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Towards Many-Objective

Optimization of Eigenvector

Centrality in Multiplex Networks

6.1 · Introduction
Identifying a set of key players in a network is an important research problem in many
disciplines:

• In trading economy, it is important to know which countries are central in trade
routes and networks of commodities and need to be stable in order to guarantee
the long-term economic sustainability of economic networks.

• In political campaigning, it is important to identify a key player for reaching
a large number of potentially interested people or people that should be made
aware of a news item or political idea.

• In biology, ecosystems can be understood as networks of organisms. For instance,
when maintaining a forest, it is critical to know which trees or organisms are
most important to keep the forest in a healthy state by protecting them. There
can be multiple networks that need to be considered, such as food webs, and
signaling networks for communication and finding mating partners.

In the above problems, each node participates in multiple networks and high centrality
in one network might not imply high centrality in another network. To better understand
centrality concepts in such problems, in this work we will focus on a special class of
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networks – so-called multiplex networks – which are sets of networks which share the
same set of nodes but differ in their links. As practical application domain We consider
networks defining trade in different types of commodities.

Our paper presents the first step in the analysis of such multiplex networks by means
of network centrality maximization, where network centrality is the most influential
node in the network. We consider the optimization of network centrality in different
layers (edge sets) as the objective functions. Optimizing several (3; 4) objectives
simultaneously can be addressed by multi-objective optimization and many (> 3)
objectives by many-objective optimization resulting in a high dimensional Pareto front.
Since such high dimensional Pareto fronts are difficult to analyze, we also compute
the Pareto fronts in pairwise different layers and analyze relationships between the
objectives.

Layers can be in conflict with each other, meaning that they yield very different
structures of centrality. They can be also complementary, meaning that maximizing
the centrality in one layer also maximizes the centrality of the other layer. In this
case, it is possible to merge the layers without losing essential information. Finally,
it is also possible that the maximization of centrality of one layer does not affect the
optimization of the centrality of another layer, in which case the problem could be
easily decomposed.

6.2 · Related Work

Many-objective optimization is to optimize many objectives simultaneously; in this
direction, various approaches have been developed. Some of them aim at reducing
complexity, such as Objective Reduction in Many-objective Optimization: Linear and
Nonlinear Algorithms [9], Reducing Complexity in Many-Objective Optimization
Using Community Detection [39], and Objective Reduction Based on (Non Linear
Correlation Information Entropy ) [18]. Other approaches are based on Evolutionary
Multi-objective optimization (EMO) extended to deal with many-objectives, cf. [32].
Related to multi-objective and many-objective optimization for network analysis such
as Multi-Objective Optimization to Identify Key Players in Large Social Networks
[25]. Some researchers did Multi-Objective Optimization for community detection
/ network clustering such as in [56], [8], [16], [31]. A Maximal Clique Based
Multi-Objective Evolutionary Algorithm for Overlapping Community Detection [59],
Overlapping Community Detection Through an Improved Multi-Objective Quantum-
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Behaved Particle Swarm Optimization [36], and Community Detection From Signed
Social Networks Using a Multi-Objective Evolutionary Algorithm [63].

In this chapter, we will follow the a similar approach to the multiplex network
community detection (PaMoPlex) that was outlined in Chapter 5. Different to Chapter
5, not modularity, but centrality is considered as a maximization objective.

6.3 · Many-Objective Optimization of Network Centrality in Multiplex

Networks

Our research approach in this chapter is to perform many-objective optimization of
network centrality by computing and visualizing a matrix of Pareto fronts using two
different approaches:

• By computing Pareto fronts for each pair of objectives and analyzing the results
in a correlation matrix.

• By computing the Pareto front of the set of full-length objective vectors in Rm.

Recall, that for every layer of the network one objective function is defined, which is to
maximize the eigenvector centrality of that layer. In this way for a multiplex network
G with layers G1, ...,Gm we define m as the number of objective functions.

