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Introduction

O, for a muse of fire, that would ascend
The brightest heaven of invention

Chorus, Henry V, Prologue, lines 1-2

This thesis deals with three questions from arithmetic geometry. Even
though it seems difficult to indicate one overarching topic, there do exist
links between every pair of questions. Chapters 2 and 3 both deal with
counting rational points, Chapters 2 and 4 are about K3 surfaces, and
Chapters 3 and 4 both involve the concept of local solubility and obstruc-
tions to global solubility.

In Chapter 1 we give some necessary background from geometry and num-
ber theory that will allow us to study the topics in the later chapters. In
particular, we give a quick treatment of the circle method, which is com-
monly used to address counting questions from geometry. When studying
a polynomial F ∈ Z[X1, . . . , Xn], then the integral∫ 1

0
exp(2πiαF (x))dα

tests if F has a zero at some point x ∈ Zn. Indeed, since F (x) is an
integer, the integral evaluates to 0 unless F (x) = 0 holds, in which case
the integral equals 1. When for some bound B, we sum such integrals
over all x ∈ (Z ∩ [−B,B])n, we may switch the order of the sum and
the integral. The circle method describes a quite general way in which
this integral can be approximated well enough so that we get valuable
information out of it for large B. Moreover, this process generalizes to
multiple polynomials. For now, it suffices to know that the main term
will be a product of an integral (which should be easier to compute) and
a series.

Chapter 2 is devoted to producing evidence towards a precise Manin type
conjecture for K3 surfaces, predicting the number of rational points up
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INTRODUCTION

to bounded height. If x = (x0 : . . . : xn) ∈ Pn(Q) is any point, we
may arrange its coefficients so that each of the xi is an integer, and the
(n+ 1)-tuple has trivial greatest common divisor. If we do that, then we
call H(x) = maxi |xi| the height of the point x. A useful property is that
for any given bound B, there are only finitely many points in Pn(Q) that
have height at most B. The same is true for any subvariety of PnQ. Hence,
for any given subvariety, we may count this number N(B) of points for
varying B. In the case of Fano varieties, Manin stated a rather general
conjecture for the shape of N(B), involving some geometric invariants.
In particular, Manin’s conjecture asks us to restrict ourselves to open
subsets since there might exist so-called accumulating subvarieties. These
may contain ‘too many’ rational points and we should ignore those. Many
examples of Fano varieties have been studied in the literature, and at least
for surfaces there are many examples where N(B) involves a power of B
and a power of log(B). The exponent of the logarithm is ρ − 1, where ρ
is the rank of the Picard group of the variety.

Leaving the world of Fano varieties, we study diagonal quartic surfaces,
which are examples of K3 surfaces, and we employ the circle method to
count zeroes of the defining equation. Experts will immediately recognize
that in this case the emergent error terms will exceed the desired main
term. We focus on the main term and we speculate that there should be
a connection between the error terms and accumulating subvarieties on
the surface. Such behaviour has been observed in the literature for other
types of varieties, but a detailed treatment supporting such speculation
seems out of reach of our methods. The main result of this chapter gives
heuristic support for hitherto unexplained data obtained in computer ex-
periments by van Luijk some years ago. In particular we find that no
power of B occurs and in contrast to the Fano varieties discussed above,
that the power of log(B) ought to be ρ instead. Apart from this result, the
approach to obtain these heuristics could be viewed as the main contribu-
tion of this chapter: we use averaging results of multiplicative functions to
study the series coming out of the circle method, and we exploit the Tate
conjecture to determine the exponent of the logarithm via the L-function
of the surface. This gives ρ−1 factors of log(B), while the last logarithm is
obtained from the remaining factor that comes in the form of an integral.

Chapter 3 is joint work with Efthymios Sofos and concerns Serre’s problem
about fibrations. In the 1990s, Serre studied examples of conic bundles,
where he looked at the number of fibres containing a rational point. More
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INTRODUCTION

precisely, he studied the number of rational points in the base up to a
bounded height, say B, such that the fibres over these points contain a
rational point themselves. Serre was only able to prove upper bounds,
but for his specific examples it has since been shown that these upper
bounds are in fact asymptotically correct. In recent years more examples of
fibrations, not necessarily conic bundles, have been studied. Most notably,
Loughran and Smeets have provided a framework into which results in
this area should fit. Complete examples in the literature are rare, and
our contribution lies in giving a wide class of conic bundles for which
we can not only prove asymptotic results, but where we are also able to
study the leading constant of such asymptotics. In particular, we look at
bundles that can locally be described as follows. We take two polynomials
f1 and f2 in n variables and of even degree d, subject to some more
conditions that are outlined in Chapter 3. Now consider the variety B
defined by f2(t1, . . . , tn) = 0 as a subvariety of Pn−1

Q . Over the affine
patch where we take ti = 1, we define a conic bundle

x2 + y2 =f1(t1, . . . , ti−1, 1, ti+1, . . . , tn)z2,

f2(t1, . . . , ti−1, 1, ti+1, . . . , tn) = 0.

These bundles glue together into a conic bundle φ : X → B. Now let
N(B) be the number of rational points of B up to height B, the fibre over
which has a rational point itself. Then we prove that there is a constant
cφ such that we have

N(B) = cφ
Bn−d

(logB)1/2

up to an error term with a logarithmic exponent slightly bigger than 1/2.
Moreover, our methods allow us to prove a Hasse principle on smooth
fibres. To obtain our results, we use the circle method together with
sieving techniques to study the series that appears. The conditions on the
fibre in order for it to contain rational points appear through an indicator
function detecting everywhere local solubility. Since our fibres are conics
and therefore themselves satisfy the Hasse principle, this guarantees global
solubility. Considerable effort goes into writing the leading constant cφ as
a product of recognizable factors, and we indicate how this fits conjectural
expectations first described by Loughran.

It is known that the Hasse principle does not hold for K3 surfaces, and
it has been conjectured that the Brauer–Manin obstruction has enough
strength to explain this fact. In Chapter 4, which is written together with
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INTRODUCTION

Victoria Cantoral-Farfán, Yunqing Tang, and Sho Tanimoto, we study
Brauer groups of Kummer surfaces. In particular, by a celebrated result
of Skorobogatov and Zarhin we know that for any K3 surface over the field
of rational numbers, its Brauer group (modulo constants) is finite. Our
work gives explicit upper bounds for the size that this group may attain, at
least when dealing with Kummer surfaces. For an abelian surface A over a
number field k, with Kummer surfaceX, it is known that Br(A) and Br(X)
are isomorphic as Galois modules, and we will bound the transcendental
Brauer group Br(X)/Br1(X) as a subgroup of Br(X)Γ, where Γ denotes
the absolute Galois group of k.

The proof of Skorobogatov and Zarhin’s result relies on an exact sequence
of cohomology groups, namely

0→
(
NS(A)/`n

)Γ fn→ H2
ét(A,µ`n)Γ → Br(A)Γ

`n →

→ H1(Γ,NS(A)/`n)
gn→ H1(Γ,H2

ét(A,µ`n)),

where A is an abelian surface over a number field k, ` is a prime number,
and the subscript `n indicates `n-torsion. We use this exact sequence and
we study the cokernel of fn and the kernel of gn. Bounds on their sizes
imply bounds on the size of Br(X)Γ

`n , and we provide bounds independent
of n. There are only finitely many ` for which such bounds are non-
trivial, so we should also bound the size of such `. This last point in
particular relies on effective versions of Faltings’ finiteness theorem for
abelian varieties.

Although the existence of upper bounds like ours is not new, our methods
have the advantage of being more explicit than those that were already
known, especially for Kummer surfaces of minimal Picard rank. In par-
ticular, if one is given a curve C of genus 2 over a number field k, for
which the Jacobian Jac(C) has Picard rank 1 and Faltings height h, let
δ denote the discriminant of NS(X), where X is the Kummer surface of
Jac(C). In order to obtain an upper bound for the transcendental part
# Br(X)/Br1(X), one needs only apply our formula with inputs [k : Q],
h, and δ. Moreover, we prove that the algebraic part Br1(X)/Br0(X) has
order at most 2. Although our bounds are explicit, they are unlikely to
be sharp. We compute the example of the curve C given by

y2 = x6 + x3 + x+ 1.

The Brauer group of its associated Kummer surface turns out to have an
order at most 210 · 10805050.
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Chapter 1

Background

Though this be madness, yet there is a method in’t

Polonius, Hamlet, Scene 2.2, line 207

1.1 Notation

Throughout this thesis, we will often use the font x as short-hand for
either a tuple (x1, . . . , xn) or a collection of variables xi where the range
of i is to be understood.

For functions f, g : R→ R we write

• f(x) = o(g(x)) if limx→∞
f(x)
g(x) = 0;

• f(x) ∼ g(x) if either f(x) = g(x) = 0 holds for all sufficiently large

x, or limx→∞
f(x)
g(x) = 1;

Somewhat differently, given a subset R ⊂ Rm+n and a function f : R→ R,
we write

f(s1, . . . , sm, x1, . . . , xn) = Os1,...,sm(g(s1, . . . , sm, x1, . . . , xn))

for some function g : R→ R≥0, or equivalently

f(x1, . . . , xn)�s1,...,sm g(s1, . . . , sm, x1, . . . , xn),

if there exists a non-negative valued function C whose domain is the pro-
jection of R onto Rm given by its first m coordinates, such that for all
(s1, . . . , sm, x1, . . . , xn) ∈ R we have

|f(s1, . . . , sm, x1, . . . , xn)| ≤ C(s1, . . . , sm)g(s1, . . . , sm, x1, . . . , xn).

5



1.2. GEOMETRY AND RATIONAL POINTS

We will often think about s1, . . . , sm as parameters and x1, . . . , xn as vari-
ables. Hence by a slight abuse of language, any such C is called an implied
constant.

When we write f(s,x) = h(s,x) + Os(g(s,x)), then this should be inter-
preted to mean f(s,x)− h(s,x) = Os(g(s,x)).

Furthermore, we will write f(s,x) = Θs(g(s,x)) or f(s,x) �s g(s,x) if
both f(s,x) = Os(g(s,x)) and g(s,x) = Os(f(s,x)) hold, possibly with
different implied constants.

One should note that this notation O( ) differs in use from that of Landau
or Bourbaki, but it is in line with the use in standard references like [IK04]
or [MV07] and many papers in analytic number theory.

The notation 1A for some condition A will be used for the indicator sym-
bol, that is 1A = 1 if and only if the condition A holds, and 1A = 0
otherwise.

1.2 Geometry and rational points

Since this thesis deals with number theory in a geometric context, we will
need to recall a few concepts from geometry.

Definition 1.2.1. A variety is a separable scheme of finite type over a
field. We call a variety nice if it is smooth, projective, and geometrically
integral over its base field.

Definition 1.2.2. A curve is a variety of pure dimension 1. A surface is
a variety of pure dimension 2.

Definition 1.2.3. If X is a nice variety and D and D′ are two effective
divisors, then we say that D and D′ are linearly equivalent if there is an
element f of the function field satisfying div f = D − D′. The Picard
group PicX is the free abelian group of divisors on X divided out by
linear equivalence.

In the definition above, the element f may be viewed as a rational map
X → P1, which will make D and D′ fibres over two closed points (namely
0 and∞). By applying an automorphism of P1, we may move 0 and∞ to
any other two different points. Hence we may generalize linear equivalence
to what we call algebraic equivalence.

6



1.2. GEOMETRY AND RATIONAL POINTS

Definition 1.2.4. Let X be a nice variety with two effective divisors D
and D′. We call D and D′ pre-algebraically equivalent if there exists a
smooth curve C, two points x and x′ on C, an effective divisor D on
X × C with a flat morphism f : D → C such that we have D = f−1(x)
and D′ = f−1(x′). The equivalence relation generated by pre-algebraic
equivalence is called algebraic equivalence. The group of divisors divided
out by algebraic equivalence is the Néron-Severi group of X, denoted
NSX.

Remark 1.2.5. Both PicX and NSX are abelian groups by construction.

If X is a nice surface, then one can define a symmetric bilinear intersection
pairing ( · ) : PicX × PicX → Z which further induces a pairing on
NSX. The Néron-Severi group of a nice surface is finitely generated and
consequently has finite rank. Thus the pairing turns NSX into a lattice.

If X is a nice surface over C, the Néron-Severi lattice NSX injects canon-
ically into H2(X,Z), which is a lattice by the cup product pairing. The
lattice structures are compatible.

Definition 1.2.6. For a nice surface X over C, we call the orthogonal
complement of NSX in H2(X,Z) the transcendental lattice of X, denoted
T (X).

Definition 1.2.7. For a nice surface X, we call the rank of its Néron-
Severi lattice its Picard rank or sometimes Néron–Severi rank. We often
denote this number by ρ(X) or just ρ.

For a nice surfaceX, one may take a further quotient of PicX by numerical
equivalence, defined as follows.

Definition 1.2.8. For a nice surface X, two line bundles L,L′ ∈ PicX
are called numerically equivalent if for every line bundle L′′ we have the
equality (L·L′′) = (L′·L′′). The quotient of PicX by numerical equivalence
is denoted NumX.

Linear equivalence implies algebraic equivalence, which in its turn implies
numerical equivalence, so by taking repeated quotients there are natural
surjections

PicX → NSX → NumX.

7



1.2. GEOMETRY AND RATIONAL POINTS

1.2.1 K3 surfaces

Definition 1.2.9. A K3 surface is a nice surface X satisfying the follow-
ing two properties:

• The canonical bundle ωX is isomorphic to OX .

• The cohomology group H1(X,OX) is trivial.

Example 1.2.10. We list a few basic examples of K3 surfaces:

• quartic surfaces in P3,

• double covers of P2 branched along a smooth sextic curve,

• the minimal resolution of the quotient of an abelian surface by the
action of -1; these are called Kummer surfaces.

Proposition 1.2.11. If X is a K3 surface, then the maps PicX → NSX
and NSX → NumX are isomorphisms and the intersection pairing on
PicX is even and non-degenerate and has signature (1, ρ(X)− 1).

Proof. This is [Huy16, Prop 1.2.4]. The proof almost entirely relies on the
Riemann–Roch formula for surfaces and the Hodge index theorem.

For a K3 surface X over C, the cohomology group H2(X,Z) has a Hodge
structure as H2(X,C) ∼= H2,0⊕H1,1⊕H0,2, where we have written Hp,q for
Hq(X,Ωp

X/C) and ΩX/C is the sheaf of Kähler differentials on X. These
summands have dimensions 1, 20, and 1 respectively. The Lefschetz
(1, 1)-theorem assures that under the canonical embedding NSX lands
in H1,1 ∩H2(X,Z). Thus the Picard rank of a K3 surface over a field
of characteristic zero satisfies 1 ≤ ρ(X) ≤ 20. In positive characteristic
higher Picard ranks may be achieved, however still no higher than 22.

1.2.2 Manin’s conjecture

Definition 1.2.12. Let x = (x0 : x1 : . . . : xn) ∈ Pn(Q) be any point and
for all coordinates assume xi ∈ Z without loss of generality and further
assume gcd(x0, . . . , xn) = 1. Then the height of x is H(x) = maxi |xi|.

Given a projective variety X over Q and a very ample divisor D on X we
can embed X into some PnQ using D. This induces a height function as in
Definition 1.2.12 on the rational points of X, which depends on D and on

8



1.2. GEOMETRY AND RATIONAL POINTS

the specific set of global sections chosen to give the embedding. We write
HD for this height function.

Definition 1.2.13. Let U ⊂ X be an open subvariety of a variety X
embedded in PnQ via a very ample divisor D. We write

NU,D(B) = #{x ∈ U(Q) | HD(x) ≤ B}.

Remark 1.2.14. The number NU,D(B) is always finite. This is known as
the Northcott property of the height HD.

In the late 1980’s, Manin stated a conjecture, first recorded in [FMT89],
concerning the heights of rational points of Fano varieties. It was later
extended most notably by Batyrev and Manin [BM90] and Peyre [Pey95].

Manin’s original formulation is for Fano varieties. A smooth variety X is
called Fano if its anticanonical divisor −KX is ample.

Conjecture 1.2.15 (Manin). For any Fano variety X over Q of Pi-
card rank ρ and with very ample anticanonical divisor −KX , there exists
an open subvariety U ⊂ X and a non-negative constant cX such that as
B → ∞ the following holds:

NU,−KX (B) ∼ cXB log(B)ρ−1.

Refinements of this conjecture allow one to go beyond the case of Fano
varieties, at the cost of some precision. For example, we have the following
conjecture from [BM90].

Conjecture 1.2.16 (Batyrev–Manin). For a K3 surface X over Q, take
ε ∈ R>0 and let D be a very ample divisor on X. Then there exists a
non-empty Zariski open subvariety U(ε) ⊂ X such that for B ≥ 1 we have

NU(ε),D(B) = Oε(B
ε).

McKinnon proved in [McK11] that Conjecture 1.2.16 follows from a pow-
erful conjecture by Vojta. However, Conjecture 1.2.16 can be sharpened
still. In Chapter 2 we will see heuristics for such a sharpening. In particu-
lar we will display evidence that for K3 surfaces the power of logB ought
to be ρ(X), in contrast to the case of Fano varieties. Here it must be noted
that the evidence displayed in Chapter 2 matches well with computational
data produced by van Luijk which can be found on his website [Lui].

9



1.2. GEOMETRY AND RATIONAL POINTS

In all of these conjectures, one is forced to take an open U ⊂ X rather
than state the conjecture just for X itself since X may contain so-called
accumulating subvarieties. These are subvarieties of X that upon counting
their rational points up to height B would give an asymptotic that domi-
nates the expected main term in the Manin conjectures. It can be shown
that embedded rational curves of degree d asymptotically contribute a
constant multiple of B2/d to the counting, so for Fano varieties it is neces-
sary to exclude embedded lines, by which we merely mean the cases d = 1.
However, there are examples where leaving out a finite number of accu-
mulating subvarieties is not enough, see for example the counterexample
by Batyrev and Tschinkel in [BT96], where infinitely many subvarieties
give the ‘correct’ exponent of B, but an exponent of logB that is too
high. It is a topic of active research to find the correct modification of the
conjectures to accommodate for these defects, see for example [Rud14],
[Pey17], [Pey18], [LST18], or the overview article [LT18].

In the case of K3 surfaces, where the expected exponent of B is 0, the
problems are even worse. Not only do embedded rational curves of any
degree provide problems, so may embedded elliptic curves. For an elliptic
curve E of Mordell–Weil rank rE , it is a classical result by Néron that
there is a contant c validating

NE(B) ∼ c(logB)rE/2,

see for example [Ser97, §4.5] where the constant c is also given. Hence if
our heuristic is correct, every elliptic curve satisfying rE > 2ρ will need to
be removed before counting rational points on the remainder. Here one
quickly encounters an active research problem of an entirely different na-
ture: since any elliptic curve on a K3 surface provides an elliptic fibration
(this may be proven using the Riemann–Roch formula for surfaces), one is
directed to the question how Mordell–Weil ranks vary in families of elliptic
curves. However interesting these problems may be, we will not consider
them in this thesis, and we leave the discussion here only for the sake of
the interested reader.

One cannot discuss Conjecture 1.2.15 without mentioning the conjec-
tural refinement obtained by Peyre [Pey95], with a small modification
by Batyrev and Tschinkel [BT95]. In these papers, a geometric interpre-
tation is given to the constant cX : one should expect this constant to have
the shape

cX = α(X)β(X) lim
s→1

(s− 1)ρL(s)
∏
v

τv
Lv(1)

,

10



1.2. GEOMETRY AND RATIONAL POINTS

where α(X) measures the volume of some region in the cone spanned by
effective divisors in the real vector space NS(X) ⊗ R; the factor β(X)
equals the order of the finite group H1(Gal(Q/Q),PicX); for each place
v of Q the τv are Tamagawa numbers, or otherwise put they are v-adic
measures of the adèlic points of X; the numbers Lv(1) are factors making
the infinite product converge; and the limit balances out these convergence
factors.

We will not include a detailed treatment of this conjectural constant, but
while we were thinking about possible adaptations to the case of K3 sur-
faces, a point of confusion came up in several conversations with other
researchers. We do want to address this quickly. The cohomology group
H1(Gal(Q/Q),PicX) may be recognized as the algebraic Brauer group
Br1(X)/Br(Q). For Fano varieties the algebraic part forms the entire
Brauer group: there are no transcendental elements. Passing to K3 sur-
faces, transcendental elements may in fact exist, but it is known that the
Brauer group is still finite. This was first proven in [SZ08], and it forms
the basis for the work in Chapter 4. Based purely on this recognition
one could guess that it is in fact # Br(X) that should replace β(X) in
general. However, if one looks more closely at the available literature (for
example in the very detailed paper by Salberger [Sal98]), one finds that
H1(Gal(Q/Q),PicX) also parametrizes so-called universal torsors over X,
which may be applied when counting rational points on X. The connection
to the (algebraic) Brauer group seems to be merely coincidental. Based
on conjectures about Brauer–Manin obstructions to weak approximation
on Fano varieties, some researchers seem to believe that the factor β(X)
should somehow measure the failure of weak approximation. Because the
recognition of # Br1(X)/Br(Q) in β(X) seems coincidental to us, we be-
lieve that such an interpretation falls in the realm of wishful thinking. One
should however note that in uncharted terrain, wishful thinking may be a
guiding principle, and one should try and avoid negativity.

In light of Chapter 3, it is in order to make one final remark about Peyre’s
conjectural constant. In said chapter, we count points up to bounded
height B in the base of a family of conics whose fibres have a rational
point. Much of the work there involves studying the leading constant. As
in Manin’s conjectures, the asymptotic formula that we obtain contains a
power of B and a power of logB, albeit that the latter turns out to be
fractional. It was first noticed by Loughran in [Lou13] that both asymp-
totic formulas look remarkably similar, up to and including the shape of

11
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the leading constant. Loughran discusses a theoretical framework in which
one should place the leading constant for this problem, and we compare
our findings to his framework in §3.5.4.

1.2.3 L-functions of varieties

We will first define the zeta function of varieties over finite fields, before
moving on to characteristic zero.

Definition 1.2.17. Let Xp be a nice variety defined over Fp. One defines
the zeta function of Xp as

ζ(Xp, T ) = exp

( ∞∑
m=1

#Xp(Fpm )
m Tm

)
.

If X is a nice variety defined over Q such that X has a finite presentation
model X over Z, we write Xp for X ×SpecZ SpecFp. The further base
change to Fq is denoted Xq and we write Xp for the base change to Fp.
As per usual we write S for the (finite) set of primes p where Xp is not
smooth.

There is a well-known connection between zeta functions of varieties and
traces of Frobenius via the Lefschetz trace formula. For q a power of p,
we write τq,i,` for tr

(
Frobq | Hi

ét(Xp,Q`)
)
, (` 6= p). The Fq-rational points

of Xp are the closed fixed points of Frobq : Xp → Xp, and the Lefschetz
trace formula gives

#Xp(Fq) =

2 dimX∑
i=0

(−1)iτq,i,`.

and this equality is independent of `.

If we denote the eigenvalues of Frobp on Hi
ét(Xp,Q`) by αij , and write bi

for the dimension of Hi
ét(Xp,Q`), then by the Lefschetz trace formula we

have

12
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ζ(Xp, T ) =

2 dimX∏
i=0

bi∏
j=1

exp

(
(−1)i

∞∑
m=1

αmijT
m

m

)

=
2 dimX∏
i=0

bi∏
j=1

exp
(
(−1)i+1 log(1− αijT )

)
=

2 dimX∏
i=0

bi∏
j=1

(1− αijT )(−1)i+1

and hence

ζ(Xp, T ) =

2 dimXp∏
i=0

det
(
1− Frobp T | Hi

ét(Xp,Q`)
)(−1)i+1

. (1.1)

So far, we have used the terminology of zeta functions, but from now on
we want to switch over to the terminology of L-functions. In some sense
there is no difference: the L-function of a variety in characteristic p is just
its zeta function, but with the variable T replaced by p−s. For varieties
over Q as above we do this at every p-adic factor.

