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Chapter 6

Squeezing of weak single-photon
light

The unconventional photon-blockade phenomenon, described in the previous
chapter, can be seen as amplitude squeezing of non-classical Gaussian states of
light. In this chapter we will describe and discuss in detail how this squeezing
relates to the unconventional photon blockade. Furthermore, a procedure is
given how quadrature squeezing could be measured for weak nonlinearities.
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6.1 Introduction
In the previous chapter, the first experimental observation of the unconventional photon
blockade is shown and discussed. Its main signatures are the reduction of the n = 2
photon Fock state component and the amplitude squeezing of the corresponding state
as shown in Fig 5.5. Here we explain in more detail an alternative way to look at the
unconventional photon blockade. It turns out that the unconventional photon blockade
can be seen as a particular realization of optimized Gaussian amplitude squeezing [100].
In general, one refers to a bunched photon stream if the photons are grouped together,

and antibunched if there is a finite distance between the photons. Physically, this state-
ment is quantified by the second-order correlation function g(2)(0), where g(2)(0) > 1
corresponds to bunched light and g(2)(0) < 1 corresponds to antibunched light. However,
measuring only the second-order correlation function is not enough to fully characterize
the quantum state. Consider for example a pure two-photon Fock state. One finds that

g(2)(0) =
∑∞
n=0 n(n− 1)Pn
(∑∞n=0 nPn)2 = 2P2

(2P2)2 = 1
2 . (6.1)

This two-photon state should be called a bunched state, since two photons are lumped
together, but by only measuring g(2)(0), one might conclude it is a single-photon state with
reduced purity. It is nice to draw here an analogy to the famous poem written by John
Godfrey Saxe: Blind men and the elephant. If one only sees a certain part of the elephant,
one might think it is something completely different from what it actually is. For example,
by only touching the trunk of the elephant one might think it is a snake. Here, the
situation is similar, g(2)(0) alone does not tell what kind of quantum state one deals with
and care should be taken in drawing conclusions. We will discuss here why unconventional
photon blockade can be seen as a specific case of Gaussian amplitude squeezing, by using
the measurable parameters mean photon number, second-order correlation function, the
amount of quadrature and amplitude squeezing. Alternatively, one could also measure
higher order correlation functions or one performs full quantum state tomography, but
this requires an increase in measurement time. At the end we explain a procedure to
measure the amount of quadrature squeezing in a two-level system.

6.2 Minimizing the second-order correlation g(2)(0).
We show that the unconventional photon-blockade effect can be viewed as a particular
realization of optimized Gaussian amplitude squeezing [100]. For this, we consider a
single-mode Gaussian squeezed light state written as

D(α)S(ξ) |0〉 = |α, ξ〉 . (6.2)

Here, D(α) is the displacement operator and S(ξ) is the squeezing operator. Using this,
the two-photon probability becomes

|〈2|D(α)S(ξ) |0〉|2 =
∣∣∣∣〈2| exp(αâ† − α∗â) exp

(1
2(ξâ2 + ξâ†2)

)
|0〉
∣∣∣∣2

≈ ((ā)2 − r)2/2, (6.3)
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with ā the mean photon number and r the squeezing parameter. The interplay between a
coherent displacement and a squeeze operation can cause the probability for a two-photon
state to go to zero. Since it is experimentally hard to determine the exact photon-number
distribution, it is more convenient to look at the second-order correlation g(2)(0), which
is relatively easy to measure. Now, the full second-order correlation expression for a
displaced squeezed vacuum state reads [100]

g(2)(0) = 1 + cosh(2r)
ā2 + sinh2(r)

− ā2(1 + sinh(2r))(
ā2 + sinh2(r)

)2 . (6.4)

Minimizing g(2)(0) as a function of r gives the value of r where the amount of antibunching
is maximal. For any ᾱ one finds that g(2)(0) < 1, except for ᾱ → ∞ where g(2)(0)
approaches 1. Only at a low mean photon number |ᾱ|2 < 0.1 one finds thatg(2)(0) < 0.1.
This is the regime where we observe the unconventional photon blockade.

