 0.

(¢c) Fi(p) is an isomorphism for every i € Zsy iff ¢ is an isomorphism.

Proof. From remark 3.4, we know that F; and Fj(compl) are isomorphic functors. Thus
cokerF;(p) = 0 for all i € Z is equivalent to coker F(¢) = 0 for all i € Z~,, and ker(F;(¢)) =
0 for all i € Zs4, is equivalent to ker(F;(¢)) = 0 for all i € Zs,. Thus the proposition follows
from Proposition 3.7. O

Remark 3.16. Proposition 3.15 implies the equivalence between (b) and (c) in Proposition
3.6. Indeed if we have (c) of Proposition 3.6 then we conclude that the completion of | [,; M;
is also the completion of @, ; M;. Hence in particular @, ; M; is dense in [[,.; M;. This
gives that (c¢) implies (a). But we have shown in Proposition 3.6 that (a) is equivalent to
(b), hence (¢) implies (b). Conversely it is an immediate verification that (b) implies (c).

3.3. Filtered modules over a complete DVR. Now we specialize to the case where
R is a complete DVR: we ask completeness because in what follows, we want to apply
Propositions 3.7, 3.11, 3.13, and moreover it will be handy when taking filtered quotients of
finitely generated modules (see 3.2.4). We fix a uniformizer of R, and we denote it by mp.

3.3.1. The p-map. Let M, a filtered R-module, denote by w its weight map. Define py,, :
Zzy — Zz1 L {0} as follows: pyy, (i) := sup{j € Z=1,mgM; < M;}. In terms of the weight
map we have that py, (1) = mingey, {w(mrx)}.

Remark 3.17. The condition that py, is a shift map is equivalent to the conjunction of the
following two conditions:

(a) For all positive integers i, one has that M;/M;, is an R/(mg)-vector space. Moreover
(b) For all positive integers 7 the R-linear map TRy, - My — M,
by 7g, is a filtered morphism.

Definition 3.18. We call a filtered R-module linear if it satisfies (a) of remark 3.17. We
call a filtered R-module strictly linear if it satisfies both part (a) and part (b) of remark
3.17.

(i), given by multiplication

Let M, be a linear filtered R-module. Multiplication by mg induces a map F;(M,) —
Fy.(M,), which we denote by [7g];. One has by definition that [rg]; = Fi(mgrj,)-

90



JUMP SETS IN LOCAL FIELDS

Observe that the right hand side is well defined thanks to part (b) of the definition of a
linear filtered R-module.

Definition 3.19. Let M, be a linear R-filtered module and let i be a positive integer.
(a) We denote by f;(M,) = dimp/(x,) (Fi(M.)).

(b) We denote by defectar, (i) := dimpg/(r,) (ker([7r]:)).

(c) We denote by codefectyy, (¢) 1= dimpg(x,)(coker([mr];)).

3.3.2. Free filtered modules. Fix p a shift map. Here we introduce the class of free filtered
R-modules with respect to p. Free filtered modules play a role in the category of filtered
modules similar to the one played by free R-modules in the category of R-modules. We thus
recall the role of the latter to clarify the introduction of the former.

Free R-modules. Recall that if X is a set, then we have a covariant functor Hy : R-mod —
Set, defined on an object M € R-mod as Hy(M) := Homge (X, M), and defined on a
morphism ¢ : M — N as Hx(p)(f) := po f for each f € Homge (X, M). In other words Hy
is the restriction of the functor Homge (X, —) to the image of R-mod in Set via the forgetful
functor. This functor is representable in R-mod: up to isomorphism there is a unique R
module, Nx, such that Hyx ~punctor Hompg mod(Nx, —). This module is called the free module
over X, and concretely it is the module of finite formal R-linear combinations of elements
of X. By Yoneda’s Lemma the different choices of an isomorphism ® : Hompg y0a(Nx, —) —
Hx, correspond to the different choices of @y, (idy,) : X — Nx, which are the different
choices of a basis Z for Nx together with a bijection between % and X. Again, by Yoneda’s
Lemma, the set Isomppeors(Hx, Nx) is a torsor under Autg moq(Nx).

Free R-modules are the easiest R-modules, and once we trivialize Isomgerors(Hx, Nx), by
the choice of a basis ®, then, by construction, for any R-module M, the set Hompg joa(Nx, M)
is in natural bijection with Homge (X, M), via ®. Thus we can easily use suitable free R-
modules to present other modules. The ease in defining presentations Nx — M, once a
trivialization ® is chosen, has the price of obscuring structural information about M. Thus
one is led to look for properties of the presentation which are invariant under Autg oa(Nx).
This is exactly the path we will follow in attaching jump sets to special filtered modules. So,
first, we need to define the analogue of a free filtered module, which we do next.

Free filtered R-modules. First we introduce the analogue of the functors Hx of the previous
paragraph. Consider pairs (X, g), where X is a set and ¢ is a map ¢ : X — Z>;. Denote by
p-Filt- R-mod the full sub-category of Compl-Filt- R-mod, having as objects complete linear
R-filtered modules M, such that py, = p. Consider the functor H(x g : p-Filt-R-mod —
Set, defined on an object M, € p-Filt-R-mod as H(x g (M.) = {f € Homge (X, M;) :
for all x in X, w(f(z)) = g(x)}, and defined on morphisms by left composition. The goal of
this paragraph is show that this functor is representable. We start with the simplest possible
case of a pair (X, g) with X = {x} being a point. Put n := g(z). Clearly the functor depends
only on n, so, for simplicity, we will denote it by H,.

Definition 3.20. The n-th standard filtered module, S,,, for p, is given by: S, = R, with
weight map defined as w(z) = p =@ (n), for all z in R.

Observe that .S, is an object of p-Filt-R-mod (recall that R is assumed complete). It turns
out that it represents H,,.

Proposition 3.21. The functor H, is represented by S,.

91



C. PAGANO

Proof. Observe that by definition H,, is simply the functor sending M, to the set M,,, and
sending a morphism ¢ : M, — N, to the restriction |,  : M, — N,. So it suffices to prove
that given M, € p-Filt-R-mod, and given v € M, the unique R-linear morphism from R to
M, sending 1 — v, is a filtered morphism from S,, to M,, and that these are all the possible
filtered morphism from S,, to M,. But this follows directly from the definition of S,, and the
fact that M, is an object of p-Filt- R-mod. |

Now we can prove that H(x g is representable for any set X and any map g : X — Z1.
For a positive integer ¢ denote by c(x (i) := [¢7"()|]. Given ¢ a cardinal number and N, a
filtered module, denote by N9 the direct sum of ¢ copies of N,.

Proposition 3.22. The functor H x 4 is represented by the filtered R-module HieZ>1 SEC(X’Q)(i)).
Proof. The functor Hx g is isomorphic to the direct product of the functors Hyg,) as x
varies in X. So it follows from Proposition 3.6, Claim 3.21 and the universal property of the

Coxa® _ O

completion, that H(x g is isomorphic to the functor Honlﬁlt(HiEZ>1 i ,—).

Remark 3.23. Let i be a positive integer. If ¢(x 4)(4) finite, then we can omit the completion

of the factor Si(c(x’g)(i)), since it is already a complete filtered module. In our application
¢(x,9) (1) will always be finite.

An object M, in p-Filt-R-mod, representing H(x gy (so by Yoneda’s Lemma and by Propo-

sition 3.22, isomorphic to [ [;;_, Si(c(x’g)(i)))7 is said to be free on (X, g). Motivated by the

discussion in the above paragraph on free modules, we introduce the following notion.

Definition 3.24. Let M, be in p-Filt-R-mod a free module on (X, g). A filtered basis for
M, is an element of Isomgnetor (Homay (M, —), H, (X ,g))~

Given O a filtered basis for M,, one recovers a more concrete version of the notion of a
filtered basis, by means of Yoneda’s Lemma, taking ®,, (idy,) : X — M;. The image of
this map generates a free R-module that is dense in M; (coinciding with M; if and only if
X is finite, observe that for X infinite the resulting module is never free as an R-module).

Clearly, the functor H(x 4y depends only on the map c(x,q). So from now on we will directly
speak of the functors Hy«, where f* is a map from Z3; to the cardinal numbers.

We next give an internal criterion for a filtered module to be representing the functor Hx,
under the assumption that f* is supported in 7}, that is, we assume that f*(Im(p)) = {0}.

Proposition 3.25. Let M, be an object of p-Filt-R-mod, and f* as above. Then the follow-
ing are equivalent:

(a) For every positive integer i one has defectyy, (i) = codefectyy, (i) = 0. Moreover if i is in
T, one has f;(M,) = f*(1).

(b) One has an isomorphism of functors H s ~gpetor Homgy (Mo, —).

Sf*(i)_

i€Z=1 Pi

(¢) One has an isomorphism of filtered modules My ~g [ |

Proof. The equivalence between (b) and (c¢) is an immediate consequence of Proposition 3.22
and Yoneda’s Lemma. It is a straightforward verification that (c¢) implies (a). We prove that
(a) implies (c).

For every positive integer ¢ in T, lift a basis of M;/M;.; to M; and denote it by %;.
The inclusion UieT,, %; = M, consists of an element of H(M,), which thus gives, thanks
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to Proposition 3.22, a filtered morphism ¢ : HieZ>1 Sl-f*(z) — M,. We claim that ¢ is an
isomorphism.

Indeed by construction Fj(¢) is an isomorphism for every i in 7,. But together with the
fact that for every positive integer ¢ one has defecty, (i) = codefecty, (i) = 0, this easily
implies that for every positive integer 4, the map Fj(y) is an isomorphism. So, since M, is
complete, we conclude by part (d) of Proposition 3.7. O

Definition 3.26. Let M, be an object of p-Filt-R-mod, and f a positive integer. Then
we call M, a (f,p)-free filtered module if it satisfies any of the equivalent conditions of
Proposition 3.25, with respect to the constant map 7, — Zz1, i — f.

We denote by M, := HiETF S, i.e. the (1, p)-free filtered module. So M/ is the (f, p)-free
filtered module.

We next introduce the class of filtered modules that, together with those described in this
paragraph, will suffice to classify the possible filtered structures of Uy.

3.3.3. Quasi-free filtered R-modules. Recall that in case p is a shift with #7), < oo, then we
denote by e} = max(7,) + 1. Moreover we define e/p to be the unique positive integer such
that p(e],) = e;.

Definition 3.27. Let M, be an object of p-Filt-R-mod. Then we call it (f, p)-quasi-free if
it satisfies the following three conditions:

(a) For every positive integer i, we have that f;(M.) = f.

(b) If T}, is finite (resp. if 7}, is not finite), for every positive integer ¢ different from e; (resp.
for every positive integer ), one has defecty, (i) = codefectyy, (i) = 0.

(c) If T}, is finite one has that defectyy, (€],) < 1.

So we see that if 7, is not finite the notion of a (f, p)-quasi-free module coincides with
the notion of a (f, p)-free module. We characterize this distinction with a module-theoretic

property:

Proposition 3.28. Let M, be a (f,p)-quasi-free filtered module. Then the following are
equivalent:

(a) T, is finite,

(b) M, is finitely generated.

Proof. (a) — (b) Since all the F;(M,) are finite dimensional, (b) is equivalent to the statement
that for some positive integer n, the R-module M,, is finitely generated. But for n > e;),
the filtered R-module M, ,, is a (f,7z,|)-free-module, where for a positive integer m, the
symbol 7, denotes the shift sending any positive integer = to x + m. So one concludes by
Proposition 3.25.

(b) — (a) Since M, is finitely generated, so is M,. But for n > ¢], one has that M.,
is a (f, p o 7,_1)-free module. So by Proposition 3.25 one has that T, _, is finite, which is
equivalent to say that 7T}, is finite. |

Until the end of the next paragraph, we will restrict to the case that 7}, is finite or
equivalently that M is finitely generated. We will work again in greater generality only
from Section 3.3.4 onward.

We now recover the distinction between (f, p)-quasi-free and (f, p)-free with a module-
theoretic property.
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Proposition 3.29. Let M, be a p-Filt-R-Mod such that f;(M,) = f for every positive integer
i, and defecty, (j) = codefecty, (j) = 0 for every positive integer j # €. Then the following
are equivalent:

(a) M, is (f, p)-quasi-free.

(b) M[mg] is a cyclic R-module.

Proof. Given the hypothesis we have to prove that defecty, (¢],) < 1 is equivalent to M[7p]
cyclic. One has that multiplication by 7 is a filtered morphism 7g : Meier 1 — My, ox 3.
Thus the conclusion follows immediately from Corollary 3.13.

In particular we have the following.

Corollary 3.30. Let M, be a (f, p)-quasi-free module which is not (f, p)-free. Then we have
an isomorphism M[7g] ~pmoa R/Tr and wy, (M[ngr]) = {€], ©}.

3.3.4. Presentations of a quasi-free modules are conjugate. We keep assuming that 7}, is
finite. Let f be a positive integer. We will proceed classifying ( f, p)-quasi-free modules with
the help of the additional free module M} := M, @ Scx: we will use the module lefl M.
This module is the free module over the map f* : Zsy — Zz; defined as f*(i) = f fori e T,
f*(e) = Tand f*(i) = 0 for all the other i. So we fix an isomorphism between M/~ @® M
and Hy«, that is we fix a filtered basis for ]Wlffl ® M. Let now M, be a (f, p)-quasi-free
module that is not (f, p)-free. We call a subset Z = M; a quasi-basis if it consists of the
union of the lifting of a basis of M;/M;,; for each ¢ € T, together with the lifting of a
generator of coker[mg]e (this cokernel is 1-dimensional because the kernel is 1-dimensional
and we assume that f;(M,) is constantly f). By the universal property proved in Proposition
3.22, each inclusion of a quasi-basis 8 = M, gives uniquely (via the above choice of a filtered
basis for Mfffl ® M) a morphism ¢ : ]W/Jffl ®M; — M,.

Proposition 3.31. For each quasi-basis B, one has that v is a filtered epimorphism.

Proof. By construction for each i € T}, one has that Fi(¢z) is surjective. But since for
both modules one has that [7z]; is surjective for 4 different from €/, and at e} a generator
of the co-kernel has been added, one clearly concludes that F;(¢g) is surjective for all i, by
repeatedly using the above conditions and the multiplication by 7z. Since M, is complete,

we conclude with Proposition 3.7. O

We have found for M, presentations with the easiest possible type of filtered module with
the given constraints (namely those on the p-map) and in a minimal way: M, and M g oM ”
have the same minimal number of generators as R-modules. This presentation is obtained via
the choice of a quasi-basis. To read off the intrinsic structure of M, via these presentations
we proceed looking at the action of Autﬁlt(M/{_l ®M;) on Epim(le‘1 ® M, M,), in search
of invariants. The next proposition is then quite relevant for us.

Proposition 3.32. The action of Autgy(M]~'@®M}) on Epig, (M]~'®M}, M.) is transitive.
Proof. Recall from definition 3.3 that for a positive integer ¢ we denote by Fj; the functor
Fy; : Filt-R-mod — Filt-R-mod, defined as F ;(N,) := Ni/N;, with the quotient filtration,
on the objects, and on a morphism ¢ : M, — N,, one has that F);(y¢) is defined as the
morphism induced by ¢, from Fy;(M,) to Fi;(N,). Fix # a quasi-basis of M,. Take
¢ € Epig, (M~ @ My, M,). We claim that we can find a filtered basis %' of M/~' @ M
such that ¢(#') = %. We prove this in 2 steps.
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1) Firstly we observe that Fy . « () is an isomorphism. Indeed by construction Fi(¢) =
Fy(Fyex) () is an isomorphism for each ¢ € T}, and on both sides the [7],-maps are iso-
morphisms for each i < e since they are (f,p)-quasi-free. So it follows that they are
isomorphisms for all @ < ¢j. So the observation is proved by Proposition 3.7. This provides
us with the piece of the filtered basis corresponding to the elements = € £ with w(z) € T,

2) Take the unique x € % with w(z) = e;. By Proposition 3.10, together with Step 1),
we can find y € ¢7'(z) with w(y) = €. Now we claim that y must generate coker[r],.
Since this is a 1-dimensional R/(wg)-vector space this is equivalent to claiming that y is
not the 0-class in that cokernel. But if it were the O-class, then it there would exist z with
w(z) = €, such that mpz = y mod (M]™! ®M;)57,‘+1' But, from Step 1), it follows that
w(p(z)) = €}, but then, since 2 = mrp(z) mod (M™' @ ]\4:)@%1’ we see that x is in the
O-class in coker[n]., which is a contradiction.

So given @1, @y € Epig, (M~ '@M?, M,), there are two filtered basis %y, B, of MI '@ M
mapping to A via respectively ¢1, @9 as explained above. It follows that there exists a
suitable bijection, 0, between %, and %, that respects the weights and such that @00 = ¢
on %;. But then, by Proposition 3.22, we have that 6 extends to a filtered automorphism
of MI™' @ M7 and @, 0 6 = ¢y holds on all M/~' @ M* and we are done. O

Proposition 3.32 and Proposition 3.31 tell us that to classify-(f, p)-quasi-free filtered mod-
ules we have to accomplish two tasks:
(a) Classify the orbits of vectors in M/ ~' @ M* under Autg, (M)~ @ M).
(b) Recover which orbits of task (a) arise from (f, p)-quasi-free filtered modules.
This is what we do next.

3.3.5. Jump sets parametrize orbits. We keep denoting by p a shift map, and by f a positive
integer. Whenever a star is added, and we refer to an extended jump set in the following
statements, we will be implicitly assuming that, in that case, T, is finite. On the other hand,
in the parts of the statements where there is no star and we refer to regular jump sets, we
only require p to be a shift. We begin by attaching to each jump set a vector.

Definition 3.33. Let (I, 3) be a p-jump set (resp. an extended p-jump set). We denote by
v(r,p) the following vector of TrRMIf (resp. 7rR(Mpf‘1 ® M})): for each i € T, (resp. in T})
with i ¢ I, the projection of v(; gy on Sif (resp. the same and on Se;k) is 0. For each i € I, the
projection of v(; g on Sif (resp. the same and on Sgx) is the vector (wfzw, 0,...,0), having

wg@ on the first coordinate and 0 on all the others (resp. (sz(e? )))

We now prove that with the map (I, 5) — v, we catch each orbit at least once. For a
vector v € WRM[{ (resp. ﬂRMl{*I ®mrMy), denote by A, the set of elements of 7, (resp. ),
such that proj,(v) # 0, where proj;, denotes the projection on the factor S/ (resp. the same
if i € T, and we look at projg , for i = e¥). For a € A, define b,(a) = ordg(proj;(v)), the

“p

valuation of the a-th projection. Recall the definition of ([, (Ausbo)? B(_Av bv)) from Proposition
2.7.

