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Chapter 3

Quantum master model for cavity
QED

In this chapter, we describe the full quantum master model and show how it
is solved numerically. We discuss the driven Jaynes–Cummings Hamiltonian
in the semi-classical and quantum regime. Additionally, we explain how the
full quantum master model is useful in simulating more complicated level
structures such as exciton, biexciton and trion state.

Part of the content in this chapter is used in the publications of later chapters.
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3.1 Quantum master equation
In order to fully understand the quantum behavior of a QD interacting with photons in
a cavity, we solve the quantum master equation numerically. This allows us to include
the quantum correlations between the photon operators and QD operators, and other
relaxation mechanisms such as pure dephasing. Using the Hamiltonian of Eq. 2.15 and
including a Lindblad-type of dissipation, the master equation becomes

dρ

dt
= Lρ = −i

[
Ĥ, ρ

]
+ 2κD [â] ρ+ γ||D

[
Ŝ−
]
ρ+ γ∗

2 D
[
Ŝz
]
ρ. (3.1)

Here, compared to Eq. 2.16, we have included a term that describes the pure dephasing
γ∗. Pure dephasing conserves the population of the excited and ground states, but effects
the coherence of the transition since it modifies the off-diagonal terms in the density
matrix ρ. This Lindblad-type master equation in Eq. 3.1 is based on several additional
assumptions (see for instance [37]). Here we point out the three most important ones.
(1) Full separability of the system and the environment at t = 0. (2) The state of the
environment must not change significantly under interaction with the system, i.e., the
interaction is weak, and the system and environment remain separable throughout the
evolution. (3) The environment has no memory on the time scale of the evolution (Markov
approximation).

3.1.1 Steady-state solution
For the steady-state solution, with continuous wave excitation, we solve Lρ = 0 using the
numerical methods provided by the software package QuTiP [38]. The density matrix
ρ of the steady-state solution is the tensor product of the QD-system matrix with the
photon density matrix. In order to obtain the steady-state solution, the time-dependence
in the Hamiltonian needs to be removed. This is done by transforming the Hamiltonian
to the Heisenberg picture, but in order to do this transformation the fast rotating terms
in the time-dependence are removed by using the rotating wave approximation. To apply
the rotating wave approximation two conditions need to be satisfied: fcav ≈ fa, and
fa � Ω. Here fcav is the cavity frequency, fa is the QD transitions frequency and Ω is
the Rabi frequency. Figure 3.1 shows that, in the weak coupling regime, the rotating wave
approximation is valid for a broad range of input powers. In the regime of ultra-strong
coupling, the rotating wave approximation breaks down [39].

3.1.2 Time-dependent solution
In case the time-dependence cannot be removed from the Hamiltonian, the quantum
master equation can be solved as a function of time. In Qutip, there are three methods to
find time-dependent expectation values: a direct method, an exponential series expansion
and a Monte Carlo simulation. The direct method uses a matrix evolution and solves the
system iteratively with time steps τ , where τ is considered to be small. In the exponential
series expansion, the solution for the expectation value of the cavity field is written as
[38] 〈

â†(τ)â(0)
〉

= Tr
(
â†e[L]tâρ0

)
= Tr(i)

(∑
ϕ

(i)
k exp (−sk |τ |)

)
, (3.2)
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Figure 3.1: Comparison of the Hamiltonian with and without rotating wave approxima-
tion for different driving powers.

where sk are the eigenvalues of L and ϕk are the amplitude coefficients. In most cases,
the direct method is fastest, only for extremely long evaluation times of the system or
large density matrices it is favorable to use a Monte Carlo simulation.

