
Many objective optimization and complex network analysis
Maulana, A.

Citation
Maulana, A. (2018, December 5). Many objective optimization and complex network analysis.
Retrieved from https://hdl.handle.net/1887/67537
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/67537
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/67537


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/67537 holds various files of this Leiden University 
dissertation. 
 
Author: Maulana, A. 
Title: Many objective optimization and complex network analysis 
Issue Date: 2018-12-05 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/67537
https://openaccess.leidenuniv.nl/handle/1887/1�


22
Preliminaries

This chapter introduces all fundamental concepts used in this research study.

2.1 · Multi-Objective and Many-Objective Optimization

Multi-objective optimization (also called multi-criteria optimization, multi-objective
programming, multi-attribute optimization, vector optimization or Pareto optimization)
is an area of decision making that is concerned with mathematical optimization
problems involving more than one objective function to be minimized or maximized
simultaneously. A multi-objective optimization (MOO) problem is defined by a
number of objective functions fi: X → R, i = 1, ...,m to be maximized (or maximized)
for some search space X . A solution a ∈ X is said to dominate a solution b ∈ X , if and
only if ∀i: fi(a) ≤ fi(b) and ∃ j : fj(a) < fj(b). Two solutions in a ∈ X and b ∈ X
are non-dominated w.r.t. each other, if neither a dominates b nor b dominates a. The
efficient set Xe is the set of solutions in X that is not dominated by any solution in X .
The Pareto front PF is the image set of Xe, i.e. PF= { f (x) | x ∈ Xe} ⊆ R

m.

Many-objective optimization (ManOO) applies to problems with more than three
objective functions to optimize simultaneously [23]. There are new issues arising in
many-objective optimization compared to multi-objective optimization. The two main
issues in differentiating many-objective problems from multi-objective problems are the
following: on the one hand, a large number of objective functions makes visualization
of the Pareto front impractical; on the other hand, analysis of Pareto fronts is difficult
due to the tendency that a majority of solutions will be non-dominated. Hence, the
tradeoff analysis of conflicts between objective functions and the representation of the
entire Pareto front can become difficult and in-transparent. Moreover, a high number
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Figure 2.1 An illustration of multi-objective optimization for the decision variables and two
objectives (to be minimized).

of objectives can cause to a significant increase in the computational time complexity
required to compute Pareto fronts. In spite of these difficulties, many technique and
approaches have been proposed to deal with many-objective optimization [33], [50],
[40], [57].

2.2 · Networks

Network (or graphs) are one of the most fundamental data structure in computer science.
A network can be represented by means of an adjacency matrix A ∈ Rm×m, where m
denotes the number of nodes. Here the entry Ai j is zero if there is no connection
between node i and node j, and non-zero otherwise. The non-zero number represents
the weight of the connection. A network is used to represent the relationship between
objects in a certain domain. An object in a network is a named node or vertex and the
relationship between objects is called edge or link. The network can be used to describe
a relationship between humans and their relationship in social life, countries in the world
trading commodities, cities in a delivery problem in logistics, train stations or bus stops
in some transportation system, connected computers in the Internet, airports in flight
data set, interactions between proteins in biological system, and so forth. Analyzing
such types of networks has become an immensely promising research area,and there is
a lot of active research in network science, including community detection and network
centrality.
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2.2.1 · Community Detection

Community detection is a well-known method of social network analysis. A community
is a group of nodes with many links between nodes of the group, but not so many
links to nodes outside the group. The most popular community detection method for
network clustering is the Louvain method, which is based on modularity maximization.
Modularity is a concept that originates from social network analysis [42]. It is a quality
measure or strength of partitioning of a graph into communities (partitions, groups
or clusters). Maximizing modularity groups the nodes of a graph in such a way that
intracluster graph distances (or edge weights) are minimized and inter-cluster graph
distances (or edge weights) are maximized. Let Ai j denote the weight of the edge from
node i to node j. Let m denote the number of the nodes, and Ki=

∑
Ai j denote the sum

of weights of edges belonging to node i. Moreover, Ci is the community to which node
i is assigned. Finally δ(., .) is the Kronecker symbol, which is equal to 1, if and only if
both arguments are equal to each other. Otherwise, it obtains the value of 0. Now the
modularity is defined formally as:

Qsigned =
1

2m

∑
i, j∈{1,...,m}

[
Ai j −

(
Ki ∗ Kj

2m

)]
δ(Ci,Cj) (2.1)

Modularity maximization is an NP-Hard problem. This can be shown by polynomial
reduction of 3-PARTITION [19], and thus, in general, it is difficult to solve this problem
by means of exact methods. There are, however, several fast heuristics available, such
as the Louvain method [42], which is a greedy heuristic that finds high modularity
partitions of a network in short time. The first phase of the Louvain method begins by
placing each node in its own singleton ’community’. Then the looping over all nodes
is done in the following way:
For each node i all neighbors, that is, all the nodes j such that Ai j is non-zero,
are analyzed from the point of view of the gain computed after removing i from its
community and placing it into the community of j. The node i is then put into the
community for which the increase in modularity is largest. If none of the potential re-
assignments of i into other communities is associated with a positive gain in modularity,
i stays in its original community and the algorithm moves on to the next node. The loop
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is repeated until no further improvements are obtained, i.e. when the modularity has
reached a local optimum.
In the next phase of the algorithm, a new network is constructed with the communities
of nodes obtained at the first phase of the Louvain method. The weights of the edges
between the new nodes are given by the sum of the weights between all nodes between
communities of the previous phase. When this phase is finished, a new phase is started,
and so on. This creates a hierarchy of communities. The algorithm stops when a
maximum of the modularity is obtained, or in practice when the last performed pass
did not further increase modularity.