Proposition 3.34. For each v € WR]VIJ (resp. 7TRAMJ*1 ® WRM;‘} there exists an auto-
morphism 0 € Autg(M]) (resp. 6 € Autgy(M]~™' @ MY¥)) such that 0(v) = v, where

(1,8) == (T4, 4y Biasin)-
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Proof. Clearly we can find a filtered automorphism 6y such that 6y(v) = v(a,p,), Where
V(a, b,) denotes the following vector of WRM[{C (resp. ﬂR(le*I ® My)): for each i € T}, (resp.
T7) with i ¢ A,, the projection of v(4,,) on S/ (resp. the same and to Sex) is 0, while for

each i e Av7 the projection of v(4,,) on st is (W?é’w, 0,...,0) (resp. the same and for i = e

is (WZJ( )). So without loss of generality, we can assume that v has this special form.

Next, let (¢,b,(7)) <, (4, by(j)). That means that either ¢ < j and b,(z) < b,(j), or that ¢ >
J and pbv(i)(i) < p»U)(5). Observe that in either case we have b, (i) < b,(j) and the R-linear

by (5) by (3)
TR 0in )T,

automorphism 6; ; on M, (resp. M;‘)7 defined as 6; ;((xp)her,) = (zn —
(vesp. as 0;;((xn)nery) = (¥ — ﬂ?{”(j)_b”(i)éi,hxj)ieT;k) is filtered, precisely due to the above
inequalities. Clearly we can extend 0; ; to a filtered automorphism of M, [{ (resp. M l{ oM 5
by simply letting it act as the identity on the complementary factor M ,{ ~1. The obtained

filtered automorphism 6; ; satisfies the identity
Agis) = Ao =15} boi50) = Dojan—g5)-

If T, is finite, by repeatedly applying transformations ¢; ; we end up precisely having con-
structed a @ as claimed in this Proposition. If 7}, is infinite, one can repeatedly apply such
elementary transformations ¢; ; in a a sequence that converges to a filtered automorphism 6
as we wanted to prove this Proposition. O

For a vector v € WR]WZ (resp. in ﬂRM/{’l ® mpMy), denote by g, the map g, : Zzog —
Zso v {0} defined as g,(i) := w]‘L{/ﬂ_}{Mg(U) (resp. g,(1) := wj\ngfl@M:/W%(Mﬁl@Mj)(v)). Here
wMZ/fr}QJ\I,f(U) (resp. wMﬁl@M;k/ﬂk(Mgfl@M;)(v)) denotes the weight of v in the R-module
M] /mpM] (vesp. MJ™" @ M} /mip(M]~' @ MY)) viewed as a filtered R-module with the
quotient filtration (see Section 3.2.4). Say that g, breaks at i if g,(z) # ¢, (¢ + 1).

Proposition 3.35. Let (I,3) be a p-jump set (resp. an extended p-jump set). Let v g) €
WRMpf (resp. v p) € WR]W;*IC—BWRAM:). Then g, breaks at i if and only if i € (I). Moreover
ifi e I, then we have that g,(B(i) + 1) = pPD (7).

Proof. Let n be a positive integer such that there exists an i € I with (i) < n. Denote by
ig the smallest such i. Fix the standard basis for M " (resp. for M, ITe M ) and denote it

by {bj; :i1€T,, je{l,..., f}} (resp. denote it by {b,] ieT, je {1 ..7f}} U {bex})- 1
this notation we have that v g = >, 71':; e;1. It is clear that

v = ) ey mod wip M.
i€l:B(i)<n

(resp. v(1,8) = Dier.p(i)<n Wg(i)eiyl mod 7%, - (MJ~' @ M?)). Observe that, thanks to the
definition of a jump set, we have that

i S ) = 79,

€l:p(i)<n

(resp. prff@M;g(ZiE[:B(i)m Wg(i>6i71) = pP0)(iy)). Therefore we conclude that

B(i i) /-
wM,f/ﬂ;M{( Z WR(Z)ei,l) > pﬂ(lo)(zo).
i€l:B(i)<n
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(resp. w(MZ‘l@Mg‘)/frg-(M,{‘l@M;)(Zielzﬁ(i)<n wfemei,l) > pﬁ(i“)(io)). We next prove that this
inequality is actually an equality which clearly gives the desired result.
Let 2 € M/ (resp. in M/™" @ M?*). We claim that

wy(mpe + Y7 mlen) < "),
i€l:B(i)<n
(resp. Wyt (TR + Dicr.()<n wﬁ“’ei’l) < pP)(4g)). Indeed if this claim would not hold
we must conclude that '
Wy (W) = 7 i),
PP (i4)). But, by construction of the free filtered modules, we
(wM;{ (x)) (resp. Wy -1 (mha) = p”(wM;{fl@Mj (2))). This im-
plies that p"=#0)(w, (x)) = iy, contradicting that iy € T}, since n > B(iy) by construction
]
e

(resp. Wy —1gr (rhx) =
have that wz\d(ﬁ’ﬁz) =p"

(resp. it implies that p B(iO)(wa{fl@M: (z)) = io. In case ig < €}, it again contradicts that
ig € Tp. If ip = €} we would conclude that bex ; € Tx - (M]~'@ M), which is not possible).
This ends the proof. ]

This allows us to conclude the following important corollary.

Corollary 3.36. In cach orbit O of WRM/f under Autfm(]\lg) (resp. M;{’l ® M) under
Autfilt(]V[Z‘1 ® My)), there exist at most one p-jump set (resp. extended p-jump set) such
that vy gy belongs to 0.

Proof. Clearly the function g, is preserved by applying a filtered automorphism. But by
Proposition 3.35 it follows that from the function Guy5 ONE can reconstruct (I,5). The
conclusion follows. O

So, putting together Proposition 3.34 and 3.36, we see that with the map (I, 8) — v,
we catch each orbit exactly once:

Theorem 3.37. The map (I, 3) — v(1,3) induces a bijection between the set of p-jump sets
(resp. extended p-jump sets) and the set of orbits of WRM/{ under the action of Autﬁlt(j\/[,{.)
(resp. orbits of WR]VI,Z_l ® mrM; under the action of Autﬁlt(ﬂ4g_l ® M:))

Given a vector v € TgM] (resp. in mp M~ @ 1 M) we define filt-ord(v) to be the jump
set corresponding to the orbit of v under the above bijection. As the terminology suggests,
the map filt-ord can be considered as the filtered analogue of the map ord, which gives
the valuation of the vector v. Indeed in the latter case knowing ord(v) gives exactly the
orbit, under R-linear automorphisms, of v, likewise in the former case knowing filt-ord(v)
gives exactly the orbit, under filtered R-linear automorphisms, of v. Moreover as ord(v)
is computed by taking the minimum valuation of the coordinates of v, with respect to an
R-linear basis, so filt-ord(v) is computed by taking the set of minimal points with respect
to <, for the graph of valuations of the coordinates of v, with respect to a filtered basis (see
definition 3.24).

3.3.6. Jump sets parametrize quasi-free filtered module. Now we fix p a shift with T}, finite
and [ a positive integer. Let M, be a (f,p)-quasi-free filtered module that is not free.
By Proposition 3.31 and 3.32 we see that M, correspond to a unique orbit of vectors in
]Vf[{’l @ M} under Autﬁlt(M/{’l ®M;). So, together with Theorem 3.37, we obtain a unique
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extended p-jump set (I, , Sz, ) that determines M, as a filtered module. Thus the map M, —
(In., Bar.) gives an injection of the set of isomorphism classes of (f, p)-quasi-free module that
are not (f, p)-free to the set of extended p-jump sets. We now want to describe the image.
By Proposition 3.35, together with Corollary 3.30, we find that p®®n(ae)) (min(I,,)) =
e*. Conversely one checks immediately that for an extended p-jump set (I, ) such that
PP (min(I)) = e*, the filtered R-module (M/~' @ M?)/Rv( s is a (f, p)-quasi-free
module. We call these jump sets admissible. We have thus proved the following theorem.

Theorem 3.38. The map sending an admissible extended p-jump set (I,[3) to (]Wpffl ®
M)/ Ruv gy induces a bijection from the set of admissible extended p-jump sets to the set of
(f, p)-quasi-free filtered modules that are not (f, p)-free.

3.3.7. Reading the jump set inside the module. We have classified (f, p)-quasi-free modules
(which are not free) via admissible extended p-jump sets. We have proceeded by introducing
an external module, M ,{ oM »» presenting each of them, and proving that the invariant of
each presentation is an admissible extended (f, p)-jump set.

We now provide a description of the jump set (I, , Bas ), internally from M,, without any
further reference to an external module M ,{ oM - In other words we face the task of
providing the inverse of the bijection in Theorem 3.38, without reference to M [{"1 SM;. We
will proceed by imitating the way we reconstructed the jump set belonging to each orbit in
Proposition 3.35. For v € M, denote by g, a, the map g, . : Zzo — Zso U {0} defined as
Gon, (1) 1= War, jeging, (V). Say that g, breaks at i if g, ar, (1) # go,n, (1 4+1). Fix 1 a generator
of (Mi)tors, denote by N the exponent of the torsion, that is N := min{i € Zs : w%fn = 0}.
The following proposition can be proved by a straightforward imitation of the proof of
Proposition 3.35.

Proposition 3.39. The function gm . breaks exactly at the elements of By, (In,) — N,
moreover if i € Iy, then g (i + 1) = pPe@=N(4),

So we deduce the following corollary.

Corollary 3.40. Let M, be a (f, p)-quasi-free filtered module that is not free. Let m € M
be a generator of (Mh)tors, then the map gm n, determines M, as a filtered module.

The following simple corollary of Theorem 3.38 will be often useful. Recall the notation
(I(j4 b 5(11,{;)) introduced in Proposition 2.7.

Corollary 3.41. Let M, be a (f,p)-quasi-free filtered module that is not free. Let I be a
subset of T and b a map from I lo Zzy. Suppose that for each i € I we have m; € M;
satisfying the following three conditions.

(1) For each i€ I we have that way, (m;) = i.

(2) We have that
Zﬂ'%l)mi = 0.

i€l
(3) If ey € I then mex ¢ mrMi.
Then it must be that
L agy Biapy) = (nses Bass)-
The following proposition shall be often used to recover the structure of the R-module
M [7%] := (M)tors from (Ipg,, Sar,). This goes as follows.
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Proposition 3.42. Let M, be a (f, p)-quasi-free filtered R-module. Then we have that
Mi[r%] ~ R/Wf{(HmXUM'»R,

as R-modules.

Proof. Using Theorem 3.38 we deduce that
M [r%] ~ R/ng"(ﬁ(IM.))R.

Since (Ipr,, Baz.) is a jump set, the map 3y, is in particular decreasing. Hence min(3(1yy,)) =
B(max(1ly,)), which gives precisely the desired conclusion. O

4. JUMPS OF CHARACTERS OF A QUASI-FREE MODULE

4.1. Motivation and main results. In section 5 we will see that U; as a filtered module
is quasi-free. So, as we will see in detail in 6, via the local reciprocity map the question of
determining the possible upper jumps of a cyclic p-power totally ramified extension of a given
local field is a special case of the question of determining the jumps of a cyclic character of
a given (f, p)-quasi-free filtered module, which is the goal of the present section.

Let R be a complete DVR. We denote by Q(R) the fraction field of R. We equip Q(R)/R
with the discrete topology.

Definition 4.1. (a) Let M, be a filtered R-module. A character of M, is a continuous
R-linear homomorphism x : M; — Q(R)/R, where the implicit topology on M; is the one
coming from the filtration, see 3.2.2.

(b) Let x be a character of M,. A positive integer 7 is said to be a jump of x, if x(M;) #
X(M;11). We denote the collection of jumps of x by J,. Finally we denote by _#,, the
collection of all J, as x varies among characters of M,.

One can easily show that if M, is linear (see definition 3.18), then for each character x of
M, the set J, is finite. We fix a shift map p, and a positive integer f. Recall that (f, p)-
quasi-free modules are in particular linear. The goal of this section is to understand exactly
which are the possible sets of jumps:

Goal. Let M, be a (f, p)-quasi-free module. Characterize the sets A < Zsy such that A = J,
for some character x of M,.

We will proceed as follows: in 4.2 we prove that /Mf{ = Jump, and /MI{AGBM{T = Jumpj.
Next in 4.3 we examine the case of (f, p)-quasi-free modules that are not free. Given such a
module M,, we know from Theorem 3.38 that all we need to know to understand M, as a
filtered module is the extended jump set (Ip,, Sas). So it must be possible to predict _Zy,
from (Iys,, Bar,). We achieve this in Theorem 4.8, where it is shown that ¢y, < Jumpj, and
the missing jump sets are characterized by a combinatorial criterion involving (I, Sz )-

4.2. Set of jumps are jump set for a free module. We proceed in the same way as we
did for orbits of vectors in 3.3.5. Clearly the set of jumps of a character does not change
if we apply to it a filtered automorphism of M,. Therefore we shall take advantage of this
symmetry. It turns out that, for free filtered modules, knowing the set of jumps of a character
X is equivalent to knowing to which orbit x belongs (under the action of the group of filtered
automorphisms).
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Definition 4.2. (a) Let x be a character of ]V[;f (resp. of ]V[g‘l ® M;). Denote by A, the
set of i in T}, (resp. T};), such that x(proj;) # {0}, where proj; denotes the projection on s/
(vesp. the same if 7 € T}, where the projection is on Sgx for the last coordinate).

(b) For a in A,, denote by by(a) = min{r € Z>, : 7xx(proj,) = {0}}.

We next show that, after applying a suitable filtered automorphism, one can make the pair
(Ay,by) a jump set (resp. an extended jump set). Recall the notation (A}, bY) introduced
in Proposition 2.7.

Proposition 4.3. Let x be a character of M;{ (resp. of MF{"I &) M:) Then there exists
0 € Autg(M]) (resp. Autgy (M~ @ M¥)) such that (Ayep, byep) = (Af, 7). In particular
(Ayop, byop) s a p-jump set (resp. an extended p-jump set).

Proof. The structure of the proof is the same as the one given for Proposition 3.34, we just
mention some differences. Just as in that proof, as a first step we can assume Y is a character
vanishing on the factor M ff ~'@0 and, as a character of the factor M, (resp. M), it is defined
as follows. If i ¢ A, then we have x|g, = 0. If i € A, we have xs,(1) = WEbX(Z>. Next if for
two points (i, by (), (j, by(j)) in Graph(b,) we have (i,b,(i) <, (j, by(j)), it follows that the
transformation 6, j, introduced in the proof of Proposition 3.34, is filtered. Now, the only
difference with that proof, is that the effect of applying 6;; is to erase the smaller point,
namely (7,b,(¢)). Indeed the character x o6, ; will send to 0 all the factors S, with a ¢ A,,
and it will be 0, additionally also on S;. On the other hand, on all the other factors S,, with
a € A, — {i} it coincides with x. Thus by repeatedly applying this type of transformation
the sequence of filtered automorphism so produced converges to a filtered automorphism 6
with (Ayep, byop) = (AT, 07), concluding the proof. O

We now show that if (A,,b,) is a p-jump set (resp. an extended p-jump set), then, if
viewed as a subset of Z1, it is the set of jumps of .
Proposition 4.4. Let x be a character of ‘M/{ (resp. of ]V[If_l ® M), such that (Ay,by) is
a jump set (resp. an extended jump set). Then J, = Jea p.)-
Proof. For a general y we have the following formula
ord(x(M;);) = max({by(j) — v, (4, ) }jer, ),
where for i € Z>, and j € T, (resp. T;) we have that v,(j,i) = min({s € Z>o : p*(j) > i})
(respectively we have the formula
ord(x(M]);) = max({by (j) — vp(j. 0)}jer))-
Since (A,,b,) is a jump set (resp. an extended jump set), it is visible from the definition

that the right hand side, as a function of ¢, changes value precisely in the set Jia, s,), which
is precisely giving the desired identity Jia, p,) = Jy-

So for two characters of M or Mf~' @ M* the equivalence relation “having the same
set of jumps” and “being in the same filtered orbit” are precisely the same relation and one
obtains the following fact.

Theorem 4.5. Let p be a shift map, and let f be a positive integer. We have that /M,{ =
Jump,, and if T, is finite, then /Merl@M: = Jumpyj.

The similarity with Theorem 1.4 is noteworthy: in both cases jump sets parametrize orbits.
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4.3. Sets of jumps for a quasi-free module. Let p be a shift map with 7}, finite. Let f be
a positive integer. Let M, be a (f, p)-quasi-free module that is not free. Then from Theorem
3.38 we know that the knowledge of M, as a filtered module is equivalent to the knowledge
of the extended p-jump set (/ys,, B, ). So the invariant _#y, is completely determined once
we know (I, O, ). Here we explain how. We know from Proposition 3.31 that M, admits
a presentation ¢ : MJ~' @ M¥ — M,, with coker(Fj(¢)) = 0 for every positive integer 4, so
from Proposition 3.11 we know that Pif - @nt), is a map onto M; for each positive integer
1. It follows that given a character y of M,, the induced character on M /f oM , obtained
by post-composition to ¢, has the same set of jumps of x. So together with Theorem 4.5 we
obtain:

Proposition 4.6. Let M, be a (f, p)-quasi-free module. Then 7y, < Jumpy.

Thus we see that to characterize which elements of Jump: belongs to _#);, we need to see
which jump sets are ruled out when on a character y of M ,{ oM , we impose the condition
X (V. 8ar.)) = 0. The following simple lemma will be relevant to this end. For x € Q(R)/R
we denote by ord(z) the smallest non-negative integer n such that 7z = 0. Equivalently we
can say that ord(z) is the unique non-negative integer such that Rz is isomorphic to R/7%R
as R-modules.

Lemma 4.7. Let n be a positive integer and (v, ...,v,) € (Q(R)/R)". Write Y := {i €
{1,...,n}:0 < ord(v;),ord(v;) = max{ord(v;), j € {1,...,n}}}. Then the following hold:

(a) Assume |R/mpg| # 2. Then there exists a vector (ay,...,a,) € (R*)™ such that
S aw; =0 if and only if |Y] # 1.

(b) Assume |R/mpg| = 2. Then there exists a vector (ai,...,a,) € (R*)" such that
> aiv; =0 if and only if Y| =0 mod 2.