3.1.3 Spectral distribution of the emitted light
The frequency spectrum of the emitted light is found by taking the Laplace transform of〈
â†(τ)â(0)

〉
. This, however, only gives the correct frequency spectrum if the spectrum

is completely symmetric around zero frequency. Calculating the Fourier transform of an
expectation value gives the frequency spectrum

S(ω) =
∫ ∞
−∞

〈
â†(τ)â(0)

〉
eiωτdτ. (3.3)

This equation can be solved using a fast Fourier transform if the solution of the expec-
tation value is provided using matrix evolution. However, when the solution is provided
using an exponential series expansion, a nice trick becomes available to calculate the
frequency spectrum. Using the exponential series expansion we can write

S(ω) =
∫ ∞
−∞

〈
â†(τ)â(0)

〉
eiωτdτ =

∫ ∞
−∞

∑
k

ϕ
(i)
k exp (−sk |τ |) eiωτdτ. (3.4)

Exchanging the integral and the summation, this can be rewritten as

S(ω) =
∑
k

∫ ∞
−∞

ϕk exp (−sk |τ |) eiωτdτ = 2Re
∑
k

ϕk
iω − sk

. (3.5)
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This shows that the exponential series expansion almost directly gives the frequency
spectrum of the transmitted light.

3.2 Comparison of the quantum master equation with
semi-classical models

In semi-classical models QD-Electromagnetic field correlations are not taken into account.
Therefore, comparing the cavity transmission obtained via a numerical simulation of the
quantum master equation with results from semi-classical calculations provides insight in
how QD-field correlations affect the system. The numerical simulation grants us access
to the density matrix, which contains all the system information such as quantum corre-
lations and the coherence functions. In Fig. 3.2, we compare the cavity transmission as
a function of laser frequency for the classical case described by Eq. 2.19 and respresented
by the dashed lines, to the numerically obtained quantum case described by Eq. 3.1 and
represented by the solid lines. The transmission is given in terms of the cavity mean pho-
ton number 〈n〉. A limitation of the numerical simulation is that the density matrix size
grows exponentially with the photon number (and QD states). Here, the density matrix
contains Fock states up to 10 photons, which is sufficient for a mean photon number of
10−1 or lower.
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Figure 3.2: Transmission of a QD transition in resonance with a cavity as a function of the
laser frequency. The simulation is carried out for three different mean photon
numbers 〈nin〉 = 10−1, 10−2, 10−3 in the cavity. Increasing the power shows
saturation of the QD transmission dip when using a numerical simulation of
the quantum master equation (solid line), while for the classical case (dashed
line), this is not reproduced. Other parameter values are: κ = 12GHz, γ‖ =
1

2π GHz, γ∗ = 0GHz and g = 2 GHz.

When the quantum master equation is solved numerically, we observe a saturation
response of the transmission dip for increasing input power, proportional to 〈nin〉. Here,
〈nin〉 is the mean photon number in the cavity. This saturation is not reproduced in
the semi-classical calculation, since it is only valid in the low-excitation regime. Below
〈nin〉 ≈ 10−3, the quantum result and semi-classical result overlap, while increasing the
power to 〈nin〉 ≈ 10−1 saturates the QD transition almost completely.
In order to study this dip depth in more detail, the relative dip depth is plotted in

Fig. 3.3 as a function of input power. The relative dip depth is defined as
(〈n〉 − 〈nQD〉) / 〈n〉, where 〈nQD〉 is the mean photon number in a cavity with a QD on
resonance at a certain input power. For the semi-classical case, or for the case of a very
low mean photon number, the relative dip depth is defined as

1−
( 1

1 + C

)2
,

where C = g2

κγ⊥
is the cooperativity of the system. While in the semi-classical case, the

relative dip depth does not change as a function of input power, we observe that, in the
quantum case, the relative dip depth vanishes when increasing the power two-orders of
magnitude from 〈nin〉 = 10−3 to 〈nin〉 = 10−1. In addition to the semi-classical and
quantum results, the nonlinear semi-classical case (blue line in Fig. 3.3) is also plotted to
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Figure 3.3: Relative dip depth as a function of the mean photon number. The results
are plotted for the semi-classical case (Eq. 2.19), nonlinear semi-classical case
(Eq. 2.49) and quantum case (Eq. 3.1), with parameter values κ = 12 GHz,
γ|| = 1

2π GHz, γ∗ = 0GHz and g = 2 GHz. The grey box indicates the
area where the power is low enough so that the classical and quantum results
overlap.

