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Chapter 5

Observation of the unconventional
photon blockade

We observe the unconventional photon-blockade effect in QD cavity QED,
which, in contrast to conventional photon blockade, operates in the weak
coupling regime. A single QD transition is simultaneously coupled to two
orthogonally polarized optical cavity modes, and by careful tuning of the
input and output state of polarization, the unconventional photon-blockade
effect is observed. We find a minimum second-order correlation g(2)(0) ≈ 0.37
which corresponds to g(2)(0) ≈ 0.005 when corrected for detector jitter, and
observe the expected polarization dependency and photon bunching and anti-
bunching very close-by in parameter space, which indicates the abrupt change
from phase to amplitude squeezing.

This Chapter has been published in Physics Review Letters 121, 043601 (2018) [84].
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5.1 Introduction
A two-level system strongly coupled to a cavity results in polaritonic dressed states with a
photon-number dependent energy. This dressing gives rise to the photon-blockade effect
[85, 21] resulting in photon-number dependent transmission and reflection, enabling the
transformation of incident coherent light into specific photon-number states such as single
photons. Single-photon sources are a crucial ingredient for various photonic quantum
technologies ranging from quantum key distribution to optical quantum computing. Such
sources are characterized by a vanishing second-order auto-correlation g(2)(0) ≈ 0 [86].
In the strong coupling regime, where the coupling between the two-level system and

the cavity is larger than the cavity decay rate (g > κ) [23], photon blockade has been
demonstrated in atomic systems [57], QDs in photonic crystal cavities [62], and circuit
QED [87, 88]. At the onset of the weak coupling regime (g ≈ κ), it has been shown that
by detuning the dipole transition frequency with respect to the cavity resonance, photon
blockade can still be observed [66]. However, moving further into the weak coupling
regime (g < κ) which is much easier to achieve [89, 5] (in particular if one aims for a
small polarization mode splitting), conventional photon blockade is no longer possible
because the energy gap between the polariton states vanishes. Nevertheless, also in the
weak coupling regime, the two-level system enables photon number sensitivity, which
has recently enabled high-quality single-photon sources using polarization postselection
[4, 2, 3] or optimized cavity in-coupling [90]. We focus in this chapter on resonantly
excited systems. In 2010, Liew and Savona introduced the concept of the unconventional

Photon blockade Unconventional Photon blockade 

  00

  11

  10

  20

  01

Blockade

  0

  1

  2

  1 +

  1 −

  2 +

  2 −

𝑔

2𝑔

Blockade

1 cavity mode + 1 QD transition 2 cavity modes + 1 QD transition

(a) (b)

𝜙

H-mode

V-mode

QD-dipole

Figure 5.1: Removal of the 2-photon component in conventional photon blockade by the
anharmonicity of the Jaynes–Cummings ladder (a). In the unconventional
photon blockade (b, adapted from [91]), two excitation pathways (red and blue
arrows) destructively interfere. The state |ij〉 corresponds to (i, j) photons
in the (H,V ) polarized microcavity modes. The QD is coupled (coupling
constant g) to both cavity modes due to an orientational mismatch of its
dipole (angle φ, see inset).
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photon blockade (UPB) [92, 93] which operates with arbitrarily weak nonlinearities. It
was first investigated for Kerr nonlinearities [94, 95], then for χ(2) nonlinearities [96] and
the Jaynes–Cummings [91, 97] system which we focus on here. Both the conventional and
unconventional photon-blockade effect result in transmitted light with vanishing photon
auto-correlation g(2)(0) < 10−2 [94, 98], however, the underlying physical mechanisms
are completely different, see Fig. 5.1. In the strong coupling regime, the unevenly spaced
levels of the dressed spectrum prevent reaching the two-photon state for a particular laser
frequency [red arrows in Fig. 5.1(a)]. Moreover, the probabilities of having N > 1 photons
in the system are all suppressed with respect to those of a classical state with the same
average photon number. In the unconventional photon blockade instead [Fig. 5.1(b)], only
the probability of having N = 2 photons is suppressed. The sub-Poissonian character
then arises because, for the chosen pump amplitude, the average photon number – and
thus the probabilities of N > 2 photons – are very small. A possible explanation of the
reduced N = 2 probability is given in terms of the interference between two excitation
pathways to the N = 2 photon state, which can be destructive thanks to the small energy
shift of the two-photon state induced by the weak nonlinearity [91, 99]. An equivalent
alternative explanation (discussed below) was proposed in terms of an optimal interplay
between squeezing and displacement of the cavity field [100].
We investigate here a single semiconductor QD in an optical microcavity where a single