Proof. (a) Assume Y| # 1. We can assume |Y| # 0 because otherwise (vy,...,v,) is the
zero vector and any (a1, ...,a,) € (R*)™ would prove the conclusion. Since |R/mp| # 2 we
can find A € R* such that A #% 1 mod mg. Now pick ¢, j distinct elements of Y, and observe
that at least one of the following two hold:

1) ord(v;) = ord(vj + Xy Un)-

2) ord(v;) = ord(Av; + Xpg( 5y Vh)-

In each case, 1) and 2), we can find p € R* such that, respectively pv; = v; + Zhﬂm.} U, OF
v = Avj + Zh${i, ;1 0n- Ineach of the two cases we obtain the desired conclusion. Conversely
assume that there exists a vector (a1, ..., a,) € (R*)" such that >}/ a;v; = 0. Suppose that
[Y| =1, call k its unique element: then we have ord(v;) = ord(}]} | a;v;) = 0, contradicting
the definition of Y.

(b) Assume |Y] = 0 mod 2. We can assume |Y| # 0 because otherwise (vy,...,v,) is
the zero vector and any (ay,...,a,) € (R*)" would prove the conclusion. So pick i € Y.
Then observe that, since |Y — {i}| = 1 mod 2 and |R/mg| = 2, we have that ord(v;) =
ord(3},,;vn). Thus, it follows that there exists p € R* such that pv; = 33, vs, which is

the desired conclusion. Conversely assume there exists a vector (aq,...,a,) € (R*)" such
that >, a;u; = 0. Suppose that [Y]| =1 mod 2. Then pick k € Y and observe that, since
|R/mp| = 2, we have ord(vy,) = ord(};_, a;v;) = 0 contradicting the definition of Y. O

We can now give a criterion to decide if an extended jump set (I, ) is realizable as a
set of jumps of a character of M,. Such a criterion consists in a combinatorial comparison
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between (I, 8) and (Iyy,, Bar.). The precise condition for (I, 8) to be ruled out are conditions
2.1) and 2.2) of the following theorem (in case (a) and (b) respectively).

Theorem 4.8. Let [ be a positive integer and let p be a shift. Let M, be a (f, p)-quasi-free
filtered R-module that is not free. Let (I, ) € Jumpy. Define Max((1, 3), (Ia,, Bar,)) :={i €
InIy, :B(1) = Pu.(i) >0AYjelnly, B()— P ()= B() — bu.(J)}. In what follows
we denote by Max := Max((I, 8), (Ins., Bar.)-

(a) Suppose |R/mpg| # 2. Then one has that (I,5) ¢ Zu, if and only if the following two
conditions are satisfied:
(a.1) [Max| = 1 and if f > 1 then Max = {e}}.
(a.2) Let j be the unique element of Maxyy, (I, 5)). For everyi € Iy, —I, the point (i, 5(j) —
B () + Bar, (4)) is mazimal in Graph(8) v {(i, 8(j) — Bar. (J) + Bar. (1))}, with respect to the
ordering <,

(b) Suppose |R/mp| = 2. Then (I,B8) ¢ Zm. if and only if the following two conditions
are satisfied:
(b.1) [Max| = 1 mod 2 and if f > 1 then Max = {e}}.
(b.2) Let j be any element of Max. For everyi € Iy, — I, the point (i, 8(5) — Bar. () + B(3))
is mazimal in Graph(8) v {(i, 8(j) — B () + Bar. (4))}, with respect to the ordering <,,.

Proof. (a) Denote by {b;; : i€ Ty, je {l,...,f}} U{be,} the standard filtered basis for
Mg’l ® M;). With this notation we have that

B (
V(I Biara) Z TR 1

i€l

We divide the proof in 9 elementary steps.
1) We fix a presentation ¢ : M/ffl ® My — M, as in Proposition 3.31, with ker(p) =
Ru(r,,, g,y @s in Theorem 3.38.
2) The task of realizing (7, /) from a character is equivalent to the task of finding a

X M{7'@® M* — Q(R)/R such that (I, B) = (I, 8), and Y., 7" Vx(biy) = 0.

3) Suppose that I n Iy, is either empty or that 5 — [y, does not assume a strictly positive
maximum on I N Iy,. We claim that then task 2) is realizable. Indeed thanks to Lemma
4.7 part (a), we can find for each i € I n I, a unit ; € R* with the property that

DR
BB (i)
e 7TR(l) Mo (1)

Therefore we can realize task 2) with the following character x. For i € I n I, we put
X(b1,;) = W For i € I — Iy, we put x(bi;) := —gg5. For any (i,h) € T, x {1,..., f} U

R
{ex} x {1} with 4 ¢ I or h > 1 we put x(b;,) = 0. With Proposition 4.4 we conclude
1mmed1ately that J, = (I, f) and we are done. So we can assume that I n I, is non-empty
and that 8 — ), assumes a positive maximum at a unique point of I n Iy;,, which we shall
call j.
4) Assume that j # e, and f > 1. Then we proceed by distinguishing two cases.
4.1) There is no other k € I n Iy, different from j such that S(k) — By, (k ) > 0. Then we

consider the following character y. For each i in I — {e}} we put x(bi2) = ﬁ(z) Ifes el we
put x(bex 1) = W For all the other (i',h) in T x {1,..., f} we put X(bz’h) = 0. We see
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that since f > 1 and j # € we trivially obtain

Z ﬂﬁM. (@) —0.

i€l

Hence task 2) is accomplished thanks to Proposition 4.4. So we can assume that such a k
exists.
4.2) Suppose that there exists k' € I n Iy, different from j such that S(k’) — S, (k') > 0.
Choose a k such that B(k) — B (k) = B(K') — B, (K') for each k' € T n Iy, with &’ different
from j. Next observe that thanks to Proposition 4.7 part (a), we can find for each i € I " Iy,
a unit g; € R* in such a way that

& Ej

- —~ +
B(#)—Bum, (i B(k)— B (k
() TI'R() (1) WR( ) =B (k)

=0.

Now we proceed constructing a character x. We put x(b;1) = —B@Wf{km and x(bj2) =

3(]) Forallie (InIy,)—{j} weput x(b;1) = = s(z) Forallze[ IM.Weputx(b“):ﬁ,

R
For all remaining vectors b of the basis we put X( ) = 0. Since B(k) — B (k) + B (J) <
B(j) we conclude by Proposition 4.3 and Proposition 4.4 that J, = (I, ). Moreover, by

construction,
Z Wgﬂyl'(l)x(bq;’l) = 0.

i€lnr,
Hence we have realized task 2) in this case as well.

5) Thanks to Step 1)—4) we can assume that [Max| = 1, and that either f =1 or Max =
{e:}. Otherwise we have shown, in the previous steps, that we can accomplish task 2). Keep
denoting by j the unique point of Max.

6) Assume there is i’ € I, — I such that the point (¢, 3(7) — B (7) + B (7)) is not
maximal in Graph(5) v {(7', 8(j) — Ba. (J) + B (i)}, with respect to the ordering <,. Then
we can accomplish task 2) constructing a character x in the following manner. Observe that,
thanks to Proposition 4.7 part (a), we can attach to each i € (I n Iy, ) U {i'} a unit ¢; € R*
in such a way that

& Eyt
> +— _ — (.
B(4)— B B()—Bma
ielnu WR(Z) M, ﬂ_R(J) 2 (5)

1

BG)—Bate @)+ Bare () and
TR

For each i € I n Iy, put x(bi1) = —5&. Moreover put x(by1) =
TR

x(bi1) = =k for each i € I — I;,. By construction we obtain
TR

2 WgM.(i)X(bi,l) =0.

i€lpr,

Finally the hypothesis that the point (i, 8(j) — B, (4) + Bas (i')) is not larger, with respect
to <,, than some point in Graph(3), tells us, through Proposition 4.3 and Proposition 4.4,
that J, = (I, 5).

7) Steps 1)-6) prove that if (a.1) and (a.2) are not both satisfied then (I, 3) € #y,. We
next proceed proving the converse implication.

8) Observe that if a set A < Z? is given, together with a point (z,y) € A that is maximal

in A with respect to <,, then any point of the form (z, ) with § > y is maximal in A, with
respect to <,.
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9) Suppose (a.1) and (a.2) both hold. Denote by j the unique element of Max. Let x be
a character of MJ~' @ M with .J, = (I, 5). We shall prove that

Z 7_rﬁM. (@) 73 0.

i€l

We proceed by contradiction. Suppose that Y. ; ﬁIiM' ® X(bi1) = 0. By Proposition 4.3 and
Proposition 4.4 we have that Ord(X(bj’l)) = [(j): this is clear for f =1 and if f > 2 we are
using that in this case j must be e’. Next using Lemma 4.7 part (a), we see that at least
one i € Iy, — {j} must satisfy ord(x(b;1)) = Bum.(7) + B(j) — Bm. (j). Such an i cannot be
in I. Indeed in that case we would Conclude by Proposition 4.3 and Proposition 4.4 that
Jy # (I, ) since we would have (i) = S, (i) + B(j) — B (j), which would contradict the
defining property of Max. Hence it must be that ¢ € I, — I. But then Step 8) together
with assumption (a.2) and Proposition 4.3 and Proposition 4.4 imply again that y does not
belong to the orbit of characters x" having J,» = (I, 5). This ends the proof.

Statement (b) can be proved by the same 9 steps of part (a) of this proof, replacing each
time, part (a) of Lemma 4.7 with part (b) of Lemma 4.7. ]

5. U; AS A FILTERED MODULE

In this section we apply the results of Section 3 to classify the possible structures of U, as
a filtered Z,-module. Let p be a prime number and let e be in (p — 1)Zs; U {oc}. Recall the
definition of p., from Example 2.1.

Let K be a local field with residue characteristic p. Denote by fx thc residue degree,
fx = [Ox/mk : F,]. Denote by px = pe,p- Recall that e = ”e’( and e = 2K

T op-1
Proposition 5.1. One has that U,(K) is a (fx, pK)-quasz-free ﬁltered Zp-module.

Proof. Firstly one has that U;/U; 11 ~apg. O/m, which gives for every positive integer i
that f;(U.(K)) = fx (for a definition of f;(U,(K)) see 3.19). Observe that the formula
(I4+2z)? =1+px+ ...+ P implies that given u € U;(K) then w” € U, ;. Moreover if
ue Uy(K)— U1 (K) and uP € Uy, (i +1, then pi =i + e, which implies that i = ¢], . So we
have firstly that py, k) = pr (for a dehmtlon of pu, () see subsection 3.3.1), which means that
U.(K) is a pK—ﬁltered—Zp—module (see subsection 3.3.2)7 and secondly that defecty, x)(1) =
codefecty, (k) (i) = 0 for every positive integer i # €], (for a definition of defecty, (x)(i) and
codefecty, (xy(7), see 3.19). On the other hand we know that 1, (U1(K)) is a cyclic group.
Thus we conclude by Proposition 3.29. ]

Therefore we deduce the following.

Theorem 5.2. One has that U,(K) is a free (fx, px) ﬁlz‘ered module if and only if p,(K) =
{1}. In other words, U(K) ~a, MJ5 if and only if p,(K) = {1}.

PK
Proof. This follows immediately from Proposition 3.25, Proposition 3.29 and Corollary 3.30
combined. ]
If instead p,(K) # {1} the following holds.
Theorem 5.3. Let K be a local field with p,(K) # {1}. Then there is a unique (I, Bk) €
Jumpy  such that
Uy ~ th;({71 ® (A{:K/ZPU(IK:BK))

as filtered Z,-module.
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Proof. This follows immediately from Proposition 5.1 and Theorem 3.38 combined. ]

We now fix ex = e, and therefore we have px = p.,. Fix as well fx = f. Our next
goal is to show that every (pep, [)-quasi-free filtered module can be realized as U,(K) for
some K, a totally ramified degree pfl extension of Q,7({,). In view of Theorem 3.38, this is
tantamount to prove that every jump set realizable from a filtered module can be realized by
a local field. Recall from Theorem 3.38 that the latter are precisely the admissible extended
pep-jump sets. For a definition of these jump sets see the discussion immediately before
Theorem 3.38.

Theorem 5.4. Let (I,3) be an extended admissible pe,-jump set. Then there is a totally
ramified extension K /Q,r((p) with ex = e and with

(Ixc, Brc) = (1, B).

During the proof we will make use of the two propositions that follow below. Recall
that if (, € K, then the extension L/K := K({/Upc_;i/Upe_;iH)/K is the unique unram-
p— p—

ified extension of degree p of K. Indeed [L : K] = p, so if er/x > 1 then er/x = p.
Observe that the inclusion Upe, (K) S Upe, (L) would, in case that ey x = p, induce an iso-
morphism Urex (K)/Up_il%+1(K) — Urey, (L)/U%H(L), which, by construction would imply
that codefectU_(L)(e/L) = 0, which is impossible since ¢, € L. So it must be that ey /x =1
and fL/K = [L : K]

Proposition 5.5. Let K be a finite extension of Q,((,). Then el € Ix if and only if
K (/e (K))/K is unramified.

Proof. Let (,; be a generator of Uy (K )iors. Thanks to Proposition 3.39, we have that ej; € Iy
if and only if wu, (x0) /v () (Gr) = 5. On the other hand this is equivalent to K(Gy+1) =

K( </ U [0S /U Do +1), which, as explained just above this proposition, is the unique unramified
P— p—
degree p extension of K. |

Let j be a positive integer. The following notation will be helpful. Consider the composi-
tum extension Qs (Cpi) - Qpr (Cpit1)/Qpr (Gpi), which is a Galois extension with Galois group
Cp x Cp. So one is provided with p 4+ 1 degree p sub-extensions. We denote the unique
unramified one as Q,r((,i)(0) (which of course is just Qs ((y)). Further we list the p —1
totally ramified ones without an element of order p’*! as Q,s({,s)(i) with ¢ running through
{1,...,p—1}. And we will sometimes make use of an extended notation for i = p, by letting

@pf (Cp])(p) = pr (gpj'*'l)'

Proposition 5.6. Let j be a positive integer. Let K be a totally ramified extension of Q,r((p)
with ex =: e. Then the following are equivalent:

(1) e* € Ix and Bk (e*) = j.

(2) There is exactly one i € {1,...,p — 1} such that K contains Qs ((yi)(2).

Proof. (1) — (2) Thanks to Proposition 5.5, we have that (1) implies that K((y+1)/K is
unramified, thus we have that K(y+1)/Qps(() contains Qs (Cpv1) - Quur (). But this
last one must then intersect K non-trivially, otherwise one would have [K((y+1) @ K] = p?,
which is impossible. At the same time the intersection cannot be Qer ((pi) because fx = f,
and it cannot be Qs ({y+1). Indeed we have Sx(e*) = j and Proposition 3.42 implies that
P’ = #pupe (K). So there must be an i € {1,...,p—1} such that K contains Q, (¢, )(i). But
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there must be exactly one since otherwise the whole extension Q,s((pi+1) - Qpor (¢p) would
be in K, which has been already explained to be not possible.

(2) = (1) We have that K (/U (K )tors)/I contains Qs ((pi) (1) (Gpivr) D Qpos, thus one
concludes that K({/U;(K )os)/K is unramified and by Proposition 5.5 one concludes that
e* € Ix. Moreover we must have that Sx(e*) = j. Indeed K contains in particular (,
which, by Proposition 3.42, implies that Sx(e*) = j. If we would have Si(e*) > j then,
still by Proposition 3.42, the field K" would contain also Q,({,+1). Hence K would contain
the compositum of Q,¢((pi+1) and Qpr((pi)(7). Therefore K would contain the field Qs
providing a contradiction with fx = f. Hence, since Sk (e*) = j and fx(e*) < j+1, it must
be that Sk (e*) = j. O

In particular we derive the following:
Corollary 5.7. Let j, f be positive integers, and i € {1,...,p —1}. Then
Io, 0o = 1LV} Bo,nm) =7+ 1 and Bo )0 (@) = .

Proof. Since the jump set must be admissible, we know that 1 € [Qp 16,0 with ﬂQP f(C,,])(i)(l) =
j 4+ 1. By Proposition 5.5, we know that p/*! e I (¢, With ﬁpr(gp])(i)(pj“) = j.
Moreoyer we certainly have that 1 = Inin([@pf(gpj)@) and pt! = max([pr(ij)(i)) since 1
and p’*! are respectively the smallest and the largest elements of T’ s for p = pe, with

e = pi(p —1). Moreover the very beginning of this proof gives us in particular that
Bpr(ij)(i)(l) = Ba,r ()0 (p*1) = 1. Therefore, recalling that the map f is strictly de-

creasing (by definition of a jump set), we must conclude that between 1 and p’*! no other
value of Ig (¢, can be found. This gives us the desired conclusion. O

Now we can proceed proving Theorem 5.4. Take (I, ) an extended admissible p, ,-jump
set. We distinguish two cases, depending on whether e* € I. First assume that e* ¢ I. Next
define the polynomial

ipBi)—
G(x) = H(1+x)p 1 — Gp € Qpr (Gp)l].
i€l
Using the fact that (I, ) is admissible (for a definition see immediately before the state-
ment of Theorem 3.38) one finds that the Newton polygon of G(x) consists of the segment
connecting (0,1) and (;%,0) continued with a horizontal segment starting from (;5,0).
Therefore there exists a degree - Eisenstein polynomial g(z) € Q,r((p), such that g(z)
divides G(z). Define

K 1= @y (G)[2) /g (a).
Clearly m := z is a uniformizer in K. Moreover we have that
[Ja+=)"" =1
iel
with vi((1 4+ 7%) — 1) = 4, thus giving
([K,BK) = ([75)7

thanks to Corollary 3.41. Now suppose that e* € I and write j := [(e*). We prove that
p’(p — 1)|e. Indeed we have that min(/) < e* giving that S(min(/)) > j + 1. Thus, since
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we have that p®™n(D) (min(7)) = p?@)(min(1)) = 25, we obtain that P (p—1)|e. Next,
pick uy, up € Qpr (¢ )(1) such that

Vo, (G = 1) =1, Vo ¢ pm(uz = 1) = P/ uz ¢ (Qur(Gu) (1))

and )
Wl =1
as guaranteed by Corollary 5.7. Now define
G'(@) =[] @™ — e QG (D)le].

i€l i<e*

Using the fact that (7, ) is admissible one finds that the Newton polygon of G*(z) con-

sists of the segment connecting (0,1) and (m., 0) continued with a horizontal segment

starting from (m,O). Therefore there exists a degree

g*(x) € Qur (¢ )(1)[2] such that ¢g*(z) divides G*(x). Define
K = Qu (¢)(D)[z]/g" (2).

