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Modularity Maximization in

Multiplex Network Analysis Using

Many-Objective Optimization

5.1 · Introduction
In many disciplines, complex systems can be studied through network modeling and
analysis. This yields a better understanding of complex phenomena, including con-
flicting sociology phenomena, spreading of disease, conflicting economic situations,
telecommunication systems, biological systems, and networks in engineering. The
networks or a collection of nodes are joined in pairs by edges. Clustering such groups
of nodes in the network has become an important area of research. Network data
becomes increasingly available but is also complex due to the omnipresence of data
measurement and inquiry as a recent trend. In this chapter, we will focus on a special
class of networks so-called multiplex networks. Often for the same set of network nodes,
several or many network layers can be defined. Networks defining trade of different
types of commodities is an example and it will provide a case study for this chapter.
Other examples include multiplex networks

• in communication via different channels (social media, telephone, peer-to-peer),

• in biology, the different types of signaling networks of trees or plants (via scents,
via insects, via underground root networks),

• in sociology, defined by different types of relationships, such as personal friends,
relatives, business relationships, which might partially overlap.
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This chapter presents a first step in the analysis of such multiplex networks by means
of modularity optimization, where modularity is a measure of the quality of how well
a partition of a network is representing communities. We consider the optimization of
modularity for the different layers as the objective functions. Optimizing several (2,3)
objectives simultaneously can be addressed by multi-objective optimization and many
(�3) objectives by many-objective optimization resulting in a high dimensional Pareto
front. By computing the Pareto fronts of pairs of different layers we find relationships
between the objectives. Layers can be in conflict with each other, meaning that they
yield very different optimal modularity structures. They can be also complementary,
meaning that maximizing the modularity of the one layer also maximizes the modularity
of the other layer. In this case, it is possible to merge the layers without losing essential
information. Finally, it is also possible that the maximization of modularity of one layer
does not affect the optimization of the modularity of another layer, in which case the
problem could be easily decomposed.

5.2 · Related Work

To optimize many objectives simultaneously various approaches have been developed.
Some of them aim at reducing complexity, such as Objective Reduction in Many-
objective Optimization: Linear and Nonlinear Algorithms [50], Reducing Complexity
in Many-Objective Optimization Using Community Detection [40], and Objective
Reduction Based on Nonlinear Correlation Information Entropy [57]. Other approaches
are based on Evolutionary Multi-objective optimization (EMO) extended for dealing
with many objectives, cf. [33]. In this chapter, the CoDEMO framework from Chapter
3 is applied. The objective functions are the modularities achieved for different layers.

5.3 · Many Objective Optimization Approach to Community Detection in

Complex Networks

Our research approach is to perform many-objective optimization of network modu-
larity by computing and visualizing a matrix of Pareto fronts for pairs of objectives.
Then we use community detection algorithms to group objective functions in order
to understand and visualize the conflict or correspondence of community structures
w.r.t. different edge sets. For every edge set, one objective function is defined, which
is to maximize the modularity of this edge set. The search space X is the space of all
partitioning of the node sets. In this way for a multiplex network G with layers G1,...,GM
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we define M objective functions Q1 : X → R+0 , Q2 : X → R+0 ,...,QM : X → R+0 . All
objective functions are to be maximized. Our first goal is to compute Pareto optimal
solutions. Then we analyze projections to pairs of objective functions (corresponding
to pairs of layers), in order to understand the relationship between layers in terms of
modularity structure. In this way, we aim to gain insight into essential aspects of the
community structure of a given multiplex network.

5.4 · Network Analysis Method

Given as an input a multiplex network with M layers represented by a set of graphs
G1,..., GM , the approach is called Pareto front Modularity for Multiplex Network
(PaMoPlex). Similar to the CoDeMO approach, discussed in chapter 3, it is a workflow
consisting of several subsequent analysis steps. It is summarized in a work flow which
consists of two major phases: (1) Preparation of data by optimization, (2) Analysis of
data. The preparation of data in step (1) of the analysis consists of solving optimization
tasks to find non-dominated solutions. In order to get more precise results, we also
compute single objective optima and marginal Pareto fronts for every pair of two
objective functions (between modularities as objective functions associated with two
layers, each). The first phase is summarized in the next three steps:

• Single Objective Optimization: Optimize the modularity of each network
separately using evolutionary single objective optimization based on a genetic
algorithm.

