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Chapter 1

Introduction

In this thesis, we study the photon statistics of light emitted by a microcavity that
contains a single quantum dot (QD) on resonance. The light is described in terms of
photon Fock states, and the excitonic transitions in a QD can be considered as a two-level
system. The transition from one QD state to the other happens by absorption or emission
of a photon. We now consider such a two-level system which is resonantly interacting
with light that is focused to a beam waist ω0. Deterministic interaction between the
two-level system and the photon requires that the absorption cross section σabs = 3λ2

2π of
the two-level system is much larger than the area of the light beam A = πω2

0. Here, λ is
the wavelength of the light. This condition (σabs � A) is not achieved in free space but
can be achieved in a cavity [1]. This can be done with a Fabry-Perot cavity with two
mirrors with reflectivity R. A photon bounces back and forth many times between these
mirrors and the number of bounces is characterized by the finesse F = π

√
R

1−R . In the case
of a high finesse cavity it becomes possible to satisfy the condition

σabs � A → 3λ2

2π ×
F
π
� πω2

0. (1.1)

This enables deterministic interaction between a photon and a single QD and leads to
intriguing quantum effects. In this thesis, we study this interaction in a solid-state system
and show how the photon statistics can be tuned from anti-bunching, leading to high
quality single-photon sources [2, 3, 4], to strongly bunched [5].
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Figure 1.1: a) Sketch of the band structure of the p-i-n region in a micropillar cavity. b)
Cavity transmission with on-resonance an exciton transition as a function of
the laser frequency. Three plots for different tunnel barrier thicknesses are
shown.

1.1 A QD in a micropillar cavity

In this part we discuss the structure and properties of a solid-state quantum dot (QD)
micropillar device. The QDs we use are self-assembled semiconductor QDs grown in
Stranski–Krastanov [6] growth mode using molecular beam epitaxy. On a gallium arsenide
(GaAs) buffer we deposit indium and arsenide. At some point due to the lattice mismatch
between GaAs and indium arsenide (InAs), it becomes energetically favorable to form
small nanometer-scale islands at random positions on the wafer. The height and shape
of these islands depend on the temperature and other growth conditions. Afterwards,
the indium arsenide (InAs) islands are capped with a gallium arsenide layer. Since the
semiconductor band gap of InAs islands is smaller than the band gap of the surrounding
GaAs, electronic states within the InAs are similar to the discrete quantum states of a
“particle in a box”. Together with the selection rules, the QD enables specific discrete
optical transitions just like atoms.
We embed the QDs in the active region of a p-i-n device. Figure 1.1(a) shows a sketch

of the band structure, where the red dashed line indicates the Fermi level. Only a single
transition in the QD is sketched which is resonant with the laser frequency fl. The bound
state between the electron and hole of this transition is called an exciton. Here a “hole”
could be seen as a missing electron in a filled energy level. This exciton can be physically
interpreted as a dipole, where the electron represents a negative charge and the hole a
positive charge.
Recombination of an electron-hole pair is not the only way for an electron to leave a

specific energy level. It is also possible for the electron to tunnel out of the QD. This
process is indicated by the gray dashed arrow in Fig. 1.1(a). If the tunnel barrier thickness
zl increases, the probability for the electron to tunnel out of the QD decreases.
Below and above the active layer with randomly distributed QDs we grow a Bragg
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reflector. A Bragg reflector is formed from multiple layers of alternating materials with
varying refractive index, where each layer boundary causes partial reflection of an op-
tical wave. For normal wave incidence the thickness of each optical layer thickness is
corresponding to one quarter of the wavelength for which the mirror is designed. For
the design wavelength, the optical path length difference between reflections from sub-
sequent interfaces is half the wavelength. Combined with the fact that the amplitude
reflection coefficient for the interfaces have alternating signs, constructive interference or
strong reflection appears. The distributed Bragg reflectors and active layer are critical
components in our design and are based on the designs of vertical cavity surface emitting
lasers, which are nowadays important ingredients in photonics [7].
A sketch of the device containing a Bragg cavity and a QD layer is given in Fig. 1.2(a),

additionally, we also add electronic contacts to the device and an oxide aperture. The
electronic contacts allow the device to function as a p-i-n junction, to slightly tune the QD
frequency into resonance with the cavity mode. The oxide aperture is for in-plane light
confinement: oxidation of an aluminium arsenide layer leads to formation of aluminium
oxide and a reduction of the refractive index from n ≈ 3 to n ≈ 1.5 [8], so that the light is
confined in the central unoxidized region. Compared to more commonly used air-guided
micropillars [9], our design has advantages: higher mechanical stability, and the ability
to easily electrically contact the micropillar.
We use a tunable narrow linewidth laser to measure the transmission from the micropil-

lar cavity as a function of laser frequency. For an empty cavity we observe a Lorentzian
line shape in transmission, while in the presence of a QD in the cavity, a dip appears in
the transmission spectrum at the QD resonance (see Fig. 1.1(b)). In Fig. 1.1(b) we show
that, for increasing tunnel barrier thickness (20, 27, and 35 nm), the linewidth of the dip
in the cavity transmission spectrum reduces. This example shows the complexity and
challenges in making a QD micropillar cavity: varying the thickness of the tunnel barrier
by only a couple of nanometers leads to significant changes in the transmission spectrum.

𝑉QDs

Oxide

aperture
P-contact

N-contact

Thin film 

mirror

Thin film 

mirror

(a) (b)

Figure 1.2: a) Cross-sectional sketch of our micropillar device, where we indicate the
Bragg mirror (DBR), QDs, oxide aperture and contacts. b) Three dimensional
sketch, showing the trenches used for oxidation and aperture formation.

1.2 Optical characteristics of a QD in a micropillar cavity

In Fig. 1.3(a) we show a false color plot of the typical transmission through the micropillar
as a function of the laser frequency and the voltage applied over the structure. By varying
the voltage we change the slope of the bands in Fig. 1.1(a), which shifts the position of
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Figure 1.3: a) The cavity transmission of linearly polarized light (θin = 0◦) as a function
of the laser frequency fl and the voltage applied over the device. b) Similar
false color plot of the cavity transmission but now as a function of the linear
input polarization at a fixed voltage of 1.14 V. In both cases the transmission
is measured without any filters or an output polarizer.

the QD with respect to the Fermi level, and the transition energy. In Fig. 1.3(a) there are
multiple QDs present but there is only one QD where the exciton transition is coupled
strongly to the cavity. For this QD we observe that, if on-resonance, the transmission
properties of the cavity are severely changed. A dip appears in the spectrum and most of
the light is no longer transmitted. Throughout this thesis the measurements are typically
carried out in transmission, but could also be performed in reflection.
Due to fabrication and material imperfections, the circular symmetry of the micropillar

cavity is broken. This results in two orthogonal linearly polarized cavity modes. The
shape and birefringence of the cavity determines the resonance frequency of each cavity
mode. At 1.14 V we measure in Fig. 1.3(b), for a nearly polarization degenerate cavity,
the transmission as a function of the input polarization and frequency of the light. Next
to the polarization dependence of the cavity modes, we observe here that the QD has two
linearly polarization transitions, this is due to the exciton fine-structure splitting. The
two orthogonally polarized transitions appear with a slight difference in energy, which
only disappears if the QD is rotational symmetric. In Fig. 1.3(b) these polarization
axes are at 0◦ and 90◦ and are split several GHz apart. In section 2.4, we present a
theoretical semi-classical model incorporating the polarization features of the cavity and
QD. Typically, the polarization axes of the QD dipole and the cavity are not aligned with
respect to one another and this misalignment opens up another possibility for the device
to function as a single-photon source, as will be discussed in chapters 2 and 7.

1.3 Theoretical description of light-matter interaction
The interaction between a light field and a two-level system can be modeled as a dipole
in an electric field. The Hamiltonian for this interaction is [10]

HI = d̂ · Ê, (1.2)
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where d̂ is the dipole moment operator and Ê is the electric field operator of a single
cavity mode. Quantizing the electric field without the time-dependence eiωt leads to

HI = d̂ · eE0
(
â+ â†

)
, (1.3)

with E0 = −
(

~ω
ε0V

)1/2
sin (kz). Here, ω is the frequency of the mode and k is the wave

number related by k = ω/c. z is the axial coordinate and V is the effective volume of
the cavity. e is the cavity mode polarization vector. The dipole operator facilitates an
atomic transition from the ground state to the excited state or vice versa by

d̂ · e = d |g〉 〈e|+ d∗ |e〉 〈g| ≡ 2d
~

(
Ŝ− + Ŝ+

)
, (1.4)

where we assume that the constant d is real, |g〉 is the ground state and |e〉 is the excited
state of the two-level system. This leads to the interaction Hamiltonian

HI = 2dE0
~

(
Ŝ− + Ŝ+

) (
â+ â†

)
. (1.5)

In the rotating wave approximation, we obtain what is widely known as the
Jaynes–Cummings interaction Hamiltonian

H = g
(
Ŝ+â+ Ŝ−â

†
)
, (1.6)

where g = 2dE0
~ . The Jaynes–Cummings Hamiltonian is one of the main mathematical

tools that connect light and matter on a fundamental level and in Chapter 2 we will
discuss it in much more detail.

1.4 Applications of light-matter interactions
From an application point of view, there are several reasons to study light-matter inter-
action. For example, it plays a crucial role in quantum networks [11], where quantum
information is transferred between quantum nodes. One of the main advantages of quan-
tum networks over classical networks is security [12, 13]. The basis for this lies in the
axiom that one cannot in general take a measurement on a quantum system without
perturbing the system. This means that if we have a communication channel between
A and B, then a malicious eavesdropper cannot get any information about the commu-
nication without introducing perturbations that would reveal its presence. This means
that, theoretically, we can make a guaranteed, by the laws of quantum physics, secure
communication channel. To create a quantum network over long distances, one needs
a system that suffers minimally from decoherence. Photons [14] are a viable option to
distribute quantum information since they have only limited interaction in free space.
They also benefit from a range of degrees of freedom (such as polarization) which can
encode quantum information. However, the very property that makes photons ideal for
transporting quantum information, makes it also hard to initially transfer the quantum
information onto the photons. In order to solve that problem we need devices that have
efficient light-matter interaction to function as a node in a quantum network. Another
application is to replace electrons with photons in on-chip and inter-chip interconnects,
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which could significantly reduce the energy consumption in large data centers because of
the lower Ohmic loss or heat production.
In this thesis, however, the focus is more on the fundamental physical properties of light-

matter interaction. The work is centered around experiments that manipulate photon
statistics and we analyze the results using classical, semi-classical and quantum models.

1.5 Outline of this thesis
In chapter 2, we give a detailed description of the semi-classical model. It is shown how
the model can be solved under certain approximations and we present a method to derive
the semi-classical model from fully classical principles. We present an extension of the
semi-classical model to a model which incorporates multiple optical transitions and two
cavity modes. Furthermore, we show how this model can be used to improve the efficiency
of a single-photon source.
In chapter 3, the full quantum master equation is solved and compared to results

obtained in chapter 2. This gives us an indication for the parameters in which regime
the semi-classical model is sufficient for describing the experimental results. In the final
section of this chapter, we discuss how to formulate a quantum master equation for
different types of level structures, corresponding to the exciton, biexciton and trion.
It shows the complications one needs to take into account when studying light-matter
interaction for systems with more involved level structures. Furthermore we argue why
the quantum master equation is a useful tool.
In Chapter 4, we discuss the purification of a single photon non-linearity. We show

that, for a low mean photon number, extreme photon correlations
(
g(2)(0) ≈ 40

)
can be

obtained in the weak coupling regime. This is possible because we remove the single-
photon component of the light.
In chapter 5, we again tune the photon statistics of light and, instead of filtering the

single-photon Fock state from the input light, the two-photon Fock state is removed. An
explanation of this effect is given in terms of interference between two excitation pathways
to the N = 2 photon state, which can be destructive thanks to small energy shift of the
two-photon state induced by the weak QD nonlinearity. This alternative mechanism for
creating single photons is called the unconventional photon blockade (UPB) and we give
here a first experimental demonstration of this effect.
In chapter 6, we describe in detail how the unconventional photon blockade can be

described in terms of squeezing and displacement of non-classical Gaussian states of light.
Additionally, we describe a method by which this squeezing can potentially be measured.
Chapter 7 discusses the first experimental realization of a resonantly pumped fiber-

coupled single-photon source. The characteristics of the device, given by the purity,
indistinguishability, and repetition rate of the photons, are state of the art. Together
with the fiber coupling, the device becomes usable for commercial applications.
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Chapter 2

Semi-classical model for cavity
QED

In this chapter, the interaction of a QD in a cavity with an incident light
field is described from a semi-classical point of view. In the regime of low
occupation number and weak optical driving, we find that the steady-state
solution, in the linear regime, can also be derived from fully classical principles.
Further, we give a simple extension of the semi-classical model for a two-level
system in a cavity, in order to incorporate multiple polarized transitions, such
as those appearing in neutral and charged quantum dots (QDs), and two
nondegenerate linearly polarized cavity modes. Experimentally, we verify the
model for a neutral QD in a micro-cavity and observe excellent agreement.
The usefulness of this approach is demonstrated by investigating a single
photon source based on polarization postselection, where we find an increase
in the brightness for optimal polarization conditions predicted by the model.

Parts of this chapter are in preparation for publication.
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2.1 Jaynes–Cummings model for continuous-wave laser light

A cavity quantum electrodynamics (CQED) system is, in its simplest form, a two-level
system in a cavity which is driven by a light field. The interaction between photons
and excitations of the two-level system is described by the so-called Jaynes–Cummings
Hamiltonian interaction term ~g

(
Ŝ−â

† + Ŝ+â
)
. This interaction term tells us that the

creation of an excitation in the two-level system annihilates a photon in the cavity mode
(Ŝ+â) and vice versa. The strength of this interaction is given by the coupling constant
g. A quantum description of a two-level system that interacts with a single optical cavity
mode is described by the Jaynes–Cummings Hamiltonian (~ = 1) [15],

Hjc = ωcâ
†â+ ωaŜz + g

(
Ŝ−â

† + Ŝ+â
)
, (2.1)

where ωc is the cavity resonance frequency and ωa is the transition frequency between
the excited and ground-state energy levels. â† is the photon creation operator and Ŝ+ is
the operator which creates an electron-hole pair in the QD and can be expressed by the
familiar Pauli spin operators Ŝx, Ŝy, Ŝz. Here, we define Ŝ+ = 1

2 |e〉〈g| = 1
2

(
Ŝx + iŜy

)
,

Ŝ− = 1
2 |g〉〈e| =

1
2

(
Ŝx − iŜy

)
and Ŝz = 1

2 (|e〉〈e| − |g〉〈g|). These operators are related by
the commutation relation [Ŝ−, Ŝ+] = −2Ŝz.
It should be noted that the rotating wave approximation is used to obtain the Hamil-

tonian in Eq. 2.1. This means that the non-energy conserving terms are dropped, which
are the terms that create or annihilate an excitation and a photon at the same time. Fur-
thermore, we often drive the CQED system with an external light field. There are many
light fields which can be considered, such as the classical fields of thermal light, coherent
laser light, and pulsed laser light, or single-photon light as an example of a quantum
light field. In this chapter, we focus only on continuous-wave coherent laser light, and in
chapter 7, we discuss the case of pulsed laser light.
Now we describe the steady state solution of the light field in the cavity using a clas-

sical continuous-wave coherent laser coupled to a QD cavity system. Based on [16], an
interaction term describing the interaction between the cavity field and an external laser
is added to the Hamiltonian of Eq. 2.1, which becomes

H1 = Hjc +HD = ωcâ
†â+ ωaŜz + g

(
Ŝ−â

† + Ŝ+â
)

+ η
(
âeiωpt + â†e−iωpt

)
. (2.2)

In this equation, ωp is the frequency of the laser which pumps the cavity field and η is the
coupling rate between the optical amplitude of the laser and the cavity field. In general
the coupling of a laser to the photons in the cavity is written as

C
(
ââ†pe

iωpt + â†âpe
−iωpt

)
, (2.3)

where C is a coupling constant. For a classical field, âp can be replaced by the field
amplitude and as a result, Eq. 2.3 becomes

≈ η
(
âeiωpt + â†e−iωpt

)
, (2.4)

where âp is absorbed in η. We can express the mean photon number in terms of η and
the cavity loss rate κ,

〈n〉 =
(
η

κ

)2
= Plaser
Pn=1

. (2.5)
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Here, Plaser is the laser power and Pn=1 is the laser power required to obtain 〈n〉 = 1.
If the cavity loss is purely linear, we can define Pn=1 ≡ ~ωaκ, and one finds that η is
related to the input power as

η =
√

(Plaserκ) / (~ωa). (2.6)

Assuming a wavelength λ = 930 nm and a loss rate κ = 10 GHz, we find Pn=1 ≈ 2nW.
Typically, we operate the system at a low driving power where the mean photon number
〈n〉 is between 0.01 and 0.001. This corresponds to a driving power between 1 and 10pW.
In order to find the steady state solution of Eq. 2.2, the time-dependent part in the

Hamiltonian should be removed. This is done by transforming the Hamiltonian to the
Heisenberg picture with the unitary transformation

U(t) = exp(−iωpâ†ât− iωpŜzt). (2.7)

With this, the Hamiltonian becomes

H = U †H1U − iU † ∂∂tU = U †H1U − ωpâ†â− ωpŜz. (2.8)

By inserting H1 we obtain

H = (ωc−ωp)â†â+ (ωa−ωp)Ŝz +U †
(
g
(
Ŝ−â

† + Ŝ+â
)

+ η
(
âeiωpt + â†e−iωpt

))
U. (2.9)

In order to simplify this equation further, we make use of the Baker–Campbell–Hausdorff
lemma and find

eiωptâ†ââ†e−iωptâ†â ≈ â† + ωpt

1!
[
â†â, â†

]
+ (ωpt)2

2!
[
â†â,

[
â†â, â†

]]
+ .... (2.10)

eiωptâ†ââ†e−iωptâ†â = â†eiωpt. (2.11)

Here we have used the bosonic commutation relation for photons[
â†, â

]
= 1. (2.12)

Note that this nicely cancels out the time-dependent parts in Eq. 2.9. For the term
Ŝ+, one finds in a similar manner U †Ŝ+U = Ŝ+e

iωpt by making use of the commutation
relation [

Ŝz, Ŝ+
]

= Ŝ+. (2.13)

This results in the time-independent Hamiltonian

H = (ωc − ωp) â†â+ (ωa − ωp) Ŝz + g
(
Ŝ−â

† + Ŝ+â
)

+ η
(
â+ â†

)
. (2.14)

Finally, we use the fact that the electron number is conserved and find that
Ŝz = 1

2

(
Ŝ+Ŝ− − Ŝ−Ŝ+

)
= 1

2 (|e〉〈e| − |g〉〈g|) = |e〉〈e| − 1
2 = Ŝ+Ŝ− − 1

2 . After dropping
−1

2 vacuum energy we are left with
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H = (ωc − ωp) â†â+ (ωa − ωp) Ŝ+Ŝ− + g
(
Ŝ−â

† + Ŝ+â
)

+ η
(
â+ â†

)
. (2.15)

Neglecting the zero-point energy for the free-field Hamiltonian and the QD Hamiltonian
is allowed since it only gives a relative shift and does not affect the dynamics.

2.2 Semi-classical model in the linear regime
In the linear regime we assume that the incoming field is very weak, and as a result,
the QD population remains approximately in the ground state |g〉, or in other words〈
Ŝz
〉
≈ −1

2 . In addition to the coherent dynamics described by Eq. 2.15, there are two
dissipative channels in the system: the QD may spontaneously emit into modes other
than the preferred cavity mode at a rate γ||, and photons may pass through a cavity
mirror at a rate κ. We neglect here non-radiative decay and pure dephasing. The master
equation describing the driven damped evolution [17] is

Ĥ = (ωc − ωp)â†â+ (ωa − ωp)Ŝ+Ŝ− + g(Ŝ−â† + Ŝ+â) + η(â+ â†)
dρ
dt = Lρ = −i

[
Ĥ, ρ

]
+ 2κD [â] ρ+ γ||D

[
Ŝ−
]
ρ,

(2.16)

where ρ is the density matrix of the QD-cavity system, L is the Liouvillian superoperator
and D [â] ρ = 1

2

(
2âρâ† − â†âρ− ρâ†â

)
is a Lindblad type of dissipation. Note the factor

of two difference between κ and γ||, this is because there are two cavity mirrors. There are
two approaches to obtain an analytical solution. In the first approach, we write down the
equations of motion for the Heisenberg operators using Eq. 2.16. Using this approach,
the mean value of the operator O =

{
â, Ŝ−

}
is given by

〈
Ȯ
〉

= Tr (Oρ̇), which leads to

〈ȧ〉 = −κ(1− i∆c) 〈â〉+ ig
〈
Ŝ−
〉

+ iη〈
Ṡ−
〉

= −γ⊥(1− i∆Q)
〈
Ŝ−
〉
− i2g

〈
âŜz

〉
≈ −γ⊥(1− i∆Q)

〈
Ŝ−
〉

+ ig 〈â〉 ,
(2.17)

where ∆c = (ωp − ωc) /κ is the normalized cavity-laser detuning, ∆Q = (ωp − ωa) /γ⊥ is
the normalized QD-laser detuning and γ⊥ = γ||

2 . Here we assume that
〈
Ŝz
〉
≈ −1

2 and
that one can factorize the operator products. For clarity, we have removed the “hat” for
〈ȧ〉 and

〈
Ṡ−
〉
.