Clearly 7 := x is a uniformizer in K. Moreover we have that

(]I a+="" =1

i€l i<e*

m Eisenstein polynomial

with vz((1 +7%) — 1) = ¢ for each i € I, with ¢ < e* and with vz(usg — 1) = e*. Thus, in
order to apply Corollary 3.41, we are only left with checking that us ¢ K*. But this follows
at once from the fact that Qs S Q,r (¢ )(1)(¢/uz) and the fact that g*(x) is an Eisenstein
polynomial and thus K /Qpr(pi)(1) is totally ramified. This ends the proof of Theorem 5.4
and therefore of Theorem 1.6 in the Introduction.

6. UPPER JUMPS OF CYCLIC EXTENSIONS

In this section we use Theorem 4.8, together with Theorem 5.1, to establish Theorem 6.2,
a classification in terms of jump sets for the possible sets of upper jumps of a cyclic wild
extension of a local field K. We next prove combinatorially that the classification obtained is
equivalent to that obtained by Miki [6], Maus [5] and Sueyoshi [11]: in this way those results
are deduced from Theorem 6.2. Finally we give a sense of how in practice the classification of
Theorem 6.2 may look, by examining it for several possible values of the triple ((I, ), f,p),
and in particular we do so for the most typical occurrences of (I, 3) in the sense of Theorem
1.7. We also show that for K /Q,((,) totally ramified, the knowledge of the filtered Z,-module
U.(K) is equivalent to the knowledge of all possible sets of upper jumps of cyclic wild totally
ramified extensions of K (see Corollary 6.12).

6.1. Classification of possible sets of jumps. In the rest of the section K will denote
as usual a local field of residue characteristic a prime number denoted by p. We fix K*%P a
separable closure of K and we denote by Gk := Gal(K*P/K) the absolute Galois group of
K. Let H be a normal closed subgroup of Gg. Recall that for every a € R5q the Galois
group Gg/H is provided with a subgroup (Gg/H)® via the so-called upper ramification
filtration (see [9]). Let L/K be a finite cyclic totally ramified extension of K, with degree a
power of p. Denote by G the Galois group Gal(L/K). A number o € Ry is said to be an
upper jump for L/K if G* 2 G**¢ for each ¢ > 0. We denote by J(L/K) the set of upper
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jumps for L/K. From the Hasse—Arf Theorem (see [9]) we have that J(L/K) < Zs,. We
denote by Zx the collection of all such subsets of Z; as L varies among all cyclic, p-power,
totally ramified extensions of K. The set # can be also described as follows. We consider
all totally ramified continuous homomorphisms

X GK - Qp/Zpa

where y is said to be totally ramified if the corresponding field extension is totally ramified.
The set of upper jumps for x are the a € Ry such that x(G%) # x(G%°) for all € > 0.
This set is denoted by J,. One has that J, = J((K*P)<N/K) so that £ consists of the
collection of all .J,, as x varies among continuous totally ramified characters x : Gx — Q,/Z,.
Of course the set of such continuous totally characters x : Gx — Q,/Z, can be equivalently
described as the set of all x : G3 — Q,/Z, continuous totally ramified. Finally it is not
difficult to see that _Zx is also the collection of all J, for all continuous homomorphisms
X (G32)' — Q,/Z,. On the other hand (G52)' ~7, i U.(K) via the Artin local reciprocity
law. Therefore we see that the definition of #x given in this section is equivalent to the
one given in the introduction: we have fx = Zy, k), where the right hand side is defined
at the beginning of Section 4. Therefore we are in a position to apply the results of Section
4, notably Theorem 4.8. To make the statements simpler we first make a definition. Let
p denote a general shift with T, finite, f a positive integer, and p a prime number. Let
moreover (I, 3), (I', ') be in Jump?.

Definition 6.1. We say that (I, 3) is ((I', '), f, p)-incompatible if the following conditions
hold.

(1) The set I n 1" is non-empty. Moreover the subset Max((1, 3), (I', 3')) of InI’ consisting
of those i in I n I' where (i) — 5'(4) is strictly positive and assumes the maximal possible
value, which we denote by ¢, has precisely one element if p > 2 and an odd number of
elements if p = 2.

(2) If f > 1 then Max((1, ), (I',8")) = {e}}.

(3) Given any i € I' — I, there is no j € I such that (4, 5'(j)) =, (i,c+ (7).

We say that (1, 3) is (I, 3'), f, p)-compatible if it is not ((I, 3’), f, p)-incompatible.

Combining Theorem 4.5 and Theorem 4.8 together with Theorem 5.1 we obtain the fol-
lowing.

Theorem 6.2. Suppose that p,(K) = {1}. Then Zx = Jump,, . Suppose that ju,(K) # {1}.
Then i consists precisely of the elements of Jumpy — that are (I, Bk ), fi, p)-compatible.

We conclude this subsection by proving that the notion of ((I’, '), f, p)-incompatibility is
equivalent to a slightly simpler criterion. This is given by the next proposition, which will
be repeatedly applied in the next subsection. We make first the following definition.

Definition 6.3. Let a be a positive integer and let (I, ) be an extended p-jump set with
I # @. Suppose that a > min(I), then we denote by |a|; the largest element i of I such
that ¢ < a. Suppose that ¢ < max(I), then we denote by [a]; the smallest element i of [
such that a <.

Let now (I, 3) and (I, 5') be two extended p-jump sets.

Proposition 6.4. The jump set (I,5) is ((I', '), f, p)-incompatible if and only if the fol-
lowing holds.
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(a) Conditions (1) and (2) from definition 6.1 hold. If that is the case, let ¢(I,I') :=

Blig) — B'(io) for any ig € Max((1, ), (I',")).
(b) For every point i€ I' — Max((I, 8), (I, 8')), we have that

B + e, I') > B([il),
whenever i = min(I) and
PO ) = i),
whenever 1 < max([).

Proof. This follows immediately by noticing that condition (3) of definition 6.1, requires only
the comparisons with |i]; and [i];, as soon as they are defined, since the two inequalities in
part (b) of the present statement must certainly hold, but they trivially imply all the others
since j — B(j) is strictly decreasing and j — p®U)(4) is strictly increasing, by definition of a
jump set. |

6.2. Comparison with Miki-Maus-Sueyoshi. In this subsection we give a direct com-
binatorial verification that Theorem 6.2 and the main Theorem of [5] are indeed classifying
precisely the same sets. Of course this follows also from applying both theorems, but both
criteria being of a purely combinatorial form, it is natural to provide a combinatorial proof of
their equivalence, not relying on local fields. As an upshot we can deduce Miki’s classification
from Theorem 6.2 and the bit extra of combinatorial work of this subsection. Moreover the
combinatorial nature of the equivalence between the two classification is highlighted from the
fact that it follows from a statement about a general shift, see Proposition 6.7. Recall indeed
that the case discussed in the present section is only a very special case of the classification
we provide Theorem 4.8, which is about a general (f, p)-quasi-free R-module (see Definition
3.27), where R is any complete DVR, f is any positive integer and p is a general shift. In
the case p,(K) = {1} the two descriptions are literally equal. So we pass to examine the
case pu,(K) # {1}, where both Theorems say that #x < Jumpj; and they both provide a
criterion for an element of J ump;K to be realizable as the set of jumps of a character. In the
case of Theorem 6.2, this is precisely the notion of being ((Ir, 8x), fx,p)-compatible. For
the convenience of the reader we recap the formulation of Miki’s criterion as stated in [11]
in terms of a general definition, valid for any shift p with 7}, finite. As usual, let p denote a
prime number and f a positive integer. Let moreover (I, 3) and (I, ) be in Jumpy, with
both I, I’ being non-empty.

Definition 6.5. We say that (7, ) is ((I', 5'), f, p)-inadequate if the following holds. Write
Jup = {ti,.. . tw} and Jp gy = {A,..., N} (see immediately above Proposition 2.3 for
the notation Jip g)) with {t;}1<i<m and {Ai}1<ig written in increasing order. Write s =
B'(max(I")). Then there is a positive integer L with L < m — (s — 1) such that the sequences
{zi}o<ici—(s—1), {Yi}o<ici—(s—1) defined as x; := L1, 4; 1= N—i—(s—1), with 2; = 0 when L <,
satisfy the following condition. Whenever y; € I', then x; < y;, with equality occurring,
among these inequalities, precisely once if p > 2, and an odd number of times if p = 2.
Moreover, in case f > 2, equality occurs precisely once, for all p, and it occurs for i = 0 with
zo = yo =€ € I n 1 (Le. 1,y < e,). Recall that ¥ = max(7,) + 1 and that ¢, is the
unique positive integer such that p(e;) =er.
We say that (1, /) is (I, B'), f, p)-adequate if it is not ((I’, 5'), f, p)-inadequate.
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Remark 6.6. In [11], the final condition requires only that z; < elp (i.e. that e} € I) because
in that case (I’, §) is admissible (since it is the jump set of a local field, see definition right
after Theorem 1.6), so the condition y, = ey, which is equivalent to e} € Jip gr), is actually
equivalent to e € I".

We next furnish a direct combinatorial proof that incompatibility and inadequacy are the
same notion.

Proposition 6.7. Let p be a shift with finite T,, let p be a prime number and f a positive
integer. Let (I,B) and (I',3') be in Jumpy. Then (I,3) is ((I',5"), f,p)-inadequate if and
only if it is ((I', B'), f, p)-incompatible.

Proof. Suppose that (I,5) is ((I’,3), f,p)-inadequate. Let L < m — (s — 1) and the two
sequences {2 }osi<i—(s—1), {¥iJo<i<i—(s—1) be as in definition 6.5. Let M be the set of non-
negative integers g, with ip <1 — (s — 1), y;, € I’ and x;, = y;,: the size of M must be, by
definition, equal to 1 if p > 2, and odd if p = 2. We claim that {y; };cpr = Max((Z, 8), (I, 3"))
(for a definition of Max((1, 3), (I’, ")) see Theorem 4.8). We know that, in either case, M
is non-empty. Let iy be one of its elements. Firstly, from the fact that L < m — (s — 1) we
deduce precisely that the set Jiz gy N [ys,, 90) has strictly more elements than Ji gy N [ys,, 90).
In other words y;, € I n I' with B(yi,) — 8 (yi,) > 0. Next let 0 < i <[ — (s — 1) be any
other index such that y; € I n I'. Assume y; > y;,, i.e. that i < ip. From the fact that
x; < y;, we conclude that in the interval [y;,, 3] there are at least as many points of Ji; g
as there are points of Jy gy, which amounts to 5(y;,) — 5(y:) = 5'(vi,) — (1), which can
be rewritten as S(vi,) — 5 (vi,) = B(yi) — 8'(y:), with equality iff i € M. A completely
analogous reasoning in the case i > ig brings us to the same conclusion. In other words we
have just shown that y;, € Max((Z, 8), (I, #')) and all other ¢ € M are precisely the i such
that y; € Max((Z, ), (I’,5")). Therefore we conclude by the very definition of inadequacy
that conditions (1) — (2) of definition 6.1 hold. We are left with proving condition (3).
Let 4; be an index such that y;, € I’ — I. Take ¢y € M, and suppose i; < ig. Since
|J(1,,3) N [yimxil“ = |J(1'~ﬂ') N [yioayh]‘? we have that ﬁ(yio) - 6([%1]1) > B,(yio) - ﬁ,(yi1)7
which can be rewritten as ¢ + '(v;,) > B([yi|r). This last inequality is precisely the
first of the two inequalities in Proposition 6.4. Next, always assuming i; < ig, consider
the two possible cases: z;; < |yi|r or |yi)r < @i, < [yi]r- In the first case observe
that B(yi,) — By, 1) > B/ (viy) — 8'(ys,), which can be recast as ¢ + 5'(yi,) > By ]r)-
This last inequality trivially implies that po*# @) (y; ) > pPwald)(|y; |1), since p is strictly
increasing. So in the first case one, trivially, obtains the second inequality of Proposition
6.4. In the second case observe that (8'(vi,) — ' (vi,)) — (B(zi) — B(|lYil1)) = vp(24), €.
pﬁ'(yio)*ﬁ'(yil))*(ﬂ(yig)*B(lyilh)([yiljl) = 1;, <y, which can be rewritten as pﬁ(lyzlh)([yilh) <
petP Wi (y; ). This last inequality is precisely the second inequality in Proposition 6.4.
The case i; > iy can be treated in the same way. Altogether this proves that (I, () is
((I',8"), f, p)-incompatible.

The proof of the converse implication proceeds analogously, and basically it can be ob-
tained by inverting the above arguments. ]

From Proposition 6.7 we can infer the main Theorem in [11].

Theorem 6.8. (Miki’s Theorem) Suppose that p1,(K) # {1}. Then Z consists precisely
of the elements of Jumpy — that are ((Ir, Bx), fx,p)-adequate.

Proof. This follows immediately from Theorem 6.2 and Proposition 6.7 together. O
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6.3. Examples and special cases. We begin by providing several cases where Theorem 6.2
specializes to something much simpler, the interesting case being clearly that p,(K) # {1},
which we will assume in the rest of this subsection.

Corollary 6.9. Let (I,) € Jumpy, with [ n I = @. Then (I,5) € Jik.

Proof. Indeed, in this case condition (1) of definition 6.1 cannot possibly hold if (I’, §’) :=
(Ix,Br), [ := fr,p:= char(Ox/my). Therefore (I,5) is (I, fx), f,p)-compatible and the
conclusion follows from Theorem 6.2. ]

As soon as fx = 2 we can say the following.

Corollary 6.10. Suppose that fx = 2. Then the following facts holds.

(a) Suppose that e ¢ Ixx. Then Jx = Jumpy, .

(b) Suppose that e, € Ix. Then Jump,, < fx & Jump; .

(c) Suppose that e;, € Ixc. Then each (I, ) € Jumpy, with e; € I and (e}, ) < Br(e},)
isin Jr.
Proof. Let (I, 3) be in Jumpj . Then condition (2) of definition 6.1 cannot possibly hold if
(I, 8" = (Ig,Bx), [ = fx,p = char(Og/my), therefore by Theorem 6.2, we obtain that
(I,B) € Zk, thus giving (a). Similarly if €5 ¢ I, which amounts to saying that (I, ) €
Jump,, , then condition (2) from definition 6.1 cannot possibly hold, giving Jump, < Zx
from (b). The inclusion #x < Jump;  always holds, thanks to Theorem 6.2, so, to conclude
the proof of (b), we only need to prove the strict inclusion, i.e. to provide, under the
conditions of (b), an element of Jump;, that is not in #x. Consider ({e; }, (e}, — n))
with n > fBx(e; ): it trivially satisfies condition (a) from Proposition 6.4. Condition (b)
amounts to saying that for any i € I — {e} } we need to have n — fr (e ) + Bk (i) > n.
This last inequality is equivalent to the inequality Bk (i) — Bx (e, ) > 0 and this inequality
holds by definition of jump set. Hence we conclude by Theorem 6.2 and Proposition 6.4 that
({es} (€5, = m)) ¢ Fx. This concludes the proof of (b).

For (c), notice that the assumption 3(e; ) < Bk(e;, ) together with fx > 2 makes condi-
tion (2) of 6.1 impossible to hold for (I, 5), giving by Theorem 6.2 that (I,8) € Zk. O

If instead fx = 1, then there are always exceptions.
Corollary 6.11. If fx =1, then #x & Jumpj .

Proof. We proceed as in (b) of the previous corollary. For any i € Ix we consider the jump
set ({i}, (i — n)) with n > Bk (i). We proceed to show that this jump set is ((Ix, fk), 1, p)-
incompatible. Condition (a) of Proposition 6.4 is clearly satisfied, so we proceed to ver-
ify condition (b) of that Proposition. Taking j € I with j < 4, we need to check that
Bk (j) + n — Bk(i) > n, or equivalently that Sx(j) > Sk (i). This last inequality follows
from the definition of a jump set. Take now j € Ix with j > i, we need to check that

,of(K(jH"*ﬂK(i) (j) > pk(4), which, px being strictly increasing, reduces to pfj"(i)*ﬁ’{(j)(i) <7,
which follows from the definition of a jump set. Therefore we conclude from Theorem 6.2

and Proposition 6.4 that ({i}, (i — n)) ¢ Zk. O

We remark that if we would have put n < Sk (i) during the proof of Corollary 6.11 we
would have found, thanks to Theorem 6.2, that ({i}, ({ — n)) € _Zk, since condition (1)
of 6.1 is not satisfied. This will be helpful in the next corollary. It turns out that in the
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case fx = 1 there are even enough exceptions to reconstruct the full structure of the filtered
Z,-module U,(K) out of #x. Namely we have the following.

Corollary 6.12. Let Ky, Ky be two totally ramified extensions of Q,((,). Then Fr, = Zk,
if and only if Us(Ky) ~z, 51 Us(I3).

Proof. Firstly observe that T consists precisely of the positive integers i € Z; such that
({i}, (i — n)) € Zx for some positive integer n. Indeed if 7 ¢ I, then by Corollary 6.9 any
n € Zx is allowed. If instead i € I then any n < (i) will be allowed, since in that way
Max(({i}, (i — n)),(Ix,Px)) = @ (for the definition of Max(({i}, (i — n)), Ik, PK)) = @
see Theorem 4.8). Conversely, by definition of a jump set, it is clear that for any i € Z-
such that ({i}, (i = n)) € i for some positive integer n, one has i € T} . Hence T} can
be reconstructed from g, and, since ex = \T:K — 1, we can reconstruct ex from _Zx.

Next, from the proof of the previous corollary, it is clear that under the assumption
fx = 1, the set Ik can be reconstructed from #i as the set of i € T;K for which there
exists a positive integer n such that the extended px-jump set ({i}, (i — n)) is not in k.
Moreover in that proof we saw that, for ¢ € I, the set of such integers consists precisely of
the left interval [k (i) + 1,00) N Zx1, hence also Sk can be reconstructed from _Zj. Hence
we can reconstruct (I, Bg).

So given K; and K as in the statement we have that 1 = fx, = fg,, and we have shown
above that we have eg, = ef, and so pg, = pk,. Moreover by the reasoning just made, from
Ik, = Jk, we conclude that (Ix,, Bx,) = (I, Br,). Hence we conclude by Theorem 5.3
that U,(K1) ~z,-61c Us(K3). The converse is a triviality. O

In other words, for K7y, K», totally ramified extension of Q,((,), one has Zx, = Zk, if
and Only if €K, = €K, and (IK17/6K1) = (IK275K2)'

We conclude this subsection providing a more explicit description of #x in a family of
simple cases, namely when |[Ix| < 2. Observe that thanks to Theorem 1.7, the equality
[Ix| = 2 is the most typical phenomenon. If v, (e) = 2, the probability that |Ix| > 2 is
at most ()P % and at least (1)"~"- (%)27 while if vg, (e) < 1, then |[Ix| < 2 always.
Observe also that [Ix| = 1 if and only if K is a tame extension of Qs ((n) Where n
is the unique element of Sk (Ix). The classification for || = 1 takes a very simple form.
Denoting by eg(K) the part of z% coprime to p, recall that, from the definition of admissible
jump sets, one has that [Ix| = 1 if and only if I = {eg(K)}. Recall by admissibility that

Br(eo(K)) = v, (ex) + 1.

