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Introduction

O, for a muse of fire, that would ascend
The brightest heaven of invention

Chorus, Henry V, Prologue, lines 1-2

This thesis deals with three questions from arithmetic geometry. Even
though it seems difficult to indicate one overarching topic, there do exist
links between every pair of questions. Chapters 2 and 3 both deal with
counting rational points, Chapters 2 and 4 are about K3 surfaces, and
Chapters 3 and 4 both involve the concept of local solubility and obstruc-
tions to global solubility.

In Chapter 1 we give some necessary background from geometry and num-
ber theory that will allow us to study the topics in the later chapters. In
particular, we give a quick treatment of the circle method, which is com-
monly used to address counting questions from geometry. When studying
a polynomial F ∈ Z[X1, . . . , Xn], then the integral∫ 1

0
exp(2πiαF (x))dα

tests if F has a zero at some point x ∈ Zn. Indeed, since F (x) is an
integer, the integral evaluates to 0 unless F (x) = 0 holds, in which case
the integral equals 1. When for some bound B, we sum such integrals
over all x ∈ (Z ∩ [−B,B])n, we may switch the order of the sum and
the integral. The circle method describes a quite general way in which
this integral can be approximated well enough so that we get valuable
information out of it for large B. Moreover, this process generalizes to
multiple polynomials. For now, it suffices to know that the main term
will be a product of an integral (which should be easier to compute) and
a series.

Chapter 2 is devoted to producing evidence towards a precise Manin type
conjecture for K3 surfaces, predicting the number of rational points up
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to bounded height. If x = (x0 : . . . : xn) ∈ Pn(Q) is any point, we
may arrange its coefficients so that each of the xi is an integer, and the
(n+ 1)-tuple has trivial greatest common divisor. If we do that, then we
call H(x) = maxi |xi| the height of the point x. A useful property is that
for any given bound B, there are only finitely many points in Pn(Q) that
have height at most B. The same is true for any subvariety of PnQ. Hence,
for any given subvariety, we may count this number N(B) of points for
varying B. In the case of Fano varieties, Manin stated a rather general
conjecture for the shape of N(B), involving some geometric invariants.
In particular, Manin’s conjecture asks us to restrict ourselves to open
subsets since there might exist so-called accumulating subvarieties. These
may contain ‘too many’ rational points and we should ignore those. Many
examples of Fano varieties have been studied in the literature, and at least
for surfaces there are many examples where N(B) involves a power of B
and a power of log(B). The exponent of the logarithm is ρ − 1, where ρ
is the rank of the Picard group of the variety.

Leaving the world of Fano varieties, we study diagonal quartic surfaces,
which are examples of K3 surfaces, and we employ the circle method to
count zeroes of the defining equation. Experts will immediately recognize
that in this case the emergent error terms will exceed the desired main
term. We focus on the main term and we speculate that there should be
a connection between the error terms and accumulating subvarieties on
the surface. Such behaviour has been observed in the literature for other
types of varieties, but a detailed treatment supporting such speculation
seems out of reach of our methods. The main result of this chapter gives
heuristic support for hitherto unexplained data obtained in computer ex-
periments by van Luijk some years ago. In particular we find that no
power of B occurs and in contrast to the Fano varieties discussed above,
that the power of log(B) ought to be ρ instead. Apart from this result, the
approach to obtain these heuristics could be viewed as the main contribu-
tion of this chapter: we use averaging results of multiplicative functions to
study the series coming out of the circle method, and we exploit the Tate
conjecture to determine the exponent of the logarithm via the L-function
of the surface. This gives ρ−1 factors of log(B), while the last logarithm is
obtained from the remaining factor that comes in the form of an integral.