• Many-Objective Optimization: Optimize the modularity of network, all layers
together, as one unit in a multiplex network. For this, we use M-objective
optimization algorithms.

• Pairwise Pareto-Front Computation: Optimize modularity for pairs of objectives.

The optimization methods are evolutionary multi-objective optimization based on
NSGA-II [16], MOEA/D [31] and SMS-EMOA [56], [8] (population size: 100, number
of generations: 2000). For small examples, we use a complete enumeration of partitions.
Since NSGA-II is not really appropriate for a Many-Objective Optimization problem
we rely on the MOEA/D and SMS-EMOA algorithms for the experiment.

In the second phase, the obtained data are analyzed. This is conducted in the
following three steps:
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• Matrix of Pareto Fronts Analysis: Visualization of Pareto Fronts is done on a
plot matrix, where each tile with j ∈ 1, ...,M , i ∈ 1, ...,M , j > i consists of a plot
of a Pareto front of tradeoffs between objectives Qi and Q j (see Figure 5).

• Correlation Heat Map Analysis: Computation of the correlation coefficients
matrix from the projections of the output of many-objective optimization. The
heat map has as many rows and columns as the number of network layers (or
objectives). The Pearson correlation coefficients of the projected 2-objective
function vectors have values in the range of [-1,1] for each pair of objective
functions; see Table 2 for an example. In the heat map, see Figure 5.6 for an
example, blue color represents positive correlations, whereas red color represents
negative correlations. The intensity (darkness) and size of the colored square in
each matrix cell grow with the absolute value.

• Community Analysis: This tool is based on the result of the correlation analysis.
The correlation matrix is used for community detection by the graph-theoretic
algorithm to detect communities using the information of correlation coefficients
matrix and interpreting it as edge weights. Here the analysis proposed by Maulana
et al. [40] is used, where the edge weight is determined by the absolute value of
the correlation coefficient. This leads to a separation of independent communities
of layers. Conflicting communities are placed opposite to each other (see Figure
5.5).

Further details on the analysis of examples and interpretation of results will be
discussed in the subsequent sections.

5.5 · Case Study and Analysis

As an illustrative example on how to interpret results of multi-objective modularity
optimization, we computed the exact Pareto fronts for three synthesized multiplex
networks consisting of only two layers each. The networks and the corresponding
Pareto fronts are displayed in Figure 5.1, Figure 5.2, and Figure 5.3. Red edges denote
edge weights of 3, blue edges represent edge weights 1, and omitted edges have weight
0. A complete enumeration of all 203 possible partitioning was used to compute the
exact Pareto fronts (cf. Bell 1934 [7]).
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5.5.1 · Analysis on Synthesized Multiplex Networks

The first network in Figure 5.1 is a multiplex network where the maximization of
modularity is conflicting, due to non-overlapping communities w.r.t. both layers. The
linear Pareto front indicates a strong conflict between the maximization of two types
and it is difficult to find a compromise solution that optimizes both objectives at the
same time.

Figure 5.1 A visual depiction of the Pareto front for network modularity between two network
layers N1 and N2 corresponding to highly conflicting objectives function

In the second example, in Figure 5.2, the optimal modularity for the first network
is achieved by grouping the upper nodes in the graph, while for the second network it
is important to group the lower nodes. Thereby the value of the modularity is widely
indifferent to how the remaining nodes are grouped. This represents a case where
the modularity optimization for the two layers is almost independent and the Pareto
front has a knee point solution where both objective functions almost obtain their
maximum. The correlation is close to zero. Finally, the third example in Figure 5.3
shows a multiplex network consisting of two equal edge sets. Here, solutions can be
found that cluster for one layer optimally w.r.t. modularity necessarily also do so for the
modularity of the second network. In other words, optimizing one network coincides
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Figure 5.2 A visual depiction of the Pareto front for network modularity between two network
layers N1 and N2 corresponding to highly correlated objectives function

with optimizing the other network. This is indicated by a perfect correlation between
the modularities of sampled points even for random inputs. The Pareto front consists
of only a single solution. In real-world applications, it is of course not so obvious
how the structure of the Pareto front looks like. These three examples should be seen
as boundary cases, which can help to interpret and understand the observed shape of
Pareto fronts in such real-world networks.