show the effect of saturation in this model. Comparing the nonlinear classical case to the
quantum case we observe that at low power, 〈nin〉 . 10−3, and high power, 〈nin〉 & 1,
the results become nearly identical. This shows that quantum correlations are important
for a mean photon number above 〈nin〉 = 10−3.
Another important effect to discuss is pure dephasing, which is a non-radiative effect

that effects the coherence of the QD transition. If significant pure dephasing is included,
the relative dip depth at low mean photon number reduces, since pure dephasing destroys
the coherence of the light in the cavity. In Fig. 3.4 (a), we plot the relative dip depth for
the case with pure dephasing and observe that, for a pure dephasing of γ∗ = 1

2π GHz, the
dip depth decreases from ∼ 1 to ∼ 0.8 at an input mean photon number of 〈nin〉 = 10−4.
The other system parameters are similar to the simulation in Fig. 3.3. For the classical
case, the pure dephasing is artificially inserted by defining γ⊥ = γ||

2 + γ∗. In order to
characterize the effect of pure dephasing further, the relative dip depth is plotted in
Fig. 3.4(b) as a function of the ratio

(
γ∗

γ||

)
. From this we find, as indicated by the grey

box in Fig. 3.4(b), if γ∗ . 0.1γ||, the effect of pure dephasing can safely be neglected. It
also shows that, in the classical case for an input power of 〈nin〉 ? 0.5, the artificially
inserted pure dephasing is not sufficient to describe the pure dephasing in the quantum
model.

3.3 Quantum master simulations for quantum dot cavity QED
Here we explain in detail the structure of the quantum master equation for three types
of excitations in QDs: neutral exciton, biexciton and trion. Furthermore, we derive a
time-independent Jaynes–Cummings Hamiltonian which is then used to formulate the
quantum master equation for each level structure. We argue that, for more involved level
systems, a classical description is not sufficient and a full quantum master equation is
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Figure 3.4: a) Relative dip depth as a function of the input power in the case with pure
dephasing. The results are plotted for the classical case (Eq. 2.19), nonlinear
classical case (Eq. 2.49) and quantum case (Eq. 3.1) with parameter values
κ = 12 GHz, γ‖ = 1

2π GHz, γ∗ = 1
2π GHz and g = 2 GHz. b) Relative dip

depth as a function of pure dephasing γ∗ with (〈n〉in = 10−4). The grey box
indicates the area where the effect of pure dephasing can be neglected.

necessary. Additionally, we discuss the effect of a magnetic field to briefly touch upon
spin pumping effects that can take place in charged QDs.

3.3.1 Neutral exciton
In this section, a detailed analysis is given of the neutral exciton and the related optical
transitions. We use a matrix formalism [33, 40], instead of the alternative method in
terms of wave functions [41]. The geometry of the QD leads to the appearance of the
fine-structure split transitions. They arise due to the exchange interaction which couples
the spins of the electron and hole. In Fig. 3.5, we show the level structure of the neutral
exciton as a result of the exchange interaction. The general form of the spin Hamiltonian
for the electron-hole exchange interaction of an neutral exciton, formed by a hole spin Jh
and by an electron with spin Se, is given by [42]

Hexchange = −
∑

i=x,y,z

(
aiJh,i · Se,i + biJ

3
h,i · Se,i

)
, (3.6)

where a and b are the spin-spin coupling constants. Due to strain in self-assembled QDs,
the heavy and light hole states are split in energy by several meV [40]. This splitting is
considerably larger than the involved linewidths and the fine-structure interaction energy,
and therefore, the light hole states can be neglected. The basis from which the neutral
exciton is constructed therefore consist of a heavy hole with Jh = 3/2, Jh,z = ±3/2 and
the electron Se = 1/2, Se,z = ±1/2. From these states four excitons are formed, which
are characterized by their angular momentum projections M = Se,z + Jh,z. Due to the
optical selection rules, the |M | = 2 transitions cannot couple to the light field, and are
therefore optically inactive (dark transitions), while the states with |M | = 1 are allowed