Definition 1.2.18. The L-function of X is defined via ζ(Xp, T ) as

L(X, s) =
∏
p/∈S

ζ(Xp, p
−s),

where S is the set of bad primes.

Some authors prefer to extend the definition of L(X, s) to include factors
for every prime p, rather than only those not in S. In that case one refers
to (1.1) but instead lets 1−Frobp T act on the part of Hi

ét(Xp,Q`) that is
fixed by the inertia group at p. For p /∈ S, this interia group acts trivially
so there is no modification.

As for the zeta functions in (1.1), these L-functions break apart into fac-
tors, one for each i in the range 0 ≤ i ≤ 2 dimX.

Definition 1.2.19. We will also write

L(Hi(X), s) =
∏
p/∈S

det
(
1− Frobp p

−s | Hi
ét(Xp,Q`)

)(−1)i+1

for the individual factors that make up L(X, s), i = 0, . . . , 2 dimX.

13
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L-functions for K3 surfaces

If X is a K3 surface, the only non-trivial `-adic étale cohomology occurs
at i = 0, i = 2, and i = 4. The factor L(H2(X), s) will be of importance
in Chapter 2.

For K3 surfaces, we study the L(H2(X), s) somewhat further. In [PSD91],
it is explained that L(H2(X), s) breaks apart into two multiplicative parts:
one part L′(H2(X), s) coming from the Néron-Severi lattice (over the al-
gebraic closure), and the other L′′(H2(X), s) coming from the transcen-
dental lattice. The first part itself breaks down as a product of shifted
Riemann zeta functions ζ(s − 1) and other similarly shifted Dirichlet L-
series, coming from the Galois representation on the Néron-Severi lattice.
The multiplicity of ζ(s− 1) that occurs is equal to the rank of NSX.

In the number theory part of this chapter we will mention a well-known
and important property of Dirichlet L-series, namely Theorem 1.3.39. In
the currect context, this theorem shows that only the factors ζ(s − 1)
contribute to the pole at s = 2 and consequently that the rank of NSX is
equal to the order of the pole of L′(H2(X), s) at s = 2. The same holds
for the full L(H2(X), s), provided that the factor L′′(H2(X), s) is analytic
at s = 2. For diagonal quartic surfaces in particular, this was already
studied, yet not fully proven, in [PSD91]. Their results are a special case
of the following general principle of modularity, which we will not define,
but whose consequence will be useful.

Over some extension of the base field, every diagonal quartic surface is
isomorphic to the Fermat quartic x4

1 + x4
2 + x4

3 + x4
4 = 0. This surface is

known to have maximal Picard rank 20 over Q. K3 surfaces with geometric
Picard rank 20 are called singular K3 surfaces where the word singular
is not to be confused with the negation of non-singular or smooth. Livné
proved the following important theorem.

Theorem 1.2.20 (Livné). Every singular K3 surfaces X over Q is modu-
lar. The 2-dimensional Galois representation defined by the transcendental
lattice T (X) has an associated modular form that is a Hecke eigenform of
weight 3 with complex multiplication by Q(

√
−disc(NSX)).

Proof. This is proven in [Liv95].

Hecke eigenforms with complex multiplication are in particular holomor-
phic cusp forms and Hecke proved that L-functions of modular forms are

14
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well-behaved in many regards. In particular we have the following theo-
rem.

Theorem 1.2.21 (Hecke). The L-function L(f, s) of a modular form f
of weight k has a meromorphic continuation to the whole complex plane
and satisfies a functional equation. Moreover, L(f, s) is entire if f is a
holomorphic cusp form, and otherwise it has only a simple pole at s = k.

Proof. This is [IK04, Theorem 14.7].

Remark 1.2.22. None of this should come as a surprise. In his excel-
lently written [Tat65], Tate repeats his conjecture that relates the Picard
rank of a variety to the order of the accociated pole of L(H2(X), s). For
K3 surfaces, the full Tate conjectures are now known through work of
André [And96] and Tankeev [Tan88] in characteristic zero, in odd charac-
teristic by work of many people, among them Nygaard and Ogus [NO85],
Maulik [Mau14], Charles [Cha13], and Madapusi Pera [MP15], and finally
in characteristic 2 by Kim and Madapusi Pera [KMP16].

In preparation of this thesis, a point of confusion came up relating to this.
It may be useful to spend a few words in order to make sure that the
reader does not fall victim to the same fate.

If Xp is a nice surface over Fp, then the Tate conjecture says that for
L(H2(Xp), s) the order of the pole at s = 1 equals the Picard rank of Xp.
Indeed, if the rank is ρ, then there will be at least ρ eigenvalues among
the α2j that are exactly p. These correspond to the eigenvalues 1 on the
twisted cohomology group H2

ét(Xp,Q`(1)). Conjecturally these are all of
them.

Now let X be a nice surface over Q with good reduction Xp at p. Then
the p-adic factor of L(H2(X), s) should have a pole of order ρ(Xp) at
s = 1. And this should be true for every other prime of good reduction as
well. Are we multiplying infinitely many poles? But that would not give
a meromorphic function! This is where one may get confused, so let us
review the argument closely. The Tate conjecture in characteristic 0 says
that L(H2(X), s) has a pole at s = 2, since every nice surface has positive
Picard rank. Around s = 1 the L-function L(H2(X), s) is defined, but
only through some abstract analytic continuation. The point here is that
in this region the function is no longer defined by a product over all good
primes as in Definition 1.2.18; we are not multiplying together infinitely
many poles.
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Let us consider an easy example: X = PnQ. We have PicX ∼= Z. It is not

difficult to derive L(H2(X), s) = ζ(s − 1), where ζ denotes the Riemann
zeta function. Indeed this function has a pole of order 1 at s = 2, and
value −1

2 at s = 1.

1.3 Number theory and solving equations

In this section we will collect some results from number theory, in partic-
ular we will mostly discuss the circle method, which is to be used to count
rational or integral solutions to polynomial equations. Before we set off,
we will mention a few results which will come up several times.

Theorem 1.3.1 (Abel’s summation formula). Let (an)n be a sequence of
complex numbers and let φ : R>0 → R be differentiable with continuous
derivative. For any x ∈ R≥1, write A(x) =

∑
1≤n≤x an. Then for all

1 ≤ y < x the following equation holds:

∑
y<n≤x

anφ(n) = A(x)φ(x)−A(y)φ(y)−
∫ x

y
A(t)φ′(t)dt.

Proof. This is [Apo76, Theorem 4.2].

We also record the famous Prime Number Theorem here, mostly because
a high brow proof of it will be a guide for the methods in §2.2, but secon-
darily also since its statement will briely occur in combination with Abel’s
summation formula in that same section.

Theorem 1.3.2 (Prime Number Theorem). Let π(x) denote the number
of primes up to x. The function π(x) satisfies

π(x) ∼ x

log x
.

Proof. This well-celebrated theorem can be found in almost any book on
analytic number theory. For example see [IK04, Chapter 2] or [MV07,
Chapter 6].
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1.3.1 The circle method

In this subsection we give a treatment of the basics of the circle method.
The reader wishing to learn more is adviced to read for example [Bro09],
[Dav05], or [IK04]. The circle method was first developed by Hardy and
Ramanujan to study partitions of numbers, and later adapted to study
zeroes of polynomials over Z.

Let F (x) ∈ Z[x] be a homogeneous polynomial of degree d in n variables.
The goal for which the circle method is commonly applied is to count
integral zeroes of F in some bounded box B = [−B,B]n.

The starting point of the method is the following indicator integral, where
x is an integer vector:∫ 1

0
e (αF (x)) dα =

{
1 if F (x) = 0,

0 otherwise,

where we have written e(z), and will continue to do so, when we mean
exp(2πiz).

Definition 1.3.3. We write NF (B) for the number of integral zeroes of
F in the region B.

By applying the above indicator integral, we have

NF (B) =
∑

x∈Zn∩B

∫ 1

0
e (αF (x)) dα

=

∫ 1

0

∑
x∈Zn∩B

e (αF (x)) dα.

Notice that switching the sum and the integral is allowed because the sum
is over a finite set.

Without applying any machinery to study this integral expression, one
may very intuitively guess that the number NF (B) should behave as
O
(
Bn−d) because of the following argument. When we vary x over Zn∩B,

the function F (x) takes values in an interval of length ` = Θ(Bd) with im-
plied constants depending on n and the coefficients of F . One might guess
that each integer value in the range is reached approximately equally often,
in particular the occurrence F (x) = 0 happens at a fraction `−1 among
all O(Bn) possible instances. We will see that the circle method, when it
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applies, will indeed provide this exponent n−d of B, combined with more
detailed information, such as additional logarithmic factors.

The method assumes that the main contributions to the integral occur
around numbers α that are well approximated by rational numbers with
small denominator, and according to this philosophy divides the range of
integration up into segments centred around these well-approximable num-
bers. Figure 1.1 shows a sketch of the modulus of

∑
x∈Z∩[−10,10] e(αF (x))

for a simple polynomial F (x) = x4. Although the plot does not indicate
whether this philosophy makes sense, at least it is clear that the value of
the function shows quite erratic behaviour.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Figure 1.1: Plot of the modulus
∣∣∣∑x∈Z∩[−10,10] e(αx

4)
∣∣∣ for α ∈ [0, 1].

We let δ be a small parameter which will stay free to be chosen later and
write Q = Bδ.

Definition 1.3.4. For a, q ∈ Z coprime satisfying 1 ≤ a ≤ q ≤ Q, we call

the interval Mq,a(δ) =
[
a
q −B

−d+δ, aq +B−d+δ
]

the major arc centred at
a
q . We write M(δ) for the union of major arcs and m(δ) = [0, 1] \M(δ) for
its complement, called the minor arc.
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Lemma 1.3.5. For δ < d
3 and B > 2

1
d−3δ different major arcs do not

overlap.

Proof. This is [Bro09, Lemma 8.3] We take two centres a
q and a′

q′ of different

major arcs and consider the difference D := |aq −
a′

q′ |. Using a
q 6=

a′

q′ in the

shape |aq′ − a′q| ≥ 1, we find D ≥ 1
B2δ . On the other hand, the triangle

inequality with a supposed midpoint in the intersection of these two major
arcs shows D ≤ 2B−d+δ. This is in contradiction with the quoted values
for δ and B.

We now want to study the behaviour of the integrand
∑

x∈Zn∩B e (αF (x))
in a certain major arc Mq,a. We write α = a

q + θ and we split the expo-

nential. Realizing that e
(
a
qF (x)

)
as a function of x is periodic modulo q,

we find

∑
x∈Zn∩B

e(αF (x)) =
∑

u∈(Z/qZ)n

e(aqF (u)
) ∑

x∈Zn∩B
x≡u(mod q)

e(θF (x))

 . (1.2)

Definition 1.3.6. We write

I(t) =

∫
[−1,1]n

e(tF (x))dx.

Notice that the integral I(θ) only depends on F .

Lemma 1.3.7. For 1 ≤ a ≤ q ≤ B with gcd(a, q) = 1, and α = a
q + θ we

have

∑
x∈Zn∩B

e (αF (x)) =
(
B
q

)n ∑
u∈(Z/qZ)n

e
(
a
qF (u)

) · I(θBd)

+O
(
qBn−1(1 + |θ|Bd)

)
.

Proof. This is [Bro09, Lemma 8.2]. Its proof relies on showing that the ex-
pression

∑
x∈Zn∩B

x≡u(mod q)
e(θF (x)) that appears in (1.2) is in fact independent

of u and can be approximated by the quoted integral.
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This process can be applied for every major arc, or in other words for
every 1 ≤ q ≤ Q and every a ∈ (Z/qZ)×, provided Q ≤ B or equivalently
δ ≤ 1 hold. Changing variables within the integral over any major arc∫ B−d+δ

−B−d+δ
I(θBd)dθ = B−d

∫ Bδ

−Bδ
I(θ′)dθ′,

for sufficently small δ and large B, that is as in Lemma 1.3.5, we finally
arrive at

NF (B) = Bn−dJ(Q)

Q∑
q=1

1

qn

∑
a∈(Z/qZ)×

∑
u∈(Z/qZ)n

e
(
a
qF (u)

)
+

∫
m

∑
x∈Zn∩B

e (αF (x)) dα+ E

(1.3)

with

J(R) =

∫ R

−R
I(θ)dθ =

∫ R

−R

∫
[−1,1]n

e(θF (x))dxdθ,

and where the error E comes from integrating the error term in Lemma
1.3.7 over the range θ ∈ (−B−d+δ, B−d+δ) and afterwards summing over
a ∈ (Z/qZ)× and 1 ≤ q ≤ Q = Bδ. It satisfies

E = O
(
Bn−1−d+5δ

)
.

Remark 1.3.8. In order to avoid the possibility of the error term E dom-
inating, one should pick δ to satisfy δ < 1

5 , rather than merely δ < d
3 as

suggested by Lemma 1.3.5. From now on, we will always assume that the
error E is asymptotically small.

Definition 1.3.9. It is convenient to name some parts of the expression
(1.3). We introduce the following notation:

• Sq,a =
∑

u∈(Z/qZ)n e
(
a
qF (u)

)
,

• Sq =
∑

a∈(Z/qZ)× Sq,a,

• S(Q) =
∑Q

q=1
1
qnSq.

We call the expression Bn−dJ(Q)S(Q) the contribution from the major
arcs. The integral J(Q) is called the singular integral, and the sum S(Q)
is named the singular series.
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In many applications the singular integral converges for R → ∞, and
therefore is approximated by the same integral but with the range of in-
tegration stretched out to the whole real line.

Remark 1.3.10. In the application of Chapter 2, the singular integral
actually does not converge.

People say that “the circle method works” when one can prove that the
major arcs give the main contribution to NF (B) and the minor arcs give
an error term which is smaller, at least asymptotically. This usually needs
n to be rather big compared to d. A naive probabilistic reasoning indicates
how big n should be compared to d. For fixed α ∈ m(δ) one may think
that the values of e(αF (x)) will be randomly distributed over the unit
circle when ranging over all x ∈ [−B,B]n ∩Zn. We are interested in their
sum and the central limit theorem suggests that the absolute value of this
sum will tend to

√
#([−B,B]n ∩ Zn) ∼ (2B)n/2. On the other hand, the

exponent of B appearing in equation (1.3), arising from the major arcs,
is n − d as usually the singular integral and singular series converge for
Q→∞. Hence we expect to need n > 2d variables for the circle method
to work. In reality however, one often needs many more variables than
suggested by this heuristic lower bound.

Lemma 1.3.11. As a function in q, the symbol Sq is multiplicative.

Proof. This proof is taken from [Dav05, Lemma 5.1], adapted to our sit-
uation. If q1 and q2 are coprime, write q = q1q2 and

a ≡ a1q2 + a2q1 (mod q) (1.4)

for any a ∈ (Z/qZ)×. It suffices to prove the validity of Sq,a = Sq1,a1Sq2,a2

since the Chinese Remainder Theorem gives a group isomorphism between
(Z/qZ)× and (Z/q1Z)× × (Z/q2Z)×, yielding

Sq =
∑

a∈(Z/qZ)×

Sq,a =

 ∑
a1∈(Z/q1Z)×

Sq1,a1

 ∑
a2∈(Z/q2Z)×

Sq2,a2

 = Sq1Sq2 .

Similarly, using the Chinese Remainder Theorem in its more general state-
ment about the rings Z/qZ ∼= Z/q1Z×Z/q2Z, we may uniquely write any
u ∈ Z/qZ as

u ≡ q2u1 + q1u2 (mod q) ,
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where no assumption of coprimality between the ui and qi is present. We
have

Sq,a =
∑

u∈(Z/qZ)n

e

(
a

q
F (u)

)

=
∑

u1∈(Z/q1Z)n

∑
u2∈(Z/q2Z)n

e

(
a

q
F (q2u1 + q1u2)

)
.

Since the congruence aF (u) ≡ q2a1F (q2u1) + q1a2F (q1u2) holds modulo
q1 and q2, so does it modulo q. Upon division by q we conclude

a

q
F (u) ≡ a1

q1
F (q2u1) +

a2

q2
F (q1u2) (mod 1) .

Hence we arrive at

Sq,a =
∑

u1∈(Z/q1Z)n

e

(
a1

q1
F (u1q2)

) ∑
u2∈(Z/q2Z)n

e

(
a2

q2
F (u2q1)

)
= Sq1,a1Sq2,a2 ,

where in the last step we have renumbered the summation ranges, using
that q2 is invertible in Z/q1Z and vice versa. As announced earlier in the
proof, this validates the statement of the lemma.

With Sq being a multiplicative function, it is determined by its values
at prime powers. These values themselves are closely related to zeroes
of F (x) modulo corresponding prime powers, according to the following
lemma.

Lemma 1.3.12. Writing N(pk) = #{x ∈ (Z/pkZ)n | F (x) ≡ 0
(
mod pk

)
},

the following is valid for any prime p and k ≥ 1:

Spk = pkN(pk)− pn+k−1N(pk−1).

Proof. By definition we have

Spk =
∑

a∈(Z/pkZ)×

∑
u∈(Z/pkZ)n

e

(
a

pk
F (u)

)

and we start the proof by switching the two summations.
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We recognize
∑

a∈(Z/qZ)× e
(
a
qn
)

as the Ramanujan sum cq(n) with the

properties:

cpk(n) =


0 if pk−1 - n,
−pk−1 if pk−1|n and pk - n,
φ(pk) if pk|n

for any prime p and k ≥ 1.

We count the number of times that the second and third cases occur and
we find

Spk =
∑

u∈(Z/pkZ)n

cpk(F (u))

= (−pk−1)
(
pnN(pk−1)−N(pk)

)
+ ϕ(pk)N(pk)

= pkN(pk)− pn+k−1N(pk−1),

where we have made use of the equality ϕ(pk) = (p− 1)pk−1.

1.3.2 From affine to projective solutions

For many geometric applications, we are interested in rational points of
projective, rather than affine, varieties. The circle method can still be a
helpful tool, and it hardly needs modification.

Let F (x) ∈ Q[x] be a homogeneous polynomial and X ⊂ Pn−1
Q its zero

locus. Any rational point P ∈ X(Q) can be written such that its coordi-
nates lie in Z and are collectively coprime. Hence counting rational points
up to height B (as in Definition 1.2.12) is equivalent to counting affine
integral solutions of F (x) = 0 under the condition gcd(x1, . . . , xn) = 1
and choosing the sign of x.

Definition 1.3.13. We write Znprim for {x ∈ Zn | gcd(x1, . . . , xn) = 1}.
Definition 1.3.14. The Möbius function is the multiplicative function µ
defined by

µ(pk) =


1 if k = 0;

−1 if k = 1;

0 if k > 1.
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The most important property of the Möbius function is captured by the
relation ∑

d|n

µ(d) =

{
1 if n = 1,

0 otherwise,

where we only sum over positive divisors. This relation and its conse-
quences are commonly known as Möbius inversion. One of such conse-
quences is the following lemma, where for 0 6= x ∈ Zn we have written
H(x) = max |xi|, and H(0) =∞.

Lemma 1.3.15. For any homogeneous F ∈ Q[x] we have the equality

#{x ∈ Znprim | F (x) = 0, H(x) ≤ B}

=
∞∑
k=1

µ(k)#{x ∈ Zn | F (x) = 0, H(x) ≤ B, k|x},
(1.5)

where k|x means that k divides every xi. Equivalently, writing X for the
zero locus of F inside Pn−1

Q , we have

#{x ∈ X(Q) | H(x) ≤ B} =
1

2

∞∑
i=1

µ(k)NF (B/k).

Proof. The condition x ∈ Znprim means that the xi, i = 1, . . . , n have no
non-trivial joint divisor, or put differently:

∑
k| gcd(x) µ(k) = 1. We use the

symbol I for the indicator function with domain Zn on the joint condition
F (x) = 0 ∨H(x) ≤ B. The left-hand side of (1.5) becomes∑

x∈Zn
gcd(x)=1

I(x) =
∑

x∈Zn

∑
k≥1

k| gcd(x)

µ(k)I(x) =
∑

x∈Zn−1

∑
k≥1

k| gcd(x)

µ(k)
∑
xn∈kZ

I(x),

which after performing this last step for every xi, turns into

∞∑
k=1

µ(k)#{x ∈ Zn | F (x) = 0, H(x) ≤ B, k|x}.

Clearly the left-hand side of (1.5) equals 2#{x ∈ X(Q) | H(x) ≤ B},
the extra factor of 2 coming from choosing the sign of x. By changing
variables x = ky, we may write the right-hand side of (1.5) as

∞∑
k=1

µ(k)#{y ∈ Zn | F (y) = 0, H(y) ≤ B/k}

and invoke the definition of NF (B/k).
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Remark 1.3.16. This is the modification that was announced at the be-
ginning of the current subsection. It allows us to use the circle method
to count rational points of a projective variety. It is important to remark
that the sum over k is actually a finite sum for any given B. Indeed, every
term from k > B onwards will be zero.

In the last chapter of his book [Bro09], Browning uses the circle method to
produce a heuristic for diagonal cubic surfaces. In turning from counting
points on the affine cone to points on the surfaces themselves, he runs into
the same problem as we do, which we will now explain.

Counting integral solutions using the circle method, one arrives at

NX(B) = Bn−d
∞∑
k=1

µ(k)

kn−d
J((B/k)δ)S((B/k)δ) + error.

One would hope that the coprimality conditions merely add a factor of
(1− 1

p) for every prime p, and if the circle method produces an exponent
of B that satisfies n − d > 1 and if J and S converge, then based on the
formula

∑∞
k=1

µ(k)
kα = ζ(α)−1 for α > 1 it can be proven that the displayed

sum equals Bn−dJS∗, where S∗(Q) is defined as follows.

Definition 1.3.17. The modified singular series, denoted by S∗(Q), is∑
1≤q≤Q q

−nS∗q , with the modification

S∗q =
∑

1≤a≤q
gcd(a,q)=1

∑
u∈(Z/qZ)n

gcd(u,q)=1

e

(
a

q
F (u)

)
.

The only difference with Definition 1.3.9 is the appearance of the require-
ment gcd(u, q) = 1 in the summation.

For n − d ≤ 1 we shall have to assume that this replacement may be
executed and we will work with S∗(Q) instead of S(Q). The main reason
for doing so is that Corollary 1.3.22 does not hold for the Sq.

The modified S∗q share many properties of Sq. In particular we have the
following.

Lemma 1.3.18. As a function in q the symbol S∗q is multiplicative and for
every k ≥ 1 and every prime p we have

S∗pk = pkN∗(pk)− pn+k−1N∗(pk−1)
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where

N∗(q) = #{x ∈ (Z/qZ)n | F (x) ≡ 0 (mod q) , gcd(x, q) = 1}

is modified from N(q) again with a gcd requirement.

Proof. The proofs of these two properties are mutatis mutandis the same
as the proofs of Lemmas 1.3.11 and 1.3.12.

The modified S∗q however also satisfy a very useful property that we will
study now.

Lemma 1.3.19 (Quantitative Hensel). Let F =
∑n

i=1 aix
d
i ∈ Z[x] define

a smooth projective subvariety of Pn−1
Q . Let p be a prime and denote

vp = ordp(d) + maxi ordp(ai). With notation as in Lemma 1.3.18, any
k ≥ 2vp + 2 validates

N∗(pk) = pn−1N∗(pk−1).

Proof. We apply Hensel’s lemma in its shape as in [Bou06, Ch. III, §4.5,
Corollaire 1, p. 269]. In the notation of Bourbaki, we work in the ring
A = Zp with ideal m = pZp. Let b ∈ (Zp/pk−1Zp)n be a primitive solution
to F (b) ≡ 0

(
mod pk−1

)
. Without loss of generality assume bn /∈ pZp. For

every 1 ≤ i ≤ n − 1 let b′i ∈ Zp be any lift of bi modulo pk−1. Then
F (b′1, . . . , b

′
n−1, xn) =: G(xn) is a polynomial in the single variable xn.