5.5.2 · Economic Trade Multiplex Network Analysis

Next, a full PaMoPlex analysis on an economic dataset is provided. The data originates
from network economy (trade data) using import-export Commodityodities network
between countries in 2011 (see [39], Appendix). The data represents the import-
export relationships between countries of the world, disaggregated for different traded
commodities. This network can be defined as a multiplex network composed of many
layers, where each layer is given by a different commodity. The nodes are given by
207 countries. A link between two countries in the i − th layer defined as the weight
will exist if there is trade between them in the i − th commodity, for i ∈ 1, ...,11. Data
are presented in matrix form: rows and columns represent countries, and the entries of
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Figure 5.3 A visual depiction of the Pareto front for network modularity between two network
layers N1 and N2 corresponding to very strong correlation of objectives function

the matrices are the volumes of trade. It is, therefore, a weighted multiplex network.
The general classification is based on 96 different commodities. The classification
is performed by grouping together similar commodities; this procedure leads to 11
aggregated ’super-commodities’.

The single objective optimization was conducted by a standard Louvain method
and by a genetic algorithm. In all cases, the genetic algorithm found a better result.
The results are summarized in Table 5.1 A typical number of communities when
maximizing modularity are between 5 and 9.

The genetic algorithm is from the software package JMetal (gGA). It has population
size 2000 and 100 generations were conducted. The default parameter settings for
the genetic operators were used (http://jmetal.sourceforge.net/, February 2015). We
suppose that by tuning of parameters better results can be achieved, but defer such
studies to future research in order to focus more on the overall analysis method in this
chapter.

The many-objective optimization yields a Pareto front that is embedded in an 11-
dimensional space. The analysis of the correlation and community between objectives
was conducted following the approach mentioned in [40]. From this, we compute the
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Trading network Louvain method Genetic Algorithm

Modularity NC Modularity NC

Trade 1 0.34392 9 0.35162 9
Trade 2 0.34794 9 0.35225 9
Trade 3 0.30513 9 0.30801 8
Trade 4 0.33691 7 0.33771 7
Trade 5 0.29084 6 0.29968 6
Trade 6 0.26811 5 0.27008 5
Trade 7 0.24781 7 0.24873 7
Trade 8 0.18622 6 0.18863 5
Trade 9 0.29881 5 0.29882 4
Trade 10 0.22961 5 0.22966 4
Trade 11 0.15493 4 0.15494 4

Table 5.1 A modularity for each single network based on single objective optimization using
genetic algorithm. From the table, NC is a number of community

heat map of correlations between objectives (Figure 5.6) and the community structure
( Figure5.5). The results are also reflected in the Pareto front plot matrix (Figure 5.4).
Our interpretation of these results is as follows: Strong conflicts occur between Q3 and
Q8, Q3 and Q9, Q1 and Q8, Q4 and Q5. Q1 and Q2, Q1 and Q3, Q4 and Q11, Q4 and Q10,
Q4 and Q11. From the analysis we can, for instance, conclude that for trade-networks
of Q3 and Q8 the countries cannot be clustered in a way that community structures
for both groups of commodities are well represented. On the contrary, for Q1 and Q2

there exists a clustering that represents the community structures for both communities
very well (See the description of the data). It seems logical that the main agricultural
products of a group Q1 and Q2 appear to adhere to similar trade community structures,
whereas for the very disjoint products in group Q3 and Q8, it might have been difficult
to predict a priori how their trade networks will overlap.

5.6 · Summary

This chapter showed how to apply many-objective optimization for the analysis of
multiplex networks. Different ways on how to analyze the community structure in
multilayer networks were introduced, all relying upon data from many-objective
optimization. First, we discussed the meaning of the Pareto fronts between modularities
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Figure 5.4 Pairwise Pareto Fronts Matrix for Economic Trade Network Analysis

by exact computations of Pareto fronts on three illustrative examples, which represent
important boundary cases. Then, on the example of trade networks for commodities, we
performed a full analysis. First, we generated data using many-objective optimization,
bi-objective optimization (of any pair of layers), and single objective optimization
(of any single layer). The results were analyzed using three tools suggested here:
Correlation heatmap, the community of objectives analysis, and the Pareto-front
plot matrix. These were computed for an economic trade network with 11 groups
of commodities. Clearly, a grouping emerges in terms of complementarity and/or in
terms of indifference. NSGA-II, SMS-EMOA, and single-objective genetic algorithms
can be used as a search engine.