33



  𝑒𝑟 = 1

2
(  ⇑↓ +   ⇓↑ )

  𝑒𝑙 = 1

2
(  ⇑↓ −   ⇓↑ )

bright states

ground state

Neutral exciton

𝛿1

𝑌𝑋

En
er

gy

  𝑔

Figure 3.5: Energy structure of an exciton. Due to symmetry breaking, the excited states
are described as a superposition of |⇑↓〉 and |↑⇓〉, where up describes an elec-
tron, and doubleup a hole with spin up.

(bright transitions). Using the exciton states

|+ 1〉 = |⇑↓〉
| − 1〉 = |⇓↑〉
|+ 2〉 = |⇑↑〉
| − 2〉 = |⇓↓〉

(3.7)

as a basis the following matrix representation is obtained

Hexchange = 1
2


δ0 δ1 0 0
δ1 δ0 0 0
0 0 −δ0 δ2
0 0 δ2 −δ0

 , (3.8)

where δ0 = −3/4(az 9
4bz), δ1 = 3/8(bx − by), and δ2 = 3/8(bx + by). If we have a special

neutral exciton under study with rotational symmetry (meaning that bx−by = 0), then the
angular momentum is still a good quantum number and | + 1〉 and |−1〉 are degenerate
eigenstates of Hexchange. On the other hand, when the rotational symmetry is broken
(bx − by 6= 0), the angular momentum is not a good quantum number anymore and the
eigenstates are transformed in the linear polarized states 1√

2(|⇑↓〉+|↑⇓〉) , 1√
2(|⇑↓〉−|↑⇓〉).

This situation is sketched in Fig. 3.5. In practice, we encounter nearly always an exciton
with a broken symmetry so that the observed spectrum has two excitation peaks.

Neutral exciton with external magnetic field
An exciton in a magnetic field experiences a Zeeman splitting of the energy levels. The
general interaction of the electron and hole spins with an external magnetic field B is
given by
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Figure 3.6: Zeeman splitting for the bright |M | = ±1 and dark |M | = ±2 transitions
in Voigt configuration. Mixing of the eigenstates makes the dark transitions
become visible.

Hzeeman = µB
∑

i=x,y,z
(ge,iSe,i + gh,i

3 Jh,i)Bi, (3.9)

where µB is the Bohr magneton, and ge and gh are the Landé g-factors for the electron and
hole. In general, there are two popular magnetic field geometries, the Faraday geometry,
in which the magnetic field is applied parallel to the growth direction of the heterostruc-
ture, or the Voigt geometry, in which case it is in-plane. In the Faraday geometry, for
strong enough magnetic fields, the states of Eq. 3.7 become again eigenstates of the sys-
tem and the emitted light is completely circularly polarized. In the Voigt geometry, the
in-plane magnetic field destroys the rotational symmetry and also causes mixing of bright
and dark excitons, resulting in the observation of 4 lines in the QD spectrum. The matrix
representation of this Hamiltonian for a magnetic field aligned in the x-direction is given
as

Hexchange +HZeeman = 1
2


δ0 δ1 µBBge,x µBBgh,x
δ1 δ0 µBBgh,x µBBge,x

µBBge,x µBBgh,x −δ0 δ2
µBBgh,x µBBge,x δ2 −δ0

 , (3.10)

where the matrix is written down in the basis given by the states in Eq. 3.7. The eigen-
states of this matrix show that |M | = ±1 and |M | = ±2 states mix when a magnetic field
is applied, making the dark state transitions visible. The dark states become typically
visible at around B = 2T [43]; here this depends on the growth conditions of the QD.
The sketch in Fig. 3.6 shows the influence of a magnetic field on the exciton levels. For
clarity, we assume here a perfect symmetric neutral exciton meaning that δ1 ≈ δ2 ≈ 0,
and observe the well-known splitting into 4 energy levels by increasing the magnetic field.