6.3 Amplitude squeezing
The state obtained by the unconventional photon blockade is a Gaussian state with a
low mean photon number. Here we quantify and discuss how to measure the amount
of amplitude squeezing. A state is amplitude squeezed if the photon-number variance is
smaller than the variance of a coherent state with the same mean photon number. Since
the photon-number variance of a coherent state is equal to the mean photon number, we
define that a state is amplitude squeezed if〈

(∆N)2
〉
< 〈N〉 . (6.5)

In order to measure amplitude squeezing, one determines the fluctuations from the actual
detected count rate (σSPS) and divide it by the fluctuations of a shot-noise limited source
of the same intensity (σSN ). The theoretically predicted ratio is

σSPS
σSN

=
√

1− ζρ, (6.6)

where ζ denotes the overall detection efficiency and ρ is the probability that a pulse
creates a single photon. In case of a single-photon source with ρ = 1, meaning that every
pulse creates a single photon, and assuming ζ = 1, we find that σSP S

σSN
= 0, or in other

words, 100 % squeezing. In the case of unconventional photon blockade in cavity-QED,
we operate at a very low mean photon number, resulting in ρ ≈ 0. This means that there
is almost no amplitude squeezing, and reduced collection and detection efficiencies makes
it hard to detect amplitude squeezing.

6.4 Quadrature squeezing
The amount of amplitude squeezing appearing in unconventional photon blockade is too
small to detect with the current technologies, however it is possible to measure quadrature
squeezing in the system. In case of quadrature squeezing it is crucial to first define the
generic quadrature operator
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X̂(φ) = 1
2
(
âe−iφ + â†e+iφ

)
. (6.7)

This operator specifies the quadrature which is squeezed. For X̂(0)
(
X̂(π)

)
we squeeze

the position (momentum) quadrature in the language of a generic harmonic oscillator.
The condition for quadrature squeezing is now given as〈

(∆X(φ))2
〉
<

1
4 , (6.8)

which is bounded by the Heisenberg uncertainty relation. A normalized value for the
amount of quadrature squeezing is given by introducing the squeeze parameter [10],

s(φ) =

〈(
∆X̂(φ)

)2
〉
− 1/4

1/4 = 4
〈(

∆X̂(φ)
)2
〉
− 1 = 4

〈
:
(
∆X̂(φ)

)2
:
〉
. (6.9)

Here, squeezing exist whenever −1 ≤ s(φ) < 0. The notation 〈::〉 means that the creation
an annihilation operators are normal ordered. Experimentally, the amount of squeezing
is often expressed as 10 log10(1 + s(φ)). Typically, if there is a limited amount of am-
plitude squeezing, there exist an axis along which the system is quadrature squeezed.
However, there is one particular case, a photon Fock state, where this is not true. A
photon Fock state has no quadrature squeezing, however the photon-number distribution
is squeezed infinitely. This explains why Fock states are so fundamentally different from
other quantum states of light.
In Ref. [103], Vogel developed a method to determine the amount of quadrature squeez-

ing of resonant fluorescence from an atom using homodyne interference. We explore the
same method here, but assume that the fluorescent light comes from a QD. The fluorescent
light is written as Êfl with g(2)(0)� 1. For the homodyne intensity correlations, the light
state Êfl is mixed with light from a local oscillator ÊLO, where ÊLO is coherent laser light
from the continuous-wave laser that excites the QD. The setup for homodyne intensity
correlations is shown in Fig. 6.1. This setup is preferred over a homodyne cross correla-
tions setup, since the sub-Poissonian statistics of the signal field directly contributes to
the sub-poissonian statistics of the superimposed light. Therefore, nonclassical effects in
the signal field can be interpreted as contributions to an overall nonclassical effect in the
homodyne intensity scheme.
The output of the first beamsplitter consists of light from the QD and the local oscil-

lator. This superimposed light field ÊSL is written as

Ê+
SL(t) = 1√

2

(
Ê+
fl(t) + eiφÊ+

LO(t)
)
, (6.10)

where Ê+
fl(t) and Ê+

LO(t) represent the positive frequency at time t for the QD light and
light from the local oscillator respectively. The light from the QD is described by a single
mode field

Êfl = Ê+
fl(t) + Ê−fl(t) ∼ iâ exp(−iωt)− iâ† exp(iωt), (6.11)

which is used as a basis to determine the unnormalized second-order correlation function.
The unnormalized second-order correlation function of the superimposed light field
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Figure 6.1: Homodyne intensity correlation scheme [79]. The light state from the QD in
the micropillar

(
Êfl

)
is superimposed by the first beamsplitter (BS1) with the

local oscillator
(
ÊLO

)
, the resulting superimposed light

(
ÊSL

)
is recorded

by means of an Hanbury Brown Twiss (HBT) detection scheme.