Corollary 6.13. (a) Suppose |Ix| =1, fx = 1. An extended pr-jump set (I, 3) belongs to
Ik if and only if either eo(K) ¢ I or both eo(K) € I and B(eo(kK)) < vg,(ex) + 1.
(b) Suppose |Ix| =1, fr = 2. Then JFx = Jumpj .

Proof. (a) If eg(K) ¢ I we conclude by Corollary 6.9. If eo(K) € I and B(eo(K)) <
Br(eo(K)), then condition (1) of definition 6.1 cannot possibly hold, hence we conclude
by Theorem 6.2. Suppose instead that 5(eo(K)) > Bx(eo(K)). Then all three conditions of
definition 6.1 are trivially satisfied and we conclude by Theorem 6.2, finishing the proof.
(b) This follows immediately from Corollary 6.10, given the fact that e} # eo(K) €
Ig. (|

We next proceed providing an explicit classification in the case |Ix| = 2, fx = 1.
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Corollary 6.14. Suppose |Ix| = 2, fx = 1. Write Ix = {eo(K),i}. Let (I,/3) € Jump, .
Then (I,8) € Zx if and only if one of the following two conditions holds.

(1) One has that Ix n I = @.

(2) One has that I < I, with Max((I, ), (Ix, Bk)) = Ik or Max((I,8), (Ix, Bk)) = @.

Proof. From Corollary 6.9 we see that condition (1) indeed implies that (I,3) € #x. On
the other hand condition (2) implies that |Max((7, ), (I, 8k))| is even, which makes the
condition (1) of definition 6.1 impossible to hold. Hence we see that condition (2) also
implies that (1, 3) € Zk. Conversely, assume that [Max((I, 8), (I, Bx))| = 1 but Ix < I.
Then conditions (1) — (2) — (3) of definition 6.1 are clearly satisfied, since Ir — I = @. So
are left with the case Max((I, ), (Ix,Bk)) = I mn Ix. Suppose I n Ix = {eo(K)}. Then
we have to check that ph AN =Ar(coll) iy o fleoltf) (1)) which is equivalent to
plrc(eolEN=Bx () (¢ (K)) < i+ this follows from the definition of a jump set. Suppose that
I n Ix = {i}. Then we have to check that Sk (eo(K)) + 5(i) — Bk (i) > B(i) which is saying
that S (eg(K)) > Bx(i): this follows from the definition of a jump set. O

Remark 6.15. The reason why for |Ix| = 2 one gets such a simple criterion can be learned
from the proof of the previous corollary. Namely the inequality in condition (3) in definition
6.1 will always hold when tested against elements of Max((Z, 5), (I, 8')), but if Ix has two
elements and I n I has only one, then that is the only possible test to do. So one is
left with either Iy < I or I n Ix = &, where in both cases it is very easy to say what
Theorem 6.2 prescribes. Indeed the ease of the latter case was formalized in Corollary 6.9.
For convenience we formalize also the ease of the case Ix < I in the following last corollary.

Corollary 6.16. Suppose that fx = 1. Suppose that (I,5) € Jumpy , with I < I.
Then (I,8) € Zx if and only if [Max((I,5), Ik, Bk))| # 1 when char(Ox/mx) > 2 and
[Max((1, 8), (Ik, Bk))| # 1 mod 2 when char(Ok/mg) = 2.

Proof. The third condition of definition 6.1 becomes trivially satisfied, and the first two
conditions are precisely translated in the statement. O

7. THE SHOOTING GAME

The goal of this section is to explain the rules of a certain Markov process, which we called
the shooting game, and some of its variants. This process is the bridge between the two sides
of the equality in Theorem 1.7. This will be explained in detail in the next two sections. We
shall begin with an informal description.

Let p be a shift, and let r be a positive integer. Let p be a prime, f a positive integer and
let ¢ := p/. We will use the following notation: given m € Z-,, denote by v,(m) := max(i €
Zso : m € im(p*)). Denote by n := v,(r). Imagine there are n + 1 shooters Sy, Si, ..., Sy,
and a rabbit R placed in initial position r. The activity of the shooters is to shoot at the
rabbit in turns. If the rabbit sits in position z the shooter will always shoot from the y € T,
such that p%@(y) = . We shall call such a y the shooting position of the shot. The value
vp(x) is called the length of the shot. The rules describing how the shooters take turns and
what the outcome of each turn is are the following.

(1) The shooter S; cannot perform any shot of length strictly smaller than i.

(2) Whenever it turns out (with the above rules) that a shot of length strictly smaller
than ¢ must be performed, then S; leaves the game forever.
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(3) A shooter S; can start shooting only when all the other shooters S; with j > 4 had to
leave the game by rule (2). In this case he will actually shoot.

(4) The rabbit R moves only when someone shoots. At each shot the rabbit moves some-
where forward on Z-;. If h is a positive integer, then R moves exactly h steps forward with
probability q—(;h—l.

(5) The rabbit R starts in position r.

We next explain a natural way to attach to a shooting game G a p-jump set (I¢, Ba).
Suppose that during the game G we keep track of the shooting positions where a new
shooter came in. Let’s call this set I;. To each element of I; we attach the length of the
corresponding shot plus one, and call 35 the resulting map from I to Z=,. Observe that,
thanks to the rules, it is clear that (g gives also exactly one plus the number of shooters
still participating in that round. Indeed this is true for n by the assumption that the first
round must be played with length n (and so must be played necessarily by .S, otherwise rule
(3) would be contradicted). For b < n, the shooter S, cannot enter the game playing a shot
of length smaller than b by virtue of rule (1), moreover, by virtue of rule (3), it must be
that Sy, has left the game if Sy, is playing so the length of the shot cannot be more than b,
otherwise Sy is still allowed to play and, still by rule (3), he will do so. Thus the length
must be b. So the map f¢ is strictly decreasing. Moreover, by rule (4), the rabbit moves
forward, which means that the map i — p®()(4) is strictly increasing on Ir;. In other words
we have shown the following fact.

Proposition 7.1. For each game G, the pair (Ig, Bg) is a p-jump set.

Shooting games can be conveniently formalized in the language of discrete-time Markov
processes. We recall the basic definition in the generality that will be relevant for us.

A discrete-time Markov process consists of a set .S, called the state space, equipped with
a transition function

P:SxS—]0,1],

and with a point xy € S, called the initial state of the process. Moreover we require that
for each x in S the function y — P(x,y) is a probability measure on S, with respect to the
discrete sigma-algebra on S. In other words we require that ZyeS P(z,y) = 1. We shall refer
to P(z,y) as the probability to transition from z to y. The data (S, P, zo) with the above
properties, suffice to construct a probability space that models the behavior of a discrete
random walk in S starting at zy and proceeding at each stage from x to y with probability
P(z,y). To do so we consider the space of paths

Q= %=1

as a topological space with the product topology, where S is viewed as a topological space
with the discrete topology. On Z(f2), the sigma-algebra of Borel sets of €2, a unique prob-
ability measure jtp,, is defined with the following property. Take m a positive integer. Let
Y1,---,Ym be elements of S. For convenience put yo := xg9. Let Y be the cylinder set
Y = {yo} x ... x {ym} x SZ=m+1. We have that

3

Hpa(Y) = P(ys, yis1)-

1=

(=}

Moreover we ask that fip, ({79} x S%>2) = 1. The existence of such a measure is a simple
consequence of the Kolmogorov extension theorem [14, Theorem 2.4.3].
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For the shooting game the triple (S, P, xq) is as follows. We take as state space
S = {(x1,22) € L1 X Lo : vp(x1) = 22}
In the informal description being in state (21, 5) € S, means that the rabbit R is in position
x1 and that the next shot will be of length z» = v,(z1). The initial point is
xg := (r,n).

The transition function is defined as follows. Let x := (21, 29) and y := (y1,y2) be in S with
y1 > x1. Then we put
q—1

P(z,y) = prret

For all other choices of z,y € S we put P(z,y) = 0. We shall denote by (- (p,r,q), tig.r)
the pair (€, pips,) defined in the above paragraph. This is the space of shooting games.
Sometimes we shall also use the notation .#(p,r) to denote merely the topological space
Q = S%>1. Observe that

tgr({ (w1, we) € F(p,r) : wy is strictly increasing}) = 1.
The informal description, at the beginning of this section, gives us a map
S (p,r) — Jump,,

which can be described as follows. Let (w1, ws) be in #(p,r) with wy strictly increasing.
Define

Iy wy) = {1 € Zxy : for all positive integers j smaller than ¢ we have wy (i) < wa(j)}.

We put B, w,) to be the restriction of wy + 1 to Iy, w,). One readily sees that if G is the
shooting game corresponding to (wy,ws), then the jump set (I, w.); Bwiws)) coincides with
(Ig, Bc)- In the subspace, having measure 0, of (wy,ws) such that w; is not an increasing map,
we let I, o,) = 9. Extended jump sets arise from a natural modification of the shooting
game, called the extended shooting game. From now on we assume that 7, is finite. Moreover
from now on we shall restrict the variable r to be smaller than e} = max(7,) + 1. The key
difference with a shooting game is that in an extended shooting game the shooters can shoot
from T and not only from 7). We shall directly introduce the extended shooting game in
terms of Markov processes.

For the extended shooting game we consider the following triple (S*, P*, x¢). For any two
positive integers ki, ky define v,(e¥, ki, ko) 1= #{m € Zzo : k1 < p™"(e}) < ka}. We take as
state space the set S* of points (z1, x2) € Z=1 x Zxg such that one of the following two holds.
Either we have v,(z1) = 2 in this case (21, 22) is said to be of the first kind. Or we have
that p™(e}) = 1: in this case (21, 25) is said to be of the second kind. The initial point is

g 1= (1, v,(r)).
The definition of the transition function is slightly more involved. However, right after the
definition, we will give an intuitive perspective on such functions. Let x := (z1,22) and
y := (y1,y2) be in S with y; > zy. If y is of the first kind we put
q—1

qy1 *mpvp(e;i; »T1 1y1) ’

P*(Ivy) =
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If y is of the second kind we put

—1
P(a,y) = —2

qylfwlflpvp(efg o1,y1)

In all the other cases we put P*(z,y) = 0. A straightforward calculation shows that this
function P* satisfies the equations of a transition functions. We shall instead explain this
in a different way, which offers a more intuitive perspective on the formula for P*. This
can be done by considering an auxiliary family of Markov processes: informally these can
be imagined as the Markov processes modeling the behavior of a repeated coin toss that is
stopped at the first win. Fix 2y € Zsq. Let the state space be S,, := {0,1} x Zs,,. Let the
initial point be x¢ := (1,21). Let y be an integer larger than ;. We put P, ((1,v),(1,y)) :=
1, and Py, ((1,y), z) = 0 for all the other values of z in S,,,. Moreover we put P, (( Y), ( LY+
1)) = Land P, ((0,y), (1,y + 1)) = “2. Finally we put Py, ((1,21), (0,21 + 1)) = { and
P ((1,21), (1,21 + 1)) = %1. For all the other values of 21, 2o in S, we put P, (21,22) = 0.
In this manner one obtains a Markov process where with probability 1 a path is eventually
constant, with second coordinate strictly greater than x;. In this manner a probability
measure on Z-,, is induced, with respect to the discrete sigma-algebra. This measure is
precisely the one used in the shooting games: it gives to each x € Z-,, weight equal to q;—’i—,}l.
We can imagine a path in S, as given by the following scenario. A walker is equipped with
a coin C' giving 1 with probability % and 0 with probability é. He starts his walk at
and moves at x1 + 1 to see if he will stop there forever. He tosses C and if the result is 1 he
will stop there forever, otherwise he has to move at x; + 2 and repeat the operation. On the
other hand, to obtain the formula for P* we are in the following scenario. Our walker has
also a sccond special coin C*, this coin takes 1 with probability 7’ L and 0 with probability
. The rule is that he can use C* only when he arrives at a posmon x such that there is a
nonnegative integer m with p™(ej) = . In this case before using C' he uses C*. In case C*
gives 1 he will remain in « forever and he is also provided with a cash prize. If C* gives 0
he will use C' that will still follow the rules as before, telling him if he will stay forever at
x (though without cash prize) or if he has to move to = + 1 to try again his luck. In this
manner we obtain a natural probability measure on {0, 1} x Z.,,, which we denote by P |
where the first coordinate is 1 precisely when the walker has obtained also a cash prize. One
has that if (y1,y2) is of the first type, then

]P:1((07 yl)) = P*((Ilv 1:2)7 (ylva))v
and if (yy,yz) is of the second type, then

Pr (L) = P((21, 22), (41, 92))-

The triple (S*, P*,r) gives rise to the probability space of extended shooting games. This
is the pair (S*(p,7,q), p1,) = (QF, pps ), where Q* = (S*)%=1 is the space of paths and
Hy - is the natural probability measure on it, as explained above. Sometimes we shall use
the notation .*(p,r) to denote merely the topological space Q* = (S*)Z=1,

Imitating what we have done in the case of shooting games, we obtain a map

S (p,r) — Jumpy.

Equip J ump: with the discrete sigma algebra. Pushing forward p . via the map . *(p,r,q) —
Jump?, we obtain a probability measure on Jumpy, which we will denote also by uy . Let
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(1, 8) be in Jumpy. Observe that for r = e;, the measure pj . gives positive probability to
(I,p) if and only if (I,/) is admissible (for a definition see immediately before Theorem
3.38).

We devote the next subsection to describe a number of subspaces and quotients of .7*(p, )
that will play an important role in the proof of Theorem 1.7.

7.1. Subspaces and quotients of extended shooting games. For any positive integer
J we define #Z;(p,7) to be the set of G € #*(p,r) such that Iz # @ and min(fg) > j.
We denote by Y;j(p, r,q) the above set viewed as a measure space with the restriction of
Mg If we normalize the measure in the unique way to get a probability space, we will
denote the resulting probability space as fgj(p, 7r|q): this is the probability space of games
G conditioned to never invoke a shooter of lower index then S;.

Next we define .7Z;(p,7) to be the set of G'e #*(p,r) such that I # & and min(8g) = j
and e} ¢ Ig. We denote by *;(p, 7, q) the above set viewed as a measure space with the
restriction of g .. If we normalize the measure in the unique way to get a probability space,
we will denote the resulting probability space as yjj(p, r|q): this is the probability space of
games G conditioned to invoke as a last shooter S, with his first shot being not from e3.
We define 7%, .(p,7) to be the set of G € #*(p,r) such that min(Sg) = j and e} € Ig.
We denote by 7%, .(p,7,q) the above set viewed as a measure space with the restriction
of . If we normalize the measure in the unique way to get a probability space, we will
denote the resulting probability space as Y:*]-’*(p? r|q): this is the probability space of games
G conditioned to invoke as a last shooter S;, and by letting him shoot for the first time from
er.
pFinally for any positive integers = we define .7 sop(p; 7, ¢) as the quotient probability
space of .Z*(p,r,q), where two games are identified precisely when the trajectories of the
rabbit are identical as long as the rabbit stays below z.

For all the following remarks m will denote vp(e;). We will assume that p is such that
m > 2. Equivalently we are assuming that in .7*(p, e;ﬁq) the subspace 7% (p, e’wq) has
probability strictly smaller than 1: in case the subspace .7* (p, e'p, q) has probability equal
to 1, then the shooting game gives constantly the jump set ({e;]}, e;] — 1).

For a positive integer = and a nonnegative integer m’, such that = € Tm(p™') we denote by

p~™ () the unique positive integer y such that p™ (y) = .

Remark 7.2. Let j € {1,...,m}. Given G an element of .7*(p, p‘(j‘l)(e;)))7 by applying
=1 to it, we obtain an element of ZZ(p, e/p), this map is a bijection. Moreover the map
p’~ ! induces an isomorphism of measure spaces %% (p, e'p|q) ~neas. space <7 F(p, pU™Y (e/p), q).
The map induced on jump sets consists simply of shifting 3 by j — 1. We call ; the inverse
of the isomorphism given by p'~!.

Remark 7.3. The map described in Remark 7.2 induces an isomorphism of measure spaces
S, €,,q) Smens. space 51 (07U (e,), q).

Remark 7.4. For all elements G of a given equivalence class C' in .7 stop(p, 7, q) the set
{i e I : p?¢@(i) < 2} will be the same, and similarly the restriction of B¢ to this set will
be the same. The resulting pair (I, f¢) is also an extended p-jump set. In particular the
set 7% (p, e;)) consists of a union of equivalence classes for the projection to 7, gop(p; e;).
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Moreover in each such equivalence class C, the jump set (I¢, S¢) coincides with the jump
set (Ig, Be) for any G belonging to C.

Remark 7.5. Let j be in {1,...,m — 1}. Observe that the projection of 7%, (p, e;|q) to
7

P
ing in %
€p

i (e3),stop (05 e;,, q) lands in the image of /%, (p, e;), g). Thus we can apply to it ¥;11, land-
siop(P2 P77 (€,),0). We denote by 0¥+ 7% (p,€,]a) = sy sop (P2 P77 (€), )
the resulting map. If C' = ¢¥(G) then I = Icu{e*} with Bg;, = fc+j—1and Sg(e*) = j.
This provides a reconstruction of (Ig, 8¢g) from (I, Buc))-

Remark 7.6. Given j € {1,...,n}, it can be easily shown that one has always that
(P = Vg o (L2511(0 € 0)) = b 0 (FZ5.4(pr €40 9))-

In the setting of local fields this fact is mirrored by Proposition 5.6.

8. SHOOTING GAME AND FILTERED ORBITS

Fix p a prime number. Using the notation of Section 3, we take R = Z,, and we fix f a
positive integer and p a shift. Let ¢ := p/, and we recall that the module ]V[l{’l @ M; was
defined on top of subsection 3.3.4. On the other hand recall from Theorem 3.37 that the
set of extended jump sets is in bijection with the set of Autgy (M ,{ oM :)—orbits of vectors
in Tr(M ; oM /j‘) Thus, by using the Haar measure, this induces naturally a probability
measure on the set of extended admissible p-jump sets. We call this measure (i, paar: given
(I, ) an admissible extended p-jump set, we have that ji; faar (£, 3) 1= ,uHaar(ﬁlt-ordfl([7 B)),
where the Haar measure is normalized giving total mass 1 to the set of orbits corresponding
to admissible jump sets (for a definition of admissible see right before Theorem 3.38).