Quantum master equation for a neutral exciton
Here, we explain how the Jaynes–Cummings Hamiltonian for a system with a single two-
level system can be modified to describe a neutral exciton in a QD. A neutral exciton can
be described by a V-system, with two excited states and one ground state. These three
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levels are written as

|g〉 =

 1
0
0

 |el〉 =

 0
1
0

 |er〉 =

 0
0
1

 . (3.11)

In this case we obtain two instead of one raising operators

Sl+ = |el〉〈g| Sr+ = |er〉〈g|. (3.12)

The Jaynes–Cummings Hamiltonian now becomes

H = (ωc − ωp) â†â+ (ωl − ωp) Ŝl+Ŝl− + g
(
Ŝl−â

† + Ŝl+â
)

+ (ωr − ωp) Ŝr+Ŝr−
+g

(
Ŝr−â

† + Ŝr+â
)

+ η
(
â+ â†

)
.

(3.13)

Inserting this Hamiltonian into the quantum master equation gives

dρ
dt = Lρ = −i

[
Ĥ, ρ

]
+2κD [â] ρ+ γ||D

[
Ŝl−

]
ρ+ γ||D

[
Ŝr−

]
ρ+ γ∗

2 D
[
Ŝrz
]
ρ+ γ∗

2 D
[
Ŝrz
]
ρ,

(3.14)

where we assume that the QD-cavity coupling constant g, as well as γ|| and γ∗ are equal
for both exciton transitions. Increasing the number of transitions is a straightforward
extension. Having N transitions with each their own resonance frequency, the Hamiltonian
of Eq. 2.15 becomes

H = (ωc − ωp) â†â+
N∑
i=0

(ωi − ωp)
(
Ŝ+
)
i

(
Ŝ−
)
i
+

N∑
i=0

gi
((
Ŝ−
)
i
â† +

(
Ŝ+
)
i
â
)

+η
(
â+ â†

)
.

(3.15)
The quantum master equation can still be solved in exactly the same manner as with a
single transition. We can go a step further and also assume M cavity modes, which leads
to the Hamiltonian

H = ∑N
i=0 (ωi − ωp)

(
Ŝ+
)
i

(
Ŝ−
)
i

+∑M
j=0

(
(ωj − ωp) â†j âj +∑N

i=0 gi
((
Ŝ−
)
i
âj
† +

(
Ŝ+
)
i
âj
)

+ ηj
(
âj + âj

†
))
.

(3.16)

Numerically, this Hamiltonian can still be solved as long as the density matrix becomes
not extremely large. In practice, finding solutions with N < 20 photons is feasible with
moderate memory requirements (16 GB of RAM). This condition is used throughout the
entire thesis.

3.3.2 Biexciton
The biexciton consists of two electrons and two holes. The level structure of a biexciton,
shown in Fig. 3.7, is related to an exciton, because the biexciton turns into an exciton
after the first electron-hole recombination. When applying a magnetic field in Faraday
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Figure 3.7: Level structure of a biexciton. After the first electron-hole recombination, a
normal exciton remains.

configuration, the emitted light will change polarization from linear to circular for both
the exciton and biexciton. In order to distinguish those, excitation power dependent
intensity measurements can reveal the quadratic dependence of the biexciton transition
[44].
The Jaynes–Cummings Hamiltonian for biexcitons can be derived easily but there are

some strings attached to it. Using the basis

|g〉 =


1
0
0
0
0

 |el〉 =


0
1
0
0
0

 |er〉 =


0
0
1
0
0

 |eb1〉 =


0
0
0
1
0

 |eb2〉 =


0
0
0
0
1

 (3.17)

the raising operators become

(S+)0 = |el〉 〈g| (S+)1 = |er〉 〈g| (S+)2 = |eb1〉 〈el| (S+)3 = |eb2〉 〈er| , (3.18)

as do their corresponding lowering operators. A 5-dimensional basis is used where the
states |eb1〉 and |eb2〉 each contain two electrons. Using these operators, one can construct
the Hamiltonian