linearly-polarized QD dipole transition is coupled to the two linearly polarized cavity
modes due to an orientational mismatch of the QD dipole with respect to the cavity
axes [angle φ, see inset Fig. 5.1(b)]. Since the unconventional photon blockade operates
in the low mean-photon-number regime, Fig. 5.1(b) shows only the N = 0...2 photon
Fock states. Further, we show only one particular excitation pathway (blue), many more
involving internal cavity coupling exist but do not qualitatively change the interpretation.
More specifically, we rely here on the input- output tuning scheme described in detail in
[93, 94], here realized via the polarization degree of freedom, which is an extension of
the original UPB proposal [91, 92]. As a result the interference of different excitation
pathways with and without involvement of the photon-number sensitive QD transition
can be tuned such that the two-photon component is suppressed.

5.2 Device and experimental setup

The sample for this experiment consist of a layer of self-assembled InAs/GaAs QDs
embedded in a micropillar cavity (maximum Purcell factor Fp = 11.2) grown by molecular
beam epitaxy [73]. The QD layer is embedded in a P–I–N junction, separated by a 27
nm thick tunnel barrier from the electron reservoir to enable tuning of the QD resonance
frequency by the quantum-confined Stark effect. Due to the QD fine-structure splitting,
we need to consider only one QD transition, which interacts with both the H and V cavity
modes.
We model our system using a Jaynes–Cummings Hamiltonian in the rotating wave

approximation with g � κ. The Hamiltonian for two cavity modes and one QD transition
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driven by a continuous-wave laser is written as

H =
(
ωL − ωVc

)
â†V âV +

(
ωL − ωHc

)
â†H âH

+ (ωL − ωQD) σ̂†σ̂ + g
(
σ̂b̂† + σ̂†b̂

)
(5.1)

+ ηH
(
âH + â†H

)
+ ηV

(
âV + â†V

)
.

ωHc and ωVc are the resonance frequencies of the linearly polarized cavity modes, â†H and
â†V the photon creation operators, ωQD is the QD resonance frequency, and σ̂† the exciton
creation operator. b̂ = âV cos φ+âH sin φ is the cavity photon annihilation operator along
the QD dipole orientation, and φ is the relative angle. In our case the angle is φ = 94◦,
which means that the H-cavity mode couples better to the exciton transition. ηH and ηV
are the amplitudes of the incident coherent light coupling to the H and V cavity modes.
For numerical simulations, we add relaxation of the cavity modes and dephasing of the
QD transition and solve the corresponding quantum master equation [37, 38, 5], add the
output polarizer and calculate the mean photon number and second-order correlation
function. All theoretically obtained g(2)(τ) data is convolved with the detector response
(530 ps) to match the experimental conditions.
In Fig. 5.2(a) we show false color plots of the cavity transmission as a function of laser

frequency and QD energy. The QD energy is tuned by altering the bias voltage which
modifies the quantum confined Stark effect. The input polarization is set such that we
excite only one cavity mode. A cross section taken at the dashed line in (a) is shown
in Fig. 5.2(b). From the fit to the theoretical model we obtain the cavity decay rate
κ = 60 ± 3 ns−1, the QD-cavity coupling constant g = 14 ± 0.4 ns−1, the population
relaxation rate γ|| = 1.0± 0.4 ns−1, the pure dephasing rate γ∗ = 0.2± 0.4 ns−1 and the
total dephasing rate γ = γ||