G(2)(t, t+ τ) =
〈
Ê−SL(t)Ê−SL(t+ τ)Ê+

SL(t+ τ)Ê+
SL(t)

〉
(6.12)

produces the well-known anti-bunched second-order correlation function of the resonance
fluorescence G(2)

fl in the absence of a local oscillator.
Following the procedure by Vogel [79, 103], it is possible to write G(2)(t, t + τ) as the

sum of five local oscillator terms |ELO|n with n = 0, 1, 2, 3, 4. Since the local oscillator
behaves according to a classically theory it can be taken out of the averaging brackets and
G(2)(φ, t, t+ τ) can be written as an expansion of the local oscillator amplitude, Eq. 6.12
becomes

G(2)(t, t+ τ) =
4∑

n=0
G(2)
n (t, t+ τ), (6.13)

The five terms, under the assumption that we are in the stationary regime, which allows
one to drop the t dependence, become

G
(2)
0 (φ, τ) = 1

4
〈
Ê−fl(0)Ê−fl(τ)Ê+

fl(τ)Ê+
fl(0)

〉
(6.14)

G
(2)
1 (φ, τ) = ELO

4

(
e−iφ

〈
Ê−fl(τ)Ê+

fl(τ)Ê+
fl(0)

〉
+ e−iφ

〈
Ê−fl(0)Ê+

fl(τ)Ê+
fl(0)

〉
+

eiφ
〈
Ê−fl(0)Ê−fl(τ)Ê+

fl(0)
〉

+ eiφ
〈
Ê−fl(0)Ê−fl(τ)Ê+

fl(τ)
〉) (6.15)

G
(2)
2 (φ, τ) = E2

LO

4
(
e2iφ

〈
Ê−fl(0)Ê−fl(τ)

〉
+ e−2iφ

〈
Ê+
fl(τ)Ê+

fl(0)
〉

〈
Ê−fl(τ)Ê+

fl(0)
〉

+
〈
Ê−fl(0)Ê+

fl(τ)
〉

+ (6.16)〈
Ê−fl(0)Ê+

fl(0)
〉

+
〈
Ê−fl(τ)Ê+

fl(τ)
〉)
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G
(2)
3 (φ, τ) = E3

LO

4
(
eiφ
〈
Ê−fl(0)

〉
+ eiφ

〈
Ê−fl(τ)

〉
+ (6.17)

e−iφ
〈
Ê+
fl(τ)

〉
+ e−iφ

〈
Ê+
fl(0)

〉)
G

(2)
4 (φ, t, t+ τ) = E4

LO

4 (6.18)

From these equations one notices that G(2)
3 (φ, τ) and G

(2)
4 (φ, τ) are independent of the

time delay and can be neglected. Later, a detailed explanation is given about the physical
meaning of G(2)

0 (φ, τ), G(2)
1 (φ, τ), G(2)

2 (φ, τ). Since we assume that there are no correla-
tions for τ → ∞, it is advantageous to compare the short-time value of the correlation
function with its long-time value. In this sense we may introduce the following measure
for photon-pair correlations:

∆G(2)(φ, τ) = G(2)(φ, τ)− lim
τ1→∞

G(2)(φ, τ + τ1). (6.19)

Now, we derive all terms of ∆G(2)(φ, τ) and show that ∆G(2)
2 (φ, τ) is a measure for the

amount of quadrature squeezing. Using Eq. 6.13 the terms of ∆G(2)(φ, τ) become

∆G(2)
0 (φ, τ) = 1

4
〈
Ê−fl(0)Ê−fl(τ)Ê+

fl(τ)Ê+
fl(0)

〉
− 1

4
〈
Ê−flÊ

+
fl

〉〈
Ê−flÊ

+
fl

〉
(6.20)

=
(
G

(2)
0 (τ)−

I2
fl

4

)
,

∆G(2)
1 (φ, τ) = G

(2)
1 (φ, τ)−

ELO
4

(
e−iφ

〈
Ê−fl(τ →∞)Ê+

fl(τ →∞)
〉〈
Ê+
fl(0)

〉
+ e−iφ

〈
Ê−fl(0)Ê+

fl(0)
〉〈
Ê+
fl(τ →∞)