Write e := G′(bn) = dan(bn)d−1. We have

ordp(e
2) = 2 ordp(dan) ≤ 2vp ≤ k − 2.

This ensures e2pZp ⊃ pk−1Zp and we have G(bn) ≡ 0
(
mod e2p

)
. This is

precisely the setup of Corollaire cited above, which yields that there exists
a unique c ∈ Zp satisfying both the equality G(c) = 0 and c ≡ bn (mod ep).
We conclude that while for 1 ≤ i ≤ n − 1 we may lift bi to Zp/pkZp in
any way we like, afterwards the lift of bn is fixed. Hence every element
counted by N∗(pk−1) lifts to pn−1 elements counted by N∗(pk).

Definition 1.3.20. Given a homogeneous polynomial F (x1, . . . , xn) with
integer coefficients, we call p a good prime if F (x) ≡ 0 (mod p) defines a
smooth projective variety in Pn−1 over Z/pZ. Otherwise we call p a bad
prime. Usually we write S for the set of bad primes.

Remark 1.3.21. If F =
∑n

i=1 aix
d
i is diagonal, then the set of bad primes

equals S = {p prime : p | d
∏
i ai}.
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Corollary 1.3.22. If F =
∑n

i=1 aix
d
i is diagonal and p /∈ S is a good

prime, then S∗
pk

= 0 holds for k ≥ 2. Moreover, for any prime p we have

S∗
pk

= 0 for k ≥ 2 ordp(d
∏
i ai) + 2.

Proof. This is an immediate consequence of Lemmas 1.3.18 and 1.3.19.

1.3.3 Birch’s circle method

In his famous paper [Bir62], Birch generalized the circle method to apply to
multiple homogeneous polynomials of equal degree, rather than merely a
single one. In fact, Birch was also the first one to treat general polynomials
of any given degree. Our Chapter 3 leans heavily on this paper, so we cite
some of its definitions and results here for easy reference. Throughout this
subsection, one should take notice of the similarity to §1.3.1, where, in the
notation of the current subsection, we have only been concerned with the
case ν = 0, and of course R = 1.

Birch’s setup is as follows. Let f1, . . . , fR ∈ Z[x] be homogeneous polyno-
mials of positive degree d in n variables, subject to the following condi-
tions. For any µ ∈ CR, write V (µ) ⊂ AnC for the affine variety defined by
fi(x) = µi, i = 1, . . . , R. Let V ∗(µ) be the singular locus of V (µ), and
write V ∗ =

⋃
µ∈CR V

∗(µ) and σ = dimV ∗. Assume

K := 21−d(n− σ) > R(R+ 1)(d− 1) (1.6)

and let B be any box inside [−1, 1]R. Furthermore, we need to assume
dimV (0) = n−R.

Remark 1.3.23. An equivalent description of V ∗ defines it as the subset
of Cn of elements x that satisfy

rk

(
∂fi
∂xj

)
i,j

(x) < R.

Every statement that follows should be preceded by the phrase “with all
assumptions from this subsection so far...” or something similar.

Definition 1.3.24. For θ ∈ (0, 1], a1, . . . , aR, q ∈ Z>0, and P ∈ R>0,
write

Ma,q(θ) =
{
α ∈ [0, 1)R

∣∣∣2|qαi − ai| ≤ P−d+R(d−1)θ, i = 1, . . . , R
}
,
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and

M(θ) =
⋃

1≤q≤PR(d−1)

⋃
a:0≤ai<q

gcd(a1,...,aR,q)=1

Ma,q(θ)

for the analogue of the major arcs in Definition 1.3.4.

Lemma 1.3.25. If d > 2R(d− 1)θ holds then M(θ) is a union of disjoint
boxes Ma,q(θ).

Proof. This is [Bir62, Lemma 4.1].

Now let δ and θ0 be small positive real numbers satisfying

1 > δ + 2(R+ 2)Rdθ0 (1.7)

and

K −R(R+ 1)(d− 1) > 2δθ−1
0 . (1.8)

Definition 1.3.26. For ν ∈ ZR and P ≥ 2, write

S(α;ν) =
∑

x∈PB∩Zn
e

(∑
i

αifi(x)

)
e

(
−
∑
i

αiνi

)
.

Lemma 1.3.27. With δ and θ0 as above, we have∫
α/∈M(θ0)

|S(α;ν)|dα� Pn−Rd−δ.

Proof. This is [Bir62, Lemma 4.4].

In the statement above, the bound is independent of ν. In particular the
first step of the proof is noticing the equality |S(α;ν)| = |S(α)| by the
trivial bound on the complex exponential.

Birch’s results are in a neater form when one switches viewpoint to major
arcs that are slightly modified. Since we will want to quote his results
directly, we will adopt these expanded major arcs.

Definition 1.3.28. We write

M′a,q(θ) =
{
α ∈ [0, 1)R

∣∣∣|qαi − ai| ≤ qP−d+R(d−1)θ, i = 1, . . . , R
}
,
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and
M′(θ) =

⋃
1≤q≤PR(d−1)

⋃
a:0≤ai<q

gcd(a1,...,aR,q)=1

M′a,q(θ)

for the expanded major arcs.

Writing M(P ;ν) for the number of solutions x to the system of equations
fi(x) = νi, i = 1, . . . , R with x ∈ PB ∩ Zn, we have the following lemma.

Lemma 1.3.29. We have

M(P ;ν) =
∑

1≤q≤PR(d−1)θ0

∑
a

∫
M′(θ0)

S(α;ν)dα +O(Pn−Rd−δ),

where the sum over a is over all R-tuples a1, . . . , aR satisfying 0 ≤ ai < q
for i = 1, . . . , R and gcd(a1, . . . , aR, q) = 1.

Proof. This is [Bir62, Lemma 4.5], which uses that also the expanded
major arcs remain disjoint.

Definition 1.3.30. We write

Sa,q =
∑

x∈(Z/qZ)n

e

(∑
i

aifi(x)/q

)
,

and

Sa,q(ν) = e

(
−
∑
i

aiνi/q

)
Sa,q

for the analogue to Sq,a in Definition 1.3.9.

Definition 1.3.31. For a measurable subset C ⊂ [−1, 1]n, we write

I(C;γ) =

∫
ζ∈C

e

(∑
i

γifi(ζ)

)
dζ

for the analogue to the integral I(θ) from Definition 1.3.6.

Lemma 1.3.32. For α ∈M′a,q(θ0), β := α− a/q, and η = R(d− 1)θ0, we
have

S(α;ν) = q−nPnSa,q(ν)I(B;P dβ) e
(
−
∑

βiνi

)
+O(Pn−1+2η).

Proof. This is [Bir62, Lemma 5.1].
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Lemma 1.3.33. Let C ⊂ [−1, 1]n be any box with side lengths at most
ς < 1. Then for any ε > 0 we have

I(C,γ)�ε ς
n ·min

{
1,

(
ςd max{|γi|}

− K
R(d−1) +ε

)}
Proof. This is [Bir62, Lemma 5.2].

Lemma 1.3.34. For every ε > 0 and 0 ≤ ai < q for 1 ≤ i ≤ R satisfying
gcd(a1, . . . , aR, q) = 1, we have

|Sa,q| �ε q
n− K

R(d−1) +ε
.

Proof. This is [Bir62, Lemma 5.4].

Definition 1.3.35. We write

J(ν; Φ) =

∫
|γ|≤Φ

I(B;γ) e

(
−
∑
i

γiνi

)
dγ.

and

J(ν) = lim
Φ→∞

J(ν; Φ)

if the limit exists. The limit J(ν) is the analogue of J in Definition 1.3.9.

Lemma 1.3.36. Writing

S(ν) =

∞∑
q=1

q−n
∑

a

Sa,q(ν)

where the sum over a is over all R-tuples (a1, . . . , aR) satisfying 0 ≤ ai < q
for i = 1, . . . , R and gcd(a1, . . . , aR, q) = 1, then P ≥ 2 validates

M(P ;ν) = Pn−RdS(ν)J(P−dν) +O(Pn−Rd−δ)

Proof. This is [Bir62, Lemma 5.5].

The lemmas above, combined with a more detailed study of the singu-
lar integral, culminate in the main theorem of Birch’s paper, namely his
Theorem 1 on page 260, which further states some conditions under which
S(ν) and J(ν) are positive. The formula for M(P ;ν) that appears in this
main result is essentially the one from Lemma 1.3.36 above.
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1.3.4 Dirichlet characters

Definition 1.3.37. A Dirichlet character modulo q is a group homomor-
phism χ : (Z/qZ)× → C×. A trivial Dirichlet character is one that is
constant and is denoted χ0, the modulus q being implicit.

Definition 1.3.38. For a Dirichlet character χ, its associated Dirichlet
series is

L(χ, s) =

∞∑
n=1

χ(n)n−s

for <(s) > 1, where χ is extended to Z>0 by setting its value to 0 if n and
q are not coprime.

Dirichlet series are well studied, see for example [MV07, Chapter 4]. A
fundamental result is that they often have an analytic continuation to a
larger domain, although their defining formula only holds for <(s) > 1.

The series associated to χ0 has a pole of order 1 at s = 1, but non-
trivial ones display very different behaviour, as shown in the following
foundational theorem. Indeed, L(χ0, s) equals ζ(s) up to a finite number
of local factors involving the prime divisors of q.

Theorem 1.3.39 (Dirichlet). If χ 6= χ0 is a non-trivial Dirichlet charac-
ter, then L(χ, s) is analytic in the region <(s) > 0 and moreover L(χ, 1)
is non-zero.

Proof. This combines parts of [MV07, Thm. 4.8, Thm. 4.9].
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Chapter 2

Heuristics for counting ratio-
nal points on diagonal quar-
tic surfaces

If to do were as easy as to know what were good to do, chapels had
been churches, and poor men’s cottages princes’ palaces

Portia, The Merchant of Venice, Scene 1.2, lines 9-10

This chapter is concerned with finding heuristics for a conjecture in the
style of Manin’s Conjecture 1.2.15 for some K3 surfaces over Q. In par-
ticular we will restrict ourselves to diagonal quartic surfaces. We use the
circle method to obtain such heuristics. We do not take into account that
such surfaces may have accumulating subvarieties, but we discuss these in
relation to the circle method at the very end of this chapter.

In particular, the goal of this chapter is to prove the following main result,
where we assume the generalized Riemann hypothesis (hereafter GRH).
In fact, we do not need to assume GRH for all L-functions; just some of
specific origin, as will come up in Proposition 2.2.5. Recall the singular
integral J(Q) from Definition 1.3.9 and the modified singular series S∗(Q)
from Definition 1.3.17. For diagonal quartic surfaces we have n = d = 4, so
the singular integral and singular series together make up the contribution
of the major arcs to counting points up to bounded height, provided that
the major arcs do not overlap. In accordance to Lemma 1.3.5 and Remark
1.3.8 we implicitly assume δ < 1

5 to have been chosen.

Theorem 2.0.1. For a1, . . . , a4 ∈ Z \ {0}, let F =
∑4

i=1 aixi define a
diagonal quartic surface X of Picard rank ρ ≥ 2. Under the assumption
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of GRH, there exists a constant cF such that as Q →∞ the contribution
J(Q)S∗(Q) equals

cF (logQ)ρ + o((logQ)ρ).

This theorem should be viewed in light of computational data produced
by van Luijk and available on his website [Lui]. Indeed the heuristic in
this theorem matches with the growth that the data seems to imply.

Remark 2.0.2. Some diagonal quartic surfaces (e.g. those with all ai
positive) have no rational points, so in general one should not expect cF to
be non-zero. Ideally, one would hope that a detailed treatment of cF would
show obstructions to it being positive. Such obstructions should be more
complicated than just local obstructions as counterexamples to the Hasse
principle are known for diagonal quartic surfaces (see for example [SD00]
or [Bri06]).

2.1 Averages of multiplicative functions

In a recent preprint [GK17], Granville and Koukoulopoulos present a very
strong theorem dealing with averages of multiplicative functions. Very
similar theorems were first discovered by Wirsing using ideas of Selberg
and Delange. In fact, the contents of this chapter were first proven us-
ing Wirsing’s work [Wir61, Satz 1]. The downside of Wirsing’s original
theorem is that it only deals with non-negative multiplicative functions,
restricting us to only apply the result to specific diagonal quartic sur-
faces. The new theorem of Granville and Koukoulopoulos however needs
a good error term in one of its conditions. This is automatically provided
by assuming GRH; see Proposition 2.1.11 and the remark following it.
This assumption may be removed by knowing good zero-free regions for
L-functions of varieties; see Remark 2.2.6.

2.1.1 A powerful result by Granville and Koukoulopoulos

In order to phrase the theorem, we need to introduce some notation. We
will let Γ denote the classical Gamma function

Γ(z) =

∫ ∞
0

tz−1e−tdt.

In particular, for positive integer z we have Γ(z) = (z − 1)!.
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Definition 2.1.1. For any complex number α the multiplicative function
τα is given on prime powers by

τα(pν) = α(α+ 1) · · · (α+ ν − 1)/ν!.

In particular, on primes the function τα evaluates to α, and if α is a
positive integer, then τα(pe) =

(
α−1+e

e

)
holds.

Definition 2.1.2. For a multiplicative function f , its associated Dirich-
let series will be denoted by Lf (s) =

∑∞
n=1 f(n)n−s. Fix some complex

number α such that the function (s − 1)αLf (s) is J times continuously
differentiable in the half-plane <(s) ≥ 1. For all j ≤ J we set1

cj :=
1

j!

dj

dsj

∣∣∣∣
s=1

(s− 1)αLf (s)

s
.

Theorem 2.1.3 (Granville–Koukoulopoulos). Let f be a multiplicative
function for which there exist α ∈ C and A ∈ R>0 such that for x ≥ 2, the
function f satisfies∑

p≤x
f(p) log(p) = αx+O

(
x

(log x)A

)
, (2.1)

where the sum is over the prime numbers at most x. Furthermore assume
that there exists some k ∈ R>0 such that |f | ≤ τk holds. If J = dA− 1e is
the largest integer smaller than A, then with notation cj as above, x ≥ 2
validates

∑
n≤x

f(n) = x

J∑
j=0

cj
(log x)α−j−1

Γ(α− j)
+O

(
x(log x)k−1−A(log log x)IA=J+1

)
.

The implied constant depends at most on k, A and the implied constant
from (2.1). The dependence on A is twofold: from its size and its distance
from the nearest integer.

Proof. This is [GK17, Theorem 1].

1Notice that our notation is slightly different from that in [GK17] as we have sur-
pressed some notation from the source since we will only need part of the conclusion of
its main theorem.
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Remark 2.1.4.

• Implicit in the formulation of the previous theorem is that assump-
tion (2.1) implies that the Dirichlet series associated to f is dA− 1e
times continuously differentiable in the half-plane <(s) ≥ 1.

• The Γ-function has poles at all non-positive integers, hence in the
result of Theorem 2.1.3, for integer α all terms with j ≥ α vanish.
In particular, the theorem only yields an asymptotic for α 6= 0, and
only then if k −A < α holds.

For our purposes we only consider the j = 0 term from the conclusion of
Theorem 2.1.3, which under the conditions in the remark above yields the
dominating term.

The following lemma allows us to convert the conclusion of Theorem 2.1.3
into a form that we prefer. Notice that the case a = −1 below does not
appear in the conclusion of the theorem – nor do any other cases with
negative a.

Lemma 2.1.5. If f : Z>0 → C satisfies
∑

n≤x f(n) ∼ cx(log x)a for some
constants a ∈ Z and c ∈ C, then for a 6= −1 we have∑

n≤x

f(n)

n
∼ c

a+ 1
(log x)a+1,

and for a = −1 we have ∑
n≤x

f(n)

n
∼ c log log x.

Proof. This is a simple application of Abel’s partial summation formula
(cf. Theorem1.3.1). We have

∑
n≤x

f(n)

n
=

∑
n≤x

f(n)

 1

x
+

∫ x

1

∑
n≤t

f(n)

 1

t2
dt

∼ c(log x)a + c

∫ x

1
(log t)a

1

t
dt.

For a 6= −1 the integral evaluates to 1
a+1(log x)a+1, whereas for a = −1 it

evaluates to log log x, in either case giving the dominating term.
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2.1.2 Chebyshev-like functions

In his study towards the Prime Number Theorem, Chebyshev introduced
the function

ψ(x) =
∑
n≤x

Λ(n),

where

Λ(n) =

{
log(p) if n = pe is a non-trivial prime power,

0 otherwise

is known as the von Mangolt function.

The function ψ(x) relates to the Riemann zeta function ζ(s) =
∑∞

n=1 n
−s

which is the Dirichlet series of the constant multiplicative function 1.
In studying averages of multiplicative functions, one often works with
Chebyshev-like functions that we will now define. We generalize some
definitions from §1.3.4.

Definition 2.1.6. Let f : Z>0 → C be a function. Its associated Dirichlet
series is Lf (s) =

∑∞
n=1 f(n)n−s. If f is multiplicative, the von Mangoldt

function Λf associated with f is defined indirectly through its Dirichlet
series as

−
L′f (s)

Lf (s)
=

∞∑
n=1

Λf (n)n−s

and its associated Chebyshev function is

ψf (x) =
∑
n≤x

Λf (n).

Lemma 2.1.7. For a completely multiplicative function f we have

Lf (s) =
∏
p

1

1− f(p)p−s
.

Proof. This follows from writing Lf (s) as a product over primes

Lf (s) =
∏
p

(
1 + f(p)p−s + f(p2)p−2s + · · ·

)
and then recognizing the sums as geometric series.
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Lemma 2.1.8. The von Mangoldt function associated with a multiplicative
function f is supported on the prime powers and for any prime number p
it evaluates as Λf (p) = f(p) log(p). If f is completely multiplicative, the
von Mangoldt function satisfies

Λf (n) = Λ(n)f(n).

Proof. These properties may be found without proof on [IK04, page 17].
For the sake of completeness, we will give a proof here.

First, it is easily seen that −L′f (s) is the Dirichlet series of f · log. The
convolution of two functions f, g : Z>0 → C is defined as

(f ∗ g)(n) =
∑
d|n

f(d)g(nd )

and it is well known (or easily computed) that the Dirichlet series of
a convolution is the product of the two Dirichlet series. Hence we get
f ∗ Λf = f · log.

We compute some values of Λf . Expanding (f ∗ Λf )(1) = f(1) log(1) = 0
and using f(1) = 1, we find Λf (1) = 0. Using this result, we move on to
work out (f ∗ Λf )(p) = f(p) log p for any prime number p and conclude
Λf (p) = f(p) log p.

Finally, taking p and q two different prime numbers, using the same strat-
egy we conclude Λf (pq) = 0. Using this as a base case, one may apply
induction to prove the same for numbers with more than two prime factors
or higher exponents, hence Λf is supported on prime powers.

Having already proven Λf (p) = f(p) log p, we may apply induction to
the power of p to show that for completely multiplicative f we have
Λf (pk) = f(p)k log p = f(pk) log p = f(pk)Λ(pk). The strategy is com-
pletely analogous to the first part of this proof.

Remark 2.1.9. From the last lemma and the definition of Λ it imme-
diately follows that if f is a completely multiplicative function, then for
k ≥ 1 we have

Λf (pk) = Λ(pk)f(pk) = f(p)k log(p)

as was already seen in the proof, but is worth stating separately.
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2.1. AVERAGES OF MULTIPLICATIVE FUNCTIONS

The Chebyshev function associated with a multiplicative function f is
often useful to study the sum

∑
p≤x f(p) log p, provided one can bound

the contribution of higher prime powers. Indeed, we have

∑
p≤x

f(p) log p = ψf (x)−
∞∑
k=2

∑
pk≤x

Λf (pk),

where the sum over k is actually a finite sum as for k > log2(x), the second
sum is empty.

Lemma 2.1.10. Let f be a multiplicative function for which there exists
some b ∈ R>0 bounding from above every |f(p)| for prime numbers p. For
some a ∈ Z>0 define a completely multiplicative function f∗ by

f∗(pe) =


1 if e = 0,

0 if e ≥ 1, p ≤ a,
f(p)e if p > a.

Then for sufficiently large x we have∣∣∣∣∣∣ψf∗(x)−
∑
a<p≤x

f(p) log p

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∞∑
k=2

∑
p

pk≤x

Λf∗(p
k)

∣∣∣∣∣∣∣� x1/2+loga(b).

Proof. By definition we have
∑

a<p≤x f(p) log p =
∑

p≤x f
∗(p) log p and as

we have already remarked above, the equality of the statement follows.
For the remainder of the proof, we will focus on the absolute value of the
sum on the right-hand side of the equality, which we will call S.

After applying the triangle inequality, we begin by switching the order of
summation and extending the sum over primes to all p satisfying p2 ≤ x,
thereby increasing its total value, i.e.

|S| ≤
∑
p

p2≤x

log p

blogp(x)c∑
k=2

|f∗(p)|k =
∑
p>a

p2≤x

log p

blogp(x)c∑
k=2

|f(p)|k.

Without loss of generality we may assume b ≥ 2. The sum over k is
bounded from above by

blogp(x)c∑
k=2

bk ≤ b2 · x
logp(b) − 1

b− 1
≤ b2xloga(b).
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2.1. AVERAGES OF MULTIPLICATIVE FUNCTIONS

For sufficiently large x, the number of primes p with p2 ≤ x is of the order
2x1/2

log x and for each of those we may trivially bound log p by 1
2 log x. Hence

the absolute value of S is bounded by b2 · x1/2+loga(b) as required.

In order for Theorem 2.1.3 to be useful in the application that we have in
mind, and following our proof, we will need (2.1) with an arbitrarily high
exponent A. It is not unthinkable that this may be derived with some
skilful application of zero-free regions for appropriate L-functions but in
our main result of the chapter we opt to take the shortcut of assuming
GRH.

Iwaniec and Kowalski dedicate Chapter 5 of their book [IK04] to a wide
class of L-functions. They explicitly let their notation remain somewhat
vague and suggestive, but they do give a list of requirements to what
they call an L-function. For us it is enough to know that Dirichlet se-
ries, L-functions of cusp forms, and (sometimes conjecturally) L-functions
of varieties fall in the class for which the following proposition is true.
In particular, with the knowledge from §1.2.3, we see that the following
proposition applies to L(H2(X), s).

Proposition 2.1.11. Let 1
2 ≤ σ < 1. The following statements are equiv-

alent for an L-function:

1. There are neither zeros nor poles of (s−1)rLf (s) in <(s) > σ, where
r is a non-negative integer.

2. Let r ≥ 0 be the order of the pole of Lf (s) at s = 1. Then for all
ε > 0 and x ≥ 2 we have

ψf (x) = rx+O
(
xσ+ε

)
,

the implied constant depending on f and ε > 0.

Proof. This is part of [IK04, Proposition 5.14].

Remark 2.1.12.

• The numbers r appearing in the two statements of the previous
proposition are necessarily the same. Indeed, if the number r in the
first statement is not the order of the pole of Lf (s) at s = 1 then
(s− 1)rLf (s) will either have a pole or a zero at s = 1.
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2.2. EVALUATING THE SINGULAR SERIES

• GRH asserts that the first statement in the proposition above is true
for σ = 1

2 , and hence also the second one which is the statement that
we want to use.

• Although the notation of the proposition seems to rely on some
function f , we do not really need it for the result. Via L′f (s)/Lf (s)
one may define Λf (n) implicitly and from that also ψf (x).

2.2 Evaluating the singular series

We now turn to the main goal of the chapter, namely evaluating the
contribution of the major arcs to rational points on those diagonal quartic
surfaces X as given in Theorem 2.0.1: defined by F (x) =

∑4
i=1 aix

4
i with

ai ∈ Z \ {0} such that X has Picard rank ρ ≥ 2. Throughout the rest
of the chapter we write S for the finite set of primes where X has bad
reduction.