In the second approach, we write the Hamiltonian in Eq. 2.2 as an effective Hamiltonian
Heff = H − iκâ†â− iγ⊥Ŝ+Ŝ− [18]. The equations of motion for the operators â and Ŝ−
can now be derived from the modified Heisenberg equations, dŜ−

dt = i
[
Heff , Ŝ−

]
and

dâ
dt = i [Heff , â], which results in the same set of equations as given in 2.17. In the weak
excitation limit, the steady-state solution for the amplitude of the field in the cavity is
given as

〈â〉 = iη

κ (1− i∆c) + g2

γ⊥(1−i∆Q)
. (2.18)

Rewriting this equation in the form of an amplitude transmission coefficient for a single
mode electric field gives

10



E = ηout
1

1− i∆c + C
1−i∆Q

, (2.19)

where ηout = iη/κ and C = g2/κγ⊥. Here, C is the cooperativity, which is a measure of
the interaction strength between the QD and cavity. In literature, the value 1/C is often
defined as the “critical atom number”, which roughly describes the number of atoms (or
QDs) needed to drastically change the properties of the system. Remember that κ is
defined as the loss rate of a single mirror; for the total loss rate of both mirrors we find
κtot = 2κ. Similar to a micropillar cavity with a single input and a single output channel,
one can also find the output field for a cavity coupled to two or more waveguides [19].
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Figure 2.1: Transmission of the cavity field amplitude in Eq. 2.19 as a function of the
laser detuning. Parameters: ηout = 1, κ = 12 GHz and γ = 1

2π GHz.

In Fig. 2.1 the normalized transmission is plotted as a function of the laser detuning
for different values of the cooperativity C. By increasing C, the QD resonance dips
become deeper and wider. In this thesis we work with QD-cavity systems which have a
cooperativity of C ∼ 1.
Additionally, it is possible to take saturation effects into account by assuming that the

QD population does not remain in the ground state [20]. We call this regime the non-
linear regime. In this case the QD transmission dip, shown for different cooperativity
in Fig. 2.1, saturates at higher input powers, while for low powers the theory reduces to
Eq. 2.19. In section 2.7 this is mathematically worked out and discussed in more detail.

11



2.3 Classical derivation of the semi-classical model
Here, we derive Eq. 2.19 from fully classical principles, and without using the Bloch
equations. We consider two equal mirrors with reflection coefficient r and transmission
coefficient t at a distance L, like a Fabry-Pérot resonator. The round-trip phase φ0 in the
electric field propagation term, written in terms of the wavelength λ0, refractive index n
and length L of the cavity, is:

φ0 = 2π
λ0
n (2L) = 4πnL

c
f, (2.20)

where c is the speed of light and f the frequency of the laser. Since the laser frequency will
be scanned across the resonance frequency fc of the Fabry-Pérot cavity, it is convenient
to write the phase shift in terms of the relative frequency:

φ = 4πnL
c

(f − fc) . (2.21)

Further, we assume that there is dispersion and loss in the cavity. We quantify loss of the
cavity by single pass amplitude loss a0. The QD transition is described by a harmonic
oscillator. In the rotating wave approximation, a driven damped harmonic oscillator has
a frequency-dependent response similar to a complex Lorentzian. Including cavity loss,
QD loss aQD and dispersion, we obtain a phase change in half a round trip of

exp
(
−a+ i

φ

2

)
, where a ≡ a0 + aQD

1− i∆′ . (2.22)

Here, ∆′ = (f − fQD) /γ⊥ with the resonance frequency of the QD fQD. By summing
over all possible round trips, the total transmission amplitude is

ttot = tt exp (−a+ iφ/2)
[∑∞

n=0
(
r2 exp (−2a+ iφ)

)n] (2.23)

which becomes

ttot = t2 exp (−a+ iφ/2)
1− r2 exp (−2a+ iφ) . (2.24)

This formula can be written in a form similar to the semi-classical model by considering
R ∼ 1, small phase changes in the cavity φ � 1, in combination with aQD � 1. This
allows us to use a Taylor expansion of the exponentials in Eq. (2.24). By including
all first-order contributions and a few second-order contributions, we write the complex
transmission amplitude as

ttot ≈ ηout
1

1− 2i∆ + 2C
1−i∆′

, (2.25)

with the out-coupling efficiency

ηout = 1√
1 + 2a0

(
1+R
1−R

) . (2.26)
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In section 2.7 we show how to derive Eq. (2.25) and explain that the higher order Taylor
contributions, which are added to be able to write the final formula in a compact form,
are negligible. The out-coupling efficiency ηout gives the probability that a photon leaves
the cavity through one of the mirrors. In Eq. (2.25), ∆ is the normalized laser-cavity
detuning and ∆′ is the normalized detuning with respect to the QD transition. Here, f ,
fc, and fQD are the frequencies for the laser, cavity and QD, respectively. The result of
Eq. (2.25) is equal to the result of the optical Bloch equations and shows that, using a
fully classical model, it is possible to derive Eq. (2.25).

2.4 Polarization effects and multiple transitions in the
semi-classical model

Understanding the interaction of a two-level system, such as atomic transitions or exci-
tonic transitions in a semiconductor quantum dot (QD), with an optical cavity mode,
is key for designing efficient single photon sources [2, 3], quantum photonic logic gates
[21] and quantum networks [22]. Traditionally, the interaction of a two-level quantum
system with an electromagnetic mode is described by the optical Bloch equations. There
are two approaches to use the Bloch equations in describing such a cavity-QED system:
a full quantum treatment where next to the QD also the light field is quantized [23] or
a semi-classical approach where the light field is treated classically and atom-field cor-
relations are neglected. This last approach leads to a well known analytical expression
for the transmission of an emitter in a cavity [24, 19] for the weak and strong coupling
regimes [25].
We focus here on QD-cavity systems in the weak coupling regime (g � κ). In this

case, the transmission amplitude of the system is given by the, in section 2.2 derived,
semi-classical model [19, 24, 17, 26]

t ≈ ηout
1

1− 2i∆ + 2C
1−i∆′

, (2.27)

where ηout is the out-coupling efficiency and gives the probability amplitude that a pho-
ton leaves the cavity through one of the mirrors (we assume two identical mirrors). In
Eq. (2.27), ∆ = (f − fc) /κ is the normalized detuning of the laser frequency f with re-
spect to the cavity resonance frequency fc (with cavity loss rate κ), and ∆′ =

(
f − f ′

)
/γ⊥

is the normalized detuning with respect to the QD resonance f ′ (with dephasing rate
γ⊥ = γ||

2 + γ∗). ∆ is related to the round trip phase by ϕ ≈ ∆ π
F , where F is the finesse

of the cavity. The coupling of the QD to the cavity mode is given by the cooperativity
parameter C = g2

κγ⊥
where g is the QD-cavity coupling strength.

In the Section 2.3 we have shown how Eq. (2.27) can be derived in a fully classical way by
considering a QD in a Fabry-Pérot type optical resonator. In order to arrive at this result
we consider that the laser is close to the cavity resonance, such that the phase changes
are small and can be approximated by a leading-order Taylor expansion. Additionally,
the two-level system is approximated by a driven damped harmonic oscillator. Here, we
focus on QD-cavity systems but our results are valid for a large range of cavity QED
systems.
The goal of this section is to show how Eq. (2.27) can be extended to a more general form
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by considering two polarization-split (fundamental) optical cavity modes, a certain input
and output polarization, and multiple optical QD transitions. This extension is important
because it is experimentally difficult to produce perfectly polarization degenerate micro-
cavities [27, 28], and the non-polarization degenerate case has attracted attention recently
[29, 30]. An additional complication is that, instead of a two-level system, one often deals
with V-level (fine-structure-split neutral exciton transitions) or 4-level (charged exciton
transitions) systems [31]. The model presented here does not take into account the
population of the excited state and non-resonant emission, including phonon-assisted
transitions and spin flips. Finally, we compare our model to experimental data and
demonstrate that it can be used to significantly increase the brightness of a single-photon
source.
In Fig. 2.2, we show a sketch of a polarized QD-cavity system with two cavity modes

(H,V) and two QD transitions (X,Y). For the specific case of linearly polarized input light
(θin = 45◦), we plot the transmission as a function of the laser frequency in the inset of
Fig. 2.2. The system is described as a cavity with polarization birefringence but without
dichroism, under the reasonable assumption that losses in the cavity are polarization-
independent. We use a Jones formalism in the polarization basis of the cavity, where the
normalized detuning ∆ from Eq. (2.27) becomes the matrix:(

2i∆H 0
0 2i∆V

)
. (2.28)

Drawing a parallel with the semi-classical model of a single cavity mode with a single
QD transition allows us to split the contributions for a single round trip into a part due
to the empty cavity and a part given by the QD interaction. The interaction with the
QD modifies the round-trip phase and is given by the transmission matrix X (see table
2.1). This matrix is diagonal in the basis of the QD eigenpolarizations and has to be
rotated into the polarization basis of the cavity by R−θQD

XRθQD
with

RθQD
=
(

cos θQD − sin θQD
sin θQD cos θQD

)
. (2.29)

Here, θQD is the angle between the cavity and QD polarization axis (see Fig. 2.2). The
matrix X is constructed by adding up the QD transitions, taking care of their (magnetic-
field dependent) polarization by the appropriate Jones matrix [32] and the Lorentzian
frequency-dependent phase shift

ϕi = 2Ci
1− i∆′i

, (2.30)

where ∆′i =
(
f − f ′i

)
/γ⊥i is the normalized frequency detuning and Ci the coupling

strength. The resonance frequencies f ′i are the eigenvalue of the QD Hamiltonian in-
cluding electron-hole exchange and Zeeman interaction [33]. In table 2.1, X is given for
neutral and charged QDs for different magnetic field configurations.
By adding all contributions, as one would do in a non-birefringent Fabry-Pérot cavity

without QD [34], we find that the tiny changes after each round trip add up to a sizable
effect after many round trips. From Eq. (2.25), we observe that the transmission for a
single round trip can be written as
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Figure 2.2: Sketch of a polarized cavity–neutral QD system. H and V denote the linearly
polarized cavity modes and X and Y represent the polarization axes of the QD
at an angle θQD with respect to the H cavity polarization. In this particular
case the incident light is linearly polarized but in general an arbitrary polar-
ization can be chosen. The inset shows the transmission spectrum for linear
polarized light at an angle θin = 45◦. The difference in dip depth between
the X and Y transition is due to the angle θQD. Here, no polarization postse-
lection is done. Parameters are fH = −10GHz, fV = 10GHz, f ′X = −9GHz,
f
′
Y = 9GHz, θQD = 10◦.
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B-field configuration neutral QD singly charged QD

No B-field ϕH(ωl)H + ϕV (ωl)V ϕI(ωl)I

B, Faraday ϕR(ωl)R + ϕL(ωl)L (for large B) ϕR(ωl)R + ϕL(ωl)L

B, Voigt [ϕ1(ωl) + ϕ3(ωl)] H + [ϕ2(ωl) + ϕ4(ωl)] V [ϕ1(ωl) + ϕ3(ωl)] H + [ϕ2(ωl) + ϕ4(ωl)] V

Table 2.1: Matrix form of X in Eq. (2.33) for a neutral and singly charged QD, both for
the case without a magnetic field, and with a magnetic field in Faraday and
in Voigt configuration. ϕi is the frequency-dependent phase shift (Eq. (2.30))
of the QD transition i. I is the identity matrix, and H, V , R, and L are the
Jones polarizer matrices [32].

t1 = η1

(
1 + 2i∆− 2C

1− i∆′
)
, (2.31)

where η1 is a normalization constant. The advantage of this equation is that the contri-
butions from the empty cavity and QD are separate, which makes it easier to extend to
more cavities and QD transitions. In analogy with Eq. (2.31), the single round trip for
the case of two cavity modes, and multiple two-level transitions, is described as

t2x2 = η2×2

[
I2×2 +

(
2i∆H 0

0 2i∆V

)
−R−θQD

XRθQD

]
. (2.32)

Now, we can sum over all round trips and find for the total amplitude transmission matrix

ttot = ηout

[
I2×2 −

(
2i∆H 0

0 2i∆V

)
+R−θQD

XRθQD

]−1

. (2.33)

We now compare our model to experiments and investigate a neutral QD in a polariza-
tion non-degenerate cavity. The device consists of a micropillar cavity with an embedded
self-assembled QD [5]. In Fig. 2.3(a), a false color plot of the measured transmission as
a function of the relative laser detuning and the orientation of linearly polarized input
laser is shown. By careful fitting of our model to the experimental data we obtain excel-
lent agreement (see Fig. 2.3(b)) using the following parameters: θQD = 94◦ ± 2◦, cavity
splitting fV − fH = 10 ± 0.1 GHz, QD fine-structure splitting f ′Y − f

′
X = 2 ± 0.1 GHz,

κ = 11.1 ± 0.1 GHz, g = 1.59 ± 0.08 GHz and γ⊥ = 0.32 ± 0.15 GHz (γ∗ set to zero).
From this, we obtain for both transitions the cooperativity C = 0.7± 0.5.
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Figure 2.3: False color plot of the cavity transmission as function of laser frequency and
linear input polarization orientation. (a) Experimental data, corrected for
reduced detection efficiency. (b) Theoretical results based on Eq. (2.33).

2.5 Single photons in the semi-classical model
Now, we show that our model can be used to improve a single photon source based on
a neutral QD in a polarization non-degenerate cavity and polarization post-selection.
Specifically, we investigate here the single-photon purity (determined by the second-
order correlation g2(0)) and the brightness. To calculate g2(0), we need to take into
account two contributions: Firstly, single-photon light that has interacted with the QD
ρsp(x) = x |1〉 〈1|+(1− x) |0〉 〈0|, where x is the mean photon number. Secondly, “leaked”
coherent laser light ρcoh(α) with the mean photon number

〈
ncoh

〉
= |α|2, where |α|2 can

be determined by tuning the QD out of resonance. With a weighting parameter ξ, the
density matrix of the total detected light can be written as

ρtot =
[
ξρsp(x) + (1− ξ)ρcoh(α)

]
. (2.34)

After determining ρtot, it is straightforward to obtain g(2)(0) of the total transmitted light
[35].
In the next step, we aim to find the optimal polarization condition for using the device

as a bright and pure single-photon source. For this, we numerically optimize the input
and output polarization, as well as the quantum dot and laser frequency, in order to
maximize the light that interacted with the QD transition (single photon light) and to
minimize the residual laser light. We compare the optimal result to the trivial polarization
conditions 90Cross (excitation of the H- and detection along the V-cavity mode) and
45Circ. For 45Circ, the system is excited with 45◦ linear polarized light and we detect
a single circular polarization component. Fig. 2.4 compares the theoretical prediction
to the experimental data for these cases, each with and without the QD. These results
show almost perfect agreement between experiment and theory. Only for the 90Cross
configuration, the experimental data is slightly higher than expected, which we attribute
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Figure 2.4: Simulated (left) and measured (right) transmitted intensity as a function of
the relative laser frequency, with and without the QD and for three polariza-
tion configurations: 90Cross (top), 45Circ (center), and Optimal (bottom).
For constant laser power, the measured single-photon intensity (frequency in-
dicated by the grey dashed line) of the optimal configuration is about 3×
(1.6×) higher compared to the 90Cross (45Circ) configuration.

to small changes of the polarization axes of the QD induced by the necessary electrostatic
tuning of the QD resonance.
The optimal polarization condition is found for the input polarization Jones vector(
0.66, −0.50 + 0.57i

)T
and output polarization

(
0.66, 0.50− 0.57i

)T
. For this

case, the single photon intensity is about 3× higher compared to the 90Cross configura-
tion. We emphasize that this optimal configuration can hardly be found experimentally
because the parameter space, polarization conditions and QD and laser frequencies, is
too large. Instead, numerical optimization has to be done, for which a simple analytical
model, like the one presented here, is essential.
For the configurations shown in Fig. 2.4 we now perform power-dependent continuous-

wave measurements to determine the experimental brightness and g(2)(0). The laser is
locked at the optimal frequency determined by the model (gray-dashed line in Fig. 2.4),
and the single photon count rate, as well as the second-order correlation function, is
measured using a Hanbury-Brown Twiss setup. The photon count rate is the actual
count rate before the first lens, corrected for reduced detection efficiency. Gaussian fits
to g(2)(τ) are used to determine the second-order correlation function at zero time delay
g(2)(0).
In Fig. 2.5(a), the single-photon count rate is shown as a function of the input power

and in Fig. 2.5(b) we show g
(2)
exp(0) as a function of the single-photon count rate. In

Fig. 2.5(b), we see that, for the optimal configuration, the single photon rate can be up
to 24 MHz before the purity of the single-photon source decreases. This means that,
for the same purity, it is possible to increase the brightness of the single-photon source
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by using different input and output polarization configurations. Note that g2
exp(0) ≈ 0.5

corresponds to a real g(2)(0) ≈ 0 due to detector jitter. The two-detector jitter is ≈ 500
ps is of the same order as the cavity enhanced QD decay rate, 1/ ((1 + C)γ⊥) ∼ 300±150
ps, which determines the theoretically expected full-width at half maximum of g(2)(τ) in
the case of ideal detectors.
The data in Fig. 2.5(a) shows the interplay between single-photon light scattered from

the QD and leaked coherent laser light. We observe a linear slope for high input power,
which corresponds to laser light that leaks through the output polarizer. In Fig. 2.5(a)
we fit the single photon rate Γ using the formula [4]

(
x+

〈
ncoh

〉)
γ⊥ = Γ

P
P0

1 + P
P0

+ bP. (2.35)

Here, b is the fraction of leaked laser light, P0 is the saturation power of the QD and
Γ the experimentally obtained single photon rate of the QD. We find for the optimal
condition P0 ≈ 3 nW, Γ ≈ 40MHz, and b ∼ 0.5MHz nW−1. This single photon rate
is 25% of the maximal output through one of the mirrors, based on the QD lifetime:
γ⊥/2 ≈ 160MHz.
Calculating g(2)(0) using Eq. (2.34) gives the predictions shown by the dashed lines

in Fig. 2.5(b). Here, we used that γ⊥ = 320MHz in order to obtain the mean photon
numbers. With these mean photon number and considering the detector response, we
estimate ξ90 = 0.05 in Eq. (2.34) for the 90Cross configuration. Changing the value of ξ
by the ratios obtained in Fig. 2.4, we obtain the red curve (ξ45 = 1.6× ξ90 = 0.10) and
blue curve (ξopt = 3× ξ90 = 0.15), which show that our theory is in good agreement with
the experimental data.
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Figure 2.5: (a) Single-photon count rate behind the first lens as a function of the input
laser power for the three polarization configurations 90Cross (squares), 45Circ
(circles), Optimal (triangles). The dashed lines are fits to Eq. (2.35) and show
good agreement. (b) g(2)

exp(0) as a function of the measured single-photon count
rate behind the first lens. The dashed curves are the theoretical predictions
based on the fits in (a). The increased size of the error bars at higher power
is because the g(2)

exp(τ) dip becomes small and spectral diffusion appears.
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2.6 Conclusion
In principle, if the output polarizer could block all residual laser light, a perfectly pure
single-photon source is expected. In this case, the brightness of the single-photon source is
determined by the polarization change that the QD-scattered single photons experience.
At high power, close to QD saturation, the QD also emits non-resonant light, but its
effect on the purity is limited in practice compared to the effect of leaked laser light [36].
In conclusion, we have proposed a polarized semi-classical cavity-QED model and con-

firmed its accuracy by comparison to experimental data of a QD micro-cavity system.
We have shown that this model enables prediction and optimization of the brightness and
purity of QD-based single-photon sources, where we have obtained a 3× higher brightness
compared to traditional cross-polarization conditions.
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2.7 Supplemental material

Derivation of Equation (2.25)
To derive Eq. (2.25) from Eq. (2.24) , we switch to transmission (intensity) instead of
the transmission amplitude (electric field). This has the advantage that the imaginary
parts disappear and we get a better understanding of each term in the expansion. Using
1−R = t2 = 1− r2, we obtain from Eq. (2.24)

Ttot = (1−R)2 exp(−2z)
1 +R2 exp(−4z)− 2R exp (−2z) cos (−2x1 + φ) , (2.36)

with z = a0 + aQD
1

1+(∆′)2 and x1 = aQD
∆′

1+(∆′)2 . Now we use the following approxima-
tions: first, we consider small phase changes φ� 1. This, in combination with aQD � 1,
allows us to approximate the cosine term as cos (−2x1 + φ) ≈ 1 − (−2x1+φ)2

2 . Trying to
put the equation in a Lorentzian form gives

Ttot ≈
1

1 + p0 +
(
−2x1+φ

p1

)2 , (2.37)

with p1 =1−R√
R
, which corresponds to the finesse of an ideal Fabry-Pérot cavity apart from

a factor π. We neglect the x2
1 in Eq. (2.37) and find

Ttot ≈
1

1 + p0 +
(
φ
p1

)2
− 4x1φ

p2
1

. (2.38)

p0 contains a contribution of loss due to the cavity and the QD. After Taylor expanding
p0 up to second order in z we simplify the analysis by splitting both loss terms and write
p0 = pc + pQD with

pc = 2a0

(1 +R

1−R

)
, (2.39)

pQD = 2 1
1 + (∆′)2

(
aQD + a2

QD

)(1 +R

1−R

)
. (2.40)

For the cavity, we take pc up to first order in a0 and pQD up to second order in aQD. This
choice is made to enable agreement with Eq. 2.27 and will be justified later by comparison
to the semi-classical model. With this we can write Eq. (2.38) as

Ttot ≈
1

1 + pc

1
1 + pQD

1+pc
+ φ2

p2
1(1+pc) − 4 x1φ

p2
1(1+pc)

. (2.41)

With the substitutions

κ = 2πc(1−R)
nL
√
R

√
1 + pc (2.42)

∆ = f − fc
κ

(2.43)
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Figure 2.6: Comparison of the semi-classical model of Eq. (2.46) to the exact classical
model of the lossy Fabry-Pérot cavity in Eq. (2.36). For low losses and weak
coupling, both models agree well.