H = (ωc − ωp) â†â+
3∑
i=0

(ωi − ωp)
(
Ŝ+
)
i

(
Ŝ−
)
i
+

3∑
i=0

gi
((
Ŝ−
)
i
â† +

(
Ŝ+
)
i
â
)

+η
(
â+ â†

)
,

(3.19)
where ωi is the resonance frequency for the i-th transition of the biexciton. There is,
however, one property of the biexciton that is not considered. If one electron is in the
state |eb〉, it can decay via two pathways, but in the formalism, this is fixed to one of
the pathways based on the |(S−)1〉 or |(S−)2〉 lowering operator. The problem is that
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Figure 3.8: (a) Charged exciton without an magnetic field and (b) a charged exciton with
a magnetic field. δ2, δ3 are the splittings between the different spin levels as
a result of the Zeeman effect. {σ+, σ−} represents the circular polarization
basis and {X,Y } the linear polarization basis.

one wants |eb1〉 and |eb2〉 to be orthogonal, but, at the same time, have a connection to
each other. For the emission spectrum of the biexciton, it is often sufficient to insert
the Hamiltonian of Eq. 3.19 into the quantum master equation. The obtained quantum
master equation is similar to that of the exciton (Eq. 3.14), but with the inclusion of the
extra transitions and Lindblad dissipation operators.

3.3.3 Singly charged exciton
For the singly charged exciton, or trion, the QD contains permanently one electron to-
gether with an optically excited exciton, one obtains a four-level system. There are two
single electron ground states (spin-up and spin-down) and two excited trion states. Since
the hole spin relaxation is much faster than the electron spin relaxation (without magnetic
field), we can simplify the four level trion structure (Fig. 3.8(a)) to a 3-level Λ system
[45]. The resident electron spin is useful for quantum information applications such as
quantum memories [46, 47].
We can distinguish between a trion and a neutral exciton experimentally, using the

fact that the trion has a circular polarization basis and the exciton a linear polarization
basis. Applying a magnetic field in the x-direction leads to a Zeeman shift of the energy
levels, breaks the circular symmetry of the QD system and results in a linear polarization
basis, see Fig. 3.8(b).
Using the lifted ground-state degeneracy of the trion due to a (external) magnetic field,

one can prepare the spins in either the |↑〉 or |↓〉 by driving certain transitions with a laser.
First experimental results of spin pumping where presented in [48] for a magnetic field
in Faraday configuration and [45] for a magnetic field in Voigt configuration. Figure 3.9
shows a sketch of the interaction where there are in total 4 optical transitions possible
in a linear polarization basis. In addition to these four optical transitions, there are also
two spin-flip transitions, one for the electron spin Γel and one for the hole spin Γhole.
The relaxation time of the electron spin is typically around 1

Γel
= 1 µs [49, 50], while the

optical transitions lifetimes are around 1 ns. This means that, driving the 1X transition
(Fig. 3.9) with a laser continuously, will eventually initialize the spin in the |↓〉 state.
This process is called spin pumping. Similar to a negatively charged exciton, there also
exists a positively charged exciton. Here, even longer relaxation times for the hole spin
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Figure 3.9: Schematic of a trion including the electron-spin (Γel) and hole-spin (Γhole)
relaxation times.

can be obtained compared to the relaxation time for the electron spin in a negatively
charged exciton [51].

3.3.4 Quantum master equation for a Λ system
For the three-level Λ system, we consider the ground states |↑〉, |↓〉 and the excited state
|e〉 = |↑↓⇑〉 in Fig. 3.9. An important difference between a Λ system and a V-level system
is the electron number conservation. The electron number conservation for a V-level
system consist of two equations

P̂el = |el〉 〈el|+ |g〉 〈g| = 1, (3.20)

P̂er = |er〉 〈er|+ |g〉 〈g| = 1. (3.21)

These relations also follow the commutation relation of Eq. 2.13 and one can transform
the time-dependent Hamiltonian into a time-independent one. For the Λ-system, the
electron number conservation becomes

P̂el = |e〉 〈e|+ |↑〉 〈↑|+ |↓〉 〈↓| = 1. (3.22)