2 + γ∗ = 0.7 ns−1.
In an additional measurement we keep the QD energy constant and rotate the input

polarization, see Fig. 5.2(c). By fitting the data for several incident polarization orienta-
tions (and keeping κ, γ||, γ∗ and g constant), we obtain the QD fine-structure splitting
∆fQD = 2.4 ± 0.1 GHz, the cavity polarization splitting ∆fcav = 10 ± 0.1 GHz, and
the angle between the QD and cavity polarization basis φ = 94◦ ± 2◦. The resulting
theoretically calculated transmission in Fig. 5.2(d) shows excellent agreement with the
experimental data in Fig. 5.2(c).
In summary the simulation parameters used to produce the explanatory Fig. 5.4 were

κ = 60 ns−1, g = 14 ns−1, γ|| = 1.0 ns−1, γ∗ = 0.0 ns−1, ∆fcav = 0 GHz, φ = 94◦, and
〈nin〉 = 0.01, i.e., without dephasing and cavity mode splitting. For Fig. 5.5 where theory
is compared to experiment, we use the full set (including pure dephasing): κ = 60 ns−1,
g = 14 ns−1, γ|| = 1.0 ns−1, γ∗ = 0.2 ns−1, ∆fcav = 10 GHz, φ = 94◦ and 〈nin〉 = 0.06.
Here 〈nin〉 is the incident mean photon number.
From the device parameters we see that the QD fine-structure splitting of 2.4 GHz

is much larger than the QD linewidth (FWHM) of 2 γ
2π ≈ 0.2 GHz; therefore we can

focus on one QD transition only as long as a narrow-linewidth laser is used. We have
confirmed this by comparing numerical simulations with one and two fine-structure split
QD transitions, where equal transmission amplitudes and photon correlations are ob-
tained. Finally, there could be non-energy preserving and/or non-polarization preserving
effects, such as phonon-assisted Raman-type transitions between the two fine-structure
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split exciton states. This, however, would lead to a reduced interference of incident laser
light and QD resonance fluorescence, which would imply a reduced dip depth in a simple
transmission scan, this is not the case [Fig. 5.2(b)].
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Figure 5.2: Characterization of the QD cavity-QED device by cavity transmission mea-
surements: Cavity transmission as a function of laser frequency and QD bias
voltage (a), corresponding cross-section at the dashed line (b), and experi-
mental (c) and theoretical (d) laser frequency – incident linear polarization
orientation scans of the cavity transmission.

Fig. 5.3 shows the experimental setup. For polarization control, we use exclusively
Glan-type polarizers and calibrated zero-order waveplates. Light from a scanning laser
is polarized, and then coupled with a 0.4 NA microscope objective into the fundamental
mode of the microcavity. The device is on a cold finger at 5 K in a low-vibration closed-
cycle cryostat with 3-axes piezo control for fine positioning. The transmitted light is
collected using also a 0.4 NA microscope objective; motorized waveplates in combination
with a fixed linear polarizer are used to select a specific state of polarization. With a non-
polarizing beamsplitter and two single-photon detectors we then record photon counts
and photon auto correlations.
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Figure 5.3: Sketch of the experimental setup. Pol: polarizer, APD: single-photon count-
ing avalanche photodiode.

5.3 Results

Fig. 5.4 shows how the second-order correlation g(2)(τ = 0) of the transmitted photons
depends on the linear input and linear output polarization angle. In all current single-
photon sources with a QD in a cavity [2, 3, 4], only one cavity mode is excited with the
laser, and by using a crossed polarizer, single photons are obtained in the orthogonal
mode. This condition is indicated with arrow A in Fig. 5.4. By exciting both cavity
modes and selecting an appropriate output polarization state such as indicated by arrow
B, it is also possible to obtain single photons; this is where the unconventional photon
blockade can be observed.
Now, we investigate more closely region B of Fig. 5.4, where both cavity modes are

excited (θin = 45◦). Furthermore, we add the experimentally unavoidable polarization
splitting of the H and V cavity modes which is 10 GHz for the device under inves-
tigation. Furthermore, we vary the detected output polarization in the most general
way, by introducing λ/2 and λ/4 wave plates before the final polarizer in the trans-
mission path. As simplified experimental setup is sketched in the inset of Fig. 5.5(b).
Fig. 5.5(b) shows how this polarization projection affects the mean photon number 〈nout〉,
for 〈nin〉 =