C = aQD

√
R

1−R
1√

1 + pc
(2.44)

we find for the total transmission

Ttot ≈
1

1 + pc

1
1 + 4∆2 − 8C ∆∆′

1+(∆′)2 + 2C
1+(∆′)2 (2 + 2C)

, (2.45)

where pQD

1+pc
∼ 2C

1+(∆′)2 (2 + 2C) assuming that R ∼ 1. Now we go back to the complex

transmission amplitude ttot =
√
Ttot of Eq. (2.45) and find

ttot ≈ ηout
1

1− 2i∆ + 2C
1−i∆′

. (2.46)

In order to confirm that the above approximations are valid we compare Eq. (2.36) to
the semi-classical model of Eq. (2.46). In Fig. 2.6, the two models are compared for a
cavity with λ = 930nm, n = 2, R = 0.95, a0 = 0.01, aQD = 0.03, and L = 0.1µm. We
see that both models agree very well, suggesting that our approximations are valid. The
slight deviations in the peak height is due to the assumption that the cavity loss a0 � 1
does not completely hold.

Derivation of the semi-classical model in the non-linear regime
In the non-linear regime we do not assume that the QD population is in the ground state,
but do allow the operator products to be separated. In this case, for the equations of
motion we find
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〈ȧ〉 = −κ(1− i∆c)〈â〉+ ig〈Ŝ−〉+ iη,

〈Ṡ−〉 = −γ⊥(1− i∆Q)〈Ŝ−〉+ ig〈âŜz〉,
〈Ṡz〉 = −γ||(〈Ŝz〉+ 1)− 2g0(〈â†Ŝ−〉+ 〈Ŝ+â〉).

(2.47)

Now, making the approximation that the quantum correlations can be neglected leads to

〈ȧ〉 = −κ(1− i∆c)〈â〉+ ig〈Ŝ−〉+ iη,

〈Ṡ−〉 = −γ⊥(1− i∆Q)〈Ŝ−〉+ ig〈â〉〈Ŝz〉,
〈Ṡz〉 = −γ||(〈Ŝz〉+ 1)− 2g0(〈â†〉〈Ŝ−〉+ 〈Ŝ+〉〈â〉).

(2.48)

There is no formal basis for writing 〈âŜz〉 as 〈â〉〈Ŝz〉. The intuition behind it is that
for many weakly excited QDs the QD-photon field correlations will tend to zero. In a
sense, one might see it as a mean field approximation [20], which holds for many two
level transitions. Since it is hard to find the solution of the transmission amplitude as a
function of all parameters, we give the solution of the input power as a function of the
transmission amplitude. After some math we obtain

η

κ
= x


1 + C

1 + ∆2
Q + x2

n0

2

+

∆c −
C∆Q

1 + ∆2
Q + x2

n0

2


1/2

, (2.49)

where n0 = γ||γ⊥
4g2 is the critical photon number, x = 〈â〉 is the amplitude of the field in

the cavity for the transmitted light, C the cooperativity, and ∆Q and ∆c are the QD and
cavity detunings, respectively. The critical photon number is a measure for the number
of photons needed to saturate the response of a single QD. An alternative form of the
critical photon number n0 = γ||

Cκ , shows that for increasing cooperativity, less photons are
required to saturate the response of the system. Experimentally we observe saturation
at a mean photon number of 〈n〉 ≈ 10−2 ≡ n0 and use this as an estimate of the critical
photon number. The left hand side of Eq. 2.49, given by η

κ , represents the transmission
amplitude of the field in an empty cavity on resonance. In Fig. 2.7, we plot the mean
photon number of the transmitted light in an empty cavity

( η
κ

)2 versus the mean photon
number of the transmitted light in a cavity with QD given by 〈n〉cav+QD = |x|2.
At low powers ncav � 1 we observe that ncav+QD ≈ 0 which corresponds to the dip in

the transmission spectrum for a QD in a cavity (Fig. 2.1), while at very high power we
observe the expected linear response, indicating that the effect of the QD is negligible.
In the intermediate region, we find for C & 10 a bistability in the shape of an S-curve.

Coming from a region of low (high) power and slowly increasing (decreasing) to higher
power, the mean photon number abruptly jumps to a higher (lower) value, these are
called the bistability points (dashed lines in Fig. 2.7). In the experiments reported in
this thesis, the maximal cooperativity is C ≈ 3, therefore we could not investigate this
bistability experimentally.
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Figure 2.7: Plot of the mean photon number of the transmitted light in an empty cavity
versus the mean photon number of the transmitted light in a cavity with QD.
The dashed lines indicated the bistability points for QD-cavity system with
C = 20. Parameters: ∆Q = ∆c = 0 and n0 = 10−2 for all curves.
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Chapter 3

Quantum master model for cavity
QED

In this chapter, we describe the full quantum master model and show how it
is solved numerically. We discuss the driven Jaynes–Cummings Hamiltonian
in the semi-classical and quantum regime. Additionally, we explain how the
full quantum master model is useful in simulating more complicated level
structures such as exciton, biexciton and trion state.

Part of the content in this chapter is used in the publications of later chapters.
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3.1 Quantum master equation
In order to fully understand the quantum behavior of a QD interacting with photons in
a cavity, we solve the quantum master equation numerically. This allows us to include
the quantum correlations between the photon operators and QD operators, and other
relaxation mechanisms such as pure dephasing. Using the Hamiltonian of Eq. 2.15 and
including a Lindblad-type of dissipation, the master equation becomes

dρ

dt
= Lρ = −i

[
Ĥ, ρ

]
+ 2κD [â] ρ+ γ||D

[
Ŝ−
]
ρ+ γ∗

2 D
[
Ŝz
]
ρ. (3.1)

Here, compared to Eq. 2.16, we have included a term that describes the pure dephasing
γ∗. Pure dephasing conserves the population of the excited and ground states, but effects
the coherence of the transition since it modifies the off-diagonal terms in the density
matrix ρ. This Lindblad-type master equation in Eq. 3.1 is based on several additional
assumptions (see for instance [37]). Here we point out the three most important ones.
(1) Full separability of the system and the environment at t = 0. (2) The state of the
environment must not change significantly under interaction with the system, i.e., the
interaction is weak, and the system and environment remain separable throughout the
evolution. (3) The environment has no memory on the time scale of the evolution (Markov
approximation).

3.1.1 Steady-state solution
For the steady-state solution, with continuous wave excitation, we solve Lρ = 0 using the
numerical methods provided by the software package QuTiP [38]. The density matrix
ρ of the steady-state solution is the tensor product of the QD-system matrix with the
photon density matrix. In order to obtain the steady-state solution, the time-dependence
in the Hamiltonian needs to be removed. This is done by transforming the Hamiltonian
to the Heisenberg picture, but in order to do this transformation the fast rotating terms
in the time-dependence are removed by using the rotating wave approximation. To apply
the rotating wave approximation two conditions need to be satisfied: fcav ≈ fa, and
fa � Ω. Here fcav is the cavity frequency, fa is the QD transitions frequency and Ω is
the Rabi frequency. Figure 3.1 shows that, in the weak coupling regime, the rotating wave
approximation is valid for a broad range of input powers. In the regime of ultra-strong
coupling, the rotating wave approximation breaks down [39].

3.1.2 Time-dependent solution
In case the time-dependence cannot be removed from the Hamiltonian, the quantum
master equation can be solved as a function of time. In Qutip, there are three methods to
find time-dependent expectation values: a direct method, an exponential series expansion
and a Monte Carlo simulation. The direct method uses a matrix evolution and solves the
system iteratively with time steps τ , where τ is considered to be small. In the exponential
series expansion, the solution for the expectation value of the cavity field is written as
[38] 〈

â†(τ)â(0)
〉

= Tr
(
â†e[L]tâρ0

)
= Tr(i)

(∑
ϕ

(i)
k exp (−sk |τ |)

)
, (3.2)
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Figure 3.1: Comparison of the Hamiltonian with and without rotating wave approxima-
tion for different driving powers.

where sk are the eigenvalues of L and ϕk are the amplitude coefficients. In most cases,
the direct method is fastest, only for extremely long evaluation times of the system or
large density matrices it is favorable to use a Monte Carlo simulation.

3.1.3 Spectral distribution of the emitted light
The frequency spectrum of the emitted light is found by taking the Laplace transform of〈
â†(τ)â(0)

〉
. This, however, only gives the correct frequency spectrum if the spectrum

is completely symmetric around zero frequency. Calculating the Fourier transform of an
expectation value gives the frequency spectrum

S(ω) =
∫ ∞
−∞

〈
â†(τ)â(0)

〉
eiωτdτ. (3.3)

This equation can be solved using a fast Fourier transform if the solution of the expec-
tation value is provided using matrix evolution. However, when the solution is provided
using an exponential series expansion, a nice trick becomes available to calculate the
frequency spectrum. Using the exponential series expansion we can write

S(ω) =
∫ ∞
−∞

〈
â†(τ)â(0)

〉
eiωτdτ =

∫ ∞
−∞

∑
k

ϕ
(i)
k exp (−sk |τ |) eiωτdτ. (3.4)

Exchanging the integral and the summation, this can be rewritten as

S(ω) =
∑
k

∫ ∞
−∞

ϕk exp (−sk |τ |) eiωτdτ = 2Re
∑
k

ϕk
iω − sk

. (3.5)
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This shows that the exponential series expansion almost directly gives the frequency
spectrum of the transmitted light.

3.2 Comparison of the quantum master equation with
semi-classical models

In semi-classical models QD-Electromagnetic field correlations are not taken into account.
Therefore, comparing the cavity transmission obtained via a numerical simulation of the
quantum master equation with results from semi-classical calculations provides insight in
how QD-field correlations affect the system. The numerical simulation grants us access
to the density matrix, which contains all the system information such as quantum corre-
lations and the coherence functions. In Fig. 3.2, we compare the cavity transmission as
a function of laser frequency for the classical case described by Eq. 2.19 and respresented
by the dashed lines, to the numerically obtained quantum case described by Eq. 3.1 and
represented by the solid lines. The transmission is given in terms of the cavity mean pho-
ton number 〈n〉. A limitation of the numerical simulation is that the density matrix size
grows exponentially with the photon number (and QD states). Here, the density matrix
contains Fock states up to 10 photons, which is sufficient for a mean photon number of
10−1 or lower.
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Figure 3.2: Transmission of a QD transition in resonance with a cavity as a function of the
laser frequency. The simulation is carried out for three different mean photon
numbers 〈nin〉 = 10−1, 10−2, 10−3 in the cavity. Increasing the power shows
saturation of the QD transmission dip when using a numerical simulation of
the quantum master equation (solid line), while for the classical case (dashed
line), this is not reproduced. Other parameter values are: κ = 12GHz, γ‖ =
1

2π GHz, γ∗ = 0GHz and g = 2 GHz.

When the quantum master equation is solved numerically, we observe a saturation
response of the transmission dip for increasing input power, proportional to 〈nin〉. Here,
〈nin〉 is the mean photon number in the cavity. This saturation is not reproduced in
the semi-classical calculation, since it is only valid in the low-excitation regime. Below
〈nin〉 ≈ 10−3, the quantum result and semi-classical result overlap, while increasing the
power to 〈nin〉 ≈ 10−1 saturates the QD transition almost completely.
In order to study this dip depth in more detail, the relative dip depth is plotted in

Fig. 3.3 as a function of input power. The relative dip depth is defined as
(〈n〉 − 〈nQD〉) / 〈n〉, where 〈nQD〉 is the mean photon number in a cavity with a QD on
resonance at a certain input power. For the semi-classical case, or for the case of a very
low mean photon number, the relative dip depth is defined as

1−
( 1

1 + C

)2
,

where C = g2

κγ⊥
is the cooperativity of the system. While in the semi-classical case, the

relative dip depth does not change as a function of input power, we observe that, in the
quantum case, the relative dip depth vanishes when increasing the power two-orders of
magnitude from 〈nin〉 = 10−3 to 〈nin〉 = 10−1. In addition to the semi-classical and
quantum results, the nonlinear semi-classical case (blue line in Fig. 3.3) is also plotted to

31



10 4 10 3 10 2 10 1 100

nin

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e 

di
p 

de
pt

h
Quantum result
Classical result
Nonlinear result

Figure 3.3: Relative dip depth as a function of the mean photon number. The results
are plotted for the semi-classical case (Eq. 2.19), nonlinear semi-classical case
(Eq. 2.49) and quantum case (Eq. 3.1), with parameter values κ = 12 GHz,
γ|| = 1

2π GHz, γ∗ = 0GHz and g = 2 GHz. The grey box indicates the
area where the power is low enough so that the classical and quantum results
overlap.

show the effect of saturation in this model. Comparing the nonlinear classical case to the
quantum case we observe that at low power, 〈nin〉 . 10−3, and high power, 〈nin〉 & 1,
the results become nearly identical. This shows that quantum correlations are important
for a mean photon number above 〈nin〉 = 10−3.
Another important effect to discuss is pure dephasing, which is a non-radiative effect

that effects the coherence of the QD transition. If significant pure dephasing is included,
the relative dip depth at low mean photon number reduces, since pure dephasing destroys
the coherence of the light in the cavity. In Fig. 3.4 (a), we plot the relative dip depth for
the case with pure dephasing and observe that, for a pure dephasing of γ∗ = 1

2π GHz, the
dip depth decreases from ∼ 1 to ∼ 0.8 at an input mean photon number of 〈nin〉 = 10−4.
The other system parameters are similar to the simulation in Fig. 3.3. For the classical
case, the pure dephasing is artificially inserted by defining γ⊥ = γ||

2 + γ∗. In order to
characterize the effect of pure dephasing further, the relative dip depth is plotted in
Fig. 3.4(b) as a function of the ratio

(
γ∗

γ||

)
. From this we find, as indicated by the grey

box in Fig. 3.4(b), if γ∗ . 0.1γ||, the effect of pure dephasing can safely be neglected. It
also shows that, in the classical case for an input power of 〈nin〉 ? 0.5, the artificially
inserted pure dephasing is not sufficient to describe the pure dephasing in the quantum
model.

3.3 Quantum master simulations for quantum dot cavity QED
Here we explain in detail the structure of the quantum master equation for three types
of excitations in QDs: neutral exciton, biexciton and trion. Furthermore, we derive a
time-independent Jaynes–Cummings Hamiltonian which is then used to formulate the
quantum master equation for each level structure. We argue that, for more involved level
systems, a classical description is not sufficient and a full quantum master equation is
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Figure 3.4: a) Relative dip depth as a function of the input power in the case with pure
dephasing. The results are plotted for the classical case (Eq. 2.19), nonlinear
classical case (Eq. 2.49) and quantum case (Eq. 3.1) with parameter values
κ = 12 GHz, γ‖ = 1

2π GHz, γ∗ = 1
2π GHz and g = 2 GHz. b) Relative dip

depth as a function of pure dephasing γ∗ with (〈n〉in = 10−4). The grey box
indicates the area where the effect of pure dephasing can be neglected.

necessary. Additionally, we discuss the effect of a magnetic field to briefly touch upon
spin pumping effects that can take place in charged QDs.

3.3.1 Neutral exciton
In this section, a detailed analysis is given of the neutral exciton and the related optical
transitions. We use a matrix formalism [33, 40], instead of the alternative method in
terms of wave functions [41]. The geometry of the QD leads to the appearance of the
fine-structure split transitions. They arise due to the exchange interaction which couples
the spins of the electron and hole. In Fig. 3.5, we show the level structure of the neutral
exciton as a result of the exchange interaction. The general form of the spin Hamiltonian
for the electron-hole exchange interaction of an neutral exciton, formed by a hole spin Jh
and by an electron with spin Se, is given by [42]

Hexchange = −
∑

i=x,y,z

(
aiJh,i · Se,i + biJ

3
h,i · Se,i

)
, (3.6)

where a and b are the spin-spin coupling constants. Due to strain in self-assembled QDs,
the heavy and light hole states are split in energy by several meV [40]. This splitting is
considerably larger than the involved linewidths and the fine-structure interaction energy,
and therefore, the light hole states can be neglected. The basis from which the neutral
exciton is constructed therefore consist of a heavy hole with Jh = 3/2, Jh,z = ±3/2 and
the electron Se = 1/2, Se,z = ±1/2. From these states four excitons are formed, which
are characterized by their angular momentum projections M = Se,z + Jh,z. Due to the
optical selection rules, the |M | = 2 transitions cannot couple to the light field, and are
therefore optically inactive (dark transitions), while the states with |M | = 1 are allowed
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Figure 3.5: Energy structure of an exciton. Due to symmetry breaking, the excited states
are described as a superposition of |⇑↓〉 and |↑⇓〉, where up describes an elec-
tron, and doubleup a hole with spin up.

(bright transitions). Using the exciton states

|+ 1〉 = |⇑↓〉
| − 1〉 = |⇓↑〉
|+ 2〉 = |⇑↑〉
| − 2〉 = |⇓↓〉

(3.7)

as a basis the following matrix representation is obtained

Hexchange = 1
2


δ0 δ1 0 0
δ1 δ0 0 0
0 0 −δ0 δ2
0 0 δ2 −δ0

 , (3.8)

where δ0 = −3/4(az 9
4bz), δ1 = 3/8(bx − by), and δ2 = 3/8(bx + by). If we have a special

neutral exciton under study with rotational symmetry (meaning that bx−by = 0), then the
angular momentum is still a good quantum number and | + 1〉 and |−1〉 are degenerate
eigenstates of Hexchange. On the other hand, when the rotational symmetry is broken
(bx − by 6= 0), the angular momentum is not a good quantum number anymore and the
eigenstates are transformed in the linear polarized states 1√

2(|⇑↓〉+|↑⇓〉) , 1√
2(|⇑↓〉−|↑⇓〉).

This situation is sketched in Fig. 3.5. In practice, we encounter nearly always an exciton
with a broken symmetry so that the observed spectrum has two excitation peaks.

Neutral exciton with external magnetic field
An exciton in a magnetic field experiences a Zeeman splitting of the energy levels. The
general interaction of the electron and hole spins with an external magnetic field B is
given by
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Figure 3.6: Zeeman splitting for the bright |M | = ±1 and dark |M | = ±2 transitions
in Voigt configuration. Mixing of the eigenstates makes the dark transitions
become visible.

Hzeeman = µB
∑

i=x,y,z
(ge,iSe,i + gh,i

3 Jh,i)Bi, (3.9)

where µB is the Bohr magneton, and ge and gh are the Landé g-factors for the electron and
hole. In general, there are two popular magnetic field geometries, the Faraday geometry,
in which the magnetic field is applied parallel to the growth direction of the heterostruc-
ture, or the Voigt geometry, in which case it is in-plane. In the Faraday geometry, for
strong enough magnetic fields, the states of Eq. 3.7 become again eigenstates of the sys-
tem and the emitted light is completely circularly polarized. In the Voigt geometry, the
in-plane magnetic field destroys the rotational symmetry and also causes mixing of bright
and dark excitons, resulting in the observation of 4 lines in the QD spectrum. The matrix
representation of this Hamiltonian for a magnetic field aligned in the x-direction is given
as

Hexchange +HZeeman = 1
2


δ0 δ1 µBBge,x µBBgh,x
δ1 δ0 µBBgh,x µBBge,x

µBBge,x µBBgh,x −δ0 δ2
µBBgh,x µBBge,x δ2 −δ0

 , (3.10)

where the matrix is written down in the basis given by the states in Eq. 3.7. The eigen-
states of this matrix show that |M | = ±1 and |M | = ±2 states mix when a magnetic field
is applied, making the dark state transitions visible. The dark states become typically
visible at around B = 2T [43]; here this depends on the growth conditions of the QD.
The sketch in Fig. 3.6 shows the influence of a magnetic field on the exciton levels. For
clarity, we assume here a perfect symmetric neutral exciton meaning that δ1 ≈ δ2 ≈ 0,
and observe the well-known splitting into 4 energy levels by increasing the magnetic field.

Quantum master equation for a neutral exciton
Here, we explain how the Jaynes–Cummings Hamiltonian for a system with a single two-
level system can be modified to describe a neutral exciton in a QD. A neutral exciton can
be described by a V-system, with two excited states and one ground state. These three
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levels are written as

|g〉 =

 1
0
0

 |el〉 =

 0
1
0

 |er〉 =

 0
0
1

 . (3.11)

In this case we obtain two instead of one raising operators

Sl+ = |el〉〈g| Sr+ = |er〉〈g|. (3.12)

The Jaynes–Cummings Hamiltonian now becomes

H = (ωc − ωp) â†â+ (ωl − ωp) Ŝl+Ŝl− + g
(
Ŝl−â

† + Ŝl+â
)

+ (ωr − ωp) Ŝr+Ŝr−
+g

(
Ŝr−â

† + Ŝr+â
)

+ η
(
â+ â†

)
.

(3.13)

Inserting this Hamiltonian into the quantum master equation gives

dρ
dt = Lρ = −i

[
Ĥ, ρ

]
+2κD [â] ρ+ γ||D

[
Ŝl−

]
ρ+ γ||D

[
Ŝr−

]
ρ+ γ∗

2 D
[
Ŝrz
]
ρ+ γ∗

2 D
[
Ŝrz
]
ρ,

(3.14)

where we assume that the QD-cavity coupling constant g, as well as γ|| and γ∗ are equal
for both exciton transitions. Increasing the number of transitions is a straightforward
extension. Having N transitions with each their own resonance frequency, the Hamiltonian
of Eq. 2.15 becomes

H = (ωc − ωp) â†â+
N∑
i=0

(ωi − ωp)
(
Ŝ+
)
i

(
Ŝ−
)
i
+

N∑
i=0

gi
((
Ŝ−
)
i
â† +

(
Ŝ+
)
i
â
)

+η
(
â+ â†

)
.

(3.15)
The quantum master equation can still be solved in exactly the same manner as with a
single transition. We can go a step further and also assume M cavity modes, which leads
to the Hamiltonian

H = ∑N
i=0 (ωi − ωp)

(
Ŝ+
)
i

(
Ŝ−
)
i

+∑M
j=0

(
(ωj − ωp) â†j âj +∑N

i=0 gi
((
Ŝ−
)
i
âj
† +

(
Ŝ+
)
i
âj
)

+ ηj
(
âj + âj

†
))
.