2.2.2 · Network Centrality

Network centrality is an important concept in network studies and analysis. As in
everyday reality, a person, or organization in some way has the influence to generate
some important decision for a community or even for a human being. Identifying
an important person or organization can be recognized as the problem of identifying
key players in a community. Many network centrality methods have been proposed to
identify different key players in a social setting ( [11], [12]) such as the following:

• Degree centrality, which focuses on the number of peers to which a node is
connected [21].

• Betweenness centrality, which considers the number of shortest paths in the
network that pass through a certain node [6].

• Closeness centrality, which measures distance from a certain node to all other
nodes [43].

• Eigenvector centrality and PageRank, which consider the number of links from
one node to other nodes, the importance of these nodes, and to how many these
nodes themselves point to [10], [44], [49].

In this thesis, the emphasis will be more on eigenvector centrality. The reason behind
this decision is that the method represents the most fundamental properties of centrality
measures, and is a remarkably long studied method [52]. It is also very similar to the
well known Google PageRank Methods.
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Formally, the eigenvector centrality can be defined as follows: For a given graph
G=(V,E) with |V | being the number of nodes, let A = (Av,t ), v ∈ {1, ..., |V |},
t ∈ {1, ..., |m|} be the adjacency matrix, i.e. Av,t = 1 if node v is linked to node t, and
Av,t = 0 otherwise. The relative centrality score of node v is defined as

xv =
1
λ

∑
t∈M(v)

xt =
1
λ

|m |∑
t=1

At ,vxt

where M(v) is a set of the neighbors of v and λ is an eigenvalue of A. In vector
notation, the eigenvector centrality can be rewritten in a simple equation as Ax = λx
and it becomes clear that x is an eigenvector of A and λ an eigenvalue. As there
can be many eigenvectors of A, by convention, the eigenvector that corresponds to the
biggest eigenvalue is considered. It consists of only positive components. There are two
important factors that influence the eigenvector centrality of the node in the network.
They are:

• The number of or total weight of links neighbors that point to the node.

• The centrality of neighbors that point to the node.

There is a possibility that nodes with more neighbors have a lower eigenvector centrality
compared to nodes with fewer neighbors. This can happen because the neighbors of
the less connected node have a higher centrality.

2.2.3 · Multiplex Networks

Multiplex networks are networks consisting of multiple edge sets for the same set of
node. The network is made up of multiple layers, each of which represents a given
operation mode. More clearly, it can be defined as graphs that consist of a number of,
say n, nodes and m different edge sets for these nodes, called layers. The node set is
denoted by V and the edge sets are denoted by El, l ∈ {1, ...,m}. A multiplex network
is represented formally as G = (G1,G2, . . . ,Gl, . . . ,Gm).

A visual illustration of the layers is shown in Figure 10. Here we assume that every
network Gl is fully described by the adjacency matrix Al with elements Al

i j = W l
i j > 0,

where Al
i j = W l

i j > 0, if there is a link with a positive weight between nodes i and j in
layer l, and Al

i j = 0 otherwise.
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Figure 2.2 A visual illustration of multiplex network consisting of two layers of networks
distinguished by blue and red colour. Each layer has different links but the nodes
remain the same. The union of these layers, indicated by ∪, forms the multiplex
network.

2.3 · Matrix Correlation Analysis

In statistics, the Pearson correlation coefficient, referred to as the Pearson’s ρ, Pearson
product-moment correlation coefficient (PPMCC) or bivariate correlation, [45] is a
way to measure the linear correlation between two object. It has a value between -
1 and 1, where 1 is perfect positive linear correlation, -1 is perfect negative linear
correlation, and 0 is defined as no correlation among those two objects. This method
was developed by Karl Pearson from a related idea introduced by Francis Galton in
the 1880s [20] [46] [53] and is widely used in the sciences, providing meaningful
comparisons in system analysis.
We will now give the precise definition of how to compute the empirical correlation
coefficient of two functions based on a finite number of evaluations. Let (Ω,S,P) denote
a probability space, where S is the event space and Ω denotes the set of elementary
outputs – here chosen as the input space X = {0,1}N . We will only consider singletons
as events and write ω instead of {ω}. In the following we consider the entire input
space X = {0,1}N , and a uniform distribution over this set. For each function Fi the
random variables Fi : Ω→ R are defined as Fi : ω 7→ Fi(ω). Next, consider a sample
Ω′ ⊆ Ω and the realizations of random variables F1(ω), . . . , Fm(ω) for ω ∈ Ω. Now,
for the group of paired evaluations of Fi and Fj the empirical correlation coefficient
can be computed as:
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ρei j =

1
1−|Ωs |

∑
ω∈Ωs

(Fi(ω) − Fi)(Fj(ω) − Fj)√
1

1−|Ωs |

∑
ω∈Ωs

(Fi(ω) − Fi)
2
√

1
1−|Ωs |

∑
ω∈Ωs

(Fj(ω) − Fj)
2

As the matrix correlation applies to this research, it will utilize in the context of
multi-objective and many-objective optimization, and decision making. The correlation
can be interpreted as follows:

• Positively correlated objective functions can be interpreted as objective functions
that support each other.

• Uncorrelated objective functions are considered to be independent of each other.

• Negatively correlated objective functions are in a strong conflict with each other.
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Figure 2.3 A visualization of the Pearson Correlation Coefficient and its range of values.