(
ηH+ηV

κ

)2
= 0.06 in the simulation and in the experiment [Fig. 5.5(a)]. This

region is highly dependent on the cavity splitting and the QD dipole angle, careful de-
termination of the parameters allows us to obtain good agreement to experimental data
[Fig. 5.5(a)]. In this low mean photon-number region, the second-order correlation g(2)(0)
shows a non-trivial behavior as a function of the output polarization state, shown in
Fig. 5.5(c, experiment) and (d, theory): First, we observe the expected unconventional
photon blockade anti-bunching (blue region). The experimentally measured minimum
g(2)(0) is 0.37± 0.04, which is limited by the detector response function. The theoretical
data which takes the detector response into account agrees very well to the experimental
data and predicts a bare g(2)(0) ≈ 0.005. Second, we find that, close-by in parameter
space, there is a region where bunched photons are produced. This enhancement of the
two-photon probability happens via constructive interference leading to phase squeezing.
Theoretical and experimental data show good agreement, we attribute the somewhat
more extended antibunching region to long-time drifts of the device position during the
course of the experiment (10 hours).
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Figure 5.4: False color plot of the theoretically calculated g(2)(0) convolved with the de-
tector response as a function of the incident and detected linear polariza-
tion orientation. Arrow A indicates the condition where most single-photon
sources operate: the system is excited in the H-cavity mode and the single
photons are detected in the V-cavity mode. Arrow B shows the case where
single photons are created using the unconventional photon blockade. White
pixels indicate that the simulation has failed due to extremely low photon
numbers. The model parameters are given in section 5.2.
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In Fig. 5.5(e) and 5.5(f) we show the two-time correlation function g(2)(τ) for the two
cases indicated by the arrows. The observed width and height of the anti-bunching and
bunching peak predicted by the theory is in agreement with the observed experimental
data. The exact shape of the correlation function in Fig. 5.5(e) is very sensitive to
non-ideal effects such as energy fluctuations of the QD, which is why the functional
form of the theoretical g(2)(τ) (blue line Fig. 5.5) is a bit different compared to the
experiment. For two coupled Kerr resonators in the UPB regime, one observes oscillations
in g(2)(τ) when collecting the output of only one of the cavities [92]. During finalizing
this research, a manuscript describing a first observation of this effect has appeared
[101]. In our case, these oscillations are absent because the system works mostly as a
unidirectional dissipative coupler [102], and the photon field behind the output polarizer
contains contributions from both cavities modes, which suppresses the oscillations in
g(2)(τ).

5.4 Discussion
An alternative way to understand the unconventional photon blockade is in terms of Gaus-
sian squeezed states [100]: For any coherent state |α〉, there exists an optimal squeeze
parameter ξ that minimizes the two-photon correlation g(2)(0), which can be made van-
ishing for weak driving fields. We find that, even with a small amount of squeezing,
it is possible to significantly reduce the 2-photon distribution and minimize g(2)(0) for
low mean photon numbers. A Gaussian squeezed state is produced from vacuum via
D(α)S(ξ) |0〉 = |α, ξ〉. Here S is the squeeze operator with ξ = r expiθ (0 ≤ r < ∞,
0 ≤ θ ≤ 2π). D is the displacement operator, and the complex displacement amplitude
α = ᾱ expiϑ (0 ≤ ᾱ < ∞, 0 ≤ ϑ ≤ 2π). For θ = ϑ = 0, we can calculate the two-photon
probability in the small-α (low mean-photon-number) limit as

|〈2|D(α)S(ξ) |0〉|2 ≈ (ā2 − r)2/2, (5.2)

using a Taylor expansion. We see that, in order to obtain a vanishing two-photon
probability, the squeeze parameter r needs to be equal to ā2 which is the mean photon
number. By defining the amount of quadrature squeezing as