Section 2.1 provides the tools for evaluating the singular series. The sin-
gular integral will have to wait until §2.3.

In order to apply Theorem 2.1.3, we introduce a suitable multiplicative
function f such that we have

∑Q
q=1

f(q)
q = S∗(Q). This is provided by the

following choice:

Definition 2.2.1. We denote f(q) =
S∗q
q3 where S∗q is given in Definition

1.3.17.

Indeed, Lemma 1.3.18 shows that f is multiplicative.

Before we proceed, we relate the function f to the geometry of X. Using
the Lefschetz trace formula, which gives #X(Fp) = p2+Tp·p+1 where Tp·p
is the trace of Frobenius on H2

ét(XFp ,Q`), and moreover using that N∗(p)

counts the number of non-zero affine zeroes over Z/pZ of the equation
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2.2. EVALUATING THE SINGULAR SERIES

F (x) = 0, one finds

f(p) =
S∗p
p3

= p

(
N∗(p)

p3
− 1

)
= p

(
#X(Fp)(p− 1)

p3
− 1

)
= p

(
p3 + (Tp − 1)p2 − (Tp − 1)p− 1

p3
− 1

)
= (Tp − 1)

(
1− 1

p

)
= (Tp − 1) +O

(
1
p

)
.

The first non-trivial equality uses the result of Lemma 1.3.18 with n = 4.

The following lemma will be useful in checking the conditions of Theorem
2.1.3 for our chosen function f .

Lemma 2.2.2. For every prime p we have |Tp| ≤ 22.

Proof. The number Tp · p is the trace of Frobenius on H2
ét(XFp ,Q`). By

the Weil conjectures, each of the eigenvalues has absolute value p. Hence
|Tp · p| is bounded by p times the dimension of H2

ét(XFp ,Q`), which by
comparison with singular cohomology is the second Betti number b2. For
K3 surfaces, the second Betti number equals 22, completing the proof.

This description on prime values will be used to check that f satisfies the
conditions of Theorem 2.1.3. We first assure ourselves of the assumption
that there exists some k ∈ R>0 such that |f | ≤ τk holds, leaving the more
involved assumption (2.1) for later.

Lemma 2.2.3. There exists a number k ∈ R>0 validating |f | ≤ τk.

Proof. Since for positive real k, both |f | and τk are multiplicative and take
values in R≥0 when applied to positive integers, we need only check the
assertion on prime power values.

We first consider the values of |f | on primes. By Lemma 2.2.2, |Tp| is
bounded by 22, so for every prime p, the value |f(p)| is bounded by 23.
Recalling Corollary 1.3.22, we see that for almost all primes p, we have
f(pe) = 0 for all e ≥ 2. Hence we only need to further consider a finite set
of primes T , and moreover, by Lemma 1.3.19, only a finite set of prime
powers P = {pe : p ∈ T, f(pe) 6= 0}. Over this finite set, |f | takes a
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2.2. EVALUATING THE SINGULAR SERIES

maximum value. Moreover, for fixed e, the value of
(
k+e−1
e

)
as a function

of k is unbounded. Hence there exists some positive integer K such that
for all pe ∈ P we have

|f(pe)| ≤
(
K + e− 1

e

)
= τK(pe).

Hence |f(pe)| ≤ τmax{23,K}(p
e) holds for all prime powers pe and therefore

the desired inequality |f | ≤ τmax{23,K} holds on all positive integers. Hence
we retrieve the statement of the lemma with k = max{23,K}.

Remark 2.2.4. Since the number k in the lemma above is ineffective, and
the result of Theorem 2.1.3 is only useful for k−A < α, we need to verify
condition (2.1) for arbitrarily large A.

To verify condition (2.1) we need to evaluate

∑
p≤x

f(p) log p =
∑
p≤x

Tp log p−
∑
p≤x

log p+O

∑
p≤x

1
p log p

 (2.2)

where we have used that the implicit constants in f(p) = (Tp−1)+O
(

1
p

)
are universally bounded by 23.

We consider this sum in three parts: first, evaluation of∑
p≤x

1
p log p = log x+O(1)

is standard in analytic number theory and is known as Mertens’ first the-
orem.

Then, the middle term
∑

p≤x log p comes up in the proof of the Prime
Number Theorem (Theorem 1.3.2), and the validity of

∑
p≤x log p ∼ x is

in fact equivalent to it by application of Abel’s summation formula from
Theorem 1.3.1.

In order to evaluate
∑

p≤x Tp log p we will use an L-function involving Tp.

Consider the function g given on primes by p 7→ Tp and extended to have
domain Z>0 by complete multiplicativity. Its Dirichlet series becomes

Lg(s) =
∏
p

1

1− Tpp−s

by Lemma 2.1.7.
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Proposition 2.2.5. Assuming GRH and writing r for the order of the
pole of Lg(s) at s = 1, for any A > 0 and x ≥ 2 we have∑

p≤x
Tp log p = rx+O

(
x

(log x)A

)
and moreover ∑

p≤x
f(p) log p = (r − 1)x+O

(
x

(log x)A

)
.

Proof. We apply Lemma 2.1.10 to the completely multiplicative function
g defined through p 7→ Tp. Indeed by Lemma 2.2.2 it is applicable with
b = 22. We may use a = 223 as this makes the resulting power of x in the
conclusion of Lemma 2.1.10 equal to 1

2 + 1
3 = 5

6 < 1. In fact, any a > 222

would also have sufficed.

Having fixed a, the sum
∑

p≤a Tp log p is bounded, hence with notation of
Lemma 2.1.10 we have∑

p≤x
Tp log p = ψg∗(x) +O

(
x5/6

)
.

The Dirichlet series of g∗ and Lg(s) are not equal, but their Euler products
only differ for primes p < a. These are finite in number, so the order of
the pole at s = 1 is not affected. Hence, by Proposition 2.1.11 we have

ψg∗(x) = rx+O

(
x

1
2 +ε

)
.

Combining these two estimates, we conclude∑
p≤x

Tp log p = rx+O

(
x

max
{

5
6 ,

1
2 +ε

})
.

Realizing that saving a power of x gives a stricter error term than sav-
ing any power of log x, we conclude the proof of the first equality upon
choosing any ε < 1

2 .

The second equality immediately follows by recombining the three terms

in (2.2). Indeed the error O
(

x
(log x)A

)
also applies to the middle sum∑

p≤x log p ∼ x.

Remark 2.2.6. In the proposition above, we did not really need to assume
the full power of GRH: by Proposition 2.1.11, a zero-free region <(s) > σ
for any σ > 1

2 would have sufficed.
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2.2.1 Identification of the logarithmic exponent

The last step in calculating the singular series is to identify the constant r
appearing in Proposition 2.2.5. So far, Lg(s) =

∏
p(1 − Tpp−s)−1 seemed

to have appeared out of nowhere, and a priori it is not obvious what the
order r of the pole would be. We will now explain how Lg(s) is related to
the variety X and how r is related to the Picard group of X. Recall the
L-function L(H2(X), s) from Definition 1.2.19.

Proposition 2.2.7. The order of the pole of L(H2(X), s) at s = 2 is the
Picard rank of X.

Proof. As was already seen in §1.2.3, this is part of the Tate conjecture,
which is known for K3 surfaces and hence in particular for X.

Proposition 2.2.8. The shifted Dirichlet series Lg(s−1) and L(H2(X), s)
have poles of the same order at s = 2.

Proof. First notice that indeed both L-functions have a pole at s = 2. We
compare the p-adic factors for both Euler products

Lg(s− 1) =
∏
p

1

1− Tpp1−s

and

L(H2(X), s) =
∏
p/∈S

1

det(1− Frobp p−s | H2
ét(Xp,Q`)

.

Note that there are only finitely many bad primes p ∈ S, so their appear-
ance will not affect the order of the pole. Let αj for j = 1, . . . , b2 = 22
be the eigenvalues of Frobp on H2

ét(Xp,Q`). Since one obtains the expres-
sion det(1 − Frobp p

−s | H2
ét(Xp,Q`) as the characteristic polynomial of

the Frobenius endomorphism, read backwards, with p−s substituted, this
determinant equals

∏22
j=1(1− αjp−s), which is

1− (Tp · p)p−s +
∑
i<j

αiαjp
−2s −

∑
i<j<k

αiαjαkp
−3s + . . .+

 22∏
j=1

αj

 p−22s.

Let us study the fraction between p-adic factors for the two L-functions
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L(H2(X), s) and Lg(s− 1) for p /∈ S:

1− (Tp · p)p−s +
∑

i<j αiαjp
−2s −

∑
i<j<k αiαjαkp

−3s + . . .

1− Tpp1−s

= 1+

∑
i<j αiαjp

−2s −
∑

i<j<k αiαjαkp
−3s + . . .

1− Tpp1−s =: F (p, s)

Each of the αj has modulus p, so for every l, the term in the numerator
involving p−ls has modulus at most

(
22
l

)
pl−ls. Moreover, for any s > 3

2 and
p > 442, the denominator is larger than 1

2 . Hence for s > 3
2 and p > 442

the expression F (p, s) is 1 + O(p−2(s−1)). We need to study
∏
p≤t F (p, s)

as t→∞ and subsequently s→ 2. Writing C for the implicit constant in
the bound for F (p, s), we have

∏
442<p≤t

F (p, s) ≤ exp

C ∑
442<p≤t

p−2(s−1)

 . (2.3)

Since for every positive ε, the sum
∑

p≤t p
−(1+ε) converges absolutely as

t → ∞, so does the sum in the exponential above for any s > 3
2 and

in particular for s = 2. Therefore, for fixed s, the product of F (p, s)
converges absolutely as t → ∞. Moreover, since the inequality (2.3) is
uniform in s, we may switch the limits t→∞ and s→ 2 to conclude that∏
p F (p, 2) has a finite, non-zero value. This confirms the statement of the

proposition.

Corollary 2.2.9. Assuming GRH, and denoting the Picard rank of X
by ρ, there is a constant c such that we have S(Q) ∼ c(logQ)ρ−1.

Proof. We take the j = 0 term from Theorem 2.1.3. Proposition 2.2.5
tells us to use α = r − 1 and Propositions 2.2.7 and 2.2.8 verify r = ρ.
Now we apply Lemma 2.1.5 with a = ρ− 2.

Lemma 2.2.3 provides us with an ineffective k to be used in the assump-
tions of Theorem 2.1.3. In order for the error term in this theorem not to
dominate, we need to take A > k − α = k + 1− ρ. Indeed, the error term
in Proposition 2.2.5 allows such a choice of ineffective A.

Remark 2.2.10. Following our proof, we have to exclude the case ρ = 1
from our main result. The specific place where the proof falls short is the
case 0 = α = ρ− 1 in Theorem 2.1.3.
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2.3 Evaluating the singular integral

In this section we will show that in the case of diagonal quartics, the
singular integral contributes a factor of log(B) to the counting function.

Recall that the singular integral is

J(Q) =

∫ Q

−Q

∫
[−1,1]n

e(θF (x))dxdθ

for some small power Q = Bδ.

Our first step is to evaluate the integral

I(θ) =

∫
[−1,1]4

e

(
θ

4∑
i=1

aix
4
i

)
dx

=
4∏
i=1

∫ 1

−1
e
(
θ · aix4

i

)
dxi

=
4∏
i=1

2

∫ 1

0
e
(
θ · aix4

i

)
dxi,

hence we focus on the 1-dimensional integral that appears fourfold. We
split the calculation into two cases: where θ · ai > 0 and where θ · ai < 0
hold.

For θ · ai > 0 we substitute u = θaix
4
i , transforming the integral into

1

4(θ · ai)1/4

∫ θai

0
e(u)u−3/4du.

For θ · ai < 0 we substitute u = −θaix4
i , transforming the integral into

1

4(−θ · ai)1/4

∫ −θai
0

e(−u)u−3/4du.

Definition 2.3.1. For any σ ∈ (−1, 0) ⊂ R and t ∈ R>0 we introduce
notation

iσ(t) =

∫ t

0
e(u)uσdu,

jσ(t) =

∫ t

0
e(−u)uσdu = iσ(t).
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Using this notation, we have found the validity of

I(θ) =
1

16

∏
i:θai>0

1

(θai)1/4
i−3/4(θai) ·

∏
i:θai<0

1

(−θai)1/4
j−3/4(−θai)

=
1

16|θ|
∏
i

1

|ai|1/4
∏

i:θ·ai>0

i−3/4(θai)
∏

i:θ·ai<0

j−3/4(|θai|).

2.3.1 The integral over theta

We are left with calculating
∫ R
−R I(θ)dθ. Without loss of generality we

may assume R > 1, and we have∫ R

−R
I(θ)dθ =

∫ −1

−R
I(θ)dθ +

∫ 1

−1

I(θ)dθ +

∫ R

1

I(θ)dθ (2.4)

=

∫ 1

−1

I(θ)dθ

+
1

8
∏
i |ai|1/4

∫ R

1

1

θ
<

{ ∏
i:ai>0

i−3/4(θai)
∏
i:ai<0

i−3/4(−θai)

}
dθ,

where we have used I(−θ) = I(θ).

From

I(θ) =

4∏
i=1

2

4∏
i=1

∫ 1

0
e(θ · aix4

i )dxi

we see |I(θ)| ≤ 24
∫ 1

0 |e((θ · aix
4
i )|dxi = 16, hence we may estimate∫ 1

−1
I(θ)dθ = O(1).

The integral over the interval (1, R) requires further study.

Lemma 2.3.2. For every σ ∈ (−1, 0), there exists a constant cσ such that
the function iσ(t) equals cσ +O(tσ) for t ≥ 1.

Proof. We write

iσ(t) =

∫ ∞
0

e(u)uσdu−
∫ ∞
t

e(u)uσdu
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and we prove that
∫∞

0 e(u)uσdu =: cσ converges and that the second
integral can be estimated by O(tσ).

We split each of the integrals into their real and imaginary parts∫ b

a
e(u)uσ =

∫ b

a
cos(2πu)uσdu+ i

∫ b

a
sin(2πu)uσdu

and we argue on the real parts; the calculation on the imaginary parts is
completely analogous.

We first bound the integral over u > t; we apply integration by parts:∫ ∞
t

cos(2πu)uσdu =

[
1

2π
sin(2πu)uσ

]∞
t

− σ

2π

∫ ∞
t

sin(2πu)uσ−1du.

The latter integral is bounded from above by
∫∞
t uσ−1du = O(tσ).

The convergence of
∫∞

0 e(u)uσ is proven by splitting the positive real line

into the two parts (0, 1) and R≥1. It is easily seen that
∫ 1

0 cos(2πu)uσdu

converges: it is bounded from above by
∫ 1

0 u
σdu which clearly converges

for σ > −1. The integral over R≥1 converges by substituting t = 1 in the
previous calculation.

Lemma 2.3.2 clearly also applies to the function jσ(t) with constant cσ.
Write n ≤ 4 for the number of coefficients ai that are positive and write

c := <
{
cn−3/4c−3/4

4−n
}

. The last integral in (2.4) is well approximated

by c
∫ R

1
1
θdθ, which provides the logarithm that we were out to find.

Proposition 2.3.3. With the constant c as given above, the singular in-
tegral evaluates as

J(Q) =

∫ Q

−Q
I(θ)dθ =

c

8
∏
i |ai|1/4

log(Q) +O(1).

Proof. The proof is no more than following the arguments and calculations
in this section in a linear fashion.

2.3.2 The proof of the main theorem

Proof of Theorem 2.0.1. The proof of the theorem is now a simple combi-
nation of the statements of Corollary 2.2.9 and Proposition 2.3.3 with Q
a sufficiently small power of B.
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One might notice that we did not specify any choice for δ in the proof of
the theorem. Indeed, we did not make any, other than those mentioned for
the machinery to work (cf. Remark 1.3.8). Any actual choice will influence
the result in the sense that Q = Bδ will be affected. Secondarily, through
the logarithm that appears in the statement of the theorem, the leading
constant cF will depend on said choice, after switching to the variable B.
The overall shape of the major arc contribution however, will not.

2.4 Minor arcs and bad subvarieties

As a variation on the concept of Hardy–Littlewood systems where the cir-
cle method counts rational points in accordance with Manin’s conjecture,
Vaughan and Wooley [VW95] have introduced what they call quasi Hardy–
Littlewood systems (QHL models). The circle method may not work for
QHL models in the sense that the minor arcs give a contribution that is
not necessarily dominated by the contribution of the major arcs, but the
major arcs nonetheless contribute exactly the rational points away from ac-
cumulating subvarieties. The contribution of accumulating subvarieties is
found in the minor arcs. Vaughan and Wooley observe that many varieties
are QHL models; explicit examples include the zero locus of x1x2 = x3x4

(worked out in [VW95] and the zero locus of x4
1 + x4

2 + x4
3 = y4

1 + y4
2 + y4

3

(attributed to Wooley in [Con16, p. 14]). In this light it must also be
recorded that in [HB98], Heath-Brown was succesfull in separating out
the contribution of accumulating subvarieties, using a modified version of
the circle method.

After introducing their terminology, Vaughan and Wooley immediately
confess that their notion needs to be adapted to include information on
the possible failure of the Hasse principle. As originally stated, diagonal
quartic surfaces lie outside the range of expected QHL models. However,
neither do diagonal cubic surfaces satisfy the original definition of QHL
models, but Browning has produced a heuristic showing that for such sur-
faces the major arcs indeed give the contribution as predicted by Manin’s
conjecture, albeit with a leading constant that is different from the one
predicted by Peyre [Bro09, Chapter 8]. A further adaptation to the no-
tion of QHL models is not unthinkable and it may not be unreasonable to
believe that in the case of diagonal quartic surfaces the major arcs indeed
reveal the rational points away from accumulating subvarieties.
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Chapter 3

The density of fibres with a
rational point for a fibration
over hypersurfaces of low de-
gree

A victory is twice itself when the achiever brings home full numbers

Leonato, Much Ado About Nothing, Scene 1.1, line 5

This chapter is an adapted version of a paper that is being prepared jointly
with Efthymios Sofos, and for which a preprint is available online [SVM18].

3.1 Introduction

Serre’s problem [Ser90] regards the density of elements in a family of va-
rieties defined over Q that have a Q-rational point. Special cases have
been considered by Hooley [Hoo93, Hoo07] Poonen–Voloch [PV04], So-
fos [Sof16], Browning–Loughran [BL17], and Loughran–Takloo-Bighash–
Tanimoto [LTBT17]. The recent investigation of Loughran [Lou13] and
Loughran–Smeets [LS16] provides an appropriate formulation of the prob-
lem and proves the conjectured upper bound in considerable generality.

Assume that X is a variety over Q equipped with a dominant morphism
φ : X → PnQ. Letting H denote the usual Weil height on Pn(Q), Loughran
and Smeets conjectured [LS16, Conj.1.6] under suitable assumptions on
φ, that for all large enough positive t, the cardinality of points b ∈ Pn(Q)
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with height H(b) ≤ t and such that the fibre φ−1(b) has a point in R and
Qp for every prime p, has order of magnitude

#{b ∈ Pn(Q) : H(b) ≤ t}
(log t)∆(φ)

for a non-negative quantity ∆(φ) that is defined in [LS16, Eq.(1.3)].

The cardinality of fibres of height t and possessing a Q-rational point is
bounded by the quantity they considered, while the two quantities coincide
if every fibre satisfies the Hasse principle. The problem of obtaining the
conjectured lower bound for the number of fibres of bounded height with
a Q-rational point when φ is general is considered rather hard because
there is no general machinery for producing Q-rational points on varieties.

There are only two instances in the literature of the subject where asymp-
totics have been proved unconditionally:

• the base of the fibration is a toric variety (Loughran [Lou13]),

• the base of the fibration is a wonderful compactification of an adjoint
semi-simple algebraic group (Loughran–Takloo-Bighash–Tanimoto
[LTBT17]).

Our aim in this chapter is to extend the list above by proving asymptotics
in a case of a rather different nature. The base of the fibration of our main
theorem will be a generic hypersurface of large dimension compared to its
degree.

3.1.1 The set-up of our results

Let f1 and f2 be homogeneous forms in Z[t0, . . . , tn−1], of equal and even
degree d > 0 subject to some assumptions which are to follow.

We assume that both the projective varieties defined by f1(t) = 0 and
f2(t) = 0 are smooth. Moreover we assume that the variety defined by
f1(t) = f2(t) = 0 is a complete intersection. This is satisfied for generic f1

and f2 of fixed degree and in a fixed number of variables. The next condi-
tion is artificial in nature but its presence allows to adapt the arguments
of Birch [Bir62] to our problem. Letting σ(f1, f2) denote the dimension of
the variety given by

rk

(
∂fi
∂xj

)1≤i≤2

0≤j≤n−1

(x) ≤ 1
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when considered as a subvariety in AnC, we shall demand the validity of

n− σ(f1, f2) > 3(d− 1)2d. (3.1)

With more work along the lines of the present chapter, most of these
assumptions may be removed. However, the assumption that deg(f1) is
even seems necessary and (3.1) is vital for the entire strategy of the proof.
We discuss some possible adaptations after stating the main result of our
work.

Remark 3.1.1. We assume that the varieties defined by fi(t) = 0 are
smooth, so they are also irreducible since smooth hypersurfaces in Pn−1

Q
are irreducible if n ≥ 3 holds. In particular we have n > 12 by (3.1).

Let B ⊂ Pn−1
Q be the hypersurface given by f2(t) = 0. We recall that

by the work of Birch [Bir62], B satisfies the Hasse principle, and more-
over it satisfies weak approximation by work of Browning and Heath-
Brown [BHB17]. From now on we also assume B(Q) 6= ∅.

For every i ∈ {0, . . . , n−1} consider the subvariety Xi of P2
Q×A

n−1
Q defined

by

x2
0 + x2

1 =f1(t0, . . . , ti−1, 1, ti+1, . . . , tn−1)x2
2,

f2(t0, . . . , ti−1, 1, ti+1, . . . , tn−1) = 0.

The maps gi : Xi → B ⊂ Pn−1
Q sending a pair

((x : y : z), (t0, . . . , ti−1, 1, ti+1, . . . , tn−1))

to (t0 : . . . : ti−1 : 1 : ti+1 : . . . : tn−1) glue together, defining a projec-
tive bundle X over the base B – this uses that f1 has even degree. By
assumption, f1 is not a multiple of f2, so the generic fibre of X is smooth.

If we were interested in counting Q-rational points on X then it would be
necessary to make a further study into the equations defining a projective
embedding of X (as in [FLS18, §2]). Currently however, we are only
interested in counting how many fibres of the conic bundle have a Q-
rational point. A conic bundle is a dominant morphism whose generic
fibre is a smooth conic. In this chapter we consider the conic bundle

φ : X → B (3.2)
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defined locally by gi. We shall estimate asymptotically the probability
with which the fibre φ−1(b) has a Q-point as b ranges over B(Q). For
this, we define

N(φ, t) := #
{
b ∈ B(Q) : H(b) ≤ t, b ∈ φ(X(Q))

}
, t ∈ R>0,

where H is the usual naive Weil height on Pn−1(Q).

Remark 3.1.2. Since the degree of f1 is even, the question if for a given
b ∈ B the fibre φ−1(b) contains a rational point is independent of a chosen
representative.

Consider the small quantity

εd :=
1

5(d− 1)2d+5
. (3.3)

Theorem 3.1.3. In the set-up above there exists a constant cφ such that
for t ≥ 2 we have

N(φ, t) = cφ
tn−d

(log t)
1
2

+O

(
tn−d

(log t)
1
2

+εd

)
.

If φ has a smooth fibre with a Q-point then cφ is positive. This will be
shown in Theorem 3.5.23, where we shall also provide an interpretation
for the leading constant cφ. The proof of Theorem 3.1.3 will be given in
§3.4.3.