On the other hand Section 7 provides us with another measure on admissible extended
jump sets, namely the probability that a shooting game in .%(p, e;),q) gives the jump set
(I,/3). We denoted by ,u;e; this probability measure on Jump;.

Proposition 8.1. For any extended admissible p-jump set (1, /3) one has that
/Lq,Haar(Iv /8) = /L* ([7 B)

’
a.€,

Proof. We prove slightly more. Namely we construct a map G(—) sending an admissible

vector v into a shooting game G(v) € .7*(p, e;,, q), in such a way that G*(jipaar) = u; o and
€p

that ([vaﬂv) = ([G(v)vﬂG(v))'

To construct such a map fix a filtered basis % for M /{ oM 5, in the sense of Definition
3.24. This provides us for each 7 € T, with elements b; 1, ..., b; s of ]\/[/jLl @ M with weights
obeying w(b; ;) = i, and for e’ we are provided with an element bex with w(be;) = e, and
bex & TR - (M@ M}). Next fix & := {o1, ..., r/mg -1} & set of representatives in R of
(R/mg)*. For every i € T,, denote by .%; := &/ - %; the set of ab with a € &/ and b € A.
Denote by i* the unique element of 7}, such that there exists a positive integer m with
ey = p™(i*). Furthermore denote by Z.x := ﬂ;p(et)%* + @/ {be}. The sets F; as i runs in
Ty are pairwise disjoint. For any vector z € M,{fl @ My, there exists a unique ¢ € T, which
we denote by i, such that there exist b, € .%;. and v(z) € Zsq with w(—ﬂg(z)bz +2) > w(z),
where p*®)(i,) = w(z) and b, € .%;_. The elements b,,v(z) are unique.
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Now let v e WR(MI{’l ® M) be a vector in an admissible orbit. Let = be the vector in

M g oM , such that mrz = v. We inductively construct a sequence of vectors by letting

x1 = x and setting z;41 = x; — W;)%(xj )sz the unique expression explained above. We use this

sequence of vectors to attach to v a shooting game G(v) as follows: we consider the map
(f1, f2) : Zs1 — Zs1 x Zsa, given by the relation f1(i) = w(x;) and f2(i) = v(x;). One can

easily verify that the pushforward with G(—) of the Haar measure is u; . and that the map
“p

G(—) preserves jump sets. (]

9. A MASS-FORMULA FOR U;

Let p be a prime number, f be a positive integer, denote by ¢ = pf, let ¢ € (p — 1)Zs,
and let (1, 3) be an extended admissible p. ,-jump set. The goal of this section is to provide
a proof of Theorem 1.7. In virtue of Proposition 8.1, this task is equivalent to proving the
following Theorem.

Theorem 9.1.
om0y (UK € S5, Qur (G)) ¢ U ) = (1O = s (1)

a.,
If Fis a local field and h is a positive integer, then Eis(h, F') denotes the set of degree h
Eisenstein polynomials in F[z]. These are monic polynomials f(z) with coefficients in Op,
that reduced modulo m, the maximal ideal of O, become x" and such that f(0) ¢ m.

9.1. Proof outline. Since our proof of Theorem 9.1 is quite long, we shall first explain
its basic idea. In subsection 9.1.1 we give an overview of the main ideas of the proof. In
subsection 9.1.2 we explain how the proof reduces to the construction of certain maps from
certain spaces of Eisenstein polynomials to shooting games. Finally we spend the rest of the
section to construct such maps and to show that they meet all the requirements explained
in subsection 9.1.2.

9.1.1. The idea of the proof. In this subsection the discussion is informal. Our priority here
is to provide some intuition about how the proof of Theorem 9.1 goes. For a formal proof
see from subsection 9.1.2 on.

The starting idea is to proceed as in the proof of Proposition 8.1. One has immediately a
difference between the set-up of Proposition 8.1 and the one of Theorem 9.1. In Proposition
8.1 one has a fized free-filtered module where it is possible to successively “shoot at elements
of M ,{ oM " as done in that proof, using a fixed filtered basis. In this manner a measure-
preserving map is obtained sending each vector of M 5 1oM , to an extended shooting
game. By measure-preserving here we mean that the push-forward of the measure on the
source is equal to the measure on the target. In Theorem 9.1 we have a varying quasi-free
filtered module, namely U, (K), so we need firstly to find a common manner to successively
“shoot at the units” in order to proceed as in the proof of Proposition 8.1. This step can
be done by fixing the set of polynomials % := {(1 + va') : i € T,y € Teich(Q,r) — {0}} U
{1+ s’x?’%}, where Teich(Q,s) denotes the set of Teichmiiller representatives of Fyr in Q,r.
Here ¢’ is a Teichmiiller representative of a fixed element ¢ € F,; with Ter ; /m,(e) # 0.
To keep a stricter analogy with the proof of Theorem 8.1, we should only allow a set of
Teichiuller representatives that, once it is reduced modulo pZ,r, it becomes a basis of IF,.
Since this restriction would make the description of the next steps heavier and is irrelevant
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for the present discussion, we shall disregard it. One can attempt to proceed precisely
as in the proof of Theorem 8.1 in order to construct a measure-preserving function from
the set of Eisenstein polynomials to the set of shooting games. As we will see, we will
use only a part of this idea, one that is still good enough to obtain a proof of Theorem
9.1 and that combined with a different set of observations (explained at the end of this
subsection) leads to more informative results. More concretely one starts with an Eisenstein

. R
polynomial g(z) = 271 + 37 a;z*. Next one finds a unit u in Z,s[(,]* in such a way

that ug(z) = uzrT + Zi"iﬁl ua;z’ +1—¢,. Hence in the field Q,s({,)[2]/g(x) one can write

e . e o, (e)
G =147 waa’+uryT =: gi(z). At this point one multiplies g;(x) by (1+yx®)?

for a suitable v € Teich(Q,s), where ey denotes the largest divisor of 557 coprime to p. After

expanding the product, we replace all the powers of x having degree larger than pil with their

e g .
remainder upon division by g(x). In this way a second expression go(z) = 14> 77 a;(2)a"
is obtained. Now we would like to iterate this. We do so as long as this unit has weight

less than ;%. In this case we have precisely one way to choose an element of % that does

the same job 1 4+ ya® did for g;(z): in particular we do not use the element 1 + vt If
we iterate this procedure as long as the weight stays below 25, we obtain a sequence of
polynomials gy (), ..., gr(z) where gs11(2) is obtained by “shooting” gs(x) with an element
of % in the way hinted above. Moreover it is relatively easy to determine that the change
of weight from g4(z) to gs;1(x) obeys the same rule as the change of positions of the rabbit
during the shooting game. Indeed, as we shall see in the proof, although the expressions
for gs41(z) can become increasingly complicated, there is a simple way to get the probability
that the weight of g1 (2) will be larger than a given y, with y < p”Tcl. The reason for this is
that we can divide in two pieces the expressions that decide whether the weight of gs.1(x)
will be larger than y. One piece comes from “lower order terms” and it behaves in the proof,
from the probabilistic point of view, as a constant. The other piece comes in a very simple
manner from the Eisenstein polynomial g(x) and one sees, directly from the definition of
Haar measure on Eisenstein polynomials, that it is a uniform random variable in Teich(Q,;).
In this way we can prove Theorem 9.1 for all (7, ) with min(5) = 1 and z% ¢ I. To proceed
further we need to deal with the case that, in the above “shooting process”, the unit has
reached a weight at least z% and we have not yet used a shot of length 0. That means
that either 25 € Ijx with B(;25) = 1 or (2 € K. The last remark in Section 7.1 tells us
that the former possibility should occur precisely p — 1 times as often as the latter. On the
other hand Proposition 5.6 tells us that the same happens for local fields. Indeed the fields
{Q,r(¢p)(s) : s € {1,...,p} have all the same mass, therefore by Proposition 5.6 we conclude
that they partition the set of local fields K, having either ﬁ € K or (2 € K, into p disjoint
sets X1,..., X, having all the same mass, with K € X, if and only if Q,((,)(s) € K. For
se€{l,...,p— 1} we have that the total mass of X equals zﬁ of the total mass of the fields

K with -5 € I and fx(:25) = 1. On the other hand X, consists of those fields K with
(2 € K. So we deal with the set X3,..., X, ; working with Eisenstein polynomials over
Q,r(G)(1), ..., Qur(G)(p — 1) and we deal with X, using Q,7((p2). Thanks to Proposition
5.6, by repeating the above “shooting argument” for the sets X1,..., X,_1, Theorem 9.1 is
proved also in the case that p’%el € [ with ﬁ(ppTel) = 1. The idea is to repeat this whole proof

structure over Qs ((y2).
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9.1.2. Proof strategy. The plan of the proof is the following. Let n := vg,(e). We will use
the notation from Section 7 and in particular from Section 7.1. For each j € {0,1,...,n} we
construct maps

e
: Eis 7@ C71 _)y-&so pe.:-—7Q)
(p](p_ ) ‘I(P*)) p,pt})( P pj(p_l)
and for each j; € {0,...,n — 1} and js € {1,..,p — 1} we construct maps
. € . e
Ojijo + Els(pj1+l(p — 1)7Qq(<p/1+1)(]2)) - yﬁyStop(peypv pj1+1(p — 1)7(])»

having the following two properties.
(P.1) For any j € {0,1,...,n} and f(z) € Eis(

Qq(Gpi+1)[z]/f(z), we have that
BK iy —G+D)

. pe
{ielk,, : pep (i) < pTl} = Lo, (7))

57y Qu(Gi1)), denoting by Ky =

I

and for each i € I, (y(,)) we have that

B 0y () = Boy s (8) + J-
For any j; € {0,...,n—1}, o€ {1,...,p—1} and f(x) € Eis(
have that

pJ+1 1)7QQ(Cp71+1)(.]2)) s

pe
[Kf(w) - L’Jldz(f(’”)) v {p . 1}

Forie I, . (@) we have

BKf(,)( ) /8011]2 f(z)(')'f'jl-‘rl.

Finally we have
pe .
ﬁKf(z)(l:) =n+ 1.

(P.2) For any j € {0,1,...,n} pushing forward piaar, the natural probability measure on
Eis(pJ (;71) ,Qq(¢pi+1)) coming from the Haar measure on the coefficients, with o; one obtains

the probability measure on Y_& stop(Pe 3 q) introduced in Section 7.

*

Ha, pJ(;fl)vpep R p7(p 1
For any j; € {0,1,...,n—1} and j, € {1,...,p—1}, pushing forward fipaar With o;, ;, from

Eis(Qq(Cpir+1)(j2)) to .7 (Pe.p qu)v one obtains 4y e

pI1(p—1)

The construction of such maps o; and o, ;, satisfying (P.1) and (P.2) as above, is sufficient
to prove Theorem 9.1 and thus Theorem 1.7. Indeed, thanks to Remark 7.4, we can conclude
with oy that Theorem 9.1 holds for all (1, §) with min(ﬂ) =1and pe 7 ¢ 1. At that point we
know that the probability of the event {min(3) > 1 or -25 € I} has cqual probability on both
sides (Eisenstein polynomials and shooting games). We remark that this conclusion can be
reached alternatively also by a direct computation. By Remark 7.6 we know that, at the level
of shooting games, the probability of the event {% el, ﬂ(ﬁ) = 1} is p—1 times as large as
the event {min(f) > 1}. On the other hand this is clearly true also at the level of Eisenstein
polynomials: the fields Q,(¢,)(j) have the same mass as j runs through {1,...,p}, and by
Proposition 5.6, precisely the first p — 1 of them give the event {ppj’ el ﬂ(% ) = 1}, while
the last (which is Q,((,2)) gives the event {min(3) > 1}. Thus we can go on in the proof of
Theorem 9.1 by conditioning on both sides with either the event {-25 € I, 3(;5) = 1} or
the event {min(3) > 1}. Thus by Remark 7.5, and with the o¢;, we conclude the validity
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of Theorem 9.1 for (1, ) with 25 € I and §(;25) = 1. Here we are using that if F//K is a
totally ramified Galois cxtcnswn of local ﬁclds thcn, for an extension F'/E and a positive
integer d € [F' : E]Z=1, the conditional probability measure /g p(—|{F is a subfield}) equals
the probability measure p i . That justifies the passage to Eisenstein polynomials over

the extensions Q,((,(7))-

Now we continue working over Q,((,2) and we proceed precisely as above. Namely we first
use the map oy to show that Theorem 9.1 holds for (7, 3) with min(5) = 2 and z% ¢ 1. If
n = 1 we are done. Otherwise we again obtain that the measure of the event {min(5) >
2 or z% € I} coincides on both sides of Theorem 9.1. Finally Remark 7.6 gives that, at the
level of shooting games, the event {ppTel € I,ﬁ(ppTel) = 2} is p — 1 times as frequent as the
event {min(S) > 2}. This holds also for Eisenstein polynomials thanks to the fact that the
extensions Qq((p2)(7) of Qq(¢y2) for j € {1,...,p} have all the same mass, and by Proposition

5.6 we have that the first p — 1 give the event {15 € I, 3(;k5) = 2} while the last (which
is Qq((ps)) gives the event {min(f) > 2}. Thus we use the maps oy ; to prove Theorem 9.1,
with the same considerations made above, and we go on working over Q,((,3). Iterating this
argument we prove Theorem 9.1 for every (I, 8), an extended admissible jump set. Therefore
to finish the proof, we are left with constructing the maps o;,0;, j, and showing that they
have properties (P.1) and (P.2). This done in the next two subsections.

9.2. Construction of the maps o;,0;, j,. Let j € {0,...,n}, we begin with the construc-
tion of ¢;. To lighten the notation, denote e; := —%—. An element
J 7 p(p=1)
ej—1

x) = x% + Z a;z’
i=0

in Eis(e;j, Q4(¢p+1)) can be equivalently represented as

¢j
x):=1+ Zdixi
i=1
1= j+1

where f(z) := Tf(w) + (pi+1. This gives us an embedding of Eis(e;, Qy((pi+1)) into
He (Qq(Gp+1)) := {9 € Zy[Gp+1] = deg(g) < €5, 9(0) = 17~g($) =lorg(z) =1+az” mod (1-
Cpi+1) for some a € Zy[(pi+1]*}. Starting with fo(x) := f(x), we define inductively a sequence
{fu(2)}nezs, with fo(2) € He, (Qq(Cpivr)) for every n € Zzg. To do so we first define a weight
map on He, (Qq(¢pi+1)) by

€j
w(l + Z biz') = ming<ice,,20(€5Vg,( p7+1)(b ) +1).
i=1

p—el then declare

Jos1(z) = fulz).
1 Observe that

() € Unn(1(2) (Qq(Gre)[2]/f (%)) = V(g (@) +1(Qq (o) [2]/ £ (),

Here we are using the following standard notation. If (X,p) is a probability space and A < X is
a measurable subset with p(A4) > 0, then pu(—|A) denotes the probability measure on A, defined by the
formula p(—|A4)(B) = Z(B for each B © A measurable.

Now, suppose that w(f,(z)) =

So, suppose that w(f,(z)) <
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thus there exist unique i, € T}, , 8, € Z>o and unique ¢,, a Teichmiiller representative in
Qg, such that

in Bn
(1 +en™)"" fu(2) € V(g (@) +1(Qq(Ger) [2]/ £ ()
It is not difficult to show that there exists a unique element of H, (Qy((y+1)) congruent

to (1 + e,2)?"" f,(x) modulo f(z) and of degree at most e;. We put f,41(z) to be this
element. It follows by construction that w(f,+1(2)) = w(f.(z)) with equality occurring iff
w(fn(x)) = ;F5. Moreover in the case of equality we have f,11(x) = fu(z). Thus we define

Po-1"

Let now j; € {0,...,n — 1} and j; € {1,...,p — 1}. The map oy, j, is defined similarly
to how the maps o; were defined. We briefly explain the modifications. Fix units u;,uy €
Qq(Cp11+1)(jg) with

O-J(f(l‘)) = {n = (w(fnfl(x))vﬂn—l)}nezzl € y]—%,smp(pe,pv

pe
1) =

) p—
and uy ¢ (Qq(Cpi+1)(j2))*, as guaranteed by Proposition 5.7 and Corollary 3.41 together.
Next, given f(z) := 21+ + Y ;2" € Eis(ej, 41, Qg((p+1)), define this time

ullgu2 = gpflﬂv VQq(ijl+1)(j2)(u1 - 1) =1, VQq((p]1+1)(j2)(u2 -

71—’(1,1

f(x) : fz) + uy.
ap

Also change He, ., (Qq(Cpn+1)(j2)) to be the set

1€ ZyfGprrnsun] : deg(g) < e5,41,9(0) = 1,g(x) = 1 or g(a) = 1 + 2% mod (1 — )},

and set the cut-off for concluding f,41(x) = f,(x) to be w(f,(x)) = e;. Following the above
procedure, with these modifications, we get the construction of

€
T (f@)) € ypfl,stop(p&pa m7 q)-

9.3. The maps o;,0;, ;, satisfy properties (P.1),(P.2). Let us begin showing that, for
Jj € {0,...,n}, the map o; obeys the property (P.1). By construction, we know that for
f(z) € Eis(e;, Qq(¢pi+1)), we have that

G [T O+ € Use (Qy(Gun)[2]/f (),

niw(f ()< 2

with p%i, = w(f.(z)), so the sequence n — pi, is strictly increasing as n runs with the
constraint w(fn(z)) < 5. Of course, the weight of 1 + aya™ in Us(Qq(Gpr+1)[2]/f(2))
is precisely i,. Therefore one sees that the values of n such that i, € I@q((pﬁl)[z]/f(z) are
precisely those where 3, reaches a new minimum. This is precisely the same rule that

implies i, € I, (f())- For such an i, it easily follows from Corollary 3.41 that
B+ 7+ 1= Boyc)lel/fla)

This shows that o, enjoys the property (P.1) for each j € {0,...,n}.
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We next show that for j; € {0,...,n — 1} and j» € {1,...,p — 1}, the map o, ;, satisfies
(P.1). Recall the definition of the units u;, us introduced during the construction of the map
0j,.js- By construction, we know that for f(z) € Eis(ej, 11, Qq((pi+1)(j2)), we have that

we [T Q™™ e Ue (@) Ga)[2]/ f (@)

n:w(fn(x))<ej1

This implies that
w [T @ ana™) I e U (@G ) () [2]/ ().

niw(fu (@) <ej, o

Therefore all the other units that will be employed in order to write the full relation, cannot
give a contribution to ([Qq(gpnﬂ)(jz)[z]/f(z),BQq(gp”H)(jQ)[z]/f(x)), due to the presence of 5

in [Qq(Can)(12)[9”]/.f(m)7 With ﬁQq(Cth>(j2)[z]/f("”)(1%) = j1 as guaranteed by Proposition 5.6.
Thus one concludes using the same argument employed for ;.