〈
(∆X1)2

〉
= 1

4e
−2r and

considering a 〈nout〉 ≈ 0.004 (Fig. 5.5(a)), this condition leads to 10 log10(e−0.008) =
−3× 10−2 dB squeezing. Interestingly, this result means that, for a weak coherent state,
only a very small amount of squeezing is needed to make g(2)(0) drop to nearly zero.
In Fig. 5.6 we show further analysis of the theoretical calculations for the experimen-

tal state produced by the unconventional photon blockade as indicated by arrow D in
Fig. 5.5(c) and (d). In agreement with Eq. 5.2 we observe that the two-photon state in
the photon-number distribution shown in Fig. 5.6(a) is suppressed. By the same mech-
anism that suppresses the two-photon state one also expects to see an increase of the
three photon component [93]. The increase of P3 is not observed here because of the low
mean photon number. From the photon-number variance given in Fig. 5.6(b), we observe
that the state is amplitude squeezed. By moving from the region of arrow C to D in
Fig. 5.5(d), the observed state switches from a phase-squeezed to an amplitude-squeezed
state, which is a clear signature of the unconventional photon-blockade effect [93].
Finally, we discuss whether the UPB effect can be used to enhance the performance of

single-photon sources, and in particular their efficiency. Traditionally, the QD is excited
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Figure 5.5: False color plots of 〈nout〉 and g(2)(0) as a function of the orientation of the
λ/2 and λ/4 wave plate in the transmission path. (a) 〈nout〉 is the mean photon
number in a given polarization basis at the output. At 0◦ the linear polarized
incoming light is parallel to the fast axis of both wave plates. (b) correspond-
ing theory to (a) with as inset a sketch of the experimental setup. (c) and (d)
experimental and theoretical g(2)(0). (e) and (f) show g(2)(τ) for the (anti)
bunching region indicated by arrows C (D) in Fig. 5.5(c) and (d). The red
dots are measured data and the blue line is the theoretically obtained g(2)(τ)
convolved with the detector response. The exact theoretical parameters are
given in section 5.2.
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Figure 5.6: (a) Calculated photon-number distribution of a coherent state and for the
condition indicated by the arrow C and D in Fig. 5.4(c). (b) The calculated
photon-number variance for the states presented in (a) showing amplitude
squeezing in the region where we observe the unconventional photon block-
ade. (c) Mean photon number 〈nout〉 as a function of input polarization. We
see that a large improvement of the single-photon efficiency can be obtained
by exploiting the UPB effect. The simulation is performed for three cavity
splittings (∆fcav) showing that the enhancement is largest in a polarization
degenerate cavity.
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by one linearly polarized cavity mode and photons are collected via the orthogonal mode.
In our experiment, the QD excitation probability is 1 − cos(4◦) ≈ 0.0024, and, once
excited, it has 1 − 0.0024 chance to emit into the collection cavity mode, which leads
to a low total efficiency. In the unconventional photon-blockade regime, arrow B in
Fig 5.4, this efficiency is higher. To further explore this, we show in Fig. 5.6(c) the mean
photon number 〈nout〉 as a function of the input polarization with constant input laser
power 〈nin〉 = 0.06 (the polarization output state is chosen such that g(2)(0) ≈ 0). We
see that, by rotating the input polarization from 0◦ to 45◦, the output mean photon
number can be increased by approximately a factor 10. The simulation is done for
various cavity splittings ∆fcav which shows that increasing the cavity splitting reduces
this enhancement. We conclude that, in the low mean-photon-number regime, the UPB
effect can be used to increase the efficiency of a single-photon source.
In conclusion, we have experimentally observed the unconventional photon-blockade

effect using a single QD resonance coupled to two orthogonally-polarized cavity modes.
We find the expected drop in g(2)(0), but additionally and very close in parameter space,
we also find that the transmitted light statistics can be tuned from anti-bunched to
bunched, all in good agreement to theoretical models and simulations. In contrast to
conventional photon blockade, no energy splitting of the polariton resonances is required,
allowing to obtain g(2)(0) ≈ 0 even with weak nonlinearities. Finally, under certain con-
ditions, we find that the unconventional photon-blockade effect can increase the efficiency
of single-photon sources.
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