In fact, the assumption that the base B has a rational point could be
removed, as Theorem 3.5.23 will show that in this case, the constant cφ
would vanish. It is however convenient for our methods to keep the as-
sumption anyway. And indeed, if B(Q) were empty, the study of N(φ, t)
would be a trivial exercise.

Theorem 3.1.3 settles the first case in the literature of an asymptotic for
the natural extension of Serre’s problem to fibrations over a base that does
not have the structure of a toric variety nor a wonderful compactification of
an adjoint semi-simple algebraic group. Fibrations that have a basis other
than the projective space were also studied in the recent work of Browning
and Loughran [BL17, §1.2.2]. In light of the work of Birch [Bir62], our
assumptions imply

#
{
b ∈ B(Q) : H(b) ≤ t

}
� tn−d.
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A very special case of [BL17, Thm 1.4] proves limt→∞N(φ, t)/tn−d = 0,
whereas Theorem 3.1.3 provides asymptotics.

The requirements deg(f1) = deg(f2) and that the variety f1(t) = f2(t) = 0
is a complete intersection can be removed by adapting some of the argu-
ments in the work of Browning and Heath-Brown [BHB17]. An inspection
of our work reveals that the smoothness assumption can be removed at
the cost of making the statement Theorem 3.1.3 more involved. Lastly,
we should note that our approach can be adapted to varieties of the form
(NK/Q(x) = f1(b), f2(b) = 0), where K is a number field and NK/Q(x)
is the associated norm form. For this, one would have to replace Propo-
sition 3.3.4 by a version of the results of Odoni [Odo73], where instead
of counting integers represented by the norm of K, one counts integers
in an arbitrary arithmetic progression and represented by the norm of K.
It would be interesting to obtain asymptotics in cases where K fails the
Hasse norm principle. A further desirable goal could be that of obtaining
asymptotics in cases where the base of the fibration fails weak approxima-
tion.

3.1.2 The logarithmic exponent

The exponent of log t occurring in our result is the one expected in the liter-
ature. Indeed, in the works of Loughran and Smeets [LS16, Eq.(1.4)], and
Browning and Loughran [BL17, Eq.(1.3)], one may find the expected ex-
ponent ∆(φ) defined as follows. For any b ∈ B with residue field κ(b), the
fibre Xb = φ−1(b) is called pseudo-split if every element of Gal(κ(b)/κ(b))
fixes some multiplicity-one irreducible component of Xb×Spec(κ(b)). The
fibre Xb is called split if it contains a multiplicity-one irreducible compo-
nent that is also geometrically irreducible. Note that a split fibre is always
pseudo-split and further note that for conic bundles these two notions are
the same as the singular fibres are either double lines, or two lines inter-
secting.

Now for every codimension one point D ∈ B(1) choose a finite group ΓD
through which the action of Gal(κ(D)/κ(D)) on the irreducible compo-
nents of X

κ(D)
factors. Let Γ◦D be the subset of elements of ΓD which fix

some multiplicity one irreducible component. One sets δD = #Γ◦D/#ΓD
and

∆(φ) =
∑

D∈B(1)

(
1− δD

)
.

55



3.1. INTRODUCTION

By considering the possible singular fibres, it is clear that for a conic
bundle, δD is different from 1 if and only if D is non-split, in which case
it is either 0 (if the fibre is a double line) or 1

2 .

In all the cases in the literature so far the exponent of (log t)−1 turns out to
be ∆. Indeed, this is also the case here. The only relevant codimension one
point to consider is D := Z(f1, f2); every other fibre is smooth and hence
split. Suppose that D is geometrically reducible, then the intersection
between any two geometrically irreducible components lies in the singular
locus of D, say Dsing. Being the intersection between varieties in projective
space of codimension at most 2, its codimension is at most 4.

The affine cone above Dsing is a subvariety of the affine variety defined by

rk

(
∂fi
∂xj

)1≤i≤2

0≤j≤n−1

(x) ≤ 1.

As a subvariety, the affine cone over Dsing has dimension at most σ(f1, f2),
so its codimension is at least n−σ(f1, f2). Hence the codimension of Dsing

in PnQ is at least n− σ(f1, f2)− 1. Thus we are led to an inequality

4 ≥ n− σ(f1, f2)− 1 > 3(d− 1)2d − 1 ≥ 11,

violating the combined assumptions (3.1) and d ≥ 2. We conclude that D
is geometrically irreducible.

The fibre above D is given by x2 +y2 = 0 over the function field κ(D) and
it is split if and only if −1 is a square in κ(D). However, it is well known
that the function field of a geometrically irreducible variety is primary:
it contains no non-trivial separable algebraic extensions of the base field.
Since −1 is not a square in Q, neither is it in κ(D). Therefore, under the
assumptions of Theorem 3.1.3 we find ∆(φ) = δD = 1

2 .

Notation 3.1.4. As usual, we denote the divisor, Euler and Möbius func-
tions by τ , ϕ and µ. We shall make frequent use of the estimates

τ(m)� m
1

log logm (3.4)

and

ϕ(m)� m/ log logm (3.5)

found in [Ten95, Th.5.4] and [Ten95, Th.5.6] respectively.
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We consider the forms f1 and f2 fixed throughout the chapter, thus the
implied constants in the Vinogradov/Landau notation�, O(·) are allowed
to depend on φ, f1, f2, n and d without further mention. Any dependence
of the implied constants on other parameters will be explicitly recorded
by the appropriate use of a subscript.

For z ∈ C we let

e(z) := exp(2πiz).

The symbol vp(m) will refer to the standard p-adic valuation of an integer
m. Lastly, we shall use the Ramanujan sum, defined for a ∈ Z and q ∈ Z>0

as

cq(a) :=
∑

x∈(Z/qZ)∗

e(ax/q). (3.6)

Denoting the indicator function of a condition A by 1A, we have the
following equality:

cpm(a) = pm−1
(
p1vp(a)≥m − 1vp(a)≥m−1

)
, (p prime, a ∈ Z,m ≥ 1). (3.7)

When we write |x|, we will mean max{|xi|}. Lastly, we shall make frequent
use of the constant

C0 :=
∏

p prime
p≡3(mod 4)

(
1− 1

p2

)1/2
. (3.8)
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for useful comments that helped improve the introduction and §3.5.4.

3.2 Using the Hardy–Littlewood circle method
for Serre’s problem

We begin by estimating the main quantity in Theorem 3.1.3 by averages
of an arithmetic function over a thin subset of integer vectors. Let us first
define ϑQ : Z → {0, 1} as the indicator function of those integers m such
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that the curve x2
0 + x2

1 = mx2
2 has a point over Q. For P ∈ R>0 we let

ΘQ(P ) :=
∑

x∈Zn∩P [−1,1]n

f1(x)6=0,f2(x)=0

ϑQ(f1(x)). (3.9)

In order to go from Q-solutions to coprime Z-solutions, we perform a
standard Möbius transformation, where we cut off the range of summation
at the price of an error term. This is the content of the following lemma.

Lemma 3.2.1. Under the assumptions of Theorem 3.1.3 we have

N(φ, t) =
1

2

∑
l∈Z∩[1,log t]

µ(l)ΘQ(t/l) +O(tn−d(log t)−1).

Proof. For any b ∈ Pn(Q) there exists a unique, up to sign, y ∈ Zn with
gcd(y0, . . . , yn−1) = 1 and b = [±y]. Recalling that the degree of f1 is
even, allows to infer that the fibre φ−1(b) has a rational point if and only
if ϑQ(f1(y)) = 1 holds, hence N(φ, t) equals

1

2
#{y ∈ Zn ∩ t[−1, 1]n : gcd(y0, . . . , yn−1) = 1, f2(y) = 0, ϑQ(f1(y)) = 1}.

For y such that f1(y) = 0 holds, we have ϑQ(f1(y)) = 1 since (0 : 0 : 1) is
a point in φ−1([y]). Therefore the quantity above is

1

2

∑
y∈Zn∩t[−1,1]n

gcd(y0,...,yn−1)=1
f2(y)=0,f1(y)6=0

ϑQ(f1(y))+O(#{y ∈ Zn∩ [−t, t]n : f1(y) = f2(y) = 0}).

The assumption (3.1) allows to apply Lemma 1.3.36 with R = 2 to imme-
diately obtain

#{y ∈ Zn ∩ t[−1, 1]n : f1(y) = f2(y) = 0} � tn−2d.

Thus we obtain equality of N(φ, t) with

1

2

∑
y∈Zn∩t[−1,1]n

gcd(y0,...,yn−1)=1
f1(y)6=0,f2(y)=0

ϑQ(f1(y)) +O(tn−2d).

58



3.2. USING THE CIRCLE METHOD FOR SERRE’S PROBLEM

Using Möbius inversion and letting y = lx we see that the sum over y
equals ∑

y∈Zn∩t[−1,1]n

f1(y)6=0,f2(y)=0

ϑQ(f1(y))
∑
l∈Z>0

l|y

µ(l) =
∑
l≤t

µ(l)
∑

x∈Zn∩ t
l
[−1,1]n

f1(x) 6=0,f2(x)=0

ϑQ(f1(x)),

because ϑQ(f1(y)) = ϑQ(f1(x)) holds due to deg(f1) being even. Hence
we have

N(φ, t) =
1

2

∑
l∈Z∩[1,t]

µ(l)ΘQ(t/l) +O(tn−2d),

and now the use of (3.1) and Lemma 1.3.36 for R = 1 yields

|ΘQ(t)| ≤ #{y ∈ Zn ∩ t[−1, 1]n : f2(y) = 0} � tn−d,

which shows that the collective contribution from large l is∣∣∣ ∑
l∈Z>0∩(log t,t]

µ(l)ΘQ(t/l)
∣∣∣� ∑

l>log t

(t/l)n−d � tn−d
∑
l>log t

l−2

� tn−d(log t)−1,

where we used that n− d ≥ 2 holds due to (3.1).

For m < 0 the curve x2
0 + x2

1 = mx2
2 has no R-point, and therefore no

Q-point, in other words: ϑQ(m) = 0. Thus, writing max{f1([−1, 1]n)} for
max{f1(t) : t ∈ [−1, 1]n}, it is evident that we have the equality

ΘQ(P ) =
∑

m∈Z>0

m≤max{f1([−1,1]n)}P d

ϑQ(m)
∑

x∈Zn∩P [−1,1]n

f1(x)=m,f2(x)=0

1.

Writing dα for dα1dα2 and using the identity∫
α∈[0,1)2

e(α1(f1(x)−m)+α2f2(x))dα =

{
1, if f1(x) = m and f2(x) = 0,

0, otherwise,

shows the validity of

ΘQ(P ) =

∫
α∈[0,1)2

S(α)EQ(α1)dα, (3.10)
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where one uses the notation

S(α) :=
∑

x∈Zn∩P [−1,1]n

e(α1f1(x) + α2f2(x)) (3.11)

and
EQ(α1) :=

∑
m∈Z>0

m≤max{f1([−1,1]n)}P d

ϑQ(m) e(α1m) (3.12)

to match the notation in Birch’s work as outlined in §1.3.3. One has the
obvious bound EQ(α1)� P d from the triangle inequality.

Recall the notation from Definition 1.3.24. We pick small positive θ0 and
δ as in (1.7) and (1.8), that is, such that we have 1 > δ + 16θ0 and
n−σ
2d
− 3(d− 1) > δθ−1

0 . By the triangle inequality we have∫
α/∈M(θ0)

∣∣S(α)EQ(α1)
∣∣dα ≤ (∫

α/∈M(θ0)
|S(α)|dα

)
max

α1∈[0,1)
|EQ(α1)|,

hence applying the result of Lemma 1.3.27 on the first factor, and using the
trivial bound EQ(α1) � P d leads to the following bound on the integral
away from M(θ0):∫

α/∈M(θ0)

∣∣S(α)EQ(α1)
∣∣dα� Pn−d−δ.

By (3.10) this shows

ΘQ(P ) =

∫
α∈M(θ0)

S(α)EQ(α1)dα +O(Pn−d−δ).

Consistently modifying the setup, the following lemma is analogous to
Lemma 1.3.29 and its proof is the same, using the notation introduced
above. The essence of the lemma is the statement that in the expression
for ΘQ(P ) above, we may slightly modify the intervals of integration such
that they are still disjoint.

Lemma 3.2.2. For any θ0, δ satisfying (1.7) and (1.8) and under the as-
sumptions of Theorem 3.1.3 we have

ΘQ(P ) =
∑

q≤P 2(d−1)θ0

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

∫
M′a,q(θ0)

S(α)EQ(α1)dα +O(Pn−d−δ),

where the modified set M′a,q(θ0) consists of those α ∈ [0, 1]2 satisfying

|qαi − ai| ≤ qP−d+2(d−1)θ0.
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Proof. Every modified interval M′a,q(θ0) extends the associated interval
Ma,q(θ0), so the estimate of the integral away from these intervals remains
valid. One should only check that the modified intervals do not overlap.

For a ∈ (Z ∩ [0, q))2, write

Sa,q :=
∑

x∈(Z∩[0,q))n

e
(a1f1(x) + a2f2(x)

q

)
, (3.13)

and for Γ ∈ R2 define

I(Γ) :=

∫
ζ∈[−1,1]n

e(Γ1f1(ζ) + Γ2f2(ζ))dζ. (3.14)

Recalling the notation η = 2(d − 1)θ0, we now employ Lemma 1.3.32
with ν = 0 to evaluate S(α) and to see that under the assumptions of
Lemma 3.2.2, with β := α− a/q, we have

ΘQ(P )− Pn
∑

q≤P 2(d−1)θ0

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|β|≤P−d+η

I(P dβ)EQ(β1 + a1/q)dβ

�Pn−d−δ + Pn−1+2η
∑
q≤Pη

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

∫
|β|≤P−d+η

|EQ(β1 + a1/q)|dβ.

By using EQ(α)� P d once more we infer that the sum over q in the error
term above is

�
∑
q≤P η

q2P 2(−d+η)P d � P−d+5η,

hence we have proved the following lemma.

Lemma 3.2.3. Under the assumptions of Lemma 3.2.2, ΘQ(P )P−n+d is∑
q≤P η

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|β|≤P−d+η

P dI(P dβ)EQ(β1 + a1/q)dβ

up to an error term that is O(P−δ + P−1+7η).

Proof. The proof consists merely of the calculations above.
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3.3 Exponential sums with terms detecting the
existence of rational points

In this section we write x for max{f1([−1, 1]n)}P d. As made clear by
Lemma 3.2.3, to verify Theorem 3.1.3 we will asymptotically estimate the
expression

EQ

(a1

q
+ β1

)
=

∑
m∈Z>0∩[1,x]

x2
0+x2

1=mx2
2 has a Q-point

e

((
a1

q
+ β1

)
m

)
,

for integers a1, q, β1 ∈ R, and x ∈ R≥1. It suffices to first study the
case β1 = 0, and then to apply Lemma 3.3.7 at the end of this section.
To study EQ(a1/q) we shall rephrase the condition on m in a way that it
only regards the prime factorisation of m and then use the Rosser–Iwaniec
sieve.

We begin by applying the formulas regarding Hilbert symbols in [Ser73,
Ch.III,Th.1], which show that for strictly positive integers m one has

ϑQ(m) =

{
1, if p ≡ 3 (mod 4)⇒ vp(m) ≡ 0 (mod 2) ,

0, otherwise.
(3.15)

Indeed, for m ∈ Z>0, the curve x2
0+x2

1 = mx2
2 defines a smooth conic in P2

Q
with an R-point and the Hasse principle combined with Hilbert’s product
formula [Ser73, Ch.III,Th.3] proves (3.15). The function in (3.15) is the
characteristic function of those integers m that are sums of two integral
squares, see [Ten95, §4.8]. Landau [Ten95, Eq.(4.90)] proved the following
asymptotic:

∑
1≤m≤x

ϑQ(m) =
1

21/2C0

x

(log x)1/2
+O

(
x

(log x)3/2

)
, x ∈ R>1, (3.16)

but this is not sufficient for us since we will need a similar result restricted
to those m in an arithmetic progression. Observe that the following holds
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due to periodicity:

EQ

(a1

q

)
=

∑
m∈Z>0∩[1,x]

x2
0+x2

1=mx2
2 has a Q-point

e

(
a1

q
m

)

=
∑

`∈Z∩[0,q)

e(a1`/q)
∑

1≤m≤x
m≡`(mod q)

ϑQ(m).

The work of Rieger [Rie65, Satz 1] could now be invoked to study the
sum over m ≡ ` (mod q) when gcd(`, q) = 1. One could attempt to use
this to get asymptotic formulas for the cases with gcd(`, q) > 1. However,
we found it more straightforward to work instead with the function $ in
place of ϑQ. This function $ : Z>0 → {0, 1} is defined as

$(m) :=

{
1, if p | m⇒ p ≡ 1 (mod 4) ,

0, otherwise.
(3.17)

It is obvious that for all m, k ∈ Z>0 we have

$(mk) = $(m)$(k) (3.18)

so $ is completely multiplicative, while ϑQ is merely multiplicative (to see
this take m = k = p, where p is any prime which is 3 (mod 4)). This is
the reason for choosing to work with $ rather than ϑQ. Our next lemma
shows how one can replace ϑQ by $, while simultaneously restricting the
summation at the price of an error term.

Lemma 3.3.1. For x, u ∈ R≥1, q ∈ Z>0, a1 ∈ Z ∩ [0, q) we have∑
1≤m≤x

ϑQ(m) e(a1m/q) =
∑

(k,t)∈Z>0×Z≥0

2tk2≤u
p|k⇒p≡3(mod 4)

∑
`∈Z∩[0,q)

e(a1`/q)
∑
r∈Z>0

2tk2r≡`(mod q)
1≤r≤x2−tk−2

$(r)

up to an error term that is O

(
x√
u

)
with an absolute implied constant.

Proof. It is easy to see that for positive m one has ϑQ(m) = 1 if and only
if we can write m = 2tk2r for t ∈ Z≥0, k a positive integer all of whose
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primes are 3 (mod 4) and r which satisfies $(r) = 1. This shows that the
sum over m is ∑

(k,t)∈Z>0×Z≥0

p|k⇒p≡3(mod 4)

∑
r∈Z>0

1≤r≤x2−tk−2

$(r) e(a12tk2r/q).

The contribution of the pairs (k, t) with 2tk2 > u is at most

∑
t≥0

∑
k>
√
u2−t

x2−tk−2 < 2x
∑
t≥0

2−t√
u2−t

� x√
u
,

where the (first) inequality comes from Lemma 3.3.2.

Noting that e(a12tk2r/q) as a function of r is periodic modulo q allows to
partition all r in congruences ` ∈ Z/qZ, thus concluding the proof.

Lemma 3.3.2. For any a ∈ R>0 we have

Za :=
∑
k∈Z>a

k−2 < 2a−1.

Proof. For a ≥ 2 we estimate the sum as a lower sum of the associated
integral: ∑

k∈Z>a

k−2 ≤
∫ ∞
bac

t−2dt = bac−1.

If a is an integer, then bac−1 < 2a−1 is obvious. If a is not an integer,
then we have bac−1 = da − 1e−1 < (a − 1)−1 < 2a−1 since a was at least
2.

We only still need to prove the statement for a ∈ (0, 2), for which we
consider the sum separately. For a ∈ (0, 1) we have Za = ζ(2) < 2 < 2a−1

and for a ∈ [1, 2) we have Za = ζ(2)− 1 < 1 < 2a−1 again.

The terms in the sum involving $ in Lemma 3.3.1 are in an arithmetic
progression that is not necessarily primitive. We next show that we can
reduce the evaluation of these sums to similar expressions where the sum-
mation is over an arithmetic progression that is primitive. The property
(3.18) will be used for this.
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Lemma 3.3.3. Let t ∈ Z≥0, q ∈ Z>0, ` ∈ Z ∩ [0, q) and k ∈ Z>0 be such
that every prime divisor of k is 3 (mod 4). For y ∈ R>0 consider the sum∑

r∈Z>0∩[1,y]
2tk2r≡`(mod q)

$(r).

The sum vanishes if gcd(2tk2, q) - ` holds, and it otherwise equals

$
( gcd(`, q)

gcd(2tk2, q)

) ∑
s∈Z>0∩[1,y gcd(2tk2,q) gcd(`,q)−1]

2tk2

gcd(2tk2,q)
s≡ `

gcd(`,q)

(
mod q

gcd(`,q)

)
$(s).

Proof. If gcd(2tk2, q) - ` then the congruence 2tk2r ≡ ` (mod q) does not
have a solution r, in which case the sum over r vanishes. On the other
hand, if gcd(2tk2, q) divides `, then we see that the congruence for r can
be written equivalently as

2tk2

gcd(2tk2, q)
r ≡ `

gcd(2tk2, q)

(
mod

q

gcd(2tk2, q)

)
.

Note that any solution r of this must necessarily satisfy

gcd
( `

gcd(2tk2, q)
,

q

gcd(2tk2, q)

)∣∣∣ 2tk2

gcd(2tk2, q)
r,

the left-hand gcd being equal to gcd(`, q) gcd(2tk2, q)−1. The fact of

gcd
( gcd(`, q)

gcd(2tk2, q)
,

2tk2

gcd(2tk2, q)

)
= 1

shows that r must be divisible by gcd(`, q) gcd(2tk2, q)−1. Therefore there
exists an s ∈ Z>0 with

r =
gcd(`, q)

gcd(2tk2, q)
s

and substituting this into the sum over r in our lemma concludes the proof
because

$(r) = $
( gcd(`, q)

gcd(2tk2, q)

)
$(s)

holds due to the complete multiplicativity seen in (3.18).
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We are now in a position to apply [FI10, Th.14.7], which is a result on
the distribution of the function $ along primitive arithmetic progressions
and which we include as a proposition for the convenience of the reader.
We first introduce the following notation for Q ∈ Z>0:

Q̇ :=
∏

p≡1(mod 4)

pvp(Q) and Q̈ :=
∏

p≡3(mod 4)

pvp(Q). (3.19)

Proposition 3.3.4 ([FI10] Th.14.7). Let Q be a positive integer multiple
of 4, let a ≡ 1 (mod 4) satisfy gcd(a,Q) = 1, and let z be any real number
with z ≥ Q. Then

∑
r∈Z>0∩[1,z]
r≡a(mod Q)

$(r) = 21/2C0
Q̈

ϕ(Q̈)

z

Q
√

log z

{
1 +O

(( logQ

log z

)1/7
)}

holds with an absolute implied constant.

Remark 3.3.5. This result is proven using the semi-linear Rosser–Iwaniec
sieve. We should remark that there is a typo in the reference, namely[FI10,
Eq.(14.22)] should instead read

V (D) =
∏

2<p<D

(
1− 1

p

) 1
2 ∏
p<D

(
1− χ(p)

p

)− 1
2 ∏

2<p<D
p≡3(mod 4)

(
1− 1

p2

) 1
2

,

and as a result, [FI10, Eq.(14.39)] must be replaced by the asymptotic in
Proposition 3.3.4. After fixing this typo, one can show, as in the proof
of [FI10, Eq.(14.24)], that for D ≥ 2, we have

∏
p<D

p≡3(mod 4)

(
1− 1

p

)
=

√
π√

2 exp(γ)
C0

1√
logD

+O
( 1

(logD)3/2

)
. (3.20)

There is a further typo in [FI10, Eq.(14.26)], namely, c
√

2 should be re-
placed by 21/2C0/4.

We will now proceed to the application of Proposition 3.3.4. For any
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q ∈ Z>0, a1 ∈ Z ∩ [0, q) define

F(a1, q) :=
∑

(k,t)∈Z>0×Z≥0

p|k⇒p≡3(mod 4)

gcd(2tk2, q)

2tk2

∑
`∈Z∩[0,q)

gcd(2tk2,q)|`
(3.22)

$
( gcd(`,q)

gcd(2tk2,q)

)
e
(
a1`
q

)
gcd(`, q)lcm

(
4, q

gcd(`,q)

)

×
∏

p≡3(mod 4)
vp(q)>vp(`)

(
1− 1

p

)−1
, (3.21)

where ` in the summation satisfies

2tk2

gcd(2tk2, q)
≡ `

gcd(`, q)

(
mod gcd

(
4,

q

gcd(`, q)

))
. (3.22)

The result of the following lemma aims to separate out the dependence on
x from the apparent pandemonium that is hidden in F(a1, q).