(3.16)

Numerically, this Hamiltonian can still be solved as long as the density matrix becomes
not extremely large. In practice, finding solutions with N < 20 photons is feasible with
moderate memory requirements (16 GB of RAM). This condition is used throughout the
entire thesis.

3.3.2 Biexciton
The biexciton consists of two electrons and two holes. The level structure of a biexciton,
shown in Fig. 3.7, is related to an exciton, because the biexciton turns into an exciton
after the first electron-hole recombination. When applying a magnetic field in Faraday
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Figure 3.7: Level structure of a biexciton. After the first electron-hole recombination, a
normal exciton remains.

configuration, the emitted light will change polarization from linear to circular for both
the exciton and biexciton. In order to distinguish those, excitation power dependent
intensity measurements can reveal the quadratic dependence of the biexciton transition
[44].
The Jaynes–Cummings Hamiltonian for biexcitons can be derived easily but there are

some strings attached to it. Using the basis

|g〉 =


1
0
0
0
0

 |el〉 =


0
1
0
0
0

 |er〉 =


0
0
1
0
0

 |eb1〉 =


0
0
0
1
0

 |eb2〉 =


0
0
0
0
1

 (3.17)

the raising operators become

(S+)0 = |el〉 〈g| (S+)1 = |er〉 〈g| (S+)2 = |eb1〉 〈el| (S+)3 = |eb2〉 〈er| , (3.18)

as do their corresponding lowering operators. A 5-dimensional basis is used where the
states |eb1〉 and |eb2〉 each contain two electrons. Using these operators, one can construct
the Hamiltonian

H = (ωc − ωp) â†â+
3∑
i=0

(ωi − ωp)
(
Ŝ+
)
i

(
Ŝ−
)
i
+

3∑
i=0

gi
((
Ŝ−
)
i
â† +

(
Ŝ+
)
i
â
)

+η
(
â+ â†

)
,

(3.19)
where ωi is the resonance frequency for the i-th transition of the biexciton. There is,
however, one property of the biexciton that is not considered. If one electron is in the
state |eb〉, it can decay via two pathways, but in the formalism, this is fixed to one of
the pathways based on the |(S−)1〉 or |(S−)2〉 lowering operator. The problem is that
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Figure 3.8: (a) Charged exciton without an magnetic field and (b) a charged exciton with
a magnetic field. δ2, δ3 are the splittings between the different spin levels as
a result of the Zeeman effect. {σ+, σ−} represents the circular polarization
basis and {X,Y } the linear polarization basis.

one wants |eb1〉 and |eb2〉 to be orthogonal, but, at the same time, have a connection to
each other. For the emission spectrum of the biexciton, it is often sufficient to insert
the Hamiltonian of Eq. 3.19 into the quantum master equation. The obtained quantum
master equation is similar to that of the exciton (Eq. 3.14), but with the inclusion of the
extra transitions and Lindblad dissipation operators.

3.3.3 Singly charged exciton
For the singly charged exciton, or trion, the QD contains permanently one electron to-
gether with an optically excited exciton, one obtains a four-level system. There are two
single electron ground states (spin-up and spin-down) and two excited trion states. Since
the hole spin relaxation is much faster than the electron spin relaxation (without magnetic
field), we can simplify the four level trion structure (Fig. 3.8(a)) to a 3-level Λ system
[45]. The resident electron spin is useful for quantum information applications such as
quantum memories [46, 47].
We can distinguish between a trion and a neutral exciton experimentally, using the

fact that the trion has a circular polarization basis and the exciton a linear polarization
basis. Applying a magnetic field in the x-direction leads to a Zeeman shift of the energy
levels, breaks the circular symmetry of the QD system and results in a linear polarization
basis, see Fig. 3.8(b).
Using the lifted ground-state degeneracy of the trion due to a (external) magnetic field,

one can prepare the spins in either the |↑〉 or |↓〉 by driving certain transitions with a laser.
First experimental results of spin pumping where presented in [48] for a magnetic field
in Faraday configuration and [45] for a magnetic field in Voigt configuration. Figure 3.9
shows a sketch of the interaction where there are in total 4 optical transitions possible
in a linear polarization basis. In addition to these four optical transitions, there are also
two spin-flip transitions, one for the electron spin Γel and one for the hole spin Γhole.
The relaxation time of the electron spin is typically around 1

Γel
= 1 µs [49, 50], while the

optical transitions lifetimes are around 1 ns. This means that, driving the 1X transition
(Fig. 3.9) with a laser continuously, will eventually initialize the spin in the |↓〉 state.
This process is called spin pumping. Similar to a negatively charged exciton, there also
exists a positively charged exciton. Here, even longer relaxation times for the hole spin
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Figure 3.9: Schematic of a trion including the electron-spin (Γel) and hole-spin (Γhole)
relaxation times.

can be obtained compared to the relaxation time for the electron spin in a negatively
charged exciton [51].

3.3.4 Quantum master equation for a Λ system
For the three-level Λ system, we consider the ground states |↑〉, |↓〉 and the excited state
|e〉 = |↑↓⇑〉 in Fig. 3.9. An important difference between a Λ system and a V-level system
is the electron number conservation. The electron number conservation for a V-level
system consist of two equations

P̂el = |el〉 〈el|+ |g〉 〈g| = 1, (3.20)

P̂er = |er〉 〈er|+ |g〉 〈g| = 1. (3.21)

These relations also follow the commutation relation of Eq. 2.13 and one can transform
the time-dependent Hamiltonian into a time-independent one. For the Λ-system, the
electron number conservation becomes

P̂el = |e〉 〈e|+ |↑〉 〈↑|+ |↓〉 〈↓| = 1. (3.22)

In this case, it becomes much harder to find a unitary transformation to transform the
Hamiltonian in a time-independent form and one is forced to resort to another approxi-
mation. The full Hamiltonian for a Λ system and a single cavity mode reads

H = ωcâ
†â+ ω↑ |e〉 〈e|+ ω↓ |↓〉 〈↓|+ g

(
Ŝ−â

† + Ŝ+â
)

+ Ω
(
N̂− + N̂+

)
+ ηeiωp

(
â+ â†

)
,

(3.23)
where the raising operators are defined as Ŝ+ = |e〉 〈↑| and N̂+ = |e〉 〈↓|, and Ω is the
Rabi frequency for the transition from |↓〉 to the |↑↓⇑〉 state. Typically, this Hamilto-
nian is solved by transforming the system to the Heisenberg picture. This approach
has the advantage that the time-dependence is removed from the density matrix of
the system and canceled out against the time-dependent parts in the Hamiltonian and
makes it mathematically and numerically easier to solve the system. Here, the trick
to remove the time-dependence does not work since the unitary transformation U =
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e−it(ωpâ†â+ωpŜ+Ŝ−+ωpN̂+N̂−) does not remove all time dependent parts in the Hamiltonian
3.23. This leaves a time-dependence in the Ω term. In order to circumvent this problem,
a more general unitary transformation U = e−it(ωxâ†â+ωyŜ+Ŝ−+ωzN̂+N̂−) is used and we
look for the conditions on ωx, ωy, ωz that remove the time-dependence in the Hamilto-
nian [52]. To find stable solutions, the excited state |e〉 is adiabatically eliminated [53],
which is allowed, since the lifetime of the excited state is much shorter compared to the
relaxation time of the ground-state spin. Following these steps, the Hamiltonian can be
written as

H =
(

∆cav −
g2

2∆↑

)
â†â+

(
∆↓ −

Ω2

2∆ −
g2

∆↑
â†â

)
Ŝz + gΩ

2∆↑

(
Ŝ−â

† + Ŝ+â
)

+ η
(
â+ â†

)
,

(3.24)
with ∆cav = ωc−ωp, ∆↑ = ω↑−ωp, ∆↓ = ω↓−ωp. This Hamiltonian has the extra term,
proportional to ∼ â†âŜz compared to the Hamiltonian for a V-level system. This extra
term describes the interaction between the two ground states. This interaction becomes
stronger if the mean photon number is higher or if the population of the excited state is
higher. This Hamiltonian is only valid for the specific laser frequency ωp, where the laser
frequency ωp drives the |↑〉 to the |↑↓⇑〉 state. To finalize the quantum master equation
for a trion, we take into account the electron and hole spin relaxation rates. The quantum
master equation becomes

dρ

dt
= Lρ = −i

[
Ĥ, ρ

]
+ 2κD [â] ρ+ γ||D

[
Ŝ−
]
ρ+ γ∗

2 D
[
Ŝz
]
ρ+ ΓeD

[
Ŝf−

]
ρ, (3.25)

where Γe is the electron spin relaxation rate and Ŝf− = |↑〉 〈↓| is an operator that flips a
spin-down to a spin-up state.

3.4 Conclusion
In conclusion, in this chapter we have explained the quantum master model and shown
how it can be used to calculate the dynamics of various QD systems such as a neutral
exciton, biexciton and charged exciton. The quantum master equation includes two
ingredients that are not considered in the semi-classical formalism: first, it includes the
QD-field correlations, and additionally, the Lindblad formalism allows us to include other
forms of dephasing such as pure dephasing and electron spin relaxation. We have shown
that, in the low-power regime, the system can be described by a (semi-) classical model.
Furthermore, we estimated in section 3.3 that, at low input power, the pure dephasing
rate is about a tenth of the radiative dephasing rate, therefore it can be neglected. In
section 3.4, we have shown how to extend the Jaynes–Cummings Hamiltonian in the
quantum regime for more complicated level structures.
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Chapter 4

Purification of a single photon
non-linearity

We show that the lifetime-reduced fidelity of a semiconductor QD–cavity sin-
gle photon nonlinearity can be restored by polarization pre- and postselection.
This is realized with a nearly polarization degenerate microcavity in the weak
coupling regime, where an output polarizer enables quantum interference of
the two orthogonally polarized transmission amplitudes. This allows us to
transform incident coherent light into a stream of strongly correlated pho-
tons with a second-order correlation function of g(2)(0) ? 40, larger than
previous experimental results even in the strong-coupling regime. This pu-
rification technique might also be useful to improve the fidelity of QD based
logic gates.

This Chapter has been published in Nature Communications 7, 12578–12578 (2016) [5].
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4.1 Introduction
photon nonlinearities enabled by quantum two-level systems are essential for future quan-
tum information technologies, as they are the building block of quantum photonics logic
gates [21], deterministic entanglers of independent photons [54], and for coupling dis-
tant nodes to form a quantum network [22]. Near unity fidelity interaction of photons
with a two-level system such as an atom or QD is enabled by embedding it into an op-
tical cavity [55]. Then, the electronic and photonic states become bound and form the
dressed states [15] of cavity quantum electrodynamics (CQED). A hallmark of single-
photon nonlinearities is the modification of the photon statistics of a quasi-resonant weak
coherent input beam [56]: The transmitted photon statistics can become antibunched
due to the photon-blockade effect [21, 57, 58], which is enabled by the anharmonicity of
the Jaynes–Cummings ladder [59, 60, 61]. The system can also be tuned to reach the
regime of photon tunnelling [62, 56] where the single-photon component is reduced and
photons are transmitted in N > 1 Fock states or “photon bundles” [63, 64]. This regime
is called photon tunneling since it is the opposite of the photon-blockade effect.
In terms of the second-order photon correlation function g(2)(0), values up to ∼ 2

[65, 66, 67, 68] have been obtained experimentally with QDs, which hardly exceeds even
the classical case of thermal light following Bose statistics of g(2)(0) = 2. In atomic
systems with much longer coherence times, values up to ∼ 50 have been obtained [56],
and it is known [69] that strict two-photon light sources exhibit diverging g(2)(0) if the
two-photon flux is reduced. Most related QD experiments to date have been operating
in the strong-coupling regime of CQED, which is considered to be essential due to its
photon-number dependent energy structure [66, 56, 68]. In the weak-coupling regime,
the coupling of cavity and QD is reduced, leading to reduced QD contrast as shown in
Fig. 4.1b (black curves). The strong coupling regime, however, requires a small optical
mode volume, which in turn makes it extremely hard to achieve polarization degeneracy of
the fundamental cavity mode. This is due to unavoidable deviations from the ideal shape
and intrinsic birefringence [70, 71] on the GaAs platform, precluding implementation of
deterministic polarization-based quantum gates [54, 72, 47]. Here we show, using a nearly
polarization degenerate cavity in the weak coupling CQED regime, that we can transform
incident coherent light into a stream of strongly correlated photons with g(2)(0) = 25.7±
0.9, corresponding to & 40 in the absence of detector jitter. The polarization degenerate
cavity enables us to choose the incident polarization θin = 45◦ such that both fine-
structure split QD transitions along θXQD = 0◦ and θYQD = 90◦ are excited, and we can use a
postselection polarizer behind the cavity (θout) to induce quantum interference of the two
transmitted orthogonal polarization components (Fig. 4.1a). This leads to the appearance
of two special postselection polarizer angles θ∗±out (depending on sample parameters), which
can be used to restore perfect QD contrast (red curves in Fig. 4.1b). This compensates
fully for reduced QD-cavity coupling due to finite QD lifetime and QD-cavity coupling
strength, leading to complete suppression of transmission of the single-photon component
in the low excitation limit. The transmission of higher-photon number states remains
largely intact, allowing us to observe in Fig. 1c the strongest photon correlations to date
in a solid-state system, reaching the range of strongly coupled atomic systems [56]. In
the following a detailed experimental and theoretical investigation of this effect, which
can be seen as a purification of a single-photon nonlinearity, will be presented.
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Figure 4.1: (a) Cartoon of the experiment: Polarization pre- and postselection in a reso-
nant transmission CQED experiment enables tuning of the photon statistics
from antibunched to bunched. (b) Theoretical resonant transmission spec-
tra for coherent light with mean photon number � 1, with and without the
QD, comparing the conventional case (parallel polarizers) to the case of spe-
cial polarization postselection along θ∗out: close to one of the QD resonances,
single-photon transmission is perfectly suppressed, despite the finite lifetime
and cavity coupling of the QD transition. (c) Second-order correlation func-
tion for the special polarization angle case, comparing theory and experiment
using two different sets of single-photon counters (SPCs) with different timing
jitter, 50 ps and 500 ps.
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4.2 Device structure
Our device for the experiment performed in this chapter consists of self-assembled
InAs/GaAs QDs embedded in a micropillar Fabry-Perot cavity grown by molecular beam
epitaxy [73]. Two distributed Bragg reflectors (DBR) surround a ∼ 5λ thick cavity
containing in the center InGaAs self-assembled QDs and an oxide aperture for transverse
confinement. The top DBR mirror consists of 26 pairs of λ/4 thick GaAs / Al0.90Ga0.10As
layers, while the bottom mirror has 13 pairs of GaAs / AlAs layers and 16 pairs of GaAs
/ Al0.90Ga0.10As layers. The QD layer is embedded in a P-I-N junction, separated by a
35 nm thick tunnel barrier from the n-doped GaAs:Si (2.0×1018 cm−3) electron reservoir,
to enable tuning of the QD resonance frequency by the quantum confined Stark effect.
For transverse mode confinement and to achieve polarization degenerate cavity modes,
we first ion-etch micropillars of large diameter (35 µm) and slightly elliptical shape, then
we use wet-chemical oxidation of an 10 nm thick AlAs layer [74], which is embedded
between 95 nm Al0.83Ga0.17As and 66 nm thick Al0.75Ga0.25As, to prepare an intracavity
lens for transverse-mode confinement [75], avoiding loss by surface scattering at the side
walls. Finally, we fine-tune the cavity modes by laser induced surface defects [27, 26] to
obtain a polarization mode splitting much smaller than the cavity linewidth.

Figure 4.2: Scheme of the device.

4.3 Theoretical model
The system we study here is tuned to contain a single neutral QD within the cavity
linewidth. The excitonic fine-structure splitting leads to 4.8 GHz splitting between the
orthogonally polarized QD transitions at 0◦ (ωYQD) and 90◦ (ωXQD). The fundamental cav-
ity modes show a residual polarization splitting of 4 GHz (fXc = 0 GHz, fYc = −4 GHz),
and the cavity axes are rotated by 5◦ with respect to the QD axes. We describe the QD-
cavity system via an extended version of a two-level system in an optical cavity, which is
driven by a classical coherent laser field. Albeit our cavities have only a small polarization
splitting of the fundamental modes, we take full care of it. The quantum description,
based on the application of a unitary transformation to transform the Hamiltonian from a
time-dependent to a time-independent form and the rotating-wave approximation, results
in the following Hamiltonian (~ = 1)[15, 72]:
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H =
(
ωL − ωXc

)
â†X âX +

(
ωL − ωYc

)
â†Y âY +

(
ωL − ωXQD

)
σ̂†X σ̂X

+
(
ωL − ωYQD

)
σ̂†Y σ̂Y + gY

(
σ̂Y b̂

†
Y + σ̂†Y b̂Y

)
+ gX

(
σ̂X b̂

†
X + σ̂†X b̂X

)
+η

2

[
e′x

(
â†X + âX

)
+ e′y

(
â†Y + âY

)]
+ 1

2(ωXc − ωYc )
[
â†X âY + â†Y âX

] (4.1)

Here ωX/Yc are the cavity resonance frequencies of the polarized cavity modes, and
ω
X/Y
QD are the fine-structure-split QD transition frequencies. â†X/Y is the photon creation

operator for a photon in X/Y polarization, and σ̂†X/Y creates an X/Y polarized neutral
exciton. The terms with coupling constants gX/Y describe the interaction between a
QD transition and the cavity field, which is rotated into the QD polarization basis by
b̂X = âXcos φ + âY sin φ and b̂Y = −âXsin φ + âY cos φ, where φ is the rotation angle.
This Hamiltonian is designed for a cavity with a small polarization splitting. The last
term describes the driving of the cavity by an external linearly polarized coherent laser
field, where η2 is proportional to the incident intensity [16], and the Jones vector

(
e′x, e

′
y

)
describes the incident light polarization.
Next we write down a quantum master equation for our Hamiltonian and include

Lindblad-type dissipation for the cavity decay rate κ, the population relaxation rate γ||
and the total pure dephasing rate γ∗.

dρ

dt
= Lρ = −i

[
Ĥ, ρ

]
+

∑
j=X,Y

κD[âj ]ρ+ γ||D[σ̂j ]ρ+ γ∗

2 D[σ̂zj ]ρ, (4.2)

Where ρ is the density matrix of the QD-cavity system, L is the Liouvillian superop-
ererator for QD-cavity density matrix and D[ô]ρ ≡ 1

2

[
2ôρô† − ô†ôρ− ρô†ô

]
results in

Lindblad-type dissipation. Here σ̂zj is defined as 1
2

(
σ̂†j σ̂j − σ̂j σ̂

†
j

)
. The validity of Eq. 4.2

is similar to the arguments given in section 3.1.

4.3.1 Transmission and photon correlations

The cavity transmittivity is calculated by T = Tr
[
ρ0
(
e1â
†
X + e2â

†
Y

)
(e1âX + e2âY )

]
=

Tr
(
ρ0â
†â
)
, where (e1, e2) describes the output-polarizer Jones vector, and ρ0 is the

steady-state density matrix of the system. We investigate the photon correlations by
calculating the second-order correlation function, which is independent of mirror loss and
can therefore be calculated directly from the intracavity photon operators 〈â†â〉. The
second-order correlation function is given by g(2)(τ) = 〈â†(0)â†(τ)â(τ)â(0)〉

〈â†(0)â(0)〉2 with the time-
dependent photon creation operator â†(τ). In order to solve the time-dependence of the
operator â†(τ), we assume that the effect of the operator L is small and the eigenvalues
are non-degenerate, which allows us to write â†(τ) as â†eLτ . The effect of the operator L
is small if it acts on a steady-state density matrix [76].

4.3.2 Estimation of model parameters
For estimation of the parameters, we fit the theory above discussed to the experimental
transmission data for 6 different output polarizations for θin = 45◦, i.e., both QD tran-
sitions are excited. The result in Fig. 4.3 shows decent agreement between experiment
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(black curve) and theory (red curve). We obtain the best-fit parameters κ = 105 ± 3
ns−1, g = 14 ± 0.1 ns−1, γ|| = 1.0 ± 0.4 ns−1, γ∗ = 0.6 ± 0.01 ns−1, fX/YQD = −2.4/2.4
GHz. The residual cavity polarization splitting is 4 GHz (fXc = 0 GHz, fYc = −4 GHz),
where the {X,Y } axes are rotated by φ = 5◦ with respect to the QD axes. We note that
another QD is visible within the cavity resonance, compare Fig. 4.3 for θout = 90◦ at
around -10 GHz; but since it is much less strongly coupled to the cavity mode it can be
neglected.
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Figure 4.3: Experimental data (black) and the theoretical fit (red) . The input polariza-
tion was set to θin = 45◦ and θ∗+out and θ∗−out indicate the special polarization
angles.