In this case, it becomes much harder to find a unitary transformation to transform the
Hamiltonian in a time-independent form and one is forced to resort to another approxi-
mation. The full Hamiltonian for a Λ system and a single cavity mode reads

H = ωcâ
†â+ ω↑ |e〉 〈e|+ ω↓ |↓〉 〈↓|+ g

(
Ŝ−â

† + Ŝ+â
)

+ Ω
(
N̂− + N̂+

)
+ ηeiωp

(
â+ â†

)
,

(3.23)
where the raising operators are defined as Ŝ+ = |e〉 〈↑| and N̂+ = |e〉 〈↓|, and Ω is the
Rabi frequency for the transition from |↓〉 to the |↑↓⇑〉 state. Typically, this Hamilto-
nian is solved by transforming the system to the Heisenberg picture. This approach
has the advantage that the time-dependence is removed from the density matrix of
the system and canceled out against the time-dependent parts in the Hamiltonian and
makes it mathematically and numerically easier to solve the system. Here, the trick
to remove the time-dependence does not work since the unitary transformation U =
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e−it(ωpâ†â+ωpŜ+Ŝ−+ωpN̂+N̂−) does not remove all time dependent parts in the Hamiltonian
3.23. This leaves a time-dependence in the Ω term. In order to circumvent this problem,
a more general unitary transformation U = e−it(ωxâ†â+ωyŜ+Ŝ−+ωzN̂+N̂−) is used and we
look for the conditions on ωx, ωy, ωz that remove the time-dependence in the Hamilto-
nian [52]. To find stable solutions, the excited state |e〉 is adiabatically eliminated [53],
which is allowed, since the lifetime of the excited state is much shorter compared to the
relaxation time of the ground-state spin. Following these steps, the Hamiltonian can be
written as

H =
(

∆cav −
g2

2∆↑

)
â†â+

(
∆↓ −

Ω2

2∆ −
g2

∆↑
â†â

)
Ŝz + gΩ

2∆↑

(
Ŝ−â

† + Ŝ+â
)

+ η
(
â+ â†

)
,

(3.24)
with ∆cav = ωc−ωp, ∆↑ = ω↑−ωp, ∆↓ = ω↓−ωp. This Hamiltonian has the extra term,
proportional to ∼ â†âŜz compared to the Hamiltonian for a V-level system. This extra
term describes the interaction between the two ground states. This interaction becomes
stronger if the mean photon number is higher or if the population of the excited state is
higher. This Hamiltonian is only valid for the specific laser frequency ωp, where the laser
frequency ωp drives the |↑〉 to the |↑↓⇑〉 state. To finalize the quantum master equation
for a trion, we take into account the electron and hole spin relaxation rates. The quantum
master equation becomes

dρ

dt
= Lρ = −i

[
Ĥ, ρ

]
+ 2κD [â] ρ+ γ||D

[
Ŝ−
]
ρ+ γ∗

2 D
[
Ŝz
]
ρ+ ΓeD

[
Ŝf−

]
ρ, (3.25)

where Γe is the electron spin relaxation rate and Ŝf− = |↑〉 〈↓| is an operator that flips a
spin-down to a spin-up state.

3.4 Conclusion
In conclusion, in this chapter we have explained the quantum master model and shown
how it can be used to calculate the dynamics of various QD systems such as a neutral
exciton, biexciton and charged exciton. The quantum master equation includes two
ingredients that are not considered in the semi-classical formalism: first, it includes the
QD-field correlations, and additionally, the Lindblad formalism allows us to include other
forms of dephasing such as pure dephasing and electron spin relaxation. We have shown
that, in the low-power regime, the system can be described by a (semi-) classical model.
Furthermore, we estimated in section 3.3 that, at low input power, the pure dephasing
rate is about a tenth of the radiative dephasing rate, therefore it can be neglected. In
section 3.4, we have shown how to extend the Jaynes–Cummings Hamiltonian in the
quantum regime for more complicated level structures.
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