We next prove that the maps o}, 0, j, satisfy (P.2). We will do so for ¢;, the argument
for o}, ;, being basically the same with different notation.

Given f € Eis(ej, Qq((pi+1)), let us begin expanding each of the coefficients of

as
[}
~ k
a; = Z i1 — Gpiv1)",
k=1
for 1 <i <e; and for i = e; we write

es)
ELE] = Z Ekﬂj(l - Cp”l)k-,
k=0

where all €;,; are Teichmiiller representatives of Z,. We can consider any finite subset of the
€k as independent random variables taking values in all possible Teichmiiller representatives
with the uniform distribution if (k,7) # (0,e;) and uniformly in the non-zero Teichmiiller
representatives of Z, for gq, .

Next, for each n € Z~ 1, we set

and we let
o0
a;(n) = Z eri(n)(1 = )™
k=1

the corresponding Teichmiiller expansion with respect to (1—(y+1). The fact that the second
sum started with £ = 1 is a consequence of the fact that the weights of f,(x) are strictly
increasing as n increases together with the definition of H,, (Qq(Cpit1)).

For any fixed n € Z, the monomials £ ;(n)(1 — (,i+1)*2z can be given the weight ke; + if
er,i(n) # 0 and oo otherwise. This induces a total order on the various non-zero monomials,
and the weight w(f,(x)) of f.(z) as defined before, equals the minimum weight of the
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various monomials as long as there is a monomial with weight less than 25, otherwise we
have already arrived at the point where the sequence f,(z) is eventually constant.

From the rule to obtain f,,1(x) out of f,,(z) we see that for any n € Z-,, and any positive
integer ppTel > wy > w(fu—1(x)), there exists a function F,, , taking as input the sequence of

(Ek,z‘)ejk+i<'wn and giving as output a Teichmiiller representative of Z,, in such a way that if
we write wy = e;¢’ + h, the division with remainder of wy by e;, we have that

Eq’,h(n) = [ng,n((sk,i)ejk+i<wo) + 5q’,h]Tcich7

where for a € Z,, the symbol [a]reicn denotes the unique Teichmiiller representative € in
Z, such that ¢ = a mod p. It thus follows at once that for the collection of (¢’,h) with
25 > e +h > w( fn—1(z)), the variables £, ,(n) are independent random variables taking
values in the Teichmiiller representatives of Z, with the uniform distribution. Therefore
the change of weights from w(f,—1(x)) to w(f.(x)) is governed precisely by the rules of the
shooting game. This ends the proof.

10. FINDING JUMP SETS INSIDE AN EISENSTEIN POLYNOMIAL

The primary goal of this Section is to establish Theorem 10.1, which is a generalization of
Theorem 1.11 from the Introduction. We will next specialize Theorem 10.1 to obtain several
consequences that aim to give a sense to the reader on how efficiently one can establish the
value of (I,() in the range of the Theorem. Most notably we will see that for ¢ odd or
for j = 1, the set of strongly Eisenstein polynomials (see Definition 10.2) over Qg((pi+1) is
precisely the set of polynomials giving the jump set that has the highest probability. Also we
will see the relation between Theorem 10.1 and Theorem 9.1. Indeed we shall prove Theorem
10.1, by establishing the equality between the jump set of a shooting game coming from the
valuation of the coefficients of an Eisenstein polynomial (denoted as &; below) and (part of
the) jump set of the shooting game constructed using the maps introduced during the proof
of Theorem 9.1 (denoted as o;). Also we observe that Theorem 9.1 partially follows as a
direct counting from Theorem 10.1, namely it does so for the jump sets coming from the
region of Eisenstein polynomials where Theorem 1.11 applies (which for instance for p = 2
and j = 0 (i.e. over Qq) is empty, and for general p it misses an open set of Eisenstein
polynomials). Finally we shall give examples, showing that without the main assumption on
the different, the conclusion of Theorem 10.1 is not anymore valid in general.

Let j € Z=g, p a prime number, f € Z-; and q := p/. Let e € p/(p — 1)Z=;. Recall the
notation €; := o=y, used during the proof of Theorem 9.1. Let g(z) € Eis(e;, Qq((pi+1))
(see notation from the proof of Theorem 9.1). We proceed to define a stopping shooting
game attached to g, which will be denoted as

5j (g(x)) € ‘gﬂeystop(pe,p’ €5 q)'

It is defined with the following simple rule. Write g(z) = 2% + Y7,  a;2* and give to
each monomial a;z" weight w(a;z?) := ejVQq(C,,ﬁl)(ai) + i. Arrange w(a;z") as an increasing
sequence n — w(a;, x'"). Then the sequence

d;(g(2)) = {(w(ai,z™), vp(in)) braw(ai, zin)<e
is an element of
%,stop (pe,p: 6]', Q) .
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One can now see that the pair (1), By()) defined in the Introduction right before Theorem
1.11 is simply the jump set of the shooting game &;(g(z)). We now explain more closely
how one calculates this pair. It is clear that the smallest weight is precisely e; = w(z),
consistently with the fact that in ;(g(z)) the rabbit is supposed to start from e;. So
we start with ap = e;. Next, given a; (thus the rabbit being at VQq(Cle)(aah)ej + ap),
to obtain a larger weight, either we find other weights that are contained in the interval
[v@q@pﬁl)(aah)ej7 (v@q@pﬁl)(aah) + 1)e,] or there are no such other weights. In the first case
the contribution comes only from the weights « that are larger than ay, (otherwise the weight
is smaller). Among these, in order to have a change of shooters and thus a contribution to
the jump set, we are only interested in those requiring a smaller shot-length, i.e. with smaller
v, (), in good harmony with rule (3) of the shooting game. Thus the first such weight with
smaller vq, is precisely where the shooter is changed. In the second case, the weight will be
larger anyway, thus (as long as larger weight matters) we are now interested in examining all
a with v, ;11)(@a) > VQ,(c;41)(0a, ). Again, among these we are only interested in those
where vg, (@) becomes smaller. The smallest such weight, again, is the first place where the
shot length became smaller and a new shooter came in giving the next contribution to the
jump set of the shooting game. We formalize this explanation in the following procedure.
Procedure. Let g(z) := 2% + Y7 aat e Eis(e;, Qq((pi1)). Set g = €;. Given oy,
construct ay,q as follows. Search if there is o such that VQ, (¢, laa) = V(s +1)(aq,) and
a = oy If such an o exists, search if there is among them one with vg, (o) < vg,(ap). If
there is such «, pick the smallest such « and declare ap 1 = a. If no such « exists, then
look if there is an a such that VQq(ij+1)(aa) > V@q(cp]+1)(aah) and ejVQq(Cp]+1)(aO£) <e If
no such « exists then set ap1 = ap. Otherwise let d be the next valuation that attains
the above constraints. Look if there is o with vg, (o) < vg,(as) and VQQ(CPHI)(%) = d,
in that case take the smallest such « as «ajq. If there is none, go to the next valuation
with the above constraints and do the same search, iterating until you either have to set
apy1 = ap, or you have found an ajy1 # «ap. In this way the sequence {a;} is produced.
With this notation, writing /5,4y = {i1 < ... < 45}, we have that 5, (i) = vp(ax) and

pﬁf"j(”“)z’k = eijq(gij)(aa,c) + .
Let j be a positive integer. Recall that for an integer e in p/(p — 1)Zs; we define ¢; :=
€
P (p-1)"
Theorem 10.1. Let j be a positive integer and let ¢ € p/(p — 1)Zs1. For any g(x) €
Eis(ej, Qq((pi+1)), we have that the set
i <...<ltg,
described in the above procedure, is equal to the set

. 6 Vot (D=3-1
{0 € Loy nimtfot 2 p "0

and for each k € {1, .., s} we have that

i<e}

Bu(¢s 1)l /gt (i) = Vo, (aw) + 7 + L.

Proof. We proceed by looking more closely at the construction of the maps o} in the proof
of Theorem 9.1. One first crucial ingredient is that, thanks to the shape of the conclusion,
we can disregard, in the setting of the proof of Theorem 9.1, monomials with weights larger
than e, so that we can perform p-th powering as if we were in a characteristic p field. Keeping
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this in mind one sees from the construction of the sequence g,(x) in the proof of Theorem
9.1, that given an a4 as above, then as long as n satisfies w(g,(z)) < e]-VQq(Cp]H)(aak) + ay,
then for each positive integer wy with

w(gn(r)) < wp < eijq(ijH)(aak) + ay,
and
v, (wo) < vg, (),
one sees that
Fuon((€ki)ejkrizejan, ) = 0.

This is seen by induction on n and direct inspection. The key observation is that, once we
can disregard the multiples of p in p-powering, when we perform a shot, as in the proof of
Theorem 9.1, it sends all the monomials having weight smaller than €5VQq(C, s (aa,) + a
only to monomials having an index with larger p-adic valuation. With this, the formula
appearing at the end of the proof of Theorem 9.1 gives

Ewo,h(n) = [Euo,n((gk,i)e]k+i<wo) + €q’,h]Tcich = [gq’A,h]Tcic}n

where wy = e;¢' + h. In terms of the shooting game o,(g(x)), this means precisely that the
rabbit will visit the position e;v,(c ;.,)(da,) + o, and that all the shots used before that
event are of length strictly larger than vg,(aj). Indeed the rabbit doesn’t visit any of the
positions wy < e]-qu(Cpﬁl)(aak) + ay, with vg, (wo) < vg, (o). But these are precisely the
positions where a stop of the rabbit would have given a shot of length at most v, (az) before
the position e;vo,(c ,,1)(a,) + x was reached.

O

Observe that from the Procedure it is clear that the set of Eisenstein polynomials g(x)
such that the full jump sets of the field Qq(yi+1)[z]/g(x) can be reconstructed from Theorem
10.1, consists precisely of those polynomials g(x) having a coefficient a;, with (7, p) = 1, such
that qu(gij)(ai) < VQq((ij)(p) = p/(p — 1). This condition is precisely equivalent to the
condition on the different

V(6,040 (0(Qq(Gpre1)[2]/9)/Qq(Gr)) < P (p = 1).

For j = 0, this shows Theorem 1.11 from the Introduction. The only case where this is an
empty set of Eisenstein polynomials is if p = 2, j = 0 and 2|e: one would get a non extremal
coefficient of an Eisenstein polynomial being a unit, which is impossible by definition. For
all other values of p and j one obtains, with Theorem 10.1, a positive proportion of the
Eisenstein polynomials where the jump set can be read off completely from the valuation
of the coefficients of the polynomial, also in a fairly easy way. For p or j getting large the
volume of this region gets quickly pretty large. In particular, if (p,j) # (2,0), we next see
that one can identify the set of Eisenstein polynomials giving the most likely jump set.

Definition 10.2. If K is a local field, d > 2 an integer, and g(z) := 2 + Zf;ol a;xt €

Eis(d, K'), we say that g(x) is strongly Eisenstein if v (a;) = 1.

The following is a very special case of Theorem 10.1. Recall that if e € p/(p — 1)Z; we

have the notation e; := pj(;il),
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Theorem 10.3. Let p,j, such that (p,j) # (2,0). Let e € p’*Y(p — 1)Z=1, f a positive
integer and set q := p/. Then g(z) € Eis(e;, Qy((p+1)) is strongly Eisenstein if and only if
e

1
PRCTPEETR

1g,(¢s4)el/9@) = {
with
5 (&
Qq(Cyi+1)[x]/g(2) (W

Observe that this gives, explicitly, the counting that the above jump set, {VQI+(1)
P % (p—

) =vo,(€) + 1, Bo,inlo@ (e +1) = + 1.

,€j+1}

with m — vg,(e) + 1 and e; + 1 — j + 1, occurs with probability % among all
totally ramified degree e;-extensions of Qq((pi+1): this is the jump set occurring with highest
probability. We know that this jump set occurs with probability % also from Theorem
9.1. So in particular this fact is true also for (2,0). To see that explicitly for e = 2, observe
that among the 6 totally ramified quadratic extension of @y, the only ones not giving the
above jump set are Qy(¢y) and Qu(¢y)(1) = Qo(+/3); they have same mass (as we saw in
general) and it equals i, hence the remaining mass equals % But we can immediately see
that in this case the same conclusion of Theorem 10.3 does not hold. Consider for instance
22422 +2 € Eis(2,Qy): it is a strongly Eisenstein polynomial. But Q,[x]/g(z) is isomorphic
to the extension Q3({y), whose jump set is merely {1}, with 1 +— 2, in contrast to the
conclusion of Theorem 10.3. Thus in Theorem 10.3 the requirement (p, j) # (2,0) cannot be
dropped, and so in particular the assumption in Theorem 1.11 of being strongly separable

cannot be avoided.

11. FILTERED INCLUSIONS OF PRINCIPAL UNITS

In this section we explain how to attach to any strongly separable extension of local fields,
L/K, a pep-jump set (I1x, Br/x), which is an invariant of the filtered inclusion

U.(K) < U.(L).
Moreover for K = Q,((,), we will have that

(I, Bryx) = (I, Br).
As we shall see, the fact that the extension is strongly separable will force (I/x, 81/x) to be
a e, p-jump set as well for e;, = v (p).

We will begin to attach to any u € Uy () —Us(K) a pe, p-jump set (I (u), Br/x(u)). We
will immediately see that it is also a pg,-jump set, thanks to strong separability. Finally
we will see the big effect of assuming strong separability: the jump set (Ir/x(u), Br/x(u))
is independent on the choice of u € Uy(K) — Uy(K) and can be computed, by means of
an immediate generalization of Theorem 1.11, from an FEisenstein polynomial giving the
extension L/K, where K is the largest unramified extension of K in L.

Let u € U1 (K) — Uy(K). Recall from Section 3.3.7 that we can attach to u the function
Guu.(r)- We have the following. The proof is along the same lines seen in Proposition 3.35
and is therefore omitted.

Proposition 11.1. There exists a unique jump set (Ir;x(u), Br/x(u)) such that guuv.(r)
breaks at the elements of Im(Br/x(u)) — 1. Moreover if i € I ik (u), then

. Bk (W) (i)—1, .
Guuar)(i+1) = Pef,/rlf< (4).
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In the torsion-free case, the jump set (Irx (u), Br/x (1)) has a more familiar interpretation.
In what follows the function filt-ord (as introduced in Proposition 3.37) will always be with
respect to the filtered module (denoted as) U.(L).

Proposition 11.2. Let u, L, K as above and suppose moreover that yu,(L) = {1}. Then
filt-ord(u?”) = (Ir/k(w), Br/x(u)).
Moreover for uy,us € Uy (K) — Us(K) we have that
(Lryx(ur), Bryuc(ua)) = (To/x (u2), Bryx (u2)),

if and only if uy,us are in the same orbit under Autg(Us(L)).

Proof. This is a simple consequence of Theorem 5.2 and Proposition 3.37 combined. O

We now show that the jump set of Proposition 11.1 is independent of the choice of u €
Uy (K)—Uy(K) for all strongly separable extensions L/K. Recall the way we attached to any
strongly separable Eisenstein polynomial g(x) a jump set (Iy(s), fg(x)) right after Theorem
1.7 in the Introduction.

Theorem 11.3. Let L/K be any strongly separable extension of local fields. Let uy,us €
Ui(K) — Us(K). Then

(Ir/x(w1), Bryx (u1)) = (Ir/x (u2), Br/x (uz))-

Denote by (I, Brjx) = (Irjx(u), Brx () for any u e Uy (K) — Us(K). Denote by K the
mazimal unramified extension of K in L, and let g(x) be any Eisenstein polynomial in Klz]
giving the extension L/K. We have that

([L/K, ﬁL/K) = (Ig(z% ﬁg(z))‘

Proof. This can be shown by precisely the same argument used in the proof of Theorem
10.1. (]

In particular we find the following corollary.

Corollary 11.4. Let L/K be a strongly separable extension of local fields, with p,(L) = {1}.
Then Uy(K) — Us(K) is contained in one orbit under Autay(U,(L)). Call this orbit Op k.
The set Op i can be also characterized as follows

Ok = {ueUs(L) : v € filt-ord ™ ((Ix, Br/x))}-
In positive characteristic the statement further simplifies.

Corollary 11.5. Let L/K be a separable extension of local fields with char(K) = p. Then
Ui(K) — Uy (K) is contained in one orbit under Autg(Us(L)). Call this orbit Op . The set
Ok can be also characterized as follows

Orji = {ue UdL) : u” € filt-ord™ (I 1k, Br/x))}-
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12. JUMP SETS UNDER FIELD EXTENSIONS

Let K;/Q,((,) be a finite extension. Fix a positive integer d. Consider the following nat-
ural question.

Question: Which extended admissible pge . ,-jump sets are realizable as (I, , A, ) for some
totally ramified extension K,/K; of degree d?

In case (d,p) = 1 the answer is very easy.

Proposition 12.1. Let Ky/K be totally ramified degree d extension, with (d,p) = 1. Then
Ky = d]Kl
with
B, (di) = B, (1),
for each i € Ig,.

Proof. First notice that, since (d, p) = 1, we have dT;e_p cT;, e Moreover we notice that the
assignment (Ir,, Bx,) given in the statement is clearly an extended pge, p-jump set. Next

we write e
Kq (1)~
| I p KL _
ui - Cpa

iE[Kl
with u; € U;(K) — Uiy1(K) for each i € Ig,, and & K‘ € Iy, implies uPE_Kl ¢ K,’. We thus

conclude with Corollary 3.41 by noticing that w; € Udz(KQ) Ugir1(K>) for each i € I, , and
that if = Kl € Ik, then we must have that upcxl ¢ K. Indeed taking a p-th root of urex,

=1
gives an unramlﬁcd degree p extension of K1 Wthh would contradict both that (d,p) = “
and that K5/K; is totally ramified. O

The previous proof teaches us also what is the difficulty when (d,p) # 1 in answering
Question. In this case the relation
B, (1)—1
H U? ' = gpv

ieIKl

cannot be directly used to calculate (Ir,, fx,), because v, (u;—1) ¢ Tp,,  foreachi < %.

de ¢

Nevertheless, a more careful inspection shows that this relation can sometimes be used to
extrapolate properties of (I/x,, fk,). This is the content of the next theorem, which, together
with Theorem 12.3, contains as a very special case Proposition 12.1.