4.4 Resonant photon correlation spectroscopy

We use a narrow band (100 kHz) laser to probe the system and study the transmitted
light (Fig. 4.1a), as a function of laser frequency and postselection polarizer angle behind
the cavity. For each set of parameters, we measure the resonantly transmitted light
intensity and its second-order photon correlation function g(2)(τ) using a Hanbury Brown
Twiss setup. The discrete nature of the QD levels leads to a strongly nonlinear response
of the system depending on the incident photon-number distribution; we operate at low
intensities to avoid saturation effects. We show here only data for an incident polarization
θin = 45◦. Under this angle both QD transitions are equally excited.
First, we compare experimental and theoretical resonant transmission measurements in
Fig. 4.4, where the coherent-light transmittivity as a function of the laser detuning and
orientation of the output polarizer angle θout is shown. For clarity, we have normalized the
traces for each polarization setting. The horizontal lines indicate the QD fine-structure
split transitions (ωXQD, ωYQD), the black circles indicate regions of low transmission and
the vertical dashed lines the special polarization angles θ∗+out ≈ −14◦, θ∗−out ≈−76◦. From
comparison of both panels in Fig. 4.4, we find excellent agreement between experiment
and theory.
Now we perform photon correlation measurements; instead of tuning the laser, we

tune the QD, the reference are the cavity modes. Because the cavity linewidth is large
compared to the QD tuning range in Fig. 4.5, there is nearly no difference compared
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the polarization θout (θin = 45◦). The fine-split QD transition frequencies
are at fXQD = −2.4 GHz and fYQD = 2.4 GHz. The red circles indicate the
special polarization conditions; the white square indicates the area explored
in Fig. 4.5.
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Figure 4.5: Experimental (a) and theoretical (b) data of the second-order correlation func-
tion as a function of the QD frequency and output polarization (θout), taken in
the area marked with a white rectangle in Fig. 4.4. The vertical dashed lines
indicate the special polarization angle and the QD axes, and the horizontal
line the QD resonance frequency.

to tuning the laser. Experimentally, using an external electric field to tune the QD
via the quantum-confined Stark effect is much more robust than laser-frequency tuning.
Fig. 4.5 shows the false-color map of g(2)(0) as function of output polarization θout and QD
detuning. We see clearly that the enhanced bunching occurs under the special polarization
condition in the low-transmittivity regions indicated in Fig. 4.4. This is expected as in
weak coherent light beams, the P1 single-photon component is dominating, and removal
thereof should lead to enhanced bunching. The theoretical simulation (Fig. 4.5b) shows a
maximal photon bunching of g(2)(0) ≈ 40. Compared to this, the experimentally observed
photon correlations are less (g(2)(0) ≈ 6), which is due to the detector response: Fig. 4.5a
was recorded with a 500 ps timing-jitter detector, if we repeat the measurement at the
special polarization angle with a 50 ps timing-jitter detector (the corresponding g(2)(τ)
measurements are compared in Fig. 4.1b), we obtain g(2)(0) = 25.7 ± 0.9. Both results
agree very well to the convolution of the theoretically expected g(2)(τ) with the detector
responses (Fig. 4.1b); see also section 4.6.
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4.5 Discussion
We have shown by experiment and theory that the reduced fidelity of a QD nonlinearity,
caused by imperfect QD-cavity coupling, can be strongly enhanced by pre- and post-
selection of specific polarization states. This enables transformation of a weak coherent
input beam into highly bunched light with g(2)(0) & 40, a value that has not been
reached before, not even in the strong coupling regime. How is it possible to reach such
high photon correlations, how does the polarization-based purification technique work?
We consider incident light with a frequency in the vicinity of one of the QD resonances,

say ωXQD, and let us decompose the electromagnetic field transmitted through the cavity
in two orthogonally polarized components: the signal Field ES polarized along the QD
resonance polarization θXQD = 0◦, and the local oscillator ELO which has interacted
with an empty cavity because it is polarized orthogonally to θXQD. Now, we consider
three cases: (i) efficient interaction of the QD with incident light (cooperativity C > 1),
(ii) intermediate interaction (C ≈ 1), and (iii) weak interaction (C → 0). The special
polarization angles for various cooperativities are shown in Fig. 4.6.
In case (i), the QD leads to a nearly complete removal of the single-photon component

from the incident coherent light polarized along the QD polarization: these photons are
in principle perfectly reflected from the cavity and we simply have to detect along the
same axis (θ∗out = θXQD = 0◦, see Fig. 4.6) to observe strong photon correlations. A
significant proportion of higher photon-number states are transmitted. Since the second-
order correlation function can be expressed in terms of the photon-number distribution
as g(2)(0) ∝ 2P2/P

2
1 (ignoring N > 2 photon-number states), which for P2 � P1 and

PN>2 � P2, this leads to diverging photon correlations like g(2)(0) ∝ 1/α2 if the single-
photon component is attenuated as P1 → αP1.
Now in case (ii), for realistic systems, the finite lifetime of the QD transition and/or

limited QD-cavity coupling g leads to a reduced cooperativity: Even in the low-excitation
limit, not every single-photon state is filtered out. Therefore, the signal field ES contains a
fraction of coherent light reducing the photon bunching along the QD polarization θXQD,
compare Fig. 4.5. This effect has been called “self-homodyning” in literature [77, 78].
With the purification technique, we now rotate the postselection polarizer to interfere a
portion of the local oscillator field ELO with the signal field, leading to the superimposed
field ESL = eiφSES + eiφLOELO [79]. The polarizer angle controls the relative intensity of
the two components, and we can control the transmission phases φS and φLO by adjusting
the laser frequency, because the phases vary strongly in the vicinity of the QD and cavity
resonances. We simply have to choose the local oscillator intensity such that it matches
the intensity of the portion of ES , and adjust the phases for destructive interference.
The result is that we detect in transmission mainly the single-photon filtered portion of
ES , which leads to very high photon correlations in the transmitted light despite limited
cooperativity.
Finally, in case (iii) for C → 0, only a vanishing fraction of the photons have interacted

with the QD. We have to tune the postselection polarizer to−45◦ to destructively interfere
nearly equal amounts of ES and ELO to observe enhanced photon correlations. This case
is similar to that recently investigated in [80], where (weak) photon bunching is observed
for a relative phase of π (φS − φLO = π). We have a high-finesse (F ≈ 800) cavity and
significant cooperativity, which enables us to observe much stronger photon correlations.
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Figure 4.6: Numerically determined special polarization angle, where photon bunching
in transmission is maximized, as a function of the cooperativity C, which
in turn is modified by varying only the QD lifetime γ‖. The green curve
is given by the phenomenological expression −45◦ exp (−C): In the limit of
high C, the QD alone can efficiently filter out single-photon states leading to
photon bunching. But for low cooperativity C, it is advantageous to mix the
quantum-dot scattered light with a “local oscillator” provided by orthogonal
polarization. The error bars are due to numerical errors in optimization of
the laser frequency.

The special postselection angle θ∗out and laser frequency have to be optimized numer-
ically in principle because pure dephasing cannot be taken care of in a semi-classical
model. Despite this, we found that the special polarization angle shows approximately a
very simple dependency on the cooperativity θ∗out ≈ −45◦ exp(−C), see Fig. 4.6, which
agrees well to our intuitive explanation here.

As a last point, we analyze the strong photon bunching in terms of the photon-number
distribution Pn. We use our theoretical model to determine Pn, as direct experimental
determination thereof is strongly complicated by its sensitivity to loss. But also the sim-
ulation of narrow-band photon-number Fock input states is challenging in the quantum
master model [81]. Therefore we use coherent input light, and analyze the intracavity light
in terms of its polarized photon-number distribution, taking care of quantum interference
at the postselection polarizer acting on the intracavity field. This is an approximation
because imperfect transmission through the cavity reshapes Pn. We found that the pho-
ton statistics Pn can be calculated best by projection on the required Fock states using
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Figure 4.7: Calculated photon-number distribution after the polarizer, with (through
curves) and without (dashed curves) coupling to the QD in the cavity, the
laser frequency is set to one of the QD resonances. With QD, we clearly see
the photon-number dependent shift of the transmission dip. Only the photon-
number distribution of the detected polarization component is shown, there-
fore the total number of photons in case with QD can exceed the case without
QD due to polarization conversion by the dot. For clarity, pure dephasing has
been neglected here, making the special polarization angle different from the
other simulations and experimental results.

polarization-rotated Fock-space ladder operators b†x/y = a†x/y cos θout ∓ a†y/x sin θout, and
tracing out the undesired polarization component afterwards. With the numerically [38]
calculated steady-state density matrix operator ρ of our system, we obtain the photon-
number distribution after the polarizer:

Pn =
N∑
m=0

1
n!m!〈0x0y| (bx)n (by)m ρ

(
b†x

)n (
b†y

)m
|0x0y〉 (4.3)

Fig. 4.7 shows the 4 lowest photon-number probabilities as a function of the polarizer
angle θout, for the case with and without QD. In the empty-cavity case we see, as expected,
lowest transmission under the cross-polarization condition (θout = −45◦). For the case
with the QD, we observe a photon-number dependent shift of the transmission dip. At
the special polarization angle θ∗out, we see that the one-photon component reaches a
minimum while the higher-photon number states do not, which explains the enhanced
photon bunching enabled by the purification technique.
It is important to note that also the two-photon transmission dip (P2) is not exactly

at cross-polarization, which suggests the following intuitive explanation: Apparently,
in the photon-number basis, the different Fock states pick up a different phase during
transmission through the QD-cavity system. In the weak coupling regime, but often also
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in the strong coupling regime, the individual Jaynes–Cummings dressed states cannot be
resolved spectrally because g . κ. However, the CQED system is still photon-number
sensitive, which implies lifetime-dependent Jaynes–Cummings effects in the weak coupling
regime: the decay rate of the CQED system increases with the number of photons in the
cavity [82, 83]. As consequence, higher photon-number states have a modified interaction
cross section and experience a reduced phase shift. The dip in P2 in Fig. 4.7 is already
very close to the cross-polarization angle θout = −45◦, while the dips for higher photon-
number states Pn>2 are indistinguishable from θout = −45◦.
In conclusion, we found that the nonlinear response of a lossy cavity-QD system can be

strongly enhanced by postselection of a particular polarization state. This leads to inter-
ference between Fock states that experience different modifications by the QD nonlinear-
ity, and results in strong photon correlations of the transmitted light. As the underlying
effect, interference of the two polarization modes leads to high-fidelity cancellation of
the single-photon transmission for the special polarization postselection. By correlating
the results with a theoretical model, we found indications of photon-number sensitive
Jaynes–Cummings physics in the weak coupling regime of CQED.
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4.6 Supplemental material

4.6.1 Detector response
In order to show that the true two-photon correlations are much stronger than the raw
experimental data suggests, we present here details on the convolution of the theoretical
g(2)(τ) data with the single-photon counter (SPC) detector response. We use two detec-
tors with 50 ps and 500 ps detector jitter, which was determined by measuring photon
correlations of a picosecond Ti:Sapphire laser oscillator. As shown in Fig 4.8 we observe
very good agreement between the convoluted theoretical prediction and the experimental
data for our QD. Since count rates were high, we could also perform the experiment with
a less sensitive 50 ps jitter detector, which again agrees very well to theory. This clearly
shows that our g(2)(τ) measurements are severely reduced by the detector jitter of the
single-photon counters, but that we can fully deconvolute this effect.
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Figure 4.8: Comparison of the theoretical data with and without taking care of detector
jitter, and the experimental g(2)(τ) data for our QD. The agreement between
theory and experiment is excellent.
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4.6.2 Photon correlations and cavity quality
Here we show that the cavity is essential to obtain the strong photon correlations we
observed experimentally. For this we conduct numerical simulations for various cavity
decay rates κ. In order to isolate the effect of κ, we have to optimize for each value of
κ the laser frequency and the output polarization to find the special polarization angle
and thereby the maximum in the g(2)(0) landscape. Next to this we also need to keep the
internal mean photon number constant by increasing the incident laser power for a higher
value of κ. In order to do this we optimized the power coupling parameter η for each
value of κ, so that the mean photon number of the outgoing light (for parallel polarization
θin = θout = 45◦) on the cavity resonance for an empty cavity remains constant. The
result is shown in Fig. 4.9: In the case of almost no cavity (large κ), only very small
g(2)(0) values are obtainable, while in good cavities (small κ), extreme values of g(2)(0)
are possible. The other parameters for simulation of Fig. 4.9 are similar to those of the
device in this chapter.
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Figure 4.9: Calculated maximal (i.e., for special polarizer angles) g(2)(0) for different
cavity decay rates. A good cavity with low κ is needed in order to reach the
extreme bunching values g(2)(0).
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Chapter 5

Observation of the unconventional
photon blockade

We observe the unconventional photon-blockade effect in QD cavity QED,
which, in contrast to conventional photon blockade, operates in the weak
coupling regime. A single QD transition is simultaneously coupled to two
orthogonally polarized optical cavity modes, and by careful tuning of the
input and output state of polarization, the unconventional photon-blockade
effect is observed. We find a minimum second-order correlation g(2)(0) ≈ 0.37
which corresponds to g(2)(0) ≈ 0.005 when corrected for detector jitter, and
observe the expected polarization dependency and photon bunching and anti-
bunching very close-by in parameter space, which indicates the abrupt change
from phase to amplitude squeezing.

This Chapter has been published in Physics Review Letters 121, 043601 (2018) [84].
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5.1 Introduction
A two-level system strongly coupled to a cavity results in polaritonic dressed states with a
photon-number dependent energy. This dressing gives rise to the photon-blockade effect
[85, 21] resulting in photon-number dependent transmission and reflection, enabling the
transformation of incident coherent light into specific photon-number states such as single
photons. Single-photon sources are a crucial ingredient for various photonic quantum
technologies ranging from quantum key distribution to optical quantum computing. Such
sources are characterized by a vanishing second-order auto-correlation g(2)(0) ≈ 0 [86].
In the strong coupling regime, where the coupling between the two-level system and

the cavity is larger than the cavity decay rate (g > κ) [23], photon blockade has been
demonstrated in atomic systems [57], QDs in photonic crystal cavities [62], and circuit
QED [87, 88]. At the onset of the weak coupling regime (g ≈ κ), it has been shown that
by detuning the dipole transition frequency with respect to the cavity resonance, photon
blockade can still be observed [66]. However, moving further into the weak coupling
regime (g < κ) which is much easier to achieve [89, 5] (in particular if one aims for a
small polarization mode splitting), conventional photon blockade is no longer possible
because the energy gap between the polariton states vanishes. Nevertheless, also in the
weak coupling regime, the two-level system enables photon number sensitivity, which
has recently enabled high-quality single-photon sources using polarization postselection
[4, 2, 3] or optimized cavity in-coupling [90]. We focus in this chapter on resonantly
excited systems. In 2010, Liew and Savona introduced the concept of the unconventional
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Figure 5.1: Removal of the 2-photon component in conventional photon blockade by the
anharmonicity of the Jaynes–Cummings ladder (a). In the unconventional
photon blockade (b, adapted from [91]), two excitation pathways (red and blue
arrows) destructively interfere. The state |ij〉 corresponds to (i, j) photons
in the (H,V ) polarized microcavity modes. The QD is coupled (coupling
constant g) to both cavity modes due to an orientational mismatch of its
dipole (angle φ, see inset).
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photon blockade (UPB) [92, 93] which operates with arbitrarily weak nonlinearities. It
was first investigated for Kerr nonlinearities [94, 95], then for χ(2) nonlinearities [96] and
the Jaynes–Cummings [91, 97] system which we focus on here. Both the conventional and
unconventional photon-blockade effect result in transmitted light with vanishing photon
auto-correlation g(2)(0) < 10−2 [94, 98], however, the underlying physical mechanisms
are completely different, see Fig. 5.1. In the strong coupling regime, the unevenly spaced
levels of the dressed spectrum prevent reaching the two-photon state for a particular laser
frequency [red arrows in Fig. 5.1(a)]. Moreover, the probabilities of having N > 1 photons
in the system are all suppressed with respect to those of a classical state with the same
average photon number. In the unconventional photon blockade instead [Fig. 5.1(b)], only
the probability of having N = 2 photons is suppressed. The sub-Poissonian character
then arises because, for the chosen pump amplitude, the average photon number – and
thus the probabilities of N > 2 photons – are very small. A possible explanation of the
reduced N = 2 probability is given in terms of the interference between two excitation
pathways to the N = 2 photon state, which can be destructive thanks to the small energy
shift of the two-photon state induced by the weak nonlinearity [91, 99]. An equivalent
alternative explanation (discussed below) was proposed in terms of an optimal interplay
between squeezing and displacement of the cavity field [100].
We investigate here a single semiconductor QD in an optical microcavity where a single

linearly-polarized QD dipole transition is coupled to the two linearly polarized cavity
modes due to an orientational mismatch of the QD dipole with respect to the cavity
axes [angle φ, see inset Fig. 5.1(b)]. Since the unconventional photon blockade operates
in the low mean-photon-number regime, Fig. 5.1(b) shows only the N = 0...2 photon
Fock states. Further, we show only one particular excitation pathway (blue), many more
involving internal cavity coupling exist but do not qualitatively change the interpretation.
More specifically, we rely here on the input- output tuning scheme described in detail in
[93, 94], here realized via the polarization degree of freedom, which is an extension of
the original UPB proposal [91, 92]. As a result the interference of different excitation
pathways with and without involvement of the photon-number sensitive QD transition
can be tuned such that the two-photon component is suppressed.

5.2 Device and experimental setup

The sample for this experiment consist of a layer of self-assembled InAs/GaAs QDs
embedded in a micropillar cavity (maximum Purcell factor Fp = 11.2) grown by molecular
beam epitaxy [73]. The QD layer is embedded in a P–I–N junction, separated by a 27
nm thick tunnel barrier from the electron reservoir to enable tuning of the QD resonance
frequency by the quantum-confined Stark effect. Due to the QD fine-structure splitting,
we need to consider only one QD transition, which interacts with both the H and V cavity
modes.
We model our system using a Jaynes–Cummings Hamiltonian in the rotating wave

approximation with g � κ. The Hamiltonian for two cavity modes and one QD transition
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driven by a continuous-wave laser is written as

H =
(
ωL − ωVc

)
â†V âV +

(
ωL − ωHc

)
â†H âH

+ (ωL − ωQD) σ̂†σ̂ + g
(
σ̂b̂† + σ̂†b̂

)
(5.1)

+ ηH
(
âH + â†H

)
+ ηV

(
âV + â†V

)
.

ωHc and ωVc are the resonance frequencies of the linearly polarized cavity modes, â†H and
â†V the photon creation operators, ωQD is the QD resonance frequency, and σ̂† the exciton
creation operator. b̂ = âV cos φ+âH sin φ is the cavity photon annihilation operator along
the QD dipole orientation, and φ is the relative angle. In our case the angle is φ = 94◦,
which means that the H-cavity mode couples better to the exciton transition. ηH and ηV
are the amplitudes of the incident coherent light coupling to the H and V cavity modes.
For numerical simulations, we add relaxation of the cavity modes and dephasing of the
QD transition and solve the corresponding quantum master equation [37, 38, 5], add the
output polarizer and calculate the mean photon number and second-order correlation
function. All theoretically obtained g(2)(τ) data is convolved with the detector response
(530 ps) to match the experimental conditions.
In Fig. 5.2(a) we show false color plots of the cavity transmission as a function of laser

frequency and QD energy. The QD energy is tuned by altering the bias voltage which
modifies the quantum confined Stark effect. The input polarization is set such that we
excite only one cavity mode. A cross section taken at the dashed line in (a) is shown
in Fig. 5.2(b). From the fit to the theoretical model we obtain the cavity decay rate
κ = 60 ± 3 ns−1, the QD-cavity coupling constant g = 14 ± 0.4 ns−1, the population
relaxation rate γ|| = 1.0± 0.4 ns−1, the pure dephasing rate γ∗ = 0.2± 0.4 ns−1 and the
total dephasing rate γ = γ||

2 + γ∗ = 0.7 ns−1.
In an additional measurement we keep the QD energy constant and rotate the input

polarization, see Fig. 5.2(c). By fitting the data for several incident polarization orienta-
tions (and keeping κ, γ||, γ∗ and g constant), we obtain the QD fine-structure splitting
∆fQD = 2.4 ± 0.1 GHz, the cavity polarization splitting ∆fcav = 10 ± 0.1 GHz, and
the angle between the QD and cavity polarization basis φ = 94◦ ± 2◦. The resulting
theoretically calculated transmission in Fig. 5.2(d) shows excellent agreement with the
experimental data in Fig. 5.2(c).
In summary the simulation parameters used to produce the explanatory Fig. 5.4 were

κ = 60 ns−1, g = 14 ns−1, γ|| = 1.0 ns−1, γ∗ = 0.0 ns−1, ∆fcav = 0 GHz, φ = 94◦, and
〈nin〉 = 0.01, i.e., without dephasing and cavity mode splitting. For Fig. 5.5 where theory
is compared to experiment, we use the full set (including pure dephasing): κ = 60 ns−1,
g = 14 ns−1, γ|| = 1.0 ns−1, γ∗ = 0.2 ns−1, ∆fcav = 10 GHz, φ = 94◦ and 〈nin〉 = 0.06.
Here 〈nin〉 is the incident mean photon number.
From the device parameters we see that the QD fine-structure splitting of 2.4 GHz

is much larger than the QD linewidth (FWHM) of 2 γ
2π ≈ 0.2 GHz; therefore we can

focus on one QD transition only as long as a narrow-linewidth laser is used. We have
confirmed this by comparing numerical simulations with one and two fine-structure split
QD transitions, where equal transmission amplitudes and photon correlations are ob-
tained. Finally, there could be non-energy preserving and/or non-polarization preserving
effects, such as phonon-assisted Raman-type transitions between the two fine-structure
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split exciton states. This, however, would lead to a reduced interference of incident laser
light and QD resonance fluorescence, which would imply a reduced dip depth in a simple
transmission scan, this is not the case [Fig. 5.2(b)].
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Figure 5.2: Characterization of the QD cavity-QED device by cavity transmission mea-
surements: Cavity transmission as a function of laser frequency and QD bias
voltage (a), corresponding cross-section at the dashed line (b), and experi-
mental (c) and theoretical (d) laser frequency – incident linear polarization
orientation scans of the cavity transmission.

Fig. 5.3 shows the experimental setup. For polarization control, we use exclusively
Glan-type polarizers and calibrated zero-order waveplates. Light from a scanning laser
is polarized, and then coupled with a 0.4 NA microscope objective into the fundamental
mode of the microcavity. The device is on a cold finger at 5 K in a low-vibration closed-
cycle cryostat with 3-axes piezo control for fine positioning. The transmitted light is
collected using also a 0.4 NA microscope objective; motorized waveplates in combination
with a fixed linear polarizer are used to select a specific state of polarization. With a non-
polarizing beamsplitter and two single-photon detectors we then record photon counts
and photon auto correlations.
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Figure 5.3: Sketch of the experimental setup. Pol: polarizer, APD: single-photon count-
ing avalanche photodiode.