Lemma 3.3.6. For x ∈ R≥1, A ∈ R>0, q ∈ Z>0, a1 ∈ Z ∩ [0, q) with
q ≤ (log x)A we have∑

m∈Z∩[1,x]
x2

0+x2
1=mx2

2 has
a Q-point

e

(
a1
m

q

)
= 21/2C0F(a1, q)

x

(log x)1/2
+OA

(
q3x

(log x)1/2+1/7

)
,

where the implied constant depends at most on A.

Proof. Combining Lemma 3.3.1 with u = (log x)100 and Lemma 3.3.3
shows that, up to an error term which is � x(log x)−50, the sum over
m in our lemma equals∑

(k,t)∈Z>0×Z≥0

2tk2≤(log x)100

p|k⇒p≡3(mod 4)

∑
`∈Z∩[0,q)

gcd(2tk2,q)|`

$
( gcd(`, q)

gcd(2tk2, q)

)
e(a1`/q)

×
∑

s∈Z>0∩[1,x2−tk−2 gcd(2tk2,q) gcd(`,q)−1]
2tk2

gcd(2tk2,q)
s≡ `

gcd(`,q)

(
mod q

gcd(`,q)

)
$(s).

We note that $(s) vanishes unless s satisfies s ≡ 1 (mod 4). This means
that we can add the condition s ≡ 1 (mod 4) in the last sum over s, thus
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resulting with the double congruence

s ≡ 1 (mod 4) ,
2tk2

gcd(2tk2, q)
s ≡ `

gcd(`, q)

(
mod

q

gcd(`, q)

)
.

By the Chinese remainder theorem this has a solution if and only if (3.22)
is satisfied. Assuming that this happens, the solution is unique modulo

Q := lcm
(

4,
q

gcd(`, q)

)
.

Hence by Proposition 3.3.4 we get that the sum over m in our lemma
equals

MT : = 21/2C0

∑
(k,t)∈Z>0×Z≥0

2tk2≤(log x)100

p|k⇒p≡3(mod 4)

∑
`∈Z∩[0,q),(3.22)

gcd(2tk2,q)|`

$
( gcd(`, q)

gcd(2tk2, q)

)
e(a1`/q)

× Q̈

ϕ(Q̈)

1

lcm(4, q/ gcd(`, q))

x2−tk−2 gcd(2tk2, q) gcd(`, q)−1√
log(x2−tk−2 gcd(2tk2, q) gcd(`, q)−1)

up to an error term which is

� x

(log x)50
(3.23)

+
∑

(k,t)∈Z>0×Z≥0

2tk2≤(log x)100

p|k⇒p≡3(mod 4)

∑
`∈Z∩[0,q)

gcd(2tk2,q)|`
(3.22)

(log log Q̈)
x2−tk−2 gcd(2tk2, q)

gcd(`, q)
√

log x

( logQ

log x

)1/7

owing to (3.5), which gives Q̈/ϕ(Q̈) � log log Q̈ ≤ log logQ, combined
with the trivial bounds $(·), e(a1`/q), Q

−1 ≤ 1. Note that we have made
use of

log(x2−tk−2 gcd(2tk2, q) gcd(`, q)−1) = log x+OA(log log x), (3.24)

which follows from

x

(log x)100+A
≤ x

2tk2q
≤ x2−tk−2 gcd(2tk2, q)

gcd(`, q)
≤ xq ≤ x(log x)A.
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The bound Q̈ ≤ Q ≤ 4q shows that the sum over t, k in (3.23) is

�(log log q)(log q)1/7 x

(log x)1/2+1/7

∑
(k,t)

∑
`∈Z∩[0,q)

2−tk−2 gcd(2tk2, q)

�(log log q)(log q)1/7 x

(log x)1/2+1/7
q2

∑
(k,t)∈Z>0×Z≥0

2−tk−2

�q3 x

(log x)1/2+1/7
,

which is satisfactory. To conclude the proof, it remains to show that the
quantity MT gives rise to the main term as stated in our lemma. By (3.24)
we see that

1√
log(x2−tk−2 gcd(2tk2, q) gcd(`, q)−1)

=
1√

log x
+O

(
log log x

(log x)3/2

)
,

hence MT = M′ + R, where M′ is defined by

x21/2C0

(log x)1/2

∑
(k,t)∈Z>0×Z≥0

2tk2≤(log x)100

p|k⇒p≡3(mod 4)

gcd(2tk2, q)

2tk2

×
∑

`∈Z∩[0,q)
gcd(2tk2,q)|`

(3.22)

$(gcd(`, q)/ gcd(2tk2, q)) e(a1`/q)Q̈

gcd(`, q)lcm(4, q/ gcd(`, q))ϕ(Q̈)

and R is a quantity that satisfies

R�
∑

(k,t)∈Z>0×Z≥0

∑
`∈Z∩[0,q)

Q̈

ϕ(Q̈)

x2−tk−2 gcd(2tk2, q)

(log log x)−1(log x)3/2
� q3x log log x

(log x)3/2
,

where we again have made use of the trivial upper bound 1 for $(·) and
| e(·)|, now combined with the lower bound 1 for lcm(·) and gcd(·). The
cubic power of q arises from bounding both gcd(2tk2, q) and Q̈/ϕ(Q̈) from
above by q, and then having q terms in the sum

∑
`∈Z∩[0,q) 1. As we have

seen before, we could have bounded Q̈/ϕ(Q̈) from above by log log q, but
this extra saving is unnecessary for our goals.

We complete the summation over t, k in M′ to the whole range Z>0×Z≥0
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appearing in (3.21). To do so, we use the bound∑
(k,t)∈Z>0×Z≥0

2tk2>(log x)100

gcd(2tk2, q)

2tk2

∑
`∈Z∩[0,q)

(3.22)
gcd(2tk2,q)|`

Q̈

ϕ(Q̈)
� q3

∑
(k,t)∈Z>0×Z≥0

2tk2>(log x)100

1

2tk2
� q3

(log x)50
,

while the observation

Q̈

ϕ(Q̈)
=

∏
p≡3(mod 4)
p|q(gcd(`,q))−1

(
1− 1

p

)−1
=

∏
p≡3(mod 4)
vp(q)>vp(`)

(
1− 1

p

)−1

allows to remove Q̈ from M′.

We note that one immediate corollary of the last lemma is the bound

F(a1, q)� 1, (3.25)

with an absolute implied constant. Indeed, this can be shown by tak-
ing A = 1/100 in Lemma 3.3.6, dividing throughout by x/

√
log x in the

asymptotic it provides and applying (3.16) to obtain

21/2C0F(a1, q)�
(log x)1/2

x

∣∣∣ ∑
1≤m≤x

ϑQ(m) e(a1m/q)
∣∣∣+

q3

(log x)1/7

� 1 +
(log x)3/100

(log x)1/7
.

We remark that although this argument may feel somewhat circular at first
glance, it is in fact not since the second estimate in the above equality
follows not from the lemma, but from the triangle inequality combined
with (3.16).

As announced at the beginning of this section, studying EQ

(
a1
q +β1

)
is first

done in the case β1 = 0 as in Lemma 3.3.6 with x = max{f([−1, 1]n)}P d.
The following lemma shows that this is sufficient, up to introducing an
extra factor.

Lemma 3.3.7. For Γ1 ∈ R, A ∈ R>0, q ∈ Z>0 with q ≤ (logP )A, and
a1 ∈ Z ∩ [0, q) we have

EQ

(
a1

q
+

Γ1

P d

)
= 21/2C0F(a1, q)

(∫ max{f1([−1,1]n)}P d

2

e(Γ1P
−dt)√

log t
dt

)
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up to an error term that is OA

(
q3(1+|Γ1|)P d
(logP )1/2+1/7

)
.

Proof. To ease the notation we temporarily put c := 21/2C0F(a1, q). Fix
β ∈ R. By applying partial summation1 with am = ϑQ(m) e(a1m/q)) and
ϕ(t) = e(βt), we see that

∑
m≤x ϑQ(m) e(m(β + a1/q)) equals

( ∑
m≤x

ϑQ(m) e(a1m/q)
)

e(xβ)−
∫ x

0
e(βt)′

(∑
m≤t

ϑQ(m) e(a1m/q)
)

dt.

For q ≤ (log x)A, Lemma 3.3.6 shows that this equals

c
(( x√

log x
e(xβ)−

∫ x

2

t√
log t

e(βt)′dt
)

+OA

( q3x(1 + |β|x)

(log x)1/2+1/7

)
,

with an implied constant depending at most on A. Using partial integra-
tion this is plainly

c
(∫ x

2

( t√
log t

)′
e(βt)dt

)
+OA

( q3(1 + |β|x)x

(log x)1/2+1/7

)
,

and using (t(log t)−1/2)′ = (log t)−1/2 − 2−1(log t)−3/2 shows that the last
integral can be evaluated as

∫ x
2 e(βt)(log t)−1/2dt + O(x(log x)−3/2). In-

voking the bound c� 1 (that is implied by (3.25)) we obtain

∑
m≤x

ϑQ(m) e(m(β + a1/q)) = c
(∫ x

2

e(βt)√
log t

dt
)

+O

(
q3(1 + |β|x)x

(log x)1/2+1/7

)
.

Using this for x = 1
2 min{f1([−1, 1]n)}P d and putting β = Γ1P

−d con-
cludes the proof.

3.4 Proof of the asymptotic

We are ready to prove the asymptotic in Theorem 3.1.3. We shall do
so with different leading constants than those given in Theorem 3.1.3;
showing equality of the constants is delayed until §3.5.

1See Theorem 1.3.1.
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3.4.1 Restricting the range in the major arcs

The first reasonable step for the proof of the asymptotics would be to
inject Lemma 3.3.7 into Lemma 3.2.3. However, this would give poor
results because the error term in Lemma 3.3.7 is only powerful when Γ1 is
close to zero and q is small in comparison to P . For this reason we restrict
the sum over q and the integration over β in Lemma 3.2.3. For its proof
we shall need certain bounds. First, by (3.16) and the triangle inequality,
one has

EQ(α1)� P d(logP )−1/2 (3.26)

where the implied constant is independent of α1. Recall the definition
of I(Γ) from (3.14). Letting K := (n − σ(f1, f2))2−d+1, we use Lemmas
1.3.33 and 1.3.34 to obtain the following bounds valid for every ε > 0,
Γ ∈ R2 and a ∈ Z2, q ∈ Z>0 satisfying gcd(a1, a2, q) = 1:

I(Γ)�ε min{1, |Γ|−K/(2(d−1))+ε} and Sa,q �ε q
n−K/(2(d−1))+ε.

By our assumption (3.1), we have

I(Γ)� min{1, |Γ|−5/2}, (3.27)

and furthermore, for all 0 < λ < 2−d(d− 1)−1 we have

Sa,q �λ q
n−3−λ. (3.28)

Lemma 3.4.1. Keep the assumptions of Lemma 3.2.2 and let Q1, Q2 ∈ R≥1

with Q1, Q2 ≤ P η for some fixed positive η. Then for any λ satisfying

0 < λ < min
{

1,
1

2

(n− σ(f1, f2)

2d(d− 1)
− 3
)}

(3.29)

we have∑
q≤P η

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|β|≤P−d+η

P dI(P dβ)EQ(β1 + a1/q)dβ

=
∑
q≤Q1

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|Γ|≤Q2

I(Γ)

P d
EQ(Γ1P−d + a1/q)dΓ

+Oδ,λ,θ0
(
(logP )−1/2 min

{
Q−λ1 , Q

−1/2
2

})
.
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Proof. Using the change of variables P dβ = Γ we obtain equality between∫
P−dQ2<|β|≤P−d+η

P dI(P dβ)EQ(β1 + a1/q)dβ

and

P−d
∫
Q2<|Γ|≤P η

I(Γ)EQ(Γ1P−d + a1/q)dΓ.

We bound EQ(Γ1P−d + a1/q) by P d(logP )−1/2 from (3.26), where the
implied constant did not depend on the argument of EQ. We bound I(Γ)
using (3.27), and we extend the range of integration to Q2 < |Γ|.

The bound
∫
Q2<|Γ| I(Γ)dΓ � Q

−1/2
2 may be computed in a straightfor-

ward manner using (3.27) and dividing up the range of integration to make
use of the symmetry of the problem. These estimates together show the
validity of∫

P−dQ2<|β|≤P−d+η
P dI(P dβ)EQ(β1 + a1/q)dβ �

1√
Q2 logP

. (3.30)

This shows that the sum over q ≤ P η in the statement of our lemma equals∑
q≤P η

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

∫
|Γ|≤Q2

I(Γ)

P d
EQ(Γ1P−d + a1/q)dΓ

up to a term that is

� 1√
Q2 logP

∑
q≤P η

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

|Sa,q|
qn

�
∑

q≤P η q
−1−λ

√
Q2 logP

� 1√
Q2 logP

,

where (3.28) has been utilised. Note that the bound
∫
R2 |I(Γ)|dΓ <∞ is

a consequence of (3.27). Using this with (3.26) shows

∑
q>Q1

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

qn

∫
|Γ|≤Q2

I(Γ)EQ(Γ1P−d + a1/q)dΓ�
∑

q>Q1
q−1−λ

√
logP

� Q−λ1√
logP

,

where we have used (3.28). This concludes the proof of the lemma.
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Lemma 3.4.2. Keep the assumptions of Lemma 3.2.2, fix any two positive
A1, A2, and let

λ0 :=
1

2
min

{
1,

1

2

(
n− σ(f1, f2)

2d(d− 1)
− 3

)}
. (3.31)

Then for all sufficiently large P the quantity ΘQ(P )P−n+d equals∑
q≤(logP )A1

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,q

qn

∫
|Γ|≤(logP )A2

I(Γ)

P d
EQ

(
a1

q
+

Γ1

P d

)
dΓ

up to an error term that is OA1,A2

(
(logP )−1/2−min{A1λ0,A2/2}

)
.

Proof. The proof follows immediately from application of Lemma 3.4.1
with Qi = (logP )Ai and Lemma 3.2.3 with some fixed δ and θ0 satisfying
(1.7) and (1.8) and subject to η = 2(d − 1)θ0 < 1/7 in order to get a
negative power of P in the error term coming from Lemma 3.4.1.

3.4.2 Injecting the sieve estimates into the restricted major
arcs

We are now in a position to inject Lemma 3.3.7 into Lemma 3.4.2. It may
be uncommon to use sieve estimates to study major arcs, but the reason
that we do this is not very deep: the availability of the sieve estimates
allowed us to not worry about the behaviour of ϑQ(m) in residue classes.
It is not at all unlikely that good results on ϑQ(m) in residue classes allow
for a much more direct approach.

It will be convenient to start by studying the archimedean density, but
before we do all that, we state a basic lemma that will be used twice in
this chapter.

Lemma 3.4.3. For x ≥ 2 we have∫ x

2
(log t)−1/2dt� x√

log x
.

Proof. Note that t√
log t

is the anti-derivative of 2 log t−1
2(log t)3/2 and that we have

(log t)−1/2 � 2 log t− 1

2(log t)3/2
.

74



3.4. PROOF OF THE ASYMPTOTIC

Hence we get ∫ x

2
(log t)−1/2dt� x√

log x
.

Now recall (3.14) and define for all P with 2 ≤ max{f1([−1, 1]n)}P d the
integral

Jφ(P ) :=

∫
Γ∈R2

I(Γ)

P d

(∫ max{f1([−1,1]n)}P d

2

e(−Γ1P
−dt)√

log t
dt

)
dΓ. (3.32)

The assumptions of Theorem 3.1.3 ensure that the integral converges ab-
solutely, since by (3.27) and application of Lemma 3.4.3 we have∫

Γ∈R2

|I(Γ)|
P d

∫ max{f1([−1,1]n)}P d

2

dtdΓ√
log t

�
∫

Γ∈R2

min{1, |Γ|−5/2}
P d

P ddΓ√
logP

� 1√
logP

.

Lemma 3.4.4. Under the assumptions of Theorem 3.1.3 we have

Jφ(P ) =
1√

log(P d)

∫
Γ∈R2

I(Γ)

(∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµ

)
dΓ

up to an error term that is O((logP )−3/2).

Proof. Observe that the change of variables µ = P−dt in (3.32) shows

Jφ(P ) =

∫
Γ∈R2

I(Γ)

(∫ max{f1([−1,1]n)}

2P−d

e(−Γ1µ)√
log(µP d)

dµ

)
dΓ.

For |x| < 1 we have (1 + x)−1/2 = 1 +O(x), hence for fixed µ we have

(
log(µP d)

)−1/2
=
(

log(P d)
)−1/2

(
1 +

logµ

log(P d)

)−1/2

=
(

log(P d)
)−1/2

+O

(
logµ

(logP )3/2

)
.

Using this for 0 < µ ≤ max{f1([−1, 1]n)}, we infer the following estimate

for all sufficiently large P , where the integral
∫ max{f1([−1,1]n)}

2P−d
logµdµ is

bounded by a constant. The difference

Jφ(P )− 1√
log(P d)

∫
Γ∈R2

I(Γ)

∫ max{f1([−1,1]n)}

2P−d
e(−Γ1µ)dµdΓ
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3.4. PROOF OF THE ASYMPTOTIC

can be estimated as

� 1

(logP )3/2

∫
Γ∈R2

|I(Γ)|dΓ� (logP )−3/2

due to (3.27).

Define

J :=

∫
Γ∈R

∫
{t∈[−1,1]n:x2

0+x2
1=f1(t)x2

2 has an R-point}
e(Γf2(t))dtdΓ (3.33)

and note that the integral converges absolutely owing to (3.1) and Lemma
1.3.33 with R = 1. The arguments in [Bir62, §6] show that if the set
{t ∈ [−1, 1]n : f1(t) ≥ 0} contains a non-singular real point of f2 = 0 then
J > 0. This condition holds in the situation of Theorem 3.1.3 because its
assumptions include B(Q) 6= ∅ and that f2 is non-singular. This will again
come up in the proof of Theorem 3.5.23, where we give more details.

Lemma 3.4.5. Under the assumptions of Theorem 3.1.3 we have∫
Γ∈R2

I(Γ)

(∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµ

)
dΓ = J.

Proof. This proof will follow the same arguments as [DS18, Lem. 4.3 and
4.4]. First we will show that the left-hand side of the equation in the
lemma is equal to limm→∞ Jm with

Jm =

∫
Γ∈R2

I(Γ) exp
(
−π2Γ2

1m
−2
) ∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµdΓ.

We consider∣∣∣∣∣
∫

Γ∈R2

I(Γ)

(∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµ

)
dΓ− Jm

∣∣∣∣∣
=

∣∣∣∣∣
∫

Γ1∈R

(
1− exp(−π2Γ2

1m
−2
) ∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµ

∫
Γ2∈R

I(Γ)dΓ2dΓ1

∣∣∣∣∣
�
∣∣∣∣∫

Γ1∈R

(
1− exp(−π2Γ2

1m
−2
) ∫

Γ2∈R
I(Γ)dΓ2dΓ1

∣∣∣∣ .
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We split the integration range of Γ1 into two parts: |Γ1| ≤ logm and
|Γ1| > logm. Making use of (3.27) we estimate the first part of the
integral as

O
(
(1− exp(−π2m−2(logm)2)) logm

)
,

which goes to 0 for m→∞.

For the second part, we bound 1− exp(−π2Γ2
1m
−2) by 1, and again make

use of (3.27) to conclude that the integral is O
(
(logm)−1/2

)
, which goes

to 0 for m → ∞. Therefore, we have proven that the integral in the
statement of the lemma is equal to the limit limm→∞ Jm. We continue
with the proof that this limit also equals J.

Define for m ∈ Z>0 the function φm : R→ R by

φm(x) := π−1/2m exp
(
−m2x2

)
.

The Fourier transform of φm(x) is exp(−π2ξ2m−2), hence by Fourier’s
inversion formula, we have

φm(x) =

∫
R

exp
(
−π2Γ2

1m
−2
)

e(xΓ1)dΓ1.

Using this with x = f1(t)− µ, and inserting the definition of I(Γ), allows
us to rewrite Jm as∫

t∈[−1,1]n:f1(t)6=0
f1(t) 6=max{f1([−1,1]n)}

(∫ max{f1([−1,1]n)}

0

φm(f1(t)−µ)dµ

)(∫
Γ2∈R

e(Γ2f2(t))dΓ2

)
dt.

Note that we replaced t ∈ [−1, 1]n by the range of integration in the
expression above; this is allowed as it only removes a set of measure zero
from the integration in (3.14).

The following identity for real numbers a < b and a 6= c 6= b is well known
and easily proven:

lim
m→∞

∫ b

a
φm(c− µ)dµ =

{
1 if a < c < b,

0 otherwise.

Hence if t ∈ [−1, 1]n satisfies f1(t) > 0 and f1(t) 6= max{f1([−1, 1]n)},
then we have

lim
m→∞

∫ max{f1([−1,1]n)}

0
φm(f1(t)− µ)dµ = 1,
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while for f1(t) < 0 the limit vanishes. The dominated convergence theo-
rem allows us to switch the order of the limit over m and the integral over
t, providing∫

Γ∈R2

I(Γ)

∫ max{f1([−1,1]n)}

0
e(−Γ1µ)dµdΓ

=

∫
t∈[−1,1]n:f1(t)>0

f1(t)6=max{f1([−1,1]n)}

(∫
Γ2∈R

e(Γ2f2(t))dΓ2

)
dt

=

∫
t∈[−1,1]n

f1(t)>0

(∫
Γ2∈R

e(Γ2f2(t))dΓ2

)
dt = J,

which concludes the proof.

The integral part of Lemma 3.2.3 is calculated in successive steps by Lem-
mas 3.3.7, 3.4.4 and 3.4.5. Hence we may now turn our attention to the
summation part. Recall the definition of Sa,q and F(a1, q) respectively in
(3.13) and (3.21) and let

Lφ :=
∑
q∈Z>0

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,qF(a1, q). (3.34)

Under the assumptions of Theorem 3.1.3, the sum Lφ converges absolutely
since by (3.25) and (3.28) we have for all x > 1:∑

q∈Z>0
q>x

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

∣∣Sa,qF(a1, q)
∣∣� ∑

q∈Z>0
q>x

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

qn−3−λ0

≤
∑
q∈Z>0
q>x

q−1−λ0 � x−λ0 .

(3.35)

Lemma 3.4.6. Under the assumptions of Theorem 3.1.3, any P ≥ 2 vali-
dates

ΘQ(P ) = C0J
Lφ

√
2

d1/2

Pn−d

(logP )1/2
+O

(
(logP )

− 1
40

1

(d−1)2d+2
Pn−d

(logP )1/2

)
.

Proof. Combining Lemmas 3.3.7 and 3.4.2 shows

ΘQ(P )

Pn−d
= 21/2C0R1R2 +R3 +O

(
(logP )−1/2−min{A1λ0,A2/2}), (3.36)
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with
R1 :=

∑
q≤(logP )A1

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,qF(a1, q),

R2 :=

∫
|Γ|≤(logP )A2

I(Γ)

P d

(∫ max{f1([−1,1]n)}P d

2

e(−Γ1P
−dt)√

log t
dt

)
dΓ,

and where R3 is a quantity that satisfies

R3 �
∑

q≤(logP )A1

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

|Sa,q|
qn

∫
|Γ|≤(logP )A2

|I(Γ)|
P d

q3(1 + |Γ1|)P d

(logP )1/2+1/7
dΓ.

Bounding q and Γ1 in the integrand by (logP )A1 and (logP )A2 respec-
tively, we find

R3 �A2

(logP )3A1+A2

(logP )1/2+1/7

∑
q≤(logP )A1

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

|Sa,q|
qn

∫
|Γ|≤(logP )A2

|I(Γ)|dΓ.