Description of the data

This section describes The description of the data from selected commodities in
trade network: Due to space limitations, we will not go in detail about economic trade
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Figure 5.5 community structure for many-objective optimizations of the 11 node trade network

data, but briefly describe those mentioned above:. The data are about economics trading
commodities between countries in 2011. Number of country are 207, the numbers of
commodities are 96 commodities and grouping in 11 group of commodities described
by Q1 to Q11. For brief explanation, we describe some group of commodities

• Q1 = Live animals, Meat and edible meat offal, Fish, crustaceans and aquatic
invertebrates, Dairy produce; birds eggs; honey and other edible animal products

• Q2 = Live trees, plants; bulbs, roots; cut flowers and ornamental foliage tea
and spices; Edible vegetables and certain roots and tubers; Edible fruit and
nuts; Citrus fruit or melon peel; Coffee, tea, mate and spices; Cereals; Milling
products; malt; starch; insulin; wheat gluten; Oil seeds and oleaginous fruits;
miscellaneous grains, seeds and fruit; Industrial or medicinal plants; straw and
fodder

• Q3 = Lac; gums, resins and other vegetable sap and extracts Vegetable plaiting
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Figure 5.6 Correlation heat map for many-objective optimizations of 11 node trade network

materials and other vegetables products; Animal, vegetable’s fats and oils,
cleavage product, etc; Edible preparations of meat, fish, crustaceans, mollusc’s’s
or other aquatic invertebrates; sugars and sugar confectionery; Cocoa and
cocoa preparations; Preparation of cereals, flour, starch or milk; bakers wares;
Preparations of vegetables, fruit, nuts or other plant parts; Miscellaneous edible
preparations; Beverages, spirits and vinegar; Food industry residues and waste;
prepared animal feed; Tobacco and manufactured tobacco substitutes

• Q4 = Salt; sulfur; earth and stone; lime and cement plaster, Ores, slag and
ash, Mineral fuels, mineral oils and products of their distillation; bitumen
substances;mineral wax, Inorganic chemicals; organic or inorganic compounds
of precious metals, rare-earth metals, of radioactive elements or of isotopes,
Organic chemicals, Pharmaceutical products, Fertilizers, Tanning or dyeing
extracts; tannins and derivatives; dyes, pigments and coloring matter; paint and
varnish; putty and other mastics; inks, Essential oils and resinoids; perfumery,
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cosmetic or toilet preparations, Soap; waxes; polish; candles; modeling pastes;
dental preparations with basic of plaster, Albuminoidal substances; modified
starch; glues; enzymes

• Q7 = Silk, including yarns, woven, fabric thereof Wool, animal hair, including
yarn and woven fabric, Cotton, including yarn, woven fabric thereof, Other
vegetable textile fibers; paper yarn and woven fabrics of paper yarn, Man-made
filaments, including yarns and woven fabrics, Man-made staple fibers, including
yarns and woven fabrics, Wadding, felt and non-wovens; special yarns; twine,
cordage, ropes and cables and article thereof.

• Q11 = Optical, photographic, cinematographic, measuring, checking, precision,
medical or surgical instruments/apparatus; parts and accessories, Clocks and
watches and parts thereof, Musical instruments; parts and accessories thereof,
Arms and ammunition, parts and accessories thereof, Furniture; bedding,
mattresses, cushions, etc.; other lamps and light fitting, illuminated signs and
nameplates, prefabricate buildings, Toys, games and sports equipment; parts and
accessories, Miscellaneous manufactured articles, Works of art, collectors pieces
and antiques.

(See COMTRADE 96 Classification of commodities for 2011 on http://comtrade.un.org/db/mr/rfCommoditiesList.aspx)
Moreover we use the following grouping of commodities

• from 1 to 5: Commodity01;

• from 6 to 12: Commodity02

• from 13 to 24: Commodity03

• from 25 to 35: Commodity04

• from 36 to 40: Commodity05

• from 41 to 49: Commodity06

• from 50 to 56: Commodity07

• from 57 to 67: Commodity08
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• from 68 to 82: Commodity09

• from 83 to 88: Commodity10

• from 89 to 96: Commodity11

The commodity data we used was from 2011 for all 207 countries.