5.3 Results

Fig. 5.4 shows how the second-order correlation g(2)(τ = 0) of the transmitted photons
depends on the linear input and linear output polarization angle. In all current single-
photon sources with a QD in a cavity [2, 3, 4], only one cavity mode is excited with the
laser, and by using a crossed polarizer, single photons are obtained in the orthogonal
mode. This condition is indicated with arrow A in Fig. 5.4. By exciting both cavity
modes and selecting an appropriate output polarization state such as indicated by arrow
B, it is also possible to obtain single photons; this is where the unconventional photon
blockade can be observed.
Now, we investigate more closely region B of Fig. 5.4, where both cavity modes are

excited (θin = 45◦). Furthermore, we add the experimentally unavoidable polarization
splitting of the H and V cavity modes which is 10 GHz for the device under inves-
tigation. Furthermore, we vary the detected output polarization in the most general
way, by introducing λ/2 and λ/4 wave plates before the final polarizer in the trans-
mission path. As simplified experimental setup is sketched in the inset of Fig. 5.5(b).
Fig. 5.5(b) shows how this polarization projection affects the mean photon number 〈nout〉,
for 〈nin〉 =

(
ηH+ηV

κ

)2
= 0.06 in the simulation and in the experiment [Fig. 5.5(a)]. This

region is highly dependent on the cavity splitting and the QD dipole angle, careful de-
termination of the parameters allows us to obtain good agreement to experimental data
[Fig. 5.5(a)]. In this low mean photon-number region, the second-order correlation g(2)(0)
shows a non-trivial behavior as a function of the output polarization state, shown in
Fig. 5.5(c, experiment) and (d, theory): First, we observe the expected unconventional
photon blockade anti-bunching (blue region). The experimentally measured minimum
g(2)(0) is 0.37± 0.04, which is limited by the detector response function. The theoretical
data which takes the detector response into account agrees very well to the experimental
data and predicts a bare g(2)(0) ≈ 0.005. Second, we find that, close-by in parameter
space, there is a region where bunched photons are produced. This enhancement of the
two-photon probability happens via constructive interference leading to phase squeezing.
Theoretical and experimental data show good agreement, we attribute the somewhat
more extended antibunching region to long-time drifts of the device position during the
course of the experiment (10 hours).
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Figure 5.4: False color plot of the theoretically calculated g(2)(0) convolved with the de-
tector response as a function of the incident and detected linear polariza-
tion orientation. Arrow A indicates the condition where most single-photon
sources operate: the system is excited in the H-cavity mode and the single
photons are detected in the V-cavity mode. Arrow B shows the case where
single photons are created using the unconventional photon blockade. White
pixels indicate that the simulation has failed due to extremely low photon
numbers. The model parameters are given in section 5.2.
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In Fig. 5.5(e) and 5.5(f) we show the two-time correlation function g(2)(τ) for the two
cases indicated by the arrows. The observed width and height of the anti-bunching and
bunching peak predicted by the theory is in agreement with the observed experimental
data. The exact shape of the correlation function in Fig. 5.5(e) is very sensitive to
non-ideal effects such as energy fluctuations of the QD, which is why the functional
form of the theoretical g(2)(τ) (blue line Fig. 5.5) is a bit different compared to the
experiment. For two coupled Kerr resonators in the UPB regime, one observes oscillations
in g(2)(τ) when collecting the output of only one of the cavities [92]. During finalizing
this research, a manuscript describing a first observation of this effect has appeared
[101]. In our case, these oscillations are absent because the system works mostly as a
unidirectional dissipative coupler [102], and the photon field behind the output polarizer
contains contributions from both cavities modes, which suppresses the oscillations in
g(2)(τ).

5.4 Discussion
An alternative way to understand the unconventional photon blockade is in terms of Gaus-
sian squeezed states [100]: For any coherent state |α〉, there exists an optimal squeeze
parameter ξ that minimizes the two-photon correlation g(2)(0), which can be made van-
ishing for weak driving fields. We find that, even with a small amount of squeezing,
it is possible to significantly reduce the 2-photon distribution and minimize g(2)(0) for
low mean photon numbers. A Gaussian squeezed state is produced from vacuum via
D(α)S(ξ) |0〉 = |α, ξ〉. Here S is the squeeze operator with ξ = r expiθ (0 ≤ r < ∞,
0 ≤ θ ≤ 2π). D is the displacement operator, and the complex displacement amplitude
α = ᾱ expiϑ (0 ≤ ᾱ < ∞, 0 ≤ ϑ ≤ 2π). For θ = ϑ = 0, we can calculate the two-photon
probability in the small-α (low mean-photon-number) limit as

|〈2|D(α)S(ξ) |0〉|2 ≈ (ā2 − r)2/2, (5.2)

using a Taylor expansion. We see that, in order to obtain a vanishing two-photon
probability, the squeeze parameter r needs to be equal to ā2 which is the mean photon
number. By defining the amount of quadrature squeezing as

〈
(∆X1)2

〉
= 1

4e
−2r and

considering a 〈nout〉 ≈ 0.004 (Fig. 5.5(a)), this condition leads to 10 log10(e−0.008) =
−3× 10−2 dB squeezing. Interestingly, this result means that, for a weak coherent state,
only a very small amount of squeezing is needed to make g(2)(0) drop to nearly zero.
In Fig. 5.6 we show further analysis of the theoretical calculations for the experimen-

tal state produced by the unconventional photon blockade as indicated by arrow D in
Fig. 5.5(c) and (d). In agreement with Eq. 5.2 we observe that the two-photon state in
the photon-number distribution shown in Fig. 5.6(a) is suppressed. By the same mech-
anism that suppresses the two-photon state one also expects to see an increase of the
three photon component [93]. The increase of P3 is not observed here because of the low
mean photon number. From the photon-number variance given in Fig. 5.6(b), we observe
that the state is amplitude squeezed. By moving from the region of arrow C to D in
Fig. 5.5(d), the observed state switches from a phase-squeezed to an amplitude-squeezed
state, which is a clear signature of the unconventional photon-blockade effect [93].
Finally, we discuss whether the UPB effect can be used to enhance the performance of

single-photon sources, and in particular their efficiency. Traditionally, the QD is excited
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Figure 5.5: False color plots of 〈nout〉 and g(2)(0) as a function of the orientation of the
λ/2 and λ/4 wave plate in the transmission path. (a) 〈nout〉 is the mean photon
number in a given polarization basis at the output. At 0◦ the linear polarized
incoming light is parallel to the fast axis of both wave plates. (b) correspond-
ing theory to (a) with as inset a sketch of the experimental setup. (c) and (d)
experimental and theoretical g(2)(0). (e) and (f) show g(2)(τ) for the (anti)
bunching region indicated by arrows C (D) in Fig. 5.5(c) and (d). The red
dots are measured data and the blue line is the theoretically obtained g(2)(τ)
convolved with the detector response. The exact theoretical parameters are
given in section 5.2.
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Figure 5.6: (a) Calculated photon-number distribution of a coherent state and for the
condition indicated by the arrow C and D in Fig. 5.4(c). (b) The calculated
photon-number variance for the states presented in (a) showing amplitude
squeezing in the region where we observe the unconventional photon block-
ade. (c) Mean photon number 〈nout〉 as a function of input polarization. We
see that a large improvement of the single-photon efficiency can be obtained
by exploiting the UPB effect. The simulation is performed for three cavity
splittings (∆fcav) showing that the enhancement is largest in a polarization
degenerate cavity.
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by one linearly polarized cavity mode and photons are collected via the orthogonal mode.
In our experiment, the QD excitation probability is 1 − cos(4◦) ≈ 0.0024, and, once
excited, it has 1 − 0.0024 chance to emit into the collection cavity mode, which leads
to a low total efficiency. In the unconventional photon-blockade regime, arrow B in
Fig 5.4, this efficiency is higher. To further explore this, we show in Fig. 5.6(c) the mean
photon number 〈nout〉 as a function of the input polarization with constant input laser
power 〈nin〉 = 0.06 (the polarization output state is chosen such that g(2)(0) ≈ 0). We
see that, by rotating the input polarization from 0◦ to 45◦, the output mean photon
number can be increased by approximately a factor 10. The simulation is done for
various cavity splittings ∆fcav which shows that increasing the cavity splitting reduces
this enhancement. We conclude that, in the low mean-photon-number regime, the UPB
effect can be used to increase the efficiency of a single-photon source.
In conclusion, we have experimentally observed the unconventional photon-blockade

effect using a single QD resonance coupled to two orthogonally-polarized cavity modes.
We find the expected drop in g(2)(0), but additionally and very close in parameter space,
we also find that the transmitted light statistics can be tuned from anti-bunched to
bunched, all in good agreement to theoretical models and simulations. In contrast to
conventional photon blockade, no energy splitting of the polariton resonances is required,
allowing to obtain g(2)(0) ≈ 0 even with weak nonlinearities. Finally, under certain con-
ditions, we find that the unconventional photon-blockade effect can increase the efficiency
of single-photon sources.
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Chapter 6

Squeezing of weak single-photon
light

The unconventional photon-blockade phenomenon, described in the previous
chapter, can be seen as amplitude squeezing of non-classical Gaussian states of
light. In this chapter we will describe and discuss in detail how this squeezing
relates to the unconventional photon blockade. Furthermore, a procedure is
given how quadrature squeezing could be measured for weak nonlinearities.
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6.1 Introduction
In the previous chapter, the first experimental observation of the unconventional photon
blockade is shown and discussed. Its main signatures are the reduction of the n = 2
photon Fock state component and the amplitude squeezing of the corresponding state
as shown in Fig 5.5. Here we explain in more detail an alternative way to look at the
unconventional photon blockade. It turns out that the unconventional photon blockade
can be seen as a particular realization of optimized Gaussian amplitude squeezing [100].
In general, one refers to a bunched photon stream if the photons are grouped together,

and antibunched if there is a finite distance between the photons. Physically, this state-
ment is quantified by the second-order correlation function g(2)(0), where g(2)(0) > 1
corresponds to bunched light and g(2)(0) < 1 corresponds to antibunched light. However,
measuring only the second-order correlation function is not enough to fully characterize
the quantum state. Consider for example a pure two-photon Fock state. One finds that

g(2)(0) =
∑∞
n=0 n(n− 1)Pn
(∑∞n=0 nPn)2 = 2P2

(2P2)2 = 1
2 . (6.1)

This two-photon state should be called a bunched state, since two photons are lumped
together, but by only measuring g(2)(0), one might conclude it is a single-photon state with
reduced purity. It is nice to draw here an analogy to the famous poem written by John
Godfrey Saxe: Blind men and the elephant. If one only sees a certain part of the elephant,
one might think it is something completely different from what it actually is. For example,
by only touching the trunk of the elephant one might think it is a snake. Here, the
situation is similar, g(2)(0) alone does not tell what kind of quantum state one deals with
and care should be taken in drawing conclusions. We will discuss here why unconventional
photon blockade can be seen as a specific case of Gaussian amplitude squeezing, by using
the measurable parameters mean photon number, second-order correlation function, the
amount of quadrature and amplitude squeezing. Alternatively, one could also measure
higher order correlation functions or one performs full quantum state tomography, but
this requires an increase in measurement time. At the end we explain a procedure to
measure the amount of quadrature squeezing in a two-level system.

6.2 Minimizing the second-order correlation g(2)(0).
We show that the unconventional photon-blockade effect can be viewed as a particular
realization of optimized Gaussian amplitude squeezing [100]. For this, we consider a
single-mode Gaussian squeezed light state written as

D(α)S(ξ) |0〉 = |α, ξ〉 . (6.2)

Here, D(α) is the displacement operator and S(ξ) is the squeezing operator. Using this,
the two-photon probability becomes

|〈2|D(α)S(ξ) |0〉|2 =
∣∣∣∣〈2| exp(αâ† − α∗â) exp

(1
2(ξâ2 + ξâ†2)

)
|0〉
∣∣∣∣2

≈ ((ā)2 − r)2/2, (6.3)
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with ā the mean photon number and r the squeezing parameter. The interplay between a
coherent displacement and a squeeze operation can cause the probability for a two-photon
state to go to zero. Since it is experimentally hard to determine the exact photon-number
distribution, it is more convenient to look at the second-order correlation g(2)(0), which
is relatively easy to measure. Now, the full second-order correlation expression for a
displaced squeezed vacuum state reads [100]

g(2)(0) = 1 + cosh(2r)
ā2 + sinh2(r)

− ā2(1 + sinh(2r))(
ā2 + sinh2(r)

)2 . (6.4)

Minimizing g(2)(0) as a function of r gives the value of r where the amount of antibunching
is maximal. For any ᾱ one finds that g(2)(0) < 1, except for ᾱ → ∞ where g(2)(0)
approaches 1. Only at a low mean photon number |ᾱ|2 < 0.1 one finds thatg(2)(0) < 0.1.
This is the regime where we observe the unconventional photon blockade.

6.3 Amplitude squeezing
The state obtained by the unconventional photon blockade is a Gaussian state with a
low mean photon number. Here we quantify and discuss how to measure the amount
of amplitude squeezing. A state is amplitude squeezed if the photon-number variance is
smaller than the variance of a coherent state with the same mean photon number. Since
the photon-number variance of a coherent state is equal to the mean photon number, we
define that a state is amplitude squeezed if〈

(∆N)2
〉
< 〈N〉 . (6.5)

In order to measure amplitude squeezing, one determines the fluctuations from the actual
detected count rate (σSPS) and divide it by the fluctuations of a shot-noise limited source
of the same intensity (σSN ). The theoretically predicted ratio is

σSPS
σSN

=
√

1− ζρ, (6.6)

where ζ denotes the overall detection efficiency and ρ is the probability that a pulse
creates a single photon. In case of a single-photon source with ρ = 1, meaning that every
pulse creates a single photon, and assuming ζ = 1, we find that σSP S

σSN
= 0, or in other

words, 100 % squeezing. In the case of unconventional photon blockade in cavity-QED,
we operate at a very low mean photon number, resulting in ρ ≈ 0. This means that there
is almost no amplitude squeezing, and reduced collection and detection efficiencies makes
it hard to detect amplitude squeezing.

6.4 Quadrature squeezing
The amount of amplitude squeezing appearing in unconventional photon blockade is too
small to detect with the current technologies, however it is possible to measure quadrature
squeezing in the system. In case of quadrature squeezing it is crucial to first define the
generic quadrature operator
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X̂(φ) = 1
2
(
âe−iφ + â†e+iφ

)
. (6.7)

This operator specifies the quadrature which is squeezed. For X̂(0)
(
X̂(π)

)
we squeeze

the position (momentum) quadrature in the language of a generic harmonic oscillator.
The condition for quadrature squeezing is now given as〈

(∆X(φ))2
〉
<

1
4 , (6.8)

which is bounded by the Heisenberg uncertainty relation. A normalized value for the
amount of quadrature squeezing is given by introducing the squeeze parameter [10],

s(φ) =

〈(
∆X̂(φ)

)2
〉
− 1/4

1/4 = 4
〈(

∆X̂(φ)
)2
〉
− 1 = 4

〈
:
(
∆X̂(φ)

)2
:
〉
. (6.9)

Here, squeezing exist whenever −1 ≤ s(φ) < 0. The notation 〈::〉 means that the creation
an annihilation operators are normal ordered. Experimentally, the amount of squeezing
is often expressed as 10 log10(1 + s(φ)). Typically, if there is a limited amount of am-
plitude squeezing, there exist an axis along which the system is quadrature squeezed.
However, there is one particular case, a photon Fock state, where this is not true. A
photon Fock state has no quadrature squeezing, however the photon-number distribution
is squeezed infinitely. This explains why Fock states are so fundamentally different from
other quantum states of light.
In Ref. [103], Vogel developed a method to determine the amount of quadrature squeez-

ing of resonant fluorescence from an atom using homodyne interference. We explore the
same method here, but assume that the fluorescent light comes from a QD. The fluorescent
light is written as Êfl with g(2)(0)� 1. For the homodyne intensity correlations, the light
state Êfl is mixed with light from a local oscillator ÊLO, where ÊLO is coherent laser light
from the continuous-wave laser that excites the QD. The setup for homodyne intensity
correlations is shown in Fig. 6.1. This setup is preferred over a homodyne cross correla-
tions setup, since the sub-Poissonian statistics of the signal field directly contributes to
the sub-poissonian statistics of the superimposed light. Therefore, nonclassical effects in
the signal field can be interpreted as contributions to an overall nonclassical effect in the
homodyne intensity scheme.
The output of the first beamsplitter consists of light from the QD and the local oscil-

lator. This superimposed light field ÊSL is written as

Ê+
SL(t) = 1√

2

(
Ê+
fl(t) + eiφÊ+

LO(t)
)
, (6.10)

where Ê+
fl(t) and Ê+

LO(t) represent the positive frequency at time t for the QD light and
light from the local oscillator respectively. The light from the QD is described by a single
mode field

Êfl = Ê+
fl(t) + Ê−fl(t) ∼ iâ exp(−iωt)− iâ† exp(iωt), (6.11)

which is used as a basis to determine the unnormalized second-order correlation function.
The unnormalized second-order correlation function of the superimposed light field
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Figure 6.1: Homodyne intensity correlation scheme [79]. The light state from the QD in
the micropillar

(
Êfl

)
is superimposed by the first beamsplitter (BS1) with the

local oscillator
(
ÊLO

)
, the resulting superimposed light

(
ÊSL

)
is recorded

by means of an Hanbury Brown Twiss (HBT) detection scheme.

G(2)(t, t+ τ) =
〈
Ê−SL(t)Ê−SL(t+ τ)Ê+

SL(t+ τ)Ê+
SL(t)

〉
(6.12)

produces the well-known anti-bunched second-order correlation function of the resonance
fluorescence G(2)

fl in the absence of a local oscillator.
Following the procedure by Vogel [79, 103], it is possible to write G(2)(t, t + τ) as the

sum of five local oscillator terms |ELO|n with n = 0, 1, 2, 3, 4. Since the local oscillator
behaves according to a classically theory it can be taken out of the averaging brackets and
G(2)(φ, t, t+ τ) can be written as an expansion of the local oscillator amplitude, Eq. 6.12
becomes

G(2)(t, t+ τ) =
4∑

n=0
G(2)
n (t, t+ τ), (6.13)

The five terms, under the assumption that we are in the stationary regime, which allows
one to drop the t dependence, become

G
(2)
0 (φ, τ) = 1

4
〈
Ê−fl(0)Ê−fl(τ)Ê+

fl(τ)Ê+
fl(0)

〉
(6.14)

G
(2)
1 (φ, τ) = ELO

4

(
e−iφ

〈
Ê−fl(τ)Ê+

fl(τ)Ê+
fl(0)

〉
+ e−iφ

〈
Ê−fl(0)Ê+

fl(τ)Ê+
fl(0)

〉
+

eiφ
〈
Ê−fl(0)Ê−fl(τ)Ê+

fl(0)
〉

+ eiφ
〈
Ê−fl(0)Ê−fl(τ)Ê+

fl(τ)
〉) (6.15)

G
(2)
2 (φ, τ) = E2

LO

4
(
e2iφ

〈
Ê−fl(0)Ê−fl(τ)

〉
+ e−2iφ

〈
Ê+
fl(τ)Ê+

fl(0)
〉

〈
Ê−fl(τ)Ê+

fl(0)
〉

+
〈
Ê−fl(0)Ê+

fl(τ)
〉

+ (6.16)〈
Ê−fl(0)Ê+

fl(0)
〉

+
〈
Ê−fl(τ)Ê+

fl(τ)
〉)
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G
(2)
3 (φ, τ) = E3

LO

4
(
eiφ
〈
Ê−fl(0)

〉
+ eiφ

〈
Ê−fl(τ)

〉
+ (6.17)

e−iφ
〈
Ê+
fl(τ)

〉
+ e−iφ

〈
Ê+
fl(0)

〉)
G

(2)
4 (φ, t, t+ τ) = E4

LO

4 (6.18)

From these equations one notices that G(2)
3 (φ, τ) and G

(2)
4 (φ, τ) are independent of the

time delay and can be neglected. Later, a detailed explanation is given about the physical
meaning of G(2)

0 (φ, τ), G(2)
1 (φ, τ), G(2)

2 (φ, τ). Since we assume that there are no correla-
tions for τ → ∞, it is advantageous to compare the short-time value of the correlation
function with its long-time value. In this sense we may introduce the following measure
for photon-pair correlations:

∆G(2)(φ, τ) = G(2)(φ, τ)− lim
τ1→∞

G(2)(φ, τ + τ1). (6.19)

Now, we derive all terms of ∆G(2)(φ, τ) and show that ∆G(2)
2 (φ, τ) is a measure for the

amount of quadrature squeezing. Using Eq. 6.13 the terms of ∆G(2)(φ, τ) become

∆G(2)
0 (φ, τ) = 1

4
〈
Ê−fl(0)Ê−fl(τ)Ê+

fl(τ)Ê+
fl(0)

〉
− 1

4
〈
Ê−flÊ

+
fl

〉〈
Ê−flÊ

+
fl

〉
(6.20)

=
(
G

(2)
0 (τ)−

I2
fl

4

)
,

∆G(2)
1 (φ, τ) = G

(2)
1 (φ, τ)−

ELO
4

(
e−iφ

〈
Ê−fl(τ →∞)Ê+

fl(τ →∞)
〉〈
Ê+
fl(0)

〉
+ e−iφ

〈
Ê−fl(0)Ê+

fl(0)
〉〈
Ê+
fl(τ →∞)

〉
+eiφ

〈
Ê−fl(0)Ê+

fl(0)
〉〈
Ê−fl(τ →∞)

〉
+ eiφ

〈
Ê−fl(τ →∞)Ê+

fl(τ →∞)
〉〈
Ê−fl(0)

〉)
(6.21)

∆G(2)
2 (φ, τ) = E2

LO
4

(
e2iφ

〈
Ê−fl(0)Ê−fl(τ)

〉
+ e−2iφ

〈
Ê+
fl(τ)Ê+

fl(0)
〉

+
+
〈
Ê−fl(0)Ê+

fl(τ)
〉

+
〈
Ê−fl(τ)Ê+

fl(0)
〉

+
〈
Ê−fl(0)Ê+

fl(0)
〉

+
〈
Ê−fl(τ)Ê+

fl(τ)
〉)
−

E2
LO
4

(
e2iφ

〈
Ê−fl(τ →∞)

〉2
+ e−2iφ

〈
Ê+
fl(τ →∞)

〉2
+

+2
〈
Ê−fl(τ →∞)

〉〈
Ê+
fl(τ →∞)

〉
+ 2

〈
Ê−fl(τ →∞)Ê+

fl(τ →∞)
〉)

=
E2

LO
4

(
e2iφ

〈
Ê−fl(0)Ê−fl(τ)

〉
+ e−2iφ

〈
Ê+
fl(τ)Ê+

fl(0)
〉

+〈
Ê−fl(0)Ê+

fl(τ)
〉

+
〈
Ê−fl(τ)Ê+

fl(0)
〉)
−

E2
LO
4

(
e2iφ

〈
Ê−fl(τ →∞)

〉2
+ e−2iφ

〈
Ê+
fl(τ →∞)

〉2
+

2
〈
Ê−fl(τ →∞)

〉〈
Ê+
fl(τ →∞)

〉)
,

(6.22)
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∆G(2)
3 (φ, τ) = 0, (6.23)

∆G(2)
4 (φ, τ) = 0. (6.24)

Here, we use that in the limit τ1 →∞ one finds
〈
Ê−fl(0)Ê−fl(τ1 →∞)

〉
→
〈
Ê−fl(τ1 →∞)

〉2
.