Theorem 12.2. Let d be a positive integer and Ko/ K1 a degree d totally ramified extension.
Let i € I, with i # peK Suppose that if the set J :={j € Ik, : j <1} is not empty, then

Bk, (max(J)) — B, (i) > vg,(d).
Then

p—VQp<d)i € IK2
with
d

B (%) = B (i) + v, (d).
p

Qp
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Proof. Take i # Z;e —L as in the assumptions of this theorem. Write
ﬂKl(ll)*l
H Uf?/ = Cp7
i'elk,
with uy € Uy (Ky) — Uy (K,) for each ' € I, and ’% e Ik, implies u% ¢ K;7. Next,

for each i’ € I, write
81’5
2P
[Tt

JEA()
with A(') € Tj, ., vig,(ugj — 1) = j for each j € A(') and —Lei’ € A(¢) with B(i', j) =
P P
vg, (d) and sz(uf,’f;,z o 1) < VKz(uf,/?;l - 1) for each j € A(i") — {i'}. We now proceed to

expand the above expression for (,. Attach to each term w; ; the pair (v, (uy;—1), B, (') +
B(i,7)). We see that the point attached to u,;, which is (ﬁz} B, (1) +vg,(d)), is strictly
p

smaller, with respect to <, , than all the other points (and hence occurs precisely once).
Indeed, using that (Ix,,8x,) is a jump set, we see that it must be smaller than any term
coming from some u; with 7/ > 4. On the other hand for each ¢/ < i, we use the fact that
B, (") > Pr, (i) + vg,(d) to conclude that the point attached to u;; must be smaller than
any term attached to wy ; with ¢/ < . This is enough to conclude with Corollary 3.41.

O

The case of ej, requires no special assumptions and can be treated more easily in a
different way.

Theorem 12.3. Let d be a positive integer and Ko/ K1 a degree d totally ramified extension.
Suppose £ € I, Then di € Ik, and Pk, (di) = P, (7).

p—1
Proof. This follows immediately from Proposition 5.6 and Proposition 5.5. (]
Remark 12.4. In the very special case K; = Qu((,) one recovers the restriction that

(Ik,, Br,) must be an admissible extended pg,-jump set as a very special case of Theorem
12.2, see Theorem 1.6.

In particular Theorem 12.2 implies the following fact.?

Corollary 12.5. Let d be a positive integer and Ko/ Ky a degree d totally ramified extension.
Suppose that for any two consecutive elements i,j in I, (that is (i,7) N I, = &) we have
that

B, (i) — Br, () > va,(d).

Then

d
W(IKI —{ek}) € I,

2We take the opportunity here to signal a typo in the way this result was mentioned in [1], where the
assumption of Theorem 12.2 and the conclusion of Corollary 12.5 were accidentally merged in transcribing
the statement. It was stated only with the assumption of Theorem 12.2, but the conclusion mentioned there
is about both consecutive indexes, which we can guarantee, instead, only under the assumption of Corollary
12.5.
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th
d
ﬁk&(;;@:@gi):: B, (i) + vo,(d)

for each i € I, — {ef }.

1
[2

3

6

[7
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Summary

This thesis consists of three chapters. Each chapter is on a different subject. How-
ever, all chapters address issues that arise in counting arithmetically interesting
objects.

Chapter 1 is a joint paper with Peter Koymans about unit equations in positive
characteristic. In this paper we establish the first upper bound that is uniform in
the characteristic for the number of “solutions” to the unit equation. With this
tool we settle a conjecture of F. Voloch. If p is a prime number, r a positive integer,
K is a field with char(K) = p and I' C K* x K* a finitely generated subgroup of
rank 7, the unit equation is the equation

r+y=1,

to be solved in (z,y) € T but (z,y) € I'?. Denote by S(I') the set of solutions to
the unit equation for I'. Our main theorem establishes that

#S(I') <31-19".

Chapter 2 is a joint paper with Efthymios Sofos about statistical properties of
ray class groups of fixed integral conductor of imaginary quadratic number fields.
If ¢ is a positive integer and K is a finite extension of Q, the ray class group of
conductor ¢ of K is the group

 I(K,¢)
ClK,c) = Pr(K. )’

where I(K,c) is the subgroup of I := {fractional ideals in K} that is generated
by ideals of Oy that are coprime to ¢ and Pr(K, ¢) is the subgroup of I that is
generated by principal ideals () with @ € Ok — {0} and « congruent to 1 modulo
c. When K varies among imaginary quadratic number fields whose discriminant is
coprime to ¢ and congruent to 1 modulo 4, we establish the asymptotic behavior
of the natural map

(2C1(K, ¢))[2] — (2CUK))[2]

obtaining as a corollary the joint distribution of

(#2(CUK, ¢))[2], #(2CI(K))[2]).

Even though there is a surjective natural map 2C1(K, ¢) — 2CI(K), the surjectiv-
ity of the induced map (2CI(K, ¢))[2] — (2CI(K))[2] encounters a cohomological
obstruction. In a refined version of our main theorem, we show the equidistribu-
tion of this obstruction in the full obstruction group (viewed as a probability space
with the counting measure).
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These results extend the only previously known case, which is ¢ = 1, where
there is only the ordinary class group. This was due E. Fouvry and J. Kliiners.

Next, we extend the Cohen—Lenstra and the Gerth heuristics from class groups
to general ray class groups. The Cohen-Lenstra heuristic is a probabilistic model
designed by H. Cohen and H. Lenstra, which predicts conjecturally the exact
asymptotic outcome of most statistical questions about the Z[]-module CI(K) ®,
Z[%] as K varies among imaginary quadratic number fields. Later F. Gerth for-
mulated a heuristic about CI(K)[2*°]. We formulate a more general probabilistic
model aimed at predicting the exact asymptotic outcome of most statistical ques-
tions about ray class groups, viewed as exact sequences of Galois modules. This
statistical model agrees with our result on 4-ranks, yielding a heuristic interpre-
tation of the equidistribution of the above mentioned cohomological obstructions.
Moreover, our model explains the precise constants given by a theorem of I. Varma
about the average 3-torsion of ray class groups. With this statistical model for
ray class groups, both our results on 4-ranks and Varma’s result on the 3-torsion
obtain a precise heuristical explanation and are placed within a broad conjectural
framework.

Chapter 3 is about the arithmetic of local fields and it mostly focuses on the
sub-class of p-adic fields for some prime number p. If p is a prime number, a p-adic
field is a finite field extension K/Q,. The multiplicative group K* carries a natural
filtration

K20 214+mg2..21+mb D .,

where Ok denotes the ring of integers of K and my is its unique maximal ideal.
One can show that the sequence

l+mgD..21+mk D ...

is a filtration of Z,-modules. In this work I give a parametrization of the set of
sequences of Z,-modules
My 2...2OM; D ..

that are isomorphic to 1 +mg 2 ... D 1+ mﬁ( D ... for some local field K. This
means that there exists an isomorphism of Z,-modules

p:1l4+mg — M

such that ¢(1 4+ m%) = M,;. In case such a K exists, we say that the sequence
My D ... D M; O ... is admissible. 1 parametrize admissible sequences in terms of
certain combinatorial objects called jump sets. One of the main theorems in this
study is the remarkable property that this parametrization is weight preserving, in
the following sense. It turns out that there is a natural way to attach to each jump
set a weight. One can give the weight of a jump set also a natural interpretation
in terms of the Haar measure. On the other hand, Serre introduced a natural
probability measure on the set of totally ramified extensions of given degree of a
given local field. In this chapter I show that the total mass of the set of local
fields whose filtration of subgroups is isomorphic to a given admissible sequence
equals the combinatorial weight of the corresponding jump set. Finally I use my
identification between the set of jump sets and the set of admissible sequences to
give a simpler and more conceptual proof of a classification, due to H. Miki, of the
possible sets of upper jumps of a cyclic totally ramified p-power degree extension
of a fixed p-adic field K.
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Samenvatting

Dit proefschrift bestaat uit drie hoofdstukken, waarbij ieder hoofdstuk een ander
onderwerp behandelt. De hoofdstukken hebben echter gemeen dat zij problemen
aanpakken die zich voordoen bij het tellen van aritmetisch interessante objecten.

Hoofdstuk 1 is een artikel dat geschreven is samen met Peter Koymans over
eenheidsvergelijkingen in positieve karakteristick. In dit artikel bewijzen wij de
eerste bovengrens voor het aantal “oplossingen” van de eenheidsvergelijking die
uniform is in de karakteristiek. Hiermee bewijzen wij een vermoeden van F. Voloch.
Zij p een priemgetal, r een positief geheel getal, K een lichaam met char(K) = p
en I' C K* x K* een eindig voortgebrachte ondergroep van rang r. Dan is de
eenheidsvergelijking de vergelijking

r4+y=1,

met (z,y) € D'\ T?. Zij S(T") de verzameling oplossingen voor de eenheidsvergelij-
king voor I'. Dan zegt onze hoofdstelling dat

#S(I) < 31-19".

Hoofdstuk 2 is een artikel dat geschreven is samen met Efthymios Sofos omtrent
statistische eigenschappen van straalklassengroepen met een gegeven gehele con-
ductor. Zij ¢ een positief geheel getal en K een eindige uitbreiding van Q. Dan is
de straalklassengroep van conductor ¢ van K de groep

Cl(K,c) = M,
Pr(K,c)
waar I(K, c) de ondergroep van [ := {gebroken idealen in K} is die wordt voort-
gebracht door idealen van Ok die copriem zijn met ¢, en Pr(K,c) de ondergroep
van If is die wordt voortgebracht door hoofdidealen (o) met v € Ox — {0} en «
congruent met 1 modulo c¢. Als we K laten lopen over de imaginair-kwadratische
getallenlichamen met discriminant copriem met ¢ en congruent met 1 modulo 4,
bepalen wij het asymptotische gedrag van de natuurlijke afbeelding

(2CI(K, ¢))[2] — (2CI(K))[2].
Als gevolg hiervan vinden wij de gezamenlijke verdeling van
(#(2CU(K, ¢))[2], #(2C1(K))[2]).

Hoewel er een surjectieve natuurlijke atbeelding 2C1(K, ¢) — 2CI(K) is, bestaat
er een cohomologische obstructie voor de surjectiviteit van de geinduceerde afbeel-
ding (2CI(K, ¢))[2] — (2CI(K))[2]. In een verfijnde versie van onze hoofdstelling
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bewijzen we de gelijkverdeling van deze obstructie in de volledige obstructiegroep
(gezien als een kansruimte onder de telmaat).

Deze resultaten generaliseren het enige eerder bekende geval ¢ = 1, dat bewezen
was door E. Fouvry and J. Kliiners.

Vervolgens breiden wij de heuristicken van Cohen-Lenstra en Gerth uit van
klassengroepen naar algemene straalklassengroepen. De Cohen—Lenstra-heuristiek
is een onbewezen probabilistisch model van H. Cohen en H. Lenstra dat voorspelt
wat de exacte asymptotische uitkomst is van de meeste statistische vragen over
het Z[3]-moduul CI(K) ®zZ[3] als K loopt over alle imaginair-kwadratische getal-
lenlichamen. Nadien formuleerde F. Gerth een heuristiek voor CI(K)[2*]. Wijj
formuleren een algemener probabilistisch model gericht op het voorspellen van
de exacte asymptotische uitkomst van de meeste statistische vragen over straal-
klassengroepen, gezien als exacte rijen van Galois-modulen. Dit statistische model
komt overeen met ons resultaat voor 4-rangen, hetgeen een heuristische inter-
pretatie van de gelijkverdeling van de bovengenoemde cohomologische obstruc-
ties oplevert. Bovendien verklaart ons model de precieze constanten die worden
verkregen uit een stelling van [. Varma over de gemiddelde 3-torsie van straal-
klassengroepen. Met dit statistische model voor straalklassengroepen verkrijgen
onze resultaten over de 4-rangen en Varma’s resultaat over de 3-torsie een precieze
heuristische verklaring en worden zij tevens geplaatst binnen een breed kader.

Hoofdstuk 3 betreft de aritmetiek van lokale lichamen, en richt zich voor-
namelijk op de deelklasse van p-adische lichamen, waar p een priemgetal is. Zij
p een priemgetal. Dan is een p-adisch lichaam een eindige lichaamsuitbreiding K
van @Q,. De multiplicatieve groep K* van K heeft een natuurlijke filtratie

K 20;21+mg2..21+mk D ...,

waar O de ring van gehelen is van K en mg het unieke maximale ideaal van Og
is. De rij
1+mg2D...014+my D ...

is een filtratie van Z,-modulen. In dit hoofdstuk geef ik een parametrisering van
de verzameling van rijen van Z,-modulen

MyD..DMD..

die isomorf zijn met 1 +mg 2 ... D 1+ mlk D ... voor een zeker lokaal lichaam
K. Dit betekent dat er een isomorfisme

ap:l—i—mK—H\ll

van Z,-modulen met p(1 4+ mi) = M; bestaat. In het geval dat zo'n K bestaat,
zeggen we dat de rij My D ... D M; D ... toelaatbaar is. Tk parametriseer toelaat-
bare rijen in termen van zekere combinatorische objecten genaamd sprongverza-
melingen. Een van de hoofdstellingen in dit proefschrift is de opmerkelijke eigen-
schap dat deze parametrisatie gewichtbehoudend is. Er blijkt namelijk een natuurlij-
ke combinatorische manier te zijn om aan iedere sprongverzameling een gewicht toe
te kennen. Deze toekenning heeft een natuurlijke interpretatie in termen van de
Haar-maat. Anderzijds introduceerde Serre een natuurlijke kansmaat op de verza-
meling van volledig vertakte uitbreidingen van gegeven graad over een gegeven
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lokaal lichaam. In dit hoofdstuk laat ik zien dat het totale gewicht van de verza-
meling van lokale lichamen waarvoor de filtratie van ondergroepen isomorf is met
een gegeven toelaatbare rij, gelijk is aan het combinatorische gewicht van de bij-
behorende sprongverzameling. Tot slot gebruik ik mijn identificatie tussen de
verzameling van sprongverzamelingen en de verzameling van toelaatbare rijen om
een eenvoudiger en conceptueler bewijs te geven van een classificatie van H. Miki
van de mogelijke verzamelingen van bovenste sprongen van een cyclische totaal
vertakte uitbreiding van p-macht graad over een gegeven p-adisch lichaam K.
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Stellingen
1

Let p be a prime number and let K be a field with char(K) = p. Let I' C K* x K*
be a finitely generated subgroup. Denote by r := dimg(I' ®7 Q). Then

#{(r,y) e T —TP:04y=1} <31-19".

2

Let p be an odd prime number and denote by ¢, an element of Q" having multi-
plicative order equal to p. Let d be in pZs;. For each h € {1, ...,d—1} we say that a
polynomial g(z) = 2¢ + 32920 a;a’ in Q,((y)[2] is h-Eisenstein if a; € (1—C,)Z,[C,)
for each i € {0,...,d — 1} and a; € (1 — (,)Z,[¢,] — (1 — ()*Z,[¢,) if and only if
i€ {0,h}.

Let k,j be in {1,...,d — 1} with ged(p, kj) = 1, and let r(x), r2(x) be respec-
tively k- and j-Eisenstein polynomials of degree d. Then one has k = j if and only
if there is a group isomorphism ¢ : (ZPK””“} )= (ZPKPMM )* such that

ri(z1) ro(x2)
Zp[Gpl (1] Zp[Gpl 2]
1+xn PL>Sp — 1+xn PLSp ,
SO( 1 7,1(1,1) ) 2 7"2(1’2)
for every positive integer n.
3

For a number field K and a positive integer ¢, we denote by Cl(K) the class group
of K and by CI(K ¢) the ray class group of conductor ¢ of K.

Let [ be a prime number congruent to 3 modulo 8. Let P be the set of imag-
inary quadratic number fields K such that disc(K) is congruent to 1 modulo 4,
2C1(K)[2°] is a cyclic non-trivial group and [ is inert in K. Let Py be the set of
K € P such that Cl(K,1)[2%] b4 Z/4Z & CI(K)[2%]. We have that

lim #{K € Py : |disc(K)| < X} 1

Xooo #{K € P :|disc(K)| < X} 2

Moreover, if K € P — Py then 2CI(K,1)[2%] is also cyclic with #2Cl(K,1)[2*°] =
2 - #2C1(K)[2>].
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4

Let G be a topological group and H a normal subgroup of G. A set of topological
normal generators of H in G is a subset X of H such that {gzg™' : 2 € X, g € G}
is a set of topological generators of H.

Let p be a prime number and suppose that G is a pro-p group. Let moreover
r be a positive integer. Then the group G' is isomorphic to Z; if and only if for
every open normal subgroup N of G, a set of topological normal generators of N
in G of smallest possible size has cardinality 7.

5

Let L/K be a finite Galois extension of fields, with Gal(L/K) being an elementary
abelian 2-group and with char(K) # 2. Denote by Fo[Gal(L/K)] the group ring
of Gal(L/K) with coefficients in Fy; this is a local Gorenstein Fy-algebra. For an
element o € L* denote by L s the normal closure of L(y/a) over K. Then the
element Ny (c) is not in L** if and only if

Gal(L /5/K) ~gpp, Fo[Gal(L/K)] % Gal(L/K),
where the implicit action in the semidirect product is given by the regular repre-
sentation.

6

Let r be a positive integer and p a prime number. Let A be a free module over the
ring Z/p"*t'Z and G be a subgroup of Autg, (A). Suppose that p—1 > rky pr+17(A)
and that A% admits a cyclic direct summand of size p". Then there exists a cyclic
subgroup Hy of G such that AH° admits a cyclic direct summand of size p".

7

Let p be a prime number. Let G := (Z/pZ)*. Then there is a Z/p*Z[G]-module
A, free of rank p(p + 1) as a Z/p*Z-module, such that A% admits a cyclic direct
summand of size p, but A7 doesn’t for any proper subgroup H of G.

For a commutative ring R and for an R-module N, the annihilator of N is the set
Amng(N) :={z € R:V¥n € N,zn = 0}; it is an ideal of R. An R-module N is
said to be faithful if Aung(N) = 0.

8

Let R be a commutative ring, M a faithful R-module and J an ideal of R. Then
M/Anng(J)M is a faithful R/Anng(J)-module.
9

Let k be a field and A a commutative k-algebra such that dimy(A) < co. Suppose
A has a unique maximal ideal m 4, and that dimg(A/m4) = 1. Let M be a faithful
A-module. Then

dimy (M) > 24/dimg(A) — 1.
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