By (3.27) and (3.28) the sum over q is convergent, and so is the integral
over Γ. Therefore we bound

R3 �A2 (logP )3A1+A2−1/2−1/7. (3.37)

Notice that R2 and R1 are truncated versions of Jφ(P ) and Lφ respec-
tively. Next we will estimate the parts that are cut off. Using (3.27) we
infer ∫

|Γ|>(logP )A2

|I(Γ)|
P d

(∫ max{f1([−1,1]n)}P d

2

e(−Γ1P
−dt)√

log t
dt

)
dΓ

�A2

∫
|Γ|>(logP )A2

|I(Γ)| 1√
logP

dΓ

�A2 (logP )−1/2−A2/2,

where in going from the first to the second line in the above, we have again

bounded | e(·)| by 1, and we bounded P−d
∫ max{f1([−1,1]n)}P d

2 (log t)−1/2dt
by application of Lemma 3.4.3.

Therefore we have

R2 = Jφ(P ) +OA2((logP )−1/2−A2/2). (3.38)
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Furthermore, by (3.35) we deduce

R1 = Lφ +OA1((logP )−A1λ0). (3.39)

We have already seen just before Lemma 3.4.4 that we have

Jφ(P )� (logP )−1/2,

thus injecting (3.37), (3.38) and (3.39) into (3.36) provides us with

ΘQ(P )

Pn−d
= 21/2C0Jφ(P )Lφ +O((logP )−1/2−β),

with β := min{A1λ0, A2/2,−3A1−A2+1/7}. A moment’s thought affirms
that assumption (3.1) ensures the validity of λ0 ≥ (d − 1)−12−d−2 and
choosing A1 = 1

40 = A2/2 gives β ≥ (40(d − 1)2d+2)−1. Finally, using
Lemmas 3.4.4 and 3.4.5 concludes the proof.

3.4.3 Proof of Theorem 3.1.3

Define

cφ :=
J

d1/2

21/2

ζ(n− d)

Lφ

2
C0. (3.40)

By Lemmas 3.2.1 and 3.4.6 the quantity N(φ, t) equals

√
2

2
C0JLφ

tn−d

d1/2

∑
l≤log t

µ(l)

ln−d(log(t/l))1/2

up to an error term that is

� tn−d

log t
+
∑
l≤log t

(t/l)n−d

(log(t/l))
1
2

+ 1
40

1

(d−1)2d+2

� tn−d

(log t)
1
2

+ 1
40

1

(d−1)2d+2

,

where the last estimate in the previous line is established as follows. First
notice that the term tn−d

log t falls under the estimate. For the sum we need
to do a little bit more work. We begin with

log(t/l) = log t− log l

≥ log t

(
1− log log t

log t

)
� log t,
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3.5. INTERPRETATION OF THE LEADING CONSTANT

which allows us to take the denominator out of the sum. We moreover
take tn−d out of the sum, and then we notice that for n− d ≥ 2 (which is
valid because of (3.1)) the series

∑∞
l=1 l

d−n converges, so we may as well
complete the sum and bound it by a constant.

Note that for l ≤ log t we have (log(t/l))−1/2 = (log t)−1/2 +O((log t)−1),
hence∑

l≤log t

µ(l)

ln−d(log(t/l))1/2
= (log t)−1/2

( ∑
l≤log t

µ(l)

ln−d

)
+O((log t)−1),

where the sum disappeared into the error term by completing to the range
l ∈ Z>0, which gives a series converging to ζ(n− d)−1.

For the sum in the main term we use the completed sum again, but we
include the error term arising from the cut-off, i.e.

∑
l≤log t

µ(l)

ln−d
=
∞∑
l=1

µ(l)

ln−d
−
∑
l>log t

µ(l)

ln−d
= ζ(n− d)−1 +O

(
1

(log t)n−d−1

)
where from the tail of the sum we arrive at the error term by bounding
|µ(l)| ≤ 1 and comparing the sum to an integral, similarly to Lemma 3.4.3.
Putting these arguments together we obtain∑

l≤log t

µ(l)

ln−d(log(t/l))1/2
= ζ(n− d)−1(log t)−1/2 +O((log t)−1)

and therefore

N(φ, t)

tn−d(log t)−1/2
−

JLφC0

ζ(n− d)
√

2d
� 1

(log t)εd
, (3.41)

which concludes our proof.

3.5 Interpretation of the leading constant

The circle method and the half-dimensional sieve allowed us to obtain a
proof of the asymptotic in a technical, yet straightforward manner. How-
ever, this came at a cost because the leading constant cφ in (3.40) is com-
plicated. In this section we shall give an interpretation of cφ via certain
p-adic densities; this will not be straightforward.
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3.5. INTERPRETATION OF THE LEADING CONSTANT

In §3.5.1 we shall write Lφ as an Euler product over all primes, with each
factor involving complete exponential sums. Next, in §3.5.2 we shall show
that for primes p ≡ 3 (mod 4) these factors are connected to a particular
kind of p-adic density. An analogous result will be proved in §3.5.3 for
the prime 2. Finally, putting all partial results of §3.5 together, we shall
provide in §3.5.4 an interpretation of the leading constant in Theorem
3.1.3, see Theorem 3.5.23.

3.5.1 Factorising Lφ

Lemma 3.5.1. For every integer q ≥ 3 we have∑
(k,t)∈Z>0×Z≥0

p|k⇒p≡3(mod 4)

gcd(2tk2, q)

2tk2
� q

1
log log q .

Proof. By multiplicativity the sum in the lemma equals( ∞∑
t=0

gcd(2t, q)

2t

) ∏
p≡3(mod 4)

( ∞∑
i=0

gcd(p2i, q)

p2i

)
.

The sum over t is easily seen to be 2 + v2(q), while the sum over i equals{
1+vp(q)

2 + p
p2−1

, if 2 - vp(q),
1 +

vp(q)
2 + 1

p2−1
, if 2 | vp(q).

This is at most (1+vp(q))(1+ 1
p2−1

), hence we obtain the following bound
for the sum in the lemma:

(2+v2(q))
∏
p 6=2

[(
1+(p2−1)−1

)
(1+vp(q))

]
� (2+v2(q))

τ(q)

(1 + v2(q))
≤ 2τ(q),

where τ is the divisor function. Using (3.4) allows to conclude the proof.

For q ∈ Z>0, a1 ∈ Z ∩ [0, q) and (k, t) ∈ Z>0 × Z≥0, we define

Ta1,q(t, k) :=
∑

`∈Z∩[0,q)
gcd(2tk2,q)|`

(3.22)

$(gcd(`, q)/ gcd(2tk2, q)) e(−a1`/q)

gcd(`, q)lcm(4, q/ gcd(`, q))

∏
p≡3(mod 4)
vp(q)>vp(`)

(
1−1

p

)−1

(3.42)
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3.5. INTERPRETATION OF THE LEADING CONSTANT

and we furthermore let

Lφ(k, t) :=
∑
q∈Z>0

gcd(2tk2, q)

qn

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,qTa1,q(t, k). (3.43)

Lemma 3.5.2. Under the assumptions of Theorem 3.1.3 we have

Lφ =
∑

(k,t)∈Z>0×Z≥0

p|k⇒p≡3(mod 4)

Lφ(k, t)

k22t
.

Proof. The lemma follows immediately by combining (3.21) with (3.34)
and inverting the order of summation, provided that one proves∑

q∈Z>0

q−n
∑

a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

|Sa,q|
∑

(k,t)∈Z>0×Z≥0

p|k⇒p≡3(mod 4)

gcd(2tk2, q)

2tk2
|Ta1,q(t, k)| <∞.

To bound Ta1,q(t, k), observe that every prime p in the product in (3.42)
must necessarily divide q, hence the product is at most∏

p|q

(
1− 1

p

)−1
=

q

ϕ(q)
� log log q,

where we used (3.5). Recalling $(m) ∈ {0, 1} for all m and using the
obvious bound lcm(4, b) ≥ b, valid for all b ∈ Z>0, we obtain the following
bound with an absolute implied constant,

Ta1,q(t, k)�
∑

`∈Z∩[0,q)

1

q
log log q = log log q.

Using this with Lemma 3.5.1 and (3.28) concludes the proof.

In Lemmas 3.5.3–3.5.6, we show that for fixed a1, t and k, the expression
Ta1,q(t, k) can be analysed according to the prime factorisation of q. Be-
fore stating the lemmas we introduce the following notation. Recall the
notation (3.19) and for t, a ∈ Z≥0, q ∈ Z>0 define

Ka,q(t) :=
∑

`∈Z∩[0,2v2(q)),(3.44)

gcd(`,2v2(q))=2min{t,v2(q)}

e(−a`/2v2(q)),

83
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with the summation condition

2t

2min{t,v2(q)} ≡
`q̈

2min{t,v2(q)}

(
mod 2min{2,v2(q)−min{t,v2(q)}}

)
. (3.44)

For a ∈ Z≥0 and q, k ∈ Z>0 we furthermore let

Wa,q(k) :=
∑

`∈Z∩[0,q)
gcd(`,q)=gcd(k2,q)

e(−a`/q)
∏

p prime
vp(q)>vp(`)

(
1− 1

p

)−1
. (3.45)

It is clear that if c is an integer coprime to q then we have

Wca,q(k) =Wa,q(k). (3.46)

Lemma 3.5.3. For all k ∈ Z>0 satisfying k = k̈, all a, t ∈ Z≥0 and q ∈ Z>0

we have

Ta,q(t, k) =
Ka,q(t)

2min{t,v2(q)}lcm(4, 2v2(q)−min{t,v2(q)})

Wa,q̈(k)

q̈
×

{
1, if q̇ | a,
0, if q̇ - a.

Proof. We observe that Ta1,q(t, k) equals

∑
`∈Z∩[0,2v2(q)q̇q̈)

gcd(2tk2,2v2(q)q̈)|`

$(gcd(`, 2v2(q)q̇q̈)/ gcd(2tk2, 2v2(q)q̈)) e(−a1`/(2
v2(q)q̇q̈))

gcd(`, 2v2(q)q̇q̈)lcm(4, 2v2(q)q̇q̈/ gcd(`, 2v2(q)q̇q̈))

×
∏

p prime
vp(q̈)>vp(`)

(
1− 1

p

)−1
,

where the sum is over ` with

2tk2

gcd(2tk2, 2v2(q)q̈)
≡ `

gcd(`, 2v2(q)q̇q̈)

(
mod gcd

(
4,

2v2(q)

gcd(`, 2v2(q))

))
.

We now use the fact that replacing ` by ` + 2v2(q)q̇q̈ leaves the last sum
invariant. The Chinese remainder theorem allows to uniquely write

` ≡ `1q̇q̈ + `22v2(q)q̈ + `32v2(q)q̇
(

mod 2v2(q)q̇q̈
)

for some

`1 ∈ Z ∩ [0, 2v2(q)), `2 ∈ Z ∩ [0, q̇) and `3 ∈ Z ∩ [0, q̈).
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Then Ta1,q(t, k) becomes

∑
`1∈Z∩[0,2v2(q))
`2∈Z∩[0,q̇)
`3∈Z∩[0,q̈)
gcd(k2,q̈)|`3

2min{t,v2(q)}|`1

$
(gcd(`1,2v2(q))

2min{t,v2(q)} gcd(`2, q̇)
gcd(`3,q̈)
gcd(k2,q̈)

)
e
(−a1`1

2v2(q)

)
e
(−a1`2

q̇

)
e
(−a1`3

q̈

)
gcd(`1, 2v2(q))lcm(4, 2v2(q)/ gcd(`1, 2v2(q)))q̇q̈

×
∏

p prime
vp(q̈)>vp(`3)

(
1− 1

p

)−1
,

where the sum is over `1, `3 with

2t−min{t,v2(q)}

gcd(k2, q̈)
≡ `1q̈

gcd(`1, 2v2(q)) gcd(`3, q̈)

(
mod gcd

(
4,

2v2(q)

gcd(`1, 2v2(q))

))
.

Indeed, modulo gcd
(

4, 2v2(q)

gcd(`1,2v2(q))

)
, the term `22v2(q)q̈ + `32v2(q)q̇ van-

ishes. Note furthermore that we have used that each of k2, q̇ and gcd(`2, q̇)
is 1 (mod 4). This holds because k is odd and each prime divisor of q̇ is
1 (mod 4). Moreover, the presence of the $(·) means that we may freely
restrict to the case

gcd(`1, 2
v2(q)) = 2min{t,v2(q)} and gcd(`3, q̈) = gcd(k2, q̈).

Put together, these two facts show that Ta1,q(t, k) equals

Ka1,q(t)

2min{t,v2(q)}lcm(4, 2v2(q)−min{t,v2(q)})

Wa1,q̈(k)

q̈

1

q̇

∑
`2∈Z/q̇Z

e(−a1`2/q̇),

thus concluding the proof.

Essentially, the last lemma breaks up the information of the prime 2,
carried by the factor involving Ka,q(t), and the information on the primes
p ≡ 3 (mod 4), carried by the factor involving Wa,q̈(k). The last factor
with values in {0, 1} sieves out possible values of a for any given q and
arises from a Ramanujan sum in the last line of the proof.

Lemma 3.5.4. For fixed k ∈ Z>0, a ∈ Z the function Wa,q(k) is multi-
plicative with respect to q.
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Proof. For positive coprime integers q1 and q2 we note that any element
` ∈ Z/q1q2Z can be written uniquely as `1q2 + `2q1, for `1 ∈ Z/q1Z and
`2 ∈ Z/q2Z. From this the validity of Wa,q1q2(k) = Wa,q1(k)Wa,q2(k)
follows easily.

Before we state the next lemma, recall the Ramanujan sum from (3.6).

Lemma 3.5.5. For fixed a,m ∈ Z≥0, k ∈ Z>0, and any prime p define
j := m− 2vp(k). Then we have

Wa,pm(k) =

{
cpj (−a)(1− 1/p)−1, if 2vp(k) < m,

1, if 2vp(k) ≥ m.

Proof. For 2vp(k) ≥ m, only the term ` = 0 contributes towardsWa,pm(k),
in which case the sum equals 1. For 0 ≤ 2vp(k) < m, every ` in (3.45)
must be of the form ` = xp2vp(k), where x ∈ Z ∩ [0, pj) and p - x hold,
which concludes the proof.

Define for a, %, t ∈ Z≥0 the symbol

Λa,%(t) := e(−a/2%−t)1v2(a)≥%−t−2. (3.47)

Lemma 3.5.6. For q ∈ Z>0, let q0 be any integer satisfying the congruence
q0 ≡ q̈

(
mod 2min{2,v2(q)}). Then for all a, t ∈ Z≥0 and q ∈ Z>0 we have

Ka,q(t)
lcm(4, 2v2(q)−min{t,v2(q)})

=
Λaq0,v2(q)(t)

4
.

Proof. If v2(q) ≤ t holds then we have

Ka,q(t) =
∑

`∈Z∩[0,2v2(q))

2v2(q)|`

e(−a`/2v2(q)) = 1,

so the left-hand side equals 1/4. On the right-hand side of the equation,
we see that v2(q)−t−2 is negative, so v2(aq0) is certainly larger. Moreover,
−aq0/2

t−v2(q) is an integer. Hence both the exponential and the indicator
take the value 1.

86
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If v2(q) > t holds then we have

Ka,q(t) =
∑

`∈Z∩[0,2v2(q))
2t|`,2t+1-`

1≡ `q̈
2t

(mod 2min{2,v2(q)−t})

e(−a`/2v2(q))

=
∑

x∈Z∩[0,2v2(q)−t)

x≡q̈(mod 2min{2,v2(q)−t})

e(−ax/2v2(q)−t),

where the condition x ≡ q̈ is equivalent to 1 ≡ xq̈ as q̈2 ≡ 1 (mod 2) and
q̈2 ≡ 1 (mod 4) hold.

If v2(q)− t equals 1 then this becomes e(a/2), while, for v2(q)− t = 2 this
is equal to e(−aq̈/4). In the remaining cases we have v2(q)− t > 2, hence
also

Ka,q(t) =
∑

x∈Z∩[0,2v2(q)−t)
x≡q̈(mod 4)

e(−ax/2v2(q)−t)

= e(−aq̈/2v2(q)−t)
∑

y∈Z∩[0,2v2(q)−t−2)

e(−ay/2v2(q)−t−2),

which vanishes in case a is not a multiple of 2v2(q)−t−2 and otherwise equals
e(−aq̈/2v2(q)−t)2v2(q)−t−2.

For each a and q having separated out the contributions to Ta,q(t, k), we
now do the same for their sums (weighted by Sa,q) over all possible values
of a for given q.
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Lemma 3.5.7. For all k, q ∈ Z>0 with k = k̈ and all t ∈ Z≥0 we have

∑
a∈(Z∩[0,q))2

gcd(a1,a2,q)=1

Sa,qTa1,q(t, k) =
1

22+min{t,v2(q)}

×

( ∑
b∈(Z∩[0,2v2(q)))2

gcd(b1,b2,2v2(q))=1

Sb,2v2(q)Λb1,v2(q)(t)

)

×

( ∑
b∈Z∩[0,q̇)
gcd(b,q̇)=1

∑
t∈(Z/q̇Z)n

e
(
bf2(t)/q̇

))

×

(
1

q̈

∑
b∈(Z∩[0,q̈))2

gcd(b1,b2,q̈)=1

Sb,q̈Wb1,q̈(k)

)
.

Proof. By the Chinese remainder theorem we can uniquely write every
ai ∈ Z/qZ as

ai ≡ a′iq̇q̈ + a′′i 2
v2(q)q̈ + a′′′i 2v2(q)q̇ (mod q) , (i = 1, 2),

with

a′i ∈ Z/2v2(q)Z, a′′i ∈ Z/q̇Z, a′′′i ∈ Z/q̈Z.

Thus we see that the sum over a ∈ (Z ∩ [0, q))2 in the lemma equals∑
a′′∈(Z∩[0,q̇))2,gcd(a′′1 ,a

′′
2 ,q̇)=1

a′′′∈(Z∩[0,q̈))2,gcd(a′′′1 ,a
′′′
2 ,q̈)=1

a′∈(Z∩[0,2v2(q)))2,gcd(a′1,a
′
2,2

v2(q))=1

Sa′q̇q̈+a′′2v2(q)q̈+a′′′2v2(q)q̇,2v2(q)q̇q̈

× Ta′1q̇q̈+a′′1 2v2(q)q̈+a′′′1 2v2(q)q̇,2v2(q)q̇q̈(t, k).

It is easy to check that whenever q1 and q2 are coprime positive integers
and a ∈ Z2, then, much like as in the proof of Lemma 1.3.11, we have

Sa,q1q2 = Sqd−1
2 a,q1

Sqd−1
1 a,q2

,

by the fact that for fixed r ∈ Z>0 the sum Sb,r only depends on b (mod r).
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From the above, we see that if q1, q2, q3 are any positive integers that are
coprime in pairs then we have

Sa,q1q2q3 = S(q2q3)d−1a,q1S(q1q3)d−1a,q2S(q1q2)d−1a,q3 .

Applying this for a = a′q̇q̈ + a′′2v2(q)q̈ + a′′′2v2(q)q̇, q1 = 2v2(q), q2 = q̇ and
q3 = q̈, we obtain

Sa′q̇q̈+a′′2v2(q)q̈+a′′′2v2(q)q̇,2v2(q)q̇q̈ = S(q̇q̈)da′,2v2(q)S(2v2(q)q̈)da′′,q̇S(2v2(q)q̇)da′′′,q̈,

where we again made use of the fact that for fixed r ∈ Z>0 the sum Sb,r

only depends on b (mod r), as we will also do for Wa,q(k) and Ka,q(t)
below.

By Lemma 3.5.3 one sees that Ta′1q̇q̈+a′′1 2v2(q)q̈+a′′′1 2v2(q)q̇,2v2(q)q̇q̈(t, k) equals

Ka′1q̇q̈,2v2(q)q̇q̈(t)

2min{t,v2(q)}lcm(4, 2v2(q)−min{t,v2(q)})

Wa′′′1 2v2(q)q̇,q̈(k)

q̈
×

{
1, if q̇ | a′′1,
0, if q̇ - a′′1,

thus showing that the sum over a ∈ (Z ∩ [0, q))2 in the lemma equals
L′L′′L′′′, where we write

L′ :=
∑

a′∈(Z∩[0,2v2(q)))2

gcd(a′1,a
′
2,2

v2(q))=1

S(q̇q̈)da′,2v2(q)

Ka′1q̇q̈,2v2(q)q̇q̈(t)

2min{t,v2(q)}lcm(4, 2v2(q)−min{t,v2(q)})
,

L′′ :=
∑

a′′∈(Z∩[0,q̇))2,q̇|a′′1
gcd(a′′1 ,a

′′
2 ,q̇)=1

S(2v2(q)q̈)da′′,q̇,

L′′′ :=
∑

a′′′∈(Z∩[0,q̈))2

gcd(a′′′1 ,a
′′′
2 ,q̈)=1

S(2v2(q)q̇)da′′′,q̈

Wa′′′1 2v2(q)q̇,q̈(k)

q̈
.

To simplify L′′ we make an invertible change of variables, namely we will
write b ≡ (2v2(q)q̈)da′′2 (mod q̇). This results in

L′′ =
∑

b∈Z∩[0,q̇)
gcd(b,q̇)=1

∑
t∈(Z/q̇Z)n

e
(
bf2(t)/q̇

)
.
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Similarly, for L′′′ we make the change of variables b ≡ (2v2(q)q̇)da′′′ (mod q̈)
and use (3.46) to show the validity of

cL′′′ =
1

q̈

∑
b∈(Z∩[0,q̈))2

gcd(b1,b2,q̈)=1

Sb,q̈Wb1,q̈(k).

Finally, put b ≡ (q̇q̈)da′
(
mod 2v2(q)

)
and find some y ∈ Z which satisfies

yq̇q̈ ≡ 1
(
mod 2v2(q)

)
. Observing that q̇q̈a′1 ≡ b1y

d−1
(
mod 2v2(q)

)
holds,

we see Ka′1q̇q̈,2v2(q)q̇q̈(t) = Kb1yd−1,2v2(q)q̇q̈(t). Note that d is even and that y
is odd, hence the proof is concluded by application of Lemma 3.5.6 with
a = b1y

d−1 and q0 := yd−1, made possible by the validity of

yd−1 ≡ y ≡ (q̇q̈)−1 ≡ q̈
(

mod 2min{2,v2(q)}
)
.

Indeed, we have Λb1(yd−1)2,v2(q)(t) = Λb1,v2(q)(t) since Λa,%(t) only depends

on a through a
(
mod 2%−t

)
.

We will continue our journey in splitting into factors coming from different
primes with Lφ(k, t). We will first need some notation.

For t ∈ Z≥0 and k ∈ Z>0 with k̈ = k define

Υ1(k) :=
∑

q3∈Z>0

p|q3⇒p≡3(mod 4)

gcd(k2, q3)

qn+1
3

∑
b∈(Z∩[0,q3))2

gcd(b1,b2,q3)=1

Sb,q3Wb1,q3(k) (3.48)

and

Υ2(t) :=
1

4

∑
%∈Z≥0

1

2%n

∑
b∈(Z∩[0,2%))2

gcd(b1,b2,2%)=1

Sb,2%Λb1,%(t). (3.49)

For a prime p define

τf2(p) := lim
N→∞

#
{
t ∈ (Z ∩ [0, pN ))n : f2(t) ≡ 0

(
mod pN

) }
pN(n−1)

(3.50)

and let us now see why the limit exists. Our set-up and assumption (3.1)
ensure that the work of Birch [Bir62] applies to the hypersurface f2 = 0. In
particular, the constant K = K(f2), defined in (1.6) equals 21−dn because
f2 has no singularities. Furthermore, one should notice that we have

τf2(p) = 1 +
∞∑
m=1

1

pmn

∑
a∈(Z/pmZ)∗

∑
t∈(Z∩[0,pm))n

e
(af2(t)

pm

)
(3.51)
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coming from the fact that

pN(n−1)
N∑
m=0

1

pmn

∑
a∈(Z/pmZ)∗

∑
t∈(Z∩[0,pm))n

e
(af2(t)

pm

)
(3.52)

equals #
{
t ∈ (Z ∩ [0, pN ))n : f2(t) ≡ 0

(
mod pN

) }
and that the m = 0

term equals 1. Alternatively, the existence of the limit τf2(p) could be
established by using Hensel’s lemma and the fact that f2 defines a smooth
hypersurface over Qp.