This mean that the correlations between the electric field expectation values disap-
pear and one can separate them. Note that the expectation value of the electric field
is independent of τ although we have written Ê(τ1 → ∞) for clarity. This leads to〈
Ê−fl(0)Ê+

fl(0)
〉

=
〈
Ê−fl(τ1)Ê+

fl(τ1)
〉

=
〈
Ê−flÊ

+
fl

〉
= Ifl. Using these relations it is easy to

go from the first to the second step in Eq 6.22. Now, we relate ∆G(2)
2 (φ, τ) to the quadra-

ture squeezing by defining a squeezing operator. For a single mode field the position (X1)
and momentum operator (X2) of the squeezing are, using Eq. 6.9, defined as

X̂1(φ) = 1
2C

(
â exp(−iφ) + â† exp(iφ)

)
=

1
2
(
Ês

+ exp(−iφ) + Ês
− exp(iφ)

)
= 1

2ε
(
Ê+
fl exp(−iφ) + Ê−fl exp(iφ)

)
,

X̂2(φ) = 1
2iC

(
â exp(−iφ)− â† exp(iφ)

)
= (6.25)

1
2i
(
Ês

+ exp(−iφ)− Ês
− exp(iφ)

)
= 1

2εi
(
Ê+
fl exp(−iφ)− Ê−fl exp(iφ)

)
.

Here, C is a constant which connects the electric field Es to the annihilation and cre-
ation operators with |C|2 = 2Ifl. The factor 2 is a normalization constant which appears
because of the 1√

2 when adding Ê+
s and Ê−s to obtain the total field Ês. |ε|2 depends on

the product of the decay rate, collection and detection efficiencies. In order to relate the
abstract theory to experiments we include a parameter V , the visibility of the interfer-
ometer, which includes the spatial mode overlap of the beams. Using the definition for
X1 and X2 one finds that

∆G(2)
2 (φ, τ) = V 2E2

LO |ε|
2
(〈

: X̂1(φ, 0)X̂1(φ, τ) :
〉
−
〈
X̂1(φ)

〉2
)

(6.26)

= V 2E2
LO |ε|

2
〈

: ∆X̂1(φ, 0)∆X̂1(φ, τ) :
〉
.

This shows that ∆G(2)
2 (φ, τ) is proportional to the amount of quadrature squeezing

defined in Eq. 6.9. The question that now arises, is how to determine ∆G(2)
2 (φ, τ)

experimentally. It is trivial to measure ∆G(2)(φ, τ) = ∆G(2)
0 (φ, τ) + ∆G(2)

1 (φ, τ) +
∆G(2)

2 (φ, τ)+∆G(2)
3 (φ, τ)+∆G(2)

4 (φ, τ), which is a second-order correlation measurement
from which the background is subtracted at long time delays. Since ∆G(2)

3 (φ, τ) = 0
and ∆G(2)

4 (φ, τ) = 0, one can determine ∆G(2)
2 (φ, τ) by measuring ∆G(2)

0 (φ, τ) and
∆G(2)

1 (φ, τ). From Eq. 6.20 it follows that ∆G(2)
0 (φ, τ) can be obtained by measuring

the second-order correlation function for only the QD light and thus blocking the local
oscillator light. The last term, ∆G(2)

1 (φ, τ = 0), can be obtained by using the periodicity
in the phase. By rewriting Eq. 6.21, one notices that
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∆G(2)
1 (φ) = ELO

4

(〈
:
(
Ê+
fl(0)e−iφ + Ê−fl(0)eiφ
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Ê−fl(0)
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〈
: ∆Êfl(φ)∆Îfl(φ) :

〉∣∣∣
φ=0

cos(φ),

(6.27)

which has a 2π periodicity. Using this and the fact that ∆G(2)
2 (φ, τ = 0) is periodic in τ ,

with period π, Eq. 6.21 is written as

∆G(2)
1 (t, φ) = ∆G(2)(t, φ = 0)−∆G(2)(t, φ = π)

2 cos(φ). (6.28)

Combining the above derivations, the amount of quadrature squeezing can be evaluated
by measuring only second-order correlation functions. In order to do this, the phase φ
is modulated. The effectively means that fraction of local oscillator light that interacted
with the single photon light is changed. Finally, the total amount of squeezing can be
obtained from

〈
: ∆X̂1(φ, 0)∆X̂1(φ, t) :

〉
= ∆G(2)(φ, t)−∆G(2)

0 (t, φ)−∆G(2)
1 (t, φ)

V 2E2
LO |ε|

2 . (6.29)

The parameters V 2, E2
LO, |ε|

2 have to be determined separately. V is the interference
visibility single photon light, E2

LO is the intensity of the local oscillator and |ε|2 can
be determined from the detected RF count rate combined with the Rabi frequency and
radiative decay rate of the QD.

Weak local oscillator
There are two possible regimes of the mixing of a local oscillator with QD light: the
weak and strong local oscillator regime. First, we consider the regime with a weak local
oscillator, where the largest amount of squeezing is generated. This is when the intensity
of the fluorescence light from the QD and local oscillator is of similar magnitude. Taking
only the negative part of ∆G(2)

2 (φ, τ) into account Eq. 6.22 becomes

∆G(2)
2max(φ, τ) = −E

2
LO

4

(
e2iφ

〈
Ê−fl(τ)

〉2
+ e−2iφ

〈
Ê+
fl(τ)

〉2
+ (6.30)

2
〈
Ê−fl(τ)

〉〈
Ê+
fl(τ)

〉)
= −E

2
LO

4
(〈
Ê−fl(τ)

〉
+
〈
Ê+
fl(τ)

〉)2
2 cos(2φ)

= −I0Ifl
1
2 cos(2φ).

The maximal total squeezing is given by

〈
: ∆X̂1(φ, 0)∆X̂1(φ, τ) :

〉
max

=
−I0Ifl

1
2 cos(2φ)

V 2E2
LO |ε|

2 . (6.31)
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Removing the detection efficiency, visibility factor, and making the squeezing dimension-
less by dividing by the uncorrelated count rate of the total field, leads to a maximal
theoretical squeezing of

s(φ)max = 4
〈

: ∆X̂1(φ, 0)∆X̂1(φ, τ) :
〉

(6.32)

=
−4I0Ifl

1
2 cos(2φ)〈

Ê−SLÊ
+
SL

〉2

=
−4I0Ifl

1
2 cos(2φ)

1
4
[
I0 + Ifl + 2(I0Ifl)1/2 cos(φ)

]2 = −0.5,

by choosing φ = 2πn and I0 = Ifl. In other words, the squeezing of the fluorescence leads
to an effect of 50% (or 1 − 0.5 = 0.5 → −3.0 dB). If Ifl > I0, i.e., a bright fluorescence
signal of single-photon nature and a weak local oscillator, s(φ)max of Eq. 6.32 decreases.

Strong local oscillator
In the regime of a strong local oscillator, one is limited by the amplitude fluctuations of
the local oscillator since the local oscillator noise is not balanced out. Remember that
the classical fluctuations of the local oscillator can be attenuated in the same manner as
its amplitude. This limits the use of a strong local oscillator to determine the amount
of quadrature squeezing. Mathematically, a local oscillator with stationary Gaussian
amplitude fluctuations is written as:

ELO = E0 + δE(t). (6.33)

Here δE(t) = 0, because averaging over the classical laser fluctuation gives zero. Now,
we reconsider the quantity ∆G(2)

4 (φ, τ) and observe that

∆G(2)
4 = 1

4

(
4E2

0(δE)2 + 2
(
(δE)2

)2)
(6.34)

≈ E2
0(δE)2,

where we made use of the suitable assumption that the relative amplitude noise of the
local oscillator is small,

(δE)2

E2
0

= ε� 1. (6.35)

As a result of the amplitude fluctuations, we cannot measure ∆G(2)
2 independently from

∆G(2)
4 . Since the stationary regime is considered, the effect of ∆G(2)

3 is neglected. To
quantify the effect of ∆G(2)

4 on ∆G(2)
2 it is useful to write this in the signal-to-noise-ratio

form
∣∣∣∣∣∆G

(2)
2

∆G(2)
4

∣∣∣∣∣ =

〈
: ∆X̂1(φ, 0)∆X̂1(φ, τ) :

〉
εE2

0
. (6.36)

75



From this it is easily seen that the usually preferred strong local oscillator may prevent
the detection of the quantum noise of the signal field we are interested in. That is why
strong local oscillators are not useful here.

6.5 Quadrature squeezing and unconventional photon blockade
In order to determine the amount of quadrature squeezing for the unconventional photon
blockade one sends the transmitted light to a beamsplitter together with the excita-
tion laser and measures coincidences in the superimposed signal. Here, we investigate
theoretically if this experiment is archievable. Using Eq. 6.3 we observe that a van-
ishing two-photon probability is obtained if the squeeze parameter r is equal to ā2,
which is the mean photon number. By defining the amount of quadrature squeezing
as
〈

(∆X1)2
〉

= 1
4e
−2r and considering a 〈nout〉 ≈ 0.004 (Fig. 5.5(a)), this condition leads

to 10 log10(e−0.008) = −3× 10−2 dB squeezing. In order to confirm this rough estimation
we calculate the amount of squeezing from our quantum master simulation. In Fig. 6.2,
the amount of squeezing is shown as a function of the λ/2 and λ/4 wave plate orientation
in the transmission path where the axes are similar to the axes in Fig 5.5 (b) and Fig 5.5
(c). The expected amount of quadrature squeezing in the region of the unconventional
photon blockade is close to −3× 10−3 dB as indicated by the black arrow. The deviation
is because the theoretical analysis is only a rough approximation. This shows that the
expected amount of squeezing is very small and the second-order correlation function
needs to be measured extremely accurately to determine the amount of squeezing via
homodyning. This is hard, since we are limited by the detector jitter due to the fast
decay of the cavity, which effectively shortens the QD lifetime even further.
The use of a local oscillator combined with second-order correlation measurement is a

nice tool to relatively easily get a qualitative assessment of the quantum state of light. By
changing the phase φ and the laser power while measuring the second-order correlation
function, one can determine the squeezing direction and the amount of squeezing.
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Figure 6.2: False color plot of the amount of squeezing s(dB) as a function of the ori-
entation of the λ/2 and λ/4 wave plate in the transmission path. The black
arrow indicates the small amount of squeezing in the region of unconventional
photon blockade and corresponds to the black arrow in Fig. 5.5.
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Chapter 7

Fiber-coupled cavity QED source
of identical single photons

We present a fully fiber-coupled source of high-fidelity single photons. This
is achieved by embedding an InGaAs semiconductor QD in an optical Fabry-
Perot microcavity with robust design and rigidly attached single-mode fibers
which enables through-fiber cross polarized resonant laser excitation and pho-
ton extraction. Even without spectral filtering, we observe that the incident
coherent light pulses are transformed into a stream of single photons with
high purity (97%) and indistinguishability (90%), which is measured at an
in-fiber brightness of 5% with an excellent cavity mode to fiber coupling ef-
ficiency of 85%. Our results pave the way for fully fiber integrated photonic
quantum networks, further, our method is equally applicable for fiber-coupled
solid-state cavity-QED based photonic quantum gates.

This Chapter has been published in Physics Review Applied 9, 031002 (2018) [4].
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7.1 Introduction
Every isolated two-level quantum system such as an atom, ion, color center or QD, can
in principle be turned into a bright single-photon source [104, 9]. Ideally, such a source
produces a stream of single photons, never more or less than one photon per time bin,
and all having the same Fourier limited spectrum and timing. Such a source would
be essential for exploration of numerous quantum technologies such as optical quantum
computing [105, 106, 107, 108] and simulation [109]. Further, the reduced fluctuations of
such single-photon light would enable exciting opportunities everywhere where noise is a
limiting factor, in fields from metrology to microscopy.
However, only very recently, high-fidelity single-photon sources have been demonstrated

[2, 3, 110, 111, 112, 113] that simultaneously fulfill the key requirements: near-unity
single-photon purity and indistinguishability of consecutively emitted photons, and a
high brightness. For a single-photon source, high brightness and on-demand availability
is crucial for efficient implementation of quantum photonic protocols. Additionally, to
exploit the power of quantum interference, consecutively produced photons need to be
indistinguishable, meaning that their wave functions must overlap well. Until recently,
heralded spontaneous parametric down-conversion sources [114] were the state of the
art for single-photon sources (SPS) [115], with which most quantum communication and
optical quantum computing protocols have been demonstrated [116]. The main problem
of these sources is that the Poissonian statistics of the generated twin photons will always
result in a trade-off between single-photon purity (the absence of N>1 photon-number
states) and brightness (the probability to obtain a photon per time slot).
One way to deterministically produce single photons is to use trapped atoms [117],

where single-photon rates up to around 100 kHz have been obtained recently [118]. In
order to enable integration and increasing the photon rate, solid-state systems have been
investigated, in particular promising are semiconductor QDs [119, 9, 120]. QDs have
nanosecond-lifetime transitions that enable GHz rate production of single photons as
required for numerous quantum technologies. Compared to other solid-state emitters
such as NV centers, nanowire QDs, excitons in carbon nanotubes or two-dimensional
materials [121, 122], self-assembled QDs in cavities can show almost perfect purity and
indistinguishability [2]. A challenging task is to couple the quantum emitter to propa-
gating optical modes with near-unity efficiency. This can be achieved by placing them
in optical micro cavities, which additionally increases the emission rate by cavity-QED
Purcell enhancement, such as micropillar cavities [5, 9], photonic crystal cavities [66], or
ring resonators [123].
For the next major step in implementing QD single-photon sources in complex photonic

quantum networks, coupling to a single-mode optical fiber is essential. Several challenges
are connected to this: cryogenic compatibility [124], resonant optical pumping, high
coupling efficiency and robust and stable polarization control. Only recently, a first study
on a non-resonantly pumped multi-mode fiber-coupled device appeared [125]. Another
approach is to employ fiber-tip micro cavities but the photon collection efficiency is limited
to about 10% to date [126, 127].
Here, we show a prototype of a fully fiber-coupled solid-state resonantly pumped and

transmission-based source of identical photons.
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7.2 Device structure & fiber coupling
Our fiber-coupled single-photon device is sketched in Fig. 7.1: The device consists of a
layer of self-assembled InAs/GaAs QDs embedded in a micropillar Fabry–Perot cavity
(maximum Purcell factor Fp = 11.2) grown by molecular beam epitaxy [73]. The QD
layer is embedded in a P–I–N junction, separated by a 27 nm thick tunnel barrier from
the electron reservoir to enable tuning of the QD resonance frequency by the quantum-
confined Stark effect. Since we do not use air-guided micropillars but an oxide aperture
for 3D confinement [128, 74], the device is very robust and the optical or QD properties do
not degrade by attachment of the fibers. It also allows for precise alignment of the fibers,
and therefore the use of single-mode fibers. This is essential not only for integration in
larger quantum networks, but also to enable high-fidelity polarization control as we show
here.

QD	layer

Back	gate	(n)
Tunnel	barrier

Bo6om	DBR

Bo6om	DBR	(n)

Oxide	aperture

Top	DBR	(p)
Top	gate	(p)

Top	DBR

Oxida=on	trenches

Collec=on	single	mode	fiber	
(single	photons)

Excita=on	single	mode	fiber

Substrate

Figure 7.1: Sketch of the microcavity QD device with attached fibers from bottom (exci-
tation fiber) and top (single photon collection fiber). The trenches are used
for wet-chemical oxidation of a sacrificial AlAs layer to form an intracavity
lens or aperture that leads to transverse confinement of the optical cavity
mode.

Fig. 7.2 shows a microscope image of the fiber-coupled cavity-QED device, visible is
the collections fiber attached to the sample and the bond wires connected to the gold
bond pads. Single-mode fibers are attached to the front and back of the sample using a
UV-curable Norland optical adhesive 81. Attaching the fibers to the device requires three
steps (see Fig. 7.3). Step 1: The sample is mounted in an optical spectroscopy setup
containing a long working distance microscope. The setup allows for precisely aligning
the single-mode fibers with a motorized translation stage. Step 2: The collection fiber
is aligned to the cavity mode by making use of an inverted microscope. The sample is
imaged by sending through the fiber light from a Superlum 471-HP2 superluminescent
diode with a broad (900-980 nm) spectrum. The micropillar trenches are observed with
a CCD camera allowing for coarse alignment of the fiber to the center of the micropillar.
Fine alignment is done by bringing the fiber closer to the sample and detecting the
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Figure 7.2: Microscope image of the fiber-coupled cavity-QED device.

resonantly transmitted light with a 1 m grating spectrometer. The optimal position is
found by maximizing the fundamental mode of the cavity and reducing the transmission
of the higher order TE/TM modes. Once the optimal position is found the single-mode
fiber is moved up vertically so that a drop of Norland Optical Adhesive 81 can be put
onto the cleaved fiber facet. After bringing the fiber back to its original position, the
adhesive should touch the sample which is verified with an optical microscope. Again the
position is optimized before the adhesive is cured using UV-light. Before removing the
device from the setup, the fiber is firmly attached to the copper mount using Stycast for
extra stability. Step 3: Excitation fiber attachment. We flip the device around and send
broadband light into the collection fiber. Rough alignment of the excitation fiber at the
bottom of the device is done by aligning the fiber to the fundamental cavity mode using
the microscope, after which we use again a spectrometer to fine tune the position. Then,
the procedure from step 2 is used for attaching the fiber.
The cavity mode of our device has at the front surface a waist of ωfront = 2.14±0.08 µm

and at the back a waist of ωback = 28.48±1.02 µm at around 955 nm [128]. The increased
waist at the back of the sample is due to the 650 µm thick GaAs wafer. The fibers
(Thorlabs 780HP) have a core radius of 2.2 µm and 0.13 NA, which results in a mode
waist of ωfiber = 2.95± 0.25 µm. Neglecting the phase and only taking into account the
mode waist of the fiber, we have at the front side of the cavity a coupling efficiency of
[129]

η =
(

2ωfiber ωfront
ω2
fiber + ω2

front

)2

exp
(
− 2u2

ω2
fiber + ω2

front

)
. (7.1)

Here, u is the transverse misalignment. Setting u = 0 we obtain an optimal efficiency of
ηfront = 90%± 7.6%. Experimentally, we obtain for our device a coupling efficiency that
is very close to this value (85±11%, see section 7.9.3), confirming the high performance of
the fiber attachment method. The fiber at the back of the sample has a reduced incoupling
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Figure 7.3: Sketch of the procedure for connecting single-mode fibers to the cavity-QED
device.

efficiency of 0.6% due to the thick GaAs substrate. For operation of our single-photon
source this reduced coupling efficiency is irrelevant because we excite the system from
the back where the coupling efficiency only affects the required excitation laser power.

7.3 Optical setup
The optical setup used to measure photon correlations to obtain the single-photon purity
and indistinguishability is shown in Fig. 7.4. A pulse delay setup can be used to create
from a mode-locked 80 MHz Ti:Sa laser double pulses, which are sent to the micropillar
cavity. The transmitted photons are analyzed with a Hanbury Brown Twiss setup to
determine the second-order correlation function g(2)(∆τ), or with a Mach-Zehnder in-
terferometer to observe Hong-Ou-Mandel type photon bunching of consecutively emitted
photons to determine their indistinguishability M . Almost all components in the setup
are fiber-based or fiber-coupled, except the production of the double laser pulses and the
polarizers (fiber U-benches). The delay between the double pulses is precisely adjusted to
the Mach-Zehnder interferometer delay by scanning ∆x while observing first-order inter-
ference in absence of the cavity-QED device. This interference signal becomes maximal
when the position of ∆x matches the in-fiber delay of about 5.2 ns.
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Figure 7.4: Sketch of the experimental setup. Dark red lines indicate free space laser
light at around 932.58 nm, single-mode fibers are depicted in black. FPC:
fiber polarization controller.