〉
+eiφ

〈
Ê−fl(0)Ê+

fl(0)
〉〈
Ê−fl(τ →∞)

〉
+ eiφ

〈
Ê−fl(τ →∞)Ê+

fl(τ →∞)
〉〈
Ê−fl(0)

〉)
(6.21)

∆G(2)
2 (φ, τ) = E2

LO
4

(
e2iφ

〈
Ê−fl(0)Ê−fl(τ)

〉
+ e−2iφ

〈
Ê+
fl(τ)Ê+

fl(0)
〉

+
+
〈
Ê−fl(0)Ê+

fl(τ)
〉

+
〈
Ê−fl(τ)Ê+

fl(0)
〉

+
〈
Ê−fl(0)Ê+

fl(0)
〉

+
〈
Ê−fl(τ)Ê+

fl(τ)
〉)
−

E2
LO
4

(
e2iφ

〈
Ê−fl(τ →∞)

〉2
+ e−2iφ

〈
Ê+
fl(τ →∞)

〉2
+

+2
〈
Ê−fl(τ →∞)

〉〈
Ê+
fl(τ →∞)

〉
+ 2

〈
Ê−fl(τ →∞)Ê+

fl(τ →∞)
〉)

=
E2

LO
4

(
e2iφ

〈
Ê−fl(0)Ê−fl(τ)

〉
+ e−2iφ

〈
Ê+
fl(τ)Ê+

fl(0)
〉

+〈
Ê−fl(0)Ê+

fl(τ)
〉

+
〈
Ê−fl(τ)Ê+

fl(0)
〉)
−

E2
LO
4

(
e2iφ

〈
Ê−fl(τ →∞)

〉2
+ e−2iφ

〈
Ê+
fl(τ →∞)

〉2
+

2
〈
Ê−fl(τ →∞)

〉〈
Ê+
fl(τ →∞)

〉)
,

(6.22)
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∆G(2)
3 (φ, τ) = 0, (6.23)

∆G(2)
4 (φ, τ) = 0. (6.24)

Here, we use that in the limit τ1 →∞ one finds
〈
Ê−fl(0)Ê−fl(τ1 →∞)

〉
→
〈
Ê−fl(τ1 →∞)

〉2
.

This mean that the correlations between the electric field expectation values disap-
pear and one can separate them. Note that the expectation value of the electric field
is independent of τ although we have written Ê(τ1 → ∞) for clarity. This leads to〈
Ê−fl(0)Ê+

fl(0)
〉

=
〈
Ê−fl(τ1)Ê+

fl(τ1)
〉

=
〈
Ê−flÊ

+
fl

〉
= Ifl. Using these relations it is easy to

go from the first to the second step in Eq 6.22. Now, we relate ∆G(2)
2 (φ, τ) to the quadra-

ture squeezing by defining a squeezing operator. For a single mode field the position (X1)
and momentum operator (X2) of the squeezing are, using Eq. 6.9, defined as

X̂1(φ) = 1
2C

(
â exp(−iφ) + â† exp(iφ)

)
=

1
2
(
Ês

+ exp(−iφ) + Ês
− exp(iφ)

)
= 1

2ε
(
Ê+
fl exp(−iφ) + Ê−fl exp(iφ)

)
,

X̂2(φ) = 1
2iC

(
â exp(−iφ)− â† exp(iφ)

)
= (6.25)

1
2i
(
Ês

+ exp(−iφ)− Ês
− exp(iφ)

)
= 1

2εi
(
Ê+
fl exp(−iφ)− Ê−fl exp(iφ)

)
.

Here, C is a constant which connects the electric field Es to the annihilation and cre-
ation operators with |C|2 = 2Ifl. The factor 2 is a normalization constant which appears
because of the 1√

2 when adding Ê+
s and Ê−s to obtain the total field Ês. |ε|2 depends on

the product of the decay rate, collection and detection efficiencies. In order to relate the
abstract theory to experiments we include a parameter V , the visibility of the interfer-
ometer, which includes the spatial mode overlap of the beams. Using the definition for
X1 and X2 one finds that

∆G(2)
2 (φ, τ) = V 2E2

LO |ε|
2
(〈

: X̂1(φ, 0)X̂1(φ, τ) :
〉
−
〈
X̂1(φ)

〉2
)

(6.26)

= V 2E2
LO |ε|

2
〈

: ∆X̂1(φ, 0)∆X̂1(φ, τ) :
〉
.