Chapter 3 is joint work with Efthymios Sofos and concerns Serre’s problem
about fibrations. In the 1990s, Serre studied examples of conic bundles,
where he looked at the number of fibres containing a rational point. More
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precisely, he studied the number of rational points in the base up to a
bounded height, say B, such that the fibres over these points contain a
rational point themselves. Serre was only able to prove upper bounds,
but for his specific examples it has since been shown that these upper
bounds are in fact asymptotically correct. In recent years more examples of
fibrations, not necessarily conic bundles, have been studied. Most notably,
Loughran and Smeets have provided a framework into which results in
this area should fit. Complete examples in the literature are rare, and
our contribution lies in giving a wide class of conic bundles for which
we can not only prove asymptotic results, but where we are also able to
study the leading constant of such asymptotics. In particular, we look at
bundles that can locally be described as follows. We take two polynomials
f1 and f2 in n variables and of even degree d, subject to some more
conditions that are outlined in Chapter 3. Now consider the variety B
defined by f2(t1, . . . , tn) = 0 as a subvariety of Pn−1

Q . Over the affine
patch where we take ti = 1, we define a conic bundle

x2 + y2 =f1(t1, . . . , ti−1, 1, ti+1, . . . , tn)z2,

f2(t1, . . . , ti−1, 1, ti+1, . . . , tn) = 0.

These bundles glue together into a conic bundle φ : X → B. Now let
N(B) be the number of rational points of B up to height B, the fibre over
which has a rational point itself. Then we prove that there is a constant
cφ such that we have

N(B) = cφ
Bn−d

(logB)1/2

up to an error term with a logarithmic exponent slightly bigger than 1/2.
Moreover, our methods allow us to prove a Hasse principle on smooth
fibres. To obtain our results, we use the circle method together with
sieving techniques to study the series that appears. The conditions on the
fibre in order for it to contain rational points appear through an indicator
function detecting everywhere local solubility. Since our fibres are conics
and therefore themselves satisfy the Hasse principle, this guarantees global
solubility. Considerable effort goes into writing the leading constant cφ as
a product of recognizable factors, and we indicate how this fits conjectural
expectations first described by Loughran.

It is known that the Hasse principle does not hold for K3 surfaces, and
it has been conjectured that the Brauer–Manin obstruction has enough
strength to explain this fact. In Chapter 4, which is written together with
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Victoria Cantoral-Farfán, Yunqing Tang, and Sho Tanimoto, we study
Brauer groups of Kummer surfaces. In particular, by a celebrated result
of Skorobogatov and Zarhin we know that for any K3 surface over the field
of rational numbers, its Brauer group (modulo constants) is finite. Our
work gives explicit upper bounds for the size that this group may attain, at
least when dealing with Kummer surfaces. For an abelian surface A over a
number field k, with Kummer surfaceX, it is known that Br(A) and Br(X)
are isomorphic as Galois modules, and we will bound the transcendental
Brauer group Br(X)/Br1(X) as a subgroup of Br(X)Γ, where Γ denotes
the absolute Galois group of k.

The proof of Skorobogatov and Zarhin’s result relies on an exact sequence
of cohomology groups, namely

0→
(
NS(A)/`n

)Γ fn→ H2
ét(A,µ`n)Γ → Br(A)Γ

`n →

→ H1(Γ,NS(A)/`n)
gn→ H1(Γ,H2

ét(A,µ`n)),

where A is an abelian surface over a number field k, ` is a prime number,
and the subscript `n indicates `n-torsion. We use this exact sequence and
we study the cokernel of fn and the kernel of gn. Bounds on their sizes
imply bounds on the size of Br(X)Γ

`n , and we provide bounds independent
of n. There are only finitely many ` for which such bounds are non-
trivial, so we should also bound the size of such `. This last point in
particular relies on effective versions of Faltings’ finiteness theorem for
abelian varieties.

Although the existence of upper bounds like ours is not new, our methods
have the advantage of being more explicit than those that were already
known, especially for Kummer surfaces of minimal Picard rank. In par-
ticular, if one is given a curve C of genus 2 over a number field k, for
which the Jacobian Jac(C) has Picard rank 1 and Faltings height h, let
δ denote the discriminant of NS(X), where X is the Kummer surface of
Jac(C). In order to obtain an upper bound for the transcendental part
# Br(X)/Br1(X), one needs only apply our formula with inputs [k : Q],
h, and δ. Moreover, we prove that the algebraic part Br1(X)/Br0(X) has
order at most 2. Although our bounds are explicit, they are unlikely to
be sharp. We compute the example of the curve C given by

y2 = x6 + x3 + x+ 1.

The Brauer group of its associated Kummer surface turns out to have an
order at most 210 · 10805050.
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