Each node in the network is either dominated or non-dominated. A point of the
node is said to be non-dominated if there is no other point which is better or equal in all
criteria (all centralities in different layers) and better in at least one criterion (one layer).
To compute the non-dominated subset from a finite set of n solutions, the algorithm by
Kung, Luccio and Preparata is the fastest known approach [34], It accomplishes this
task with a time complexity O(n log n) for m = 2,3 and O

(
n(log n)m−2) for m > 3.

We use the computation of pairwise Pareto fronts in order to understand and
visualize the relationship of different layers with respect to centrality, i.e. whether
or not and to which extent they share central nodes. Computing Pareto fronts of all
objective functions can be used to easily recognize how many nodes are in the Pareto
front. In order to compute a more fine-grained ranking of nodes, we compute the
dominance rank of a node in the second analysis. Non-dominated solutions are of rank
1, solutions that are only dominated by rank 1 solutions are of rank 2, and so on. The
computation of the rank only marginally increases the time complexity [13].
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6.4 · Case Study and Implementation

6.4.1 · Analysis on Arti�cial Multiplex Networks

As an illustrative example on how to interpret results of the many-objective optimization
based on network centrality, we started with computing the exact Pareto fronts for
artificial multiplex networks. First, we did so for pairwise network layers, and then for
all layers of the network.

The network was generated as a random graph based on the Erdős and Rényi model.
Starting from a complete graph, each edge has a probability of 1 − p to be removed
from the network. For a certain number of nodes (m = 100) and a certain probability
(p = 0.1) we generated 11 layers for the experiment. We will denote them with g1 to
g11. We chose eleven layers of the multiplex network, in order to later compare our
results with the empirical economic trade multiplex network, which also has eleven
layers.

The synthetic network based on Erdős-Rényi can be seen in Figure 6.1. From layer
g11 of this artificial network, we compute the degree distribution. It is visualized as a
histogram in Figure 6.2 and it has the shape of a binomial distribution, as it is typical for
Erdős-Rényi graphs. Then we compute the centrality based on eigenvector centrality
and the results are the vector of centralities of each node (100 nodes) in each layer. By
dividing by the biggest eigenvalue (λ), for each layer, all values are normalized from 0
to 1.

For those 11 layers of the network, with eigenvector centralities of nodes in each
layer, the next step is to compute non-dominated sets either by pairwise optimization
or by many-objective optimization. The Pareto front is generated by full enumeration
of node centrality of every node in every layer. Since the number of nodes in the Erdős-
Rényi random graph is 100, we have 100 inputs for each layer. Each node has different
centrality in different layers (objective functions) and by computing Pareto fronts for
each pair of two layers, insight into the complementarity of layers can be gained.

For instance, in Figure 6.3, we can see that pairwise optimization for layers g1 and
g2 yields six non-dominated nodes (marked by red points). The other nodes are not
in the Pareto front but get a different color based on their dominance rank. Table 6.1
shows a partial list of node rankings of the Pareto front. There are several nodes in the
second ranking, and the lowest ranking is 16. In Figure 6.4 all pairwise Pareto fronts
and the correlation of the two objectives (layers) are compared with each other. The
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ability p = 0

Figure 6.1 Erdős-Rényi random graph example with m = 100. The left network is generated
with probability P = 0.1, and the one to the right with probability P = 0.01.

correlation strength of each pair is emphasized by color: Pink pairs have the highest
correlation, green is in the middle, and yellow have the lowest correlation. There are no
significant differences between the correlations, which can be attributed to the random
nature of the network.