7.4 Transmission measurements
Now, we discuss the optical properties of the device, in all experiments presented here
we investigate resonance fluorescence at a temperature of 5 K. The fundamental cavity
mode is split in two linearly polarized modes, the H and V mode, induced by a small
ellipticity of the cavity cross-section and material birefringence. Similarly, the neutral
exciton transition of the QD is split in two linearly polarized transitions by the fine-
structure exchange interaction. Fig. 7.5(a) shows a false color plot of the transmission as
a function of the applied bias voltage and laser frequency. Using a free-space polarizer and
a fiber polarization controller, the input polarization is set along the H cavity polarization
axes. The transmitted light is sent to a single-photon detector. The two fine-structure
split QD transitions are clearly visible as dips in the transmission spectrum that shift
as a function of the applied electric field. A cross sectional plot of Fig. 7.5(a) (grey
line) is shown in Fig. 7.5(c) (red line). The depth of the dips indicate that the “X” QD
transition couples more efficiently to the H cavity mode than the “Y” QD transition. This
is confirmed by comparison to a numerical model[37, 38] taking all relevant cavity-QED
and polarization effects into account (section 7.9.1). From this model we also determine
the angle θ between the X QD axis and the H cavity mode axis to be θ = 17◦, and the
polarization splitting of the fundamental cavity mode (18 GHz).
Fig. 7.5(b, c) (blue line) show single photons that are filtered from the transmitted light

with a combination of a fiber polarization controller and a free-space optical polarizer set
to extinguish the transmitted laser light (cross polarization). We excite the system along
the H cavity mode polarization but detect only photons emitted from the V-polarized
cavity mode. This is ideal for efficient collection of the single photons that are coherently
scattered from the Y-transition of the QD, as is seen in Fig. 7.5(b). This is a workable
scheme because for excitation of the QD-cavity system, we can simply remedy the reduced
coupling of the Y QD transition to the H-polarized cavity mode by increasing the laser
power, while the emitted single photons are efficiently collected by the V-polarized cavity
mode. This also means that the Y QD transition is well suited to be used as a single-
photon source if it is resonantly excited, and, since the X transition can be neglected due
to sufficient QD fine-structure splitting, it resembles a nearly perfect two-level system.
Here we investigate the dependency between maximum single-photon rate and single-
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Figure 7.5: (a, b) False color plots of resonant transmission as a function of laser frequency
and gate voltage. In (a), the incident laser light is polarized along the H cavity
axis, and the transmitted light is detected without polarization selection. In
(b), the remnant laser light is filtered out using a crossed polarizer oriented
along the V-polarized cavity mode, to select the photons coherently scattered
from the Y-transition of the QD. Panel (c) shows cross sectional plots (red
line: without polarization selection, blue line: with crossed polarizer, scan
time 1 s) at a gate voltage of 0.935 V, indicated by the grey line in (a) and
(b). The X and Y QD transitions and the H-polarized cavity mode are labeled.
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photon purity that is achievable with the present device. For this, we first perform
continuous-wave resonant spectroscopy experiments with a single-frequency diode laser.
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Figure 7.6: Measurement of the second-order correlation function g(2)(0) versus the inci-
dent laser power under continuous-wave excitation (a). The dashed line in-
dicates the approximate limit on g(2) set by the detector jitter (two-detector
instrument response function full width ≈ 532 ps, see section 7.9.2 for details).
(b) Simultaneously measured single-photon rate (corrected for detection effi-
ciency). The fit (red line) takes into account the saturation of the QD transi-
tion (grey line), as well as residual laser light due to non-perfect polarization
extinction.

We measure the second-order correlation g(2)(∆τ = 0) and the flux of emitted photons
as a function of the incident laser power (Fig. 7.6(a, b)). In the correlation measurements,
we observe a lower limit of g(2)(0) ≈ 0.3, which is due to limited timing accuracy due to
detector jitter; this is confirmed by comparing to reference measurements using short laser
pulses (see section 7.9.2). Further, we observe an increase in g(2)(0) with increasing laser
power. Two-photon emission from a single quantum system should in principle be absent
if it is excited with laser pulses much shorter than its lifetime. We suspect imperfect
laser extinction, which should also be visible in the detected photon count rate, shown
in Fig. 7.6(b): instead of a simple saturation behavior of the count rate as a function
of input laser power P , we observe an additional linear background. We find that the
photon rate can very well be fitted (red line) by 96.0MHz/(1 + 0.26nW/P ) + 3.39MHz ·
nW−1 × P , where the first part describes standard two-level system saturation [23] and
is plotted separately with the grey line in Fig. 7.6(b), and the saturation power agrees
well to previous results on similar devices [130]. The power-linear term is most likely
due to imperfect polarization extinction of the exciting laser light. These measurements
show that good single-photon performance is expected for an input power well below a
nanowatt.
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7.5 Second-order correlation measurements
For quantum photonic applications, single photons are required on-demand with precise
timing. We realize this using a resonant (around 932.58 nm) pulsed laser with 20 ps
pulse length and 12.5 ns period. These values are well-matched to the QD transition
in the cavity as shown in Fig. 7.5(c). Using a pulsed laser, we are no longer limited
by the jitter of the single-photon detectors and can obtain a more accurate value for
g(2)(0). At a sufficient low power of 100 pW, we measure a second-order correlation
of g(2)(0) = 0.037 ± 0.012 as shown in Fig. 7.7(a). Note that we did not use spectral
filtering of the cavity emitted light, in contrast to previous investigations [2]. As we have
investigated above, g(2)(0) is in our case most likely limited by imperfect extinction of
the excitation laser light.

7.6 Indistinguishability measurements
Next we determine the indistinguishability of two successively produced single photons.
In order to create two excitation-laser pulses with exactly the same delay of 5.2 ns, we use
a non-interferometric Michelson-type setup with adjustable delay. First, we examine the
ideal case without losses and with ideal single-photon pulses (unity single-photon purity).
We assume an excitation laser pulse spacing of 5.2 ns. We need to consider two double
pulses and we label the photons as shown in Fig. 7.8(a): photon A at 0 ns, B at 5.2 ns,
A’ at 12.5 ns, and photon B’ at 17.2 ns.
The detection is done using an unbalanced Mach-Zehnder interferometer, where one

arm introduces a delay equal to the pulse delay (5.2 ns). Photon correlations behind the
last fibersplitter are measured. We list all possible combinations of photons for which
a two-photon detection event can happen with a particular temporal delay between the
photons. In table 7.1 below, the first row indicates the delay between all possible photon
combinations before the Mach-Zehnder interferometer. The lower 4 rows show the four
possible pathways which pairs of photons can take, the number gives their relative delay
at the single-photon detectors. The number of occurrences of a particular delay time is
directly proportional to the detection probability. For example, it is 2 times more likely
to detect two photons with ∆τ =5.2 ns than it is with 2.1 ns, which agrees very well with
the experimental data in Fig. 7.7(b).

AA’ (ns) BB’ (ns) BA’ (ns) AB (ns)
Laser pulse delay (before detection in MZ) 12.5 12.5 7.3 5.2

first photon long arm 7.3 7.3 2.1 0
both photons short arm 12.5 12.5 7.3 5.2
both photons long arm 12.5 12.5 7.3 5.2
first photon short arm 17.2 17.2 12.5 10.4

Table 7.1: Table of arrival time differences ∆τ of two-photon detection events.
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Figure 7.7: Photon correlations of the QD transition under pulsed excitation. (a): second-
order correlation measurement, where g(2)(0) = 0.037 is obtained from the
integrated photon counts in the zero time delay peak divided by the aver-
age of the adjacent four peaks. (b): Photon-indistinguishability measurement
for consecutive photons 5.2ns apart. A magnified view around ∆τ = 0 and
a double exponential fit of this data is shown in (c). Taking into account
g(2)(0) = 0.037 we obtain a measured indistinguishability of M = 0.90. Mea-
surement time: 600 s (a), 1200 s (b, c).
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If two consecutively produced single photons are indistinguishable, they will undergo
quantum interference and “bunch”, i.e. two-photon coincidences at τ = 0 are expected
to be absent in the ideal case. Due to this the “AB” event with ∆τ = 0 in table 7.1
disappears (see Fig. 7.7(c)).

12.5 ns

ABA’B’

5.2 ns

5.2 ns delay

Long arm

Short arm

APD

APD

(a)

Polarization controller

(b) (c)

Figure 7.8: (a) Detection scheme for measuring the indistinguishability of consecutive
photons. To compare to the case of distinguishable photons, we rotate the
polarization in one arm of the interferometer. (b) The result for distinguish-
able photons is shown in (b, c), where photon bunching is suppressed and
two-photon coincidences at ∆τ = 0 appear.

To contrast the indistinguishability measurement shown in Fig. 7.7(c) to the case where
the photons are perfectly distinguishable, we perform an experiment where the photons
are made artificially different by giving them orthogonal polarization. The result in
Fig. 7.8(b) clearly shows the absence of Hong-Ou-Mandel type photon bunching by the
strong correlations at ∆τ = 0. Fig. 7.8(c) shows a zoom-in with double-exponential fits
to the measured data. This agrees excellently with the expectation in table 7.1, note that
the ∆τ = 0 probability should be multiplied by two due to the coincidence of ±∆τ .
This model can be improved by taking into account the losses of the fibersplitters

(we assume that both fibersplitters are identical) and a finite purity of the single-photon
pulses. To do this, we follow the procedure of Ref. [9]: The probability for a detection
event at the center peak normalized by the repetition rate and detection efficiency is
given by
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ACP = (R3T + TR3)(1 + 2g(2)(0))− 2(1− ε)2MT 2R2, (7.2)

whereM is the mean wave function overlap or indistinguishability, (1−ε) is the visibility
of the Mach-Zehnder interferometer and R and T are the reflection and transmission
coefficients of the fibersplitters. Comparing this to the probability for a detection event
at ∆τ = ±5.2 ns, we obtain

M = 1
(1− ε)2

R2 + T 2

2RT

[
(1 + 2g(2)(0))− ACP

A−5.2ns +A5.2ns
(2 + 2g(2)(0))

]
. (7.3)

We independently measured for our fibersplitters the following values for the reflectivity,
transmittivity and visibility: R = 0.469, T = 0.531, (1 − ε) = 0.96 ± 0.1. From dou-
ble exponential fits in Fig. 7.7(c) we determine the coincidence probability ratio to be

ACP
A−5.2ns+A5.2ns

= 0.12±0.004. Combined with the single-photon purity measurement with
g(2)(0) = 0.037±0.012 (Fig. 7.7(a)), we obtain for the indistinguishabilityM = 0.90±0.05.
If the correction due to the finite g(2)(0) is removed and we only correct for the beamsplit-
ters in the detection scheme we obtain a bare indistinguishability value ofM = 0.83±0.05.
The deviation from M = 1 might be due to residual spectral diffusion or nuclear-spin
induced dephasing mechanisms.
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7.7 Brightness measurements
Finally, to determine the brightness of the device, i.e. the fraction of laser pulses that pro-
duces a single photon in the detection fiber, we carefully characterize our setup including
optical loss and detector efficiencies.

cryostat

GaAs	Wafer Cavity	with	QD

31±5%

Coincidence	Counter

Fiber	bench

33±1%

21±1%

Detector	efficiency	=	20±1%

1.

2.

3.

Excitation	Laser

Figure 7.9: Characterization of the transmission in the detection part of the setup.

In order to determine the in-fiber brightness, we have to determine the transmission
from the collection fiber to our detectors, and the detection efficiency. Fig. 7.9 show the
relevant parts:

1. Fiber splice in the cryostat with T = 31 ± 5%. This is determined by measuring
the off-resonance cavity mirror reflection through the fiber, where we assume that
the cavity mirror reflectivity is close to unity and that there are no losses between
mirror and fiber tip, which is supported by the absence of any interference signal
(assumed uncertainty 5%).

2. The polarization setup transmission is reduced by the free-space polarizer, the fiber
bench, and the fiber mating sleeves, resulting in T = 21 ± 1%, which has been
measured directly.

3. The single-photon detection setup with a detector efficiency of 20± 1% and multi-
mode fibersplitter with T = 33± 1%.

This results in a total detection efficiency of 0.43 ± 0.08%; equivalently, therefore, our
measured single-photon detection rate of 17 kHz corresponds to 4.0 MHz in the fiber
directly after the sample, or an in-fiber brightness of 0.05 ± 0.01. The reduced value
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is due to an imperfect spectral alignment of the QD and cavity mode, while the fiber
coupling efficiency is excellent at 85%, or 94% of its optimum.

7.8 Conclusion
In conclusion, we have shown a prototype of a fully fiber-coupled solid-state single-photon
source that produces on-demand single photons with a purity of 0.96 ± 0.01, indistin-
guishability of 0.90 ± 0.05 and a brightness of 0.05 ± 0.01, with fiber-coupling efficiency
of 0.85± 0.11. These figures are already promising for exploring small optical fiber-based
quantum networks such as for boson sampling. From another point of view, we have
demonstrated a first all-fiber integrated cavity-QED based photonic quantum gate that
filters out single photons from pulses of coherent laser light. A next step is charging of the
QD with a single electron or hole spin to create a quantum memory [131] which makes
the device usable as a quantum node for remote entanglement generation, quantum key
distribution, and distributed quantum computation.
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7.9 Supplemental material

7.9.1 System Parameters
In order to theoretically model the QD cavity-QED system we use an extended version
of a model for a two-level system in an optical cavity driven by a classical coherent laser
field. Using QuTiP [37, 38] we solve numerically the quantum master equation in the
rotating wave approximation. Details about the model we use to fit the data can be
found in Ref. [5].
We iteratively fit the simulation results to experimental data (shown in Fig. 7.10). We

obtain a cavity splitting of fcavsplit = 18±0.5 GHz and a cavity decay rate κ = 70±3 ns−1.
Now we keep these parameters fixed and optimize the model for the case when only the
H-polarized cavity mode is excited to obtain the remaining 4 parameters of our QD-cavity
system (7.10). We find a QD-cavity coupling constant g = 14 ± 0.4 ns−1, a population
relaxation rate of γ|| = 1.0±0.4 ns−1, a pure dephasing rate of γ∗ = 0.4±0.3 ns−1, a QD
fine-structure splitting of fQDsplit = 3.9 ± 0.05 GHz, and for the angle between the H-
polarized cavity mode and the X QD transition φ = 17◦± 2◦. The frequencies of the two
fine-structure-split QD transitions in Fig. 7.10 are fQDX = −3.6 GHz and fQDY = 0.3
GHz, and the (relative) frequencies of the polarization split fundamental cavity modes
are fCavH = 2.0 GHz and fCavV = 20.0 GHz.
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Figure 7.10: Resonant transmission data of the two fine-structure split QD transitions
in a polarization non-degenerate cavity. Black dots: experimental data, red
line: theoretical model, blue line: empty cavity.

From these parameters we find a cooperativity of C = g2

κ(γ||/2+γ∗) ≈ 2.8 which corre-
sponds to a Purcell enhancement of the excited state decay rate of Fp = 4g2

κγ||
≈ 11.2,

assuming that the QD transition is on resonance with the cavity transition.
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7.9.2 Detector response

Our second-order correlation function g(2)(τ) measurements using two single-photon coun-
ters (SPCM-AQR-14) is limited by the timing jitter in the detectors and electronic equip-
ment. In order to quantify this effect, we first determine the intensity auto-correlation
function of 2 ps long light pulses, shown in Fig. 7.11(a). We obtain a FWHM of 532 ps.
Now we predict how this effects a continuous-wave measurement of the resonance flu-

orescence 2nd-order correlation function (Fig. 7.6), which requires knowledge of the re-
laxation rates that determine the g(2)(τ) dip width. Therefore we calculate the expected
g(2)(τ) by solving the quantum master equation, which is shown as the black curve in
Fig. 7.11(b). Now we can convolute this with the detector response that was deter-
mined in Fig. 7.11(a), and we obtain the purple curve. We see that this agrees very well
with the measured g(2)(τ) (red dots) and therefore we conclude that the continuous-wave
measurement of g(2)(τ) is largely limited by detector jitter.

(a) (b)

Figure 7.11: (a) The two-detector response to a 2 ps light pulse is well fitted by a double-
exponential function. (b) Comparison of the experimental data with the
convolution (purple curve) of the detector response with the theoretical pre-
diction (black curve).
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7.9.3 Cavity mode to fiber coupling efficiency
• The cavity out-coupling constant ηcav is determined from free-space measured on-

resonance cavity reflectivity via R = (1 − ηcav)2, from which we obtain ηcav =
0.2± 0.02. Based on the mirror design we would expect ηcav = 2κm

κ ≈
28
70 ≈ 0.4, our

reduced value suggests that optical scattering and/or absorption is present.

• The fiber-coupling efficiency ηout is then obtained from the on-resonance reflectivity
measurement through the fiber (Fig. 7.12) where we obtain R = 0.68 ± 0.02, and
with R = (1− ηcavηout)2, this results in ηout = 0.85± 0.11.

𝑅

Figure 7.12: Through-fiber reflection measurement for determination of fiber coupling
efficiency.
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Samenvatting

In dit proefschrift bestuderen we, op fundamenteel niveau, de interactie van licht met ma-
terie door gebruik te maken van een optische trilholte met daarin een halfgeleider kwan-
tumdot. Specifiek vestigen we in dit proefschrift onze aandacht op hoe we de statistiek
van het licht kunnen veranderen en geven we een beschrijving van de vormen van licht
die vervolgens ontstaan.
Het preparaat waarmee wij werken bestaat uit een chip met daarop alternerende laag-

jes van materiaal met een verschillende brekingsindex waardoor het geheel fungeert als
een spiegel. Boven op de spiegel bevindt zich een (gallium arsenide) laag met in het mid-
den een (indium arsenide) kwantumdot die functioneert als een kunstmatig atoom. Een
kwantumdot is een eilandje, met nanometerschaal afmetingen, dat net als een gewoon
atoom individuele fotonen kan uitzenden. Als laatste stap wordt er een tweede spiegel
bovenop de kwantumdotstructuur aangebracht. Hierdoor ontstaat een optische trilholte
met de kwantumdot in het midden. Deze optische trilholte is nodig om de interactie
van licht met de kwantumdot maximaal te versterken. Door de hoge kwaliteit van de
spiegels gaat het licht ongeveer tienduizend keer heen en weer, voordat het de trilholte
verlaat. Hierdoor wordt de kans dat het licht interactie met de kwantumdot heeft, bijna
tienduizend keer groter ten opzichte van een kwantumdot die niet in een trilholte zit.
In hoofdstukken 2 en 3 introduceren we de verschillende modellen die een beschrijving

geven van het samenspel tussen licht en een kwantumdot in een trilholte. Deze fysische
modellen zijn opgedeeld in klassieke modellen en kwantummodellen. In de theorie laten
we zien dat een kwantummodel noodzakelijk is om effecten als kwantumcorrelaties en
bepaalde vormen van defasering mee te nemen. De basis voor deze modellen is een
vergelijking die de “quantum master equation” wordt genoemd. Hier wordt door middel
van operatoren de interactie tussen licht en de kwantumdot beschreven.
Een fysische beschrijving van licht, die helpt om de statistiek van het licht te verklaren,

is dat licht bestaat uit “energiedeeltjes”, zogenoemde fotonen. Deze fotonen komen in
verschillende toestanden voor, waarbij elke toestand een bepaald aantal fotonen bevat.
Ter verduidelijking, de eerste 3 toestanden zijn: de één-fotontoestand bestaande uit een
individueel foton, een twee-fotontoestand waar twee fotonen bij elkaar zitten en de drie-
fotontoestand. Met behulp van een waarschijnlijkheidsverdeling geven we aan wat de
kans is om een bepaalde fotontoestand van het licht te detecteren. Voor laserlicht is de
waarschijnlijkheidsverdeling een Poissionverdeling. Het is deze waarschijnlijkheidsverdel-
ing die bepaalt hoe het licht zich gedraagt.
In hoofdstukken 4, 5 en 6 rapporteren we over verscheidene experimenten die de fo-

tonstatistiek veranderen en voeren we simulaties uit om de waargenomen statistiek te
verklaren en te begrijpen. We vertellen in hoofdstuk 4 hoe je de één-foton toestand
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uit het licht kan filteren, waardoor er een lichttoestand ontstaat die de fotonen effectief
doet samenklonteren, waarbij zogenaamd ‘’bunched-light” ontstaat. In hoofdstuk 5 to-
nen we door middel van een alternatieve methode aan hoe men een lichtbron kan maken
die alleen één-fotontoestanden uitstraalt. Deze methode wordt ‘unconventional photon
blockade’ genoemd, waarbij door interferentie de twee-fotontoestanden weg worden gefil-
terd. In hoofdstuk 6 bespreken we het samendrukken van bepaalde licht toestanden. Dit
is te beschouwen als het samendrukken van de waarschijnlijkheidsverdeling, waardoor
de standaarddeviatie kleiner wordt. Ook de andere vormen van “squeezing” of samen-
drukken van licht worden hier besproken. In hoofdstuk 7 laten we zien hoe je fibers aan
ons preparaat koppelt, zodat de lichtbron van individuele fotonen als een “plug and play”
apparaat te gebruiken is. Tevens karakteriseren we hier ons preparaat door te laten zien
dat de één-fotontoestanden zuiver en niet van elkaar te onderscheiden zijn.
Het gecontroleerde gebruik van enkel en meer fotontoestanden komt steeds dichter-

bij en biedt allerlei mogelijkheden voor nieuwe toepassingen in spectroscopie, kwantum-
netwerken of andere apparaten die werken op basis van fotonen, in plaats van elektronen.
Hoe haalbaar en succesvol al deze toepassingen zijn, zal de toekomst moeten uitwijzen.
Het voornaamste doel van dit proefschrift is om inzicht te krijgen in de fysische eigen-
schappen van het licht en deze proberen te relateren aan, en beschrijven met, klassieke,
semi-klassieke en kwantummodellen.
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