This shows that ∆G(2)
2 (φ, τ) is proportional to the amount of quadrature squeezing

defined in Eq. 6.9. The question that now arises, is how to determine ∆G(2)
2 (φ, τ)

experimentally. It is trivial to measure ∆G(2)(φ, τ) = ∆G(2)
0 (φ, τ) + ∆G(2)

1 (φ, τ) +
∆G(2)

2 (φ, τ)+∆G(2)
3 (φ, τ)+∆G(2)

4 (φ, τ), which is a second-order correlation measurement
from which the background is subtracted at long time delays. Since ∆G(2)

3 (φ, τ) = 0
and ∆G(2)

4 (φ, τ) = 0, one can determine ∆G(2)
2 (φ, τ) by measuring ∆G(2)

0 (φ, τ) and
∆G(2)

1 (φ, τ). From Eq. 6.20 it follows that ∆G(2)
0 (φ, τ) can be obtained by measuring

the second-order correlation function for only the QD light and thus blocking the local
oscillator light. The last term, ∆G(2)

1 (φ, τ = 0), can be obtained by using the periodicity
in the phase. By rewriting Eq. 6.21, one notices that

73



∆G(2)
1 (φ) = ELO

4

(〈
:
(
Ê+
fl(0)e−iφ + Ê−fl(0)eiφ

)
Ê−fl(0)Ê+

fl(0) :
〉∣∣∣
φ=0

2 cos(φ)
)

−ELO
4 Ifl

(〈
Ê+
fl(0)

〉
+
〈
Ê−fl(0)

〉)∣∣∣
φ=0

2 cos(φ)

= V ELO
2

〈
: ∆Êfl(φ)∆Îfl(φ) :

〉∣∣∣
φ=0

cos(φ),

(6.27)

which has a 2π periodicity. Using this and the fact that ∆G(2)
2 (φ, τ = 0) is periodic in τ ,

with period π, Eq. 6.21 is written as

∆G(2)
1 (t, φ) = ∆G(2)(t, φ = 0)−∆G(2)(t, φ = π)

2 cos(φ). (6.28)

Combining the above derivations, the amount of quadrature squeezing can be evaluated
by measuring only second-order correlation functions. In order to do this, the phase φ
is modulated. The effectively means that fraction of local oscillator light that interacted
with the single photon light is changed. Finally, the total amount of squeezing can be
obtained from

〈
: ∆X̂1(φ, 0)∆X̂1(φ, t) :

〉
= ∆G(2)(φ, t)−∆G(2)

0 (t, φ)−∆G(2)
1 (t, φ)

V 2E2
LO |ε|

2 . (6.29)

The parameters V 2, E2
LO, |ε|

2 have to be determined separately. V is the interference
visibility single photon light, E2

LO is the intensity of the local oscillator and |ε|2 can
be determined from the detected RF count rate combined with the Rabi frequency and
radiative decay rate of the QD.

Weak local oscillator
There are two possible regimes of the mixing of a local oscillator with QD light: the
weak and strong local oscillator regime. First, we consider the regime with a weak local
oscillator, where the largest amount of squeezing is generated. This is when the intensity
of the fluorescence light from the QD and local oscillator is of similar magnitude. Taking
only the negative part of ∆G(2)

2 (φ, τ) into account Eq. 6.22 becomes

∆G(2)
2max(φ, τ) = −E

2
LO

4

(
e2iφ

〈
Ê−fl(τ)

〉2
+ e−2iφ

〈
Ê+
fl(τ)

〉2
+ (6.30)

2
〈
Ê−fl(τ)

〉〈
Ê+
fl(τ)

〉)
= −E

2
LO

4
(〈
Ê−fl(τ)

〉
+
〈
Ê+
fl(τ)

〉)2
2 cos(2φ)

= −I0Ifl
1
2 cos(2φ).