6.4.2 · Analysis on Trade Economic Multiplex Networks

The subsequent study shows that real multiplex networks exhibit a very different pattern
as observed in random multiplex networks. An analysis for a real network from trade
economic data is provided. We use the same data set that was used for multiplex
modularity optimization in [41]. The data originates from network economy (trade
data) using an import-export commodities network between 207 countries in 2011.
(see [39]) The data represents the import-export relationships between some countries
of the world, disaggregated for different traded commodities. This network can be
defined as a multiplex network composed of many layers, where each layer is given by
a different commodity group. The nodes are given by 207 countries. A link between
two countries in the i − th layer defined as weight exists if there is trade between
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Figure 6.2 Degree distribution of Erdős-Rényi graph model for g11 (layer 11).

them in the i − th layer, 6th commodity, for i ∈ {1, ...,11}, denoting of 11 objective
functions f1 to f11. Data are presented in matrix form: rows and columns represent
countries, and the entries of the matrices are the volumes of trade. It is, therefore, a
weighted multiplex network. In order to deal with weights, we use the matrix of weights
instead of the adjacency matrix, where a weight of zero corresponds to the case the
nodes are disconnected and the weights are proportional to the strength of connections.
The general classification is based on 96 different commodities. The classification
is performed by grouping together similar commodities; this procedure leads to 11
aggregated ’super-commodities’. The data represent the import-export relationships
between countries of the world, disaggregated for different traded commodities. We
have therefore a multi-layer (multiplex network) composed by many layers, where each
layer is given by a different commodity. Each country represents a node of the layer,
and a link between two countries in a given layer exists if there is trade between them
in that commodity. The data used in the experiment is similar to the data used and
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Figure 6.3 Pareto fronts of eigenvector centrality in network layer 1 and layer 2. Non-dominated
solutions are shown by points with red colors in the first ranking.

described in the Chapter 5.
Similar to the random network with 11 layers of networks, here the trade multiplex

network consist also of 11 layers. The first step is to compute the Pareto front of
eigenvector centrality of each layer by full enumeration of 207 node centralities (for
each country). As an example, Figure 6.5, shows the Pareto front between objective
function f7 (textiles) and f11 (optics and electronics).

Colors of the node centrality on the Pareto Front represent the ranking of the node
in the Pareto Front, and the non-dominated solution in the Pareto front is represented
by the first ranking from the set of solutions. To give a more clear insight regarding
the ranking in the Pareto Front, we can analyze results from Table 6.2. For the non-
dominated solution of pairwise optimization of f7 and f11 we can see clearly that there
are 5 countries that are non-dominated. They are China, Germany, Italy, England and
USA.

From the Figure 6.6 we can see all country rankings in the set of solutions of
pairwise optimization.
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Figure 6.4 Scatter plot matrix for Pareto fronts of Eigenvector centrality with 11 layers of the
Erdős-Rényi network model.

It becomes clear that the pairwise optimization for 11 network layers results in a
different number of non-dominated solutions, each. There is at least one non-dominated
solution and at most 5 non-dominated solutions for the pairwise optimizations. Single
non-dominated solutions are USA in f2 and f3, France in f1 and f4, China in ( f5 and f6),
( f5 and f7), and ( f6 and f7), and UK in f10 and f11. There are mostly 2 non-dominated
solutions such as China and France in f4 and f6, and also there are pairs of objectives
with or 3, 4 and 5 non-dominated solutions. The maximal number of 5 non-dominated
solutions only occurs in pairwise optimization in f7 and f11.

Finally, and most importantly, we compute by many-objective optimization the
Pareto front for all objective functions (layers) considered together. We present results
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Figure 6.5 Pareto fronts ranking (big 10) of eigenvector centrality in network layer 7 and layer
11 of trade economic data.

in Figure 6.7.

In this figure, from the computation of the Pareto front for all layers together,
we found there are 7 countries in the set of non-dominated solutions. They are China,
France, Germany, Italy, India, UK, and the USA. Those countries are in the first ranking
of the table. The second rank is shared by the countries Belgium-Luxembourg (BLX),
Canada, Netherlands, Spain, Switzerland, and Turkey. In total there are 20 ranks and the
last three ranks are only single countries Pitcairn Islands (PCN), West Sahara (ESH),
Netherlands Antilles (ANT). The result shows that the centrality rank can serve as a
rough indicator of the economic power of a country. Note, however, that a particularly
strong centrality in one commodity type can be, in principle, the reason for the strong
position in the ranking.