The maximal total squeezing is given by

〈
: ∆X̂1(φ, 0)∆X̂1(φ, τ) :

〉
max

=
−I0Ifl

1
2 cos(2φ)

V 2E2
LO |ε|

2 . (6.31)
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Removing the detection efficiency, visibility factor, and making the squeezing dimension-
less by dividing by the uncorrelated count rate of the total field, leads to a maximal
theoretical squeezing of

s(φ)max = 4
〈

: ∆X̂1(φ, 0)∆X̂1(φ, τ) :
〉

(6.32)

=
−4I0Ifl

1
2 cos(2φ)〈

Ê−SLÊ
+
SL

〉2

=
−4I0Ifl

1
2 cos(2φ)

1
4
[
I0 + Ifl + 2(I0Ifl)1/2 cos(φ)

]2 = −0.5,

by choosing φ = 2πn and I0 = Ifl. In other words, the squeezing of the fluorescence leads
to an effect of 50% (or 1 − 0.5 = 0.5 → −3.0 dB). If Ifl > I0, i.e., a bright fluorescence
signal of single-photon nature and a weak local oscillator, s(φ)max of Eq. 6.32 decreases.

Strong local oscillator
In the regime of a strong local oscillator, one is limited by the amplitude fluctuations of
the local oscillator since the local oscillator noise is not balanced out. Remember that
the classical fluctuations of the local oscillator can be attenuated in the same manner as
its amplitude. This limits the use of a strong local oscillator to determine the amount
of quadrature squeezing. Mathematically, a local oscillator with stationary Gaussian
amplitude fluctuations is written as:

ELO = E0 + δE(t). (6.33)

Here δE(t) = 0, because averaging over the classical laser fluctuation gives zero. Now,
we reconsider the quantity ∆G(2)

4 (φ, τ) and observe that

∆G(2)
4 = 1

4

(
4E2

0(δE)2 + 2
(
(δE)2

)2)
(6.34)

≈ E2
0(δE)2,

where we made use of the suitable assumption that the relative amplitude noise of the
local oscillator is small,

(δE)2

E2
0

= ε� 1. (6.35)

As a result of the amplitude fluctuations, we cannot measure ∆G(2)
2 independently from

∆G(2)
4 . Since the stationary regime is considered, the effect of ∆G(2)

3 is neglected. To
quantify the effect of ∆G(2)

4 on ∆G(2)
2 it is useful to write this in the signal-to-noise-ratio

form
∣∣∣∣∣∆G

(2)
2

∆G(2)
4

∣∣∣∣∣ =

〈
: ∆X̂1(φ, 0)∆X̂1(φ, τ) :

〉
εE2

0
. (6.36)
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From this it is easily seen that the usually preferred strong local oscillator may prevent
the detection of the quantum noise of the signal field we are interested in. That is why
strong local oscillators are not useful here.

6.5 Quadrature squeezing and unconventional photon blockade
In order to determine the amount of quadrature squeezing for the unconventional photon
blockade one sends the transmitted light to a beamsplitter together with the excita-
tion laser and measures coincidences in the superimposed signal. Here, we investigate
theoretically if this experiment is archievable. Using Eq. 6.3 we observe that a van-
ishing two-photon probability is obtained if the squeeze parameter r is equal to ā2,
which is the mean photon number. By defining the amount of quadrature squeezing
as
〈

(∆X1)2
〉

= 1
4e
−2r and considering a 〈nout〉 ≈ 0.004 (Fig. 5.5(a)), this condition leads

to 10 log10(e−0.008) = −3× 10−2 dB squeezing. In order to confirm this rough estimation
we calculate the amount of squeezing from our quantum master simulation. In Fig. 6.2,
the amount of squeezing is shown as a function of the λ/2 and λ/4 wave plate orientation
in the transmission path where the axes are similar to the axes in Fig 5.5 (b) and Fig 5.5
(c). The expected amount of quadrature squeezing in the region of the unconventional
photon blockade is close to −3× 10−3 dB as indicated by the black arrow. The deviation
is because the theoretical analysis is only a rough approximation. This shows that the
expected amount of squeezing is very small and the second-order correlation function
needs to be measured extremely accurately to determine the amount of squeezing via
homodyning. This is hard, since we are limited by the detector jitter due to the fast
decay of the cavity, which effectively shortens the QD lifetime even further.
The use of a local oscillator combined with second-order correlation measurement is a

nice tool to relatively easily get a qualitative assessment of the quantum state of light. By
changing the phase φ and the laser power while measuring the second-order correlation
function, one can determine the squeezing direction and the amount of squeezing.
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Figure 6.2: False color plot of the amount of squeezing s(dB) as a function of the ori-
entation of the λ/2 and λ/4 wave plate in the transmission path. The black
arrow indicates the small amount of squeezing in the region of unconventional
photon blockade and corresponds to the black arrow in Fig. 5.5.
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