Comparing these results by means of pairwise optimization, we find that there are
smaller numbers of non-dominated solutions, which is clear because solutions that are
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g1 g2 Node − label .level
0.45475356 0.9234941 6 1
0.6897551 0.7932208 19 1
1 0.254959091 43 1
0.6890175 0.8452013 49 1
0.8307032 0.5346712 59 1
0.3492441 1 70 1
0.644231 0.7625479 23 2
0.5920705 0.7692097 24 2
0.51719 0.8429117 13 2
. . . .

. . . .

. . . .

0.3339607 0.1214376 69 14
0.2786245 0.18691 33 15
0.22968245 0.3995689 16 15
0.1624571 0.4001076 26 15
0.2401259 0.3993044 76 15
0.2487949 0.1558329 61 16

Table 6.1 Pareto fronts ranking of Eigenvector centrality in pairwise optimization in layer 1
and layer 2 from Erdős Rényi random graphs

f 7 f 11 Country Node − label .level
1.00E + 00 9.44E − 01 CHN 39 1
9.65E − 01 9.83E − 01 DEU 71 1
9.81E − 01 9.63E − 01 IT A 90 1
9.61E − 01 1.00E + 00 GBR 197 1
9.72E − 01 9.81E − 01 USA 199 1
9.60E − 01 9.88E − 01 FRA 65 2
9.26E − 01 9.63E − 01 BLX 16 3
. . . . .

. . . . .

. . . . .

9.20E − 03 3.54E − 02 PCN 146 57
6.77E − 03 1.51E − 02 ESH 175 58
2.98E − 18 2.16E − 18 ANT 125 59

Table 6.2 Pareto fronts ranking of Eigenvector centrality in network layer 7 and layer 11 from
trade economic data.
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Figure 6.6 Scatter plot matrix for pairwise Pareto fronts of multiplex network trade economic
data.Non-dominated solutions are represented by country flags as a vertex of the
trade economic network.

non-dominated in only two objectives stay non-dominated when further objectives are
added. There are also fewer rankings when all layers are considered. From Table 6.2,
we obtain that there are 59 rankings for pairs of objectives (layer 7th and layer 11th),
but there are only 20 rankings when optimize all layers together as it is shown in Figure
6.7.

6.5 · Summary
In this chapter, we discussed first results on the computation and analysis of Pareto
fronts (set of non-dominated solutions) for eigenvector centrality in multiplex networks
for the examples of Erdős Rényi random graphs and economic trade networks. As
opposed to the maximization of modularity in previous work [41], the analysis of
eigenvector centrality allows for using exact algorithms based on enumeration (all nodes
of the networks) and efficient computation of non-dominated sets and dominance ranks
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of nodes. We discussed two analysis methods. They reveal different insight into the
structure of the dominance relation and the relation between layers. The first method
is to compute a Pareto front for every pair of layers. This shows whether similar nodes
are central in the two selected layers or whether nodes are positioned very differently.
Correlation analysis of the resulting Pareto front matrix can be used to quantify these
results. In the analysis of the random graph no significant difference was observed,
whereas, in the real-world networks, such as the trade network, the results differ from
pair to pair and for some pairs single dominating countries could be identified. Secondly,
the non-dominated solutions of the entire network can be computed as well as the
dominance rank for all solutions. In the example of the trade multiplex network, the
dominance rank is a rough indicator of how important a node is in the global trade
network across different commodities. Analysis of the first ranks and last ranks of the
networks yield plausible results with respect to this. The total number of non-dominated
countries across all 11 commodity groups is, however, relatively small and consists of
only 7 countries, all of them in the G20 countries (and 5 of them in the G8)1. For all
other countries, there exist countries that are better or equal in all commodity centrality
values and at least better in one centrality.

1India and China are non-dominated but not in the G8.
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Figure 6.7 Pareto fronts of Eigenvector centrality 11 layers of the trade economic network.
Non-dominated solutions are represented by ranking ("level") one in the the list.
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Figure 6.8 Scatter plot matrix of network correlations for the economic network.