Using Lemma 1.3.34 to bound the sum over t ∈ (Z∩[0, pm))n by an order of

magnitude�ε p
m(ε−n+n(d−1)−12−d+1) (valid for all fixed ε > 0), shows that,

when (3.1) is used in the form n ≥ 1 + 3(d− 1)2d and ε = (d− 1)−12−d+1

is taken, the last series over m converges absolutely. Therefore the limit
in (3.50) exists. In addition we get

τf2(p) = 1 +O(pε−5+(d−1)−12−d+1
) = 1 +O(p−2). (3.53)

Lemma 3.5.8. Under the assumptions of Theorem 3.1.3, for all t ∈ Z≥0

and k ∈ Z>0 with k̈ = k, the sums in (3.48) and (3.49) both converge
absolutely. We furthermore have

Lφ(k, t) = Υ1(k)Υ2(t)
∏

p≡1(mod 4)

τf2(p).

Proof. The assumptions of Theorem 3.1.3 allow us to use the bound from
equation (3.28), which, when combined with the bounds gcd(k2, q3) ≤ k2

and |Wb1,q3(k)| ≤ q3, shows that the sum over q3 in (3.48) converges
absolutely. To prove the analogous statement for the sum over % in (3.49)
we use the bound (3.28) as well as the inequality |Λb1,%(t)| ≤ 1 that is
apparent from (3.47).

To complete the proof of the lemma, we write each q in (3.43) as q =
2%q1q3, denoting q1 = q̇ and q3 = q̈ and we inject Lemma 3.5.7 into (3.43)
to obtain Lφ(k, t) = Υ1(k)Υ2(t)Ξ, with

Ξ :=
∑

q1∈Z>0

p|q1⇒p≡1(mod 4)

1

qn1

∑
b∈(Z/q1Z)∗

∑
t∈(Z/q1Z)n

e
(
bf2(t)/q1

)
.

It is standard that the sum over b ∈ (Z/q1Z)∗ forms a multiplicative
function of q1, see, for example, [Bir62, §7] with R = 1 or Lemma 1.3.11.
Thus, using the expression for τf2(p) in (3.51), we obtain the equality of
Ξ with the product over the primes p ≡ 1 (mod 4) in the lemma.
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Let us now define the quantities Eφ(p) for every prime p ≡ 3 (mod 4) and
for p = 2 as follows: if p ≡ 3 (mod 4) then we let

Eφ(p) :=
∑

κ,m∈Z≥0

Φκ,mp
−2κ, (3.54)

with

Φκ,m :=
gcd(p2κ, pm)

pm(n+1)

∑
a∈(Z∩[0,pm))2

gcd(a1,a2,pm)=1

Sa,pmWa1,pm(pκ). (3.55)

We furthermore define

Eφ(2) :=
1

4

∑
t,%∈Z≥0

1

2t
1

2%n

∑
b∈(Z∩[0,2%))2

gcd(b1,b2,2%)=1

Sb,2% e(−b12t−%)1v2(b1)≥%−t−2.

(3.56)

With this newest notation, we are finally ready to write Lφ itself as a
product of factors coming from each of the primes.

Lemma 3.5.9. Keep the assumptions of Theorem 3.1.3. Then the sums in
(3.54) and (3.56) converge absolutely. In addition, the infinite product

Eφ(2)

( ∏
p≡1(mod 4)

τf2(p)

)( ∏
p≡3(mod 4)

Eφ(p)

)
converges absolutely and equals Lφ.

Proof. Our first task is to show that the sum in (3.54) converges absolutely.
For this we use Lemma 3.5.5 and the obvious bound |cpj (−a)| ≤ pj to
obtain

|Wa1,pm(pκ)| ≤ 2
pm

gcd(p2κ, pm)
.

Therefore, by (3.28), for every 0 < λ < 2−d(d− 1)−1 we have

Φκ,m �
gcd(p2κ, pm)

pm(n+1)
p2mpm(n−3−λ) pm

gcd(p2κ, pm)
�λ p

−m(1+λ),

with an implied constant that depends at most on λ, f1 and f2. This
shows that for all integers M ≥ 0 and every 0 < λ < 2−d(d− 1)−1 one has∑

κ≥0

1

p2κ

∑
m≥M

|Φκ,m| �λ
1

pM(1+λ)
. (3.57)
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This completes our first task. The proof of the absolute convergence for
the sum in (3.56) can be completed in a similar way by using (3.28) again.
To show that the product over the primes p ≡ 1 (mod 4) in our lemma
converges absolutely one can simply utilise (3.53). The product over the
primes p ≡ 3 (mod 4) converges absolutely because the use of (3.57) with
M = 1 and (3.54) yields

Eφ(p) =
∑
κ∈Z≥0

Φκ,0p
−2κ +O(p−1−λ) =

∑
κ∈Z≥0

p−2κ +O(p−1−λ)

and using
∑

κ≥0 p
−2κ = 1 +O(p−2) and λ < 1 provides us with

λ ∈ (0, 2−d(d− 1)−1)⇒ Eφ(p) = 1 +Oλ(p−1−λ). (3.58)

Since for every λ > 0, the sum
∑

p≡3(mod 4) p
−1−λ converges absolutely,

we conclude that so does the product
∏
p≡3(mod 4)Eφ(p).

To prove the claimed equality of our lemma we combine Lemma 3.5.2 and
Lemma 3.5.8 to obtain

Lφ =

( ∑
t∈Z≥0

Υ2(t)

2t

)( ∏
p≡1(mod 4)

τf2(p)

)( ∑
k∈Z>0

p|k⇒p≡3(mod 4)

Υ1(k)

k2

)
.

(3.59)
By (3.48) we can write the sum over k ∈ Z>0 as a double sum over k and
q3 and one obtains the infinite product over the primes p ≡ 3 (mod 4) in
our lemma by application of a two-dimensional analogue for converting
infinite sums into Euler products. Such an analogue can for example be
found in [Hoo93, Lemma 4, pg.20] Lastly, the sum over t in (3.59) can be
shown to be equal to Eφ(2) by application of (3.49).

We are still left with interpreting the factors occurring in the last lemma.
Before embarking on the next subsections we introduce some more nota-
tion and record some preparatory observations.

For primes p and integers 0 ≤ i, j ≤ m we define the quantity

ξi,j(m) := #
{
t ∈ (Z ∩ [0, pm)n : pi | f1(t), pj | f2(t)

}
. (3.60)

The quantity ξi,j(m) also depends on p, however, we choose to not record
this in the notation as it will be clear from the context what the underlying
prime is. The following is a restatement of the last equation in [Bir62,
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pg.259], and which we have already used in studying (3.50) for the case of
a single polynomial, where we now have a pair:∑

0≤m≤N

1

pmn

∑
a∈(Z∩[0,pm))2

gcd(a1,a2,pm)=1

Sa,pm =
ξN,N (N)

pN(n−2)
. (3.61)

Using it for m = N and m = N−1 both, we obtain that for every N ∈ Z>0

we have∑
a∈([0,pN ))2

gcd(a1,a2,pN )=1

Sa,pN = p2NξN,N (N)− p2N+n−2ξN−1,N−1(N − 1). (3.62)

Observe that injecting the bound (3.28) into (3.61) shows that for M ≥ 0
we have

ξM,M (M) = Op
(
pM(n−2)

)
. (3.63)

Lemma 3.5.10. Keep the assumptions of Theorem 3.1.3. Then for every
m1,m2,M ∈ Z>0 with m1 ≤ m2 ≤M , and every prime p we have

ξm1,m2(M) = Op(p
Mn−2m1).

Proof. Notice that we have

ξm1,m2(M) ≤ #
{
t ∈ (Z ∩ [0, pm1))n : pm1 | f1(t), pm1 | f2(t)

}
pn(M−m1).

Thus using (3.63) we conclude that ξm1,m2(M) = Op(p
m1(n−2)pn(M−m1)).

3.5.2 Local density at primes 3 (mod 4)

The following is the main result of this section.

Proposition 3.5.11. Let p be a prime number with p ≡ 3 (mod 4). Then
under the assumptions of Theorem 3.1.3, the sequence

#
{
t ∈ (Z ∩ [0, pN ))n : f2(t) ≡ 0

(
mod pN

)
, x2

0 + x2
1 = f1(t)x2

2 has a Qp-point
}

pN(n−1)

has a limit for N → ∞. We call the value of this limit `p and we have

Eφ(p) =
(
1− 1/p

)−1
`p.
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For the rest of §3.5.2 the letter p will always refer to a prime satisfying
p ≡ 3 (mod 4). To prove Proposition 3.5.11 we split the sum over κ and
m in the definition of Eφ(p) according to the three ranges 0 ≤ m ≤ 2κ,
m = 2κ + 1 and m ≥ 2κ + 2. These ranges will be treated in Lemmas
3.5.12, 3.5.13 and 3.5.16 respectively.

Lemma 3.5.12. Keep the assumptions of Theorem 3.1.3. Then for every
prime p ≡ 3 (mod 4) and M ∈ Z>0 the following holds,∑

κ≥0

1

p2κ

∑
0≤m≤min{M,2κ}

Φκ,m =
∑
κ≥0

ξ2κ,2κ(2κ)

p2κ(n−1)
+O(p−M ).

Proof. By (3.57) the sum over κ, m in the lemma equals∑
κ≥0

1

p2κ

∑
0≤m≤2κ

Φκ,m +O(p−M ).

Owing to Lemma 3.5.5 and (3.61), the new sum over κ, m can be expressed
as∑
κ≥0

1

p2κ

∑
0≤m≤2κ

1

pmn

∑
a∈(Z∩[0,pm))2

gcd(a1,a2,pm)=1

Sa,pm =
∑
κ≥0

1

p2κ

ξ2κ,2κ(2κ)

p2κ(n−2)
=
∑
κ≥0

ξ2κ,2κ(2κ)

p2κ(n−1)
,

thus finishing the proof.

Recall the definition of the Ramanujan sum in (3.6) and for κ,m ∈ Z≥0

with 2κ < m define

Ωκ,m :=
∑

a∈(Z∩[0,pm))2

p-a

Sa,pmcpm−2κ(−a1).

We then obtain via Lemma 3.5.5 that, in the range 0 ≤ 2κ < m, we have

Φκ,m

p2κ
=
(

1− 1

p

)−1 Ωκ,m

pm(n+1)
. (3.64)

Lemma 3.5.13. Keep the assumptions of Theorem 3.1.3. Then for every
prime p ≡ 3 (mod 4) and M ∈ Z>0 the following holds:∑

κ≥0

1

p2κ

∑
0≤m≤M
m=1+2κ

Φκ,m =
∑
κ≥0

ξ2κ,1+2κ(1 + 2κ)− ξ1+2κ,1+2κ(1 + 2κ)

(1− 1/p)p(1+2κ)(n−1)

−
∑
κ≥0

ξ2κ,2κ(2κ)

p2κ(n−1)
+O(p−M ).
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Proof. First, note that by (3.57) the sum over κ and m in the lemma
equals ∑

κ≥0

p−2κΦκ,1+2κ +O(p−M ).

Now using (3.7) we get that Ωκ,m is∑
a∈(Z∩[0,pm))2

p-a

Sa,pm

(
p1p|a1

−1
)

= p
( ∑

a∈(Z∩[0,pm))2

p|a1,p-a

Sa,pm

)
−
( ∑

a∈(Z∩[0,pm))2

p-a

Sa,pm

)
.

Writing a1 = bp, we see that Ωκ,m becomes

p

( ∑
a2∈Z∩[0,pm),p-a2

b∈Z∩[0,pm−1)

S(bp,a2),pm

)
−

( ∑
a∈(Z∩[0,pm))2

p-a

Sa,pm

)

and the first term equals

p
∑

a2∈Z∩[0,pm),p-a2

t∈(Z∩[0,pm))n

e
(a2f2(t)

pm

) ∑
b∈Z∩[0,pm−1)

e
(bf1(t)

pm−1

)

= pm
∑

a2∈Z∩[0,pm),p-a2

t∈(Z∩[0,pm))n,pm−1|f1(t)

e
(a2f2(t)

pm

)
.

The use of the identity (3.7) for the Ramanujan sums appearing in the
last line helps in concluding that Ωκ,m equals

pm

( ∑
t∈(Z∩[0,pm))n

pm|f2(t), pm−1|f1(t)

(p− 1)pm−1
)
−
( ∑

t∈(Z∩[0,pm))n

pm−1‖f2(t), pm−1|f1(t)

pm−1
)

−
∑

a∈(Z∩[0,pm))2

p-a

Sa,pm .

We note that pm−1‖f2(t) holds if and only if pm−1|f2(t) does and pm | f2(t)
does not hold. Therefore we have∑

t∈(Z∩[0,pm))n

pm−1‖f2(t), pm−1|f1(t)

1 =
∑

t∈(Z∩[0,pm))n

pm−1|f2(t), pm−1|f1(t)

1−
∑

t∈(Z∩[0,pm))n

pm|f2(t), pm−1|f1(t)

1,
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which is obviously equal to pnξm−1,m−1(m− 1)− ξm−1,m(m). Hence Ωκ,m

becomes

pm
(

(p− 1)pm−1ξm−1,m(m)− pm−1
{
pnξm−1,m−1(m− 1)− ξm−1,m(m)

})
−

∑
a∈(Z∩[0,pm))2

p-a

Sa,pm

= p2mξm−1,m(m)− p2m−1+nξm−1,m−1(m− 1)−
∑

a∈(Z∩[0,pm))2, p-a

Sa,pm .

Thus, by (3.62) we get

Ωκ,m =p2mξm−1,m(m)− p2m−1+nξm−1,m−1(m− 1)

− ξm,m(m)p2m + p2m+n−2ξm−1,m−1(m− 1)

=p2m(ξm−1,m(m)− ξm,m(m))− ξm−1,m−1(m− 1)p2m+n−1(1− p−1).

Therefore, using (3.64) we infer that
∑

κ≥0 Φκ,2κ+1p
−2κ equals(

1− 1

p

)−1 ∑
κ≥0

m=1+2κ

1

pm(n+1)
(p2m(ξm−1,m(m)− ξm,m(m))

− ξm−1,m−1(m− 1)p2m+n−1(1− p−1))

which is (
1− 1

p

)−1 ∑
κ≥0

m=1+2κ

p2m(ξm−1,m(m)− ξm,m(m))

pm(n+1)

−
∑
κ≥0

m=1+2κ

ξm−1,m−1(m− 1)p2m+n−1

pm(n+1)

=

(
1− 1

p

)−1 ∑
κ≥0

m=1+2κ

(ξm−1,m(m)− ξm,m(m))

pm(n−1)

−
∑
κ≥0

m=1+2κ

ξm−1,m−1(m− 1)

p(m−1)(n−1)
,

thus concluding the proof.
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Remark 3.5.14. Taking a step back from the technicalities in the proof,
we remark that it is the appearance of the Ramanujan sums that allows us
to switch away from the exponential sums in Φκ,m and into congruential
properties of f1(t) and f2(t) modulo powers of p.

In order to study the contribution towards Eφ(p) of the range κ ≥ 2+2m,
we shall first need a preparatory lemma.

Lemma 3.5.15. For each prime p ≡ 3 (mod 4) and all non-negative inte-

gers κ ≤ −1 +m/2, the value of
Ωκ,m

pm(n+1) equals

(ξ2κ,m(m)− ξ1+2κ,m(m))

pm(n−1)
− (ξ2κ,m−1(m− 1)− ξ1+2κ,m−1(m− 1))

p(m−1)(n−1)
.

Proof. Using (3.7) allows to write Ωκ,m as∑
a∈(Z∩[0,pm))2

p-a

Sa,pmcpm−2κ(−a1) =pm−2κ
( ∑

a∈(Z∩[0,pm))2

pm−2κ|a1,p-a2

Sa,pm

)

− pm−2κ−1
∑

a∈(Z∩[0,pm))2

pm−2κ−1|a1,p-a2

Sa,pm .

Writing a1 = pm−2κb shows∑
a∈(Z∩[0,pm))2

pm−2κ|a1,p-a2

Sa,pm =
∑

a2∈(Z∩[0,pm),p-a2

t∈(Z∩[0,pm))n

e
(a2f2(t)

pm

) ∑
b∈Z∩[0,p2κ)

e
(bf1(t)

p2κ

)

= p2κ
∑

a2∈(Z∩[0,pm)
t∈(Z/pmZ)n

p2κ|f1(t), p-a2

e
(a2f2(t)

pm

)
.

Recalling (3.6) and using (3.7), this can now be written as

p2κ
∑

t∈(Z∩[0,pm))n

p2κ|f1(t)

cpm(f2(t)) =p2κ+m
∑

t∈(Z∩[0,pm))n

p2κ|f1(t),pm|f2(t)

1

− p2κ+m−1
∑

t∈(Z/pmZ)n

p2κ|f1(t),pm−1|f2(t)

1

=p2κ+mξ2κ,m(m)− pn+2κ+m−1ξ2κ,m−1(m− 1).
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A completely analogous argument shows∑
a∈(Z∩[0,pm))2

pm−2κ−1|a1,p-a2

Sa,pm = p1+2κ+mξ1+2κ,m(m)− pn+2κ+mξ1+2κ,m−1(m− 1).

Therefore, we see that Ωκ,m is

p2m(ξ2κ,m(m)− pn−1ξ2κ,m−1(m− 1))

− p2m−1(pξ1+2κ,m(m)− pnξ1+2κ,m−1(m− 1))

= p2m(ξ2κ,m(m)− ξ1+2κ,m(m))

− p2m−1+n(ξ2κ,m−1(m− 1)− ξ1+2κ,m−1(m− 1)),

thus concluding the proof.

Lemma 3.5.16. Under the assumptions of Theorem 3.1.3, fix any prime
p ≡ 3 (mod 4). Then for all M ∈ Z>0 we have equality of∑

0≤κ≤M/2−1
2+2κ≤m≤M

Φκ,m

p2κ

and(
1− 1

p

)−1 #
{
t ∈ (Z ∩ [0, pM ))n : pM | f2(t), vp(f1(t)) ∈ 2Z

}
pM(n−1)

−
(

1− 1

p

)−1 ∑
0≤κ≤−1+M/2

(ξ2κ,1+2κ(1 + 2κ)− ξ1+2κ,1+2κ(1 + 2κ))

p(1+2κ)(n−1)

up to an error term that is Op(p
−M ).

Proof. From (3.64) and Lemma 3.5.15 we get that the sum over κ,m in
our lemma equals(

1− 1

p

)−1 ∑
0≤κ≤−1+M/2
2+2κ≤m≤M

(
(ξ2κ,m(m)− ξ1+2κ,m(m))

pm(n−1)

− (ξ2κ,m−1(m− 1)− ξ1+2κ,m−1(m− 1))

p(m−1)(n−1)

)
.
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Noting that for fixed κ the sum over m is telescopic, we can rewrite the
last expression as(

1− 1

p

)−1 ∑
0≤κ≤−1+M/2

(
(ξ2κ,M (M)− ξ1+2κ,M (M))

pM(n−1)

− (ξ2κ,1+2κ(1 + 2κ)− ξ1+2κ,1+2κ(1 + 2κ))

p(1+2κ)(n−1)

)
.

Let us now focus on the first part of the sum. Definition (3.60) makes
immediately apparent that

∑
0≤κ≤−1+M/2(ξ2κ,M (M)−ξ1+2κ,M (M)) equals

#
{
t ∈ (Z ∩ [0, pM ))n : pM | f2(t), vp(f1(t)) ∈ 2Z ∩ [0,M − 2]

}
.

The contribution of those t ∈ (Z ∩ [0, pM ))n with vp(f1(t)) ≥ M − 1 can
be controlled by using Lemma 3.5.10 with m1 = M − 1 and m2 = M . We
then obtain

#
{
t ∈ (Z ∩ [0, pM ))n : pM | f2(t), vp(f1(t)) ∈ 2Z ∩ [0,M − 2]

}
pM(n−1)

=
#
{
t ∈ (Z ∩ [0, pM ))n : pM | f2(t), vp(f1(t)) ∈ 2Z

}
pM(n−1)

+Op(p
−M ),

thereby proving that the sum over κ,m in our lemma is(
1− 1

p

)−1 #
{
t ∈ (Z ∩ [0, pM ))n : pM | f2(t), vp(f1(t)) ∈ 2Z

}
pM(n−1)

−
(

1− 1

p

)−1 ∑
0≤κ≤−1+M/2

(ξ2κ,1+2κ(1 + 2κ)− ξ1+2κ,1+2κ(1 + 2κ))

p(1+2κ)(n−1)

up to an error term of Op(p
−M ).

Lemma 3.5.17. Under the assumptions of Theorem 3.1.3, fix any prime
p ≡ 3 (mod 4). Then for all M ∈ Z>0 we have(

1− 1

p

)−1 #
{
t ∈ (Z ∩ [0, pM ))n : pM | f2(t), vp(f1(t)) ∈ 2Z

}
pM(n−1)

= Eφ(p)

up to an error term of Op(p
−M )
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Proof. Putting together Lemmas 3.5.12, 3.5.13 and 3.5.16 and taking into
account the occurence of many cancellations, we obtain the equality of∑

κ≥0
1
p2κ

∑
0≤m≤M Φκ,m and

#
{
t ∈ (Z ∩ [0, pM ))n : pM | f2(t), vp(f1(t)) ∈ 2Z

}
(1− 1/p)pM(n−1)

+H+Op(p
−M ),

where

H :=
∑

κ>−1+M/2

(ξ2κ,1+2κ(1 + 2κ)− ξ1+2κ,1+2κ(1 + 2κ))

(1− 1/p)p(1+2κ)(n−1)

comes from the part of the equation of Lemma 3.5.13 that is not cancelled
out by any other terms. Next, note that Lemma 3.5.10 provides us with

|ξ2κ,1+2κ(1 + 2κ)|+ |ξ1+2κ,1+2κ(1 + 2κ)|
p(1+2κ)(n−1)

�p p
−2κ

and therefore H = Op(p
−M ). Finally, (3.57) allows to complete the sum

in the statement of the current lemma at the cost of an error term of size
Op(p

−M ).

Proof of Proposition 3.5.11. By Lemma 3.5.17 it is obvious that the
sequence

#
{
t ∈ (Z ∩ [0, pN ))n : f1(t) 6= 0, pN | f2(t), x2

0 + x2
1 = f1(t)x2

2 has a Qp-point
}

pN(n−1)

has a limit for N → ∞, because for a non-zero integer m, the curve
x2

0 +x2
1 = mx2

2 has a Qp-point if and only if vp(m) is even. Furthermore, if
f1(t) vanishes then pN divides f1(t) and therefore the bound (3.63) shows
that the condition f1(t) 6= 0 can be removed from the numerator of the
limit above. This proves the existence of the limit `p and it is clear that
the equality Eφ(p) = (1−1/p)−1`p follows instantly by Lemma 3.5.17.

3.5.3 Local density at the prime 2

We begin by stating the main result of this section.

Proposition 3.5.18. Under the assumptions of Theorem 3.1.3, the se-
quence

#
{
t ∈ (Z ∩ [0, 2N ))n : f2(t) ≡ 0

(
mod 2N

)
, x2

0 + x2
1 = f1(t)x2

2 has a Q2-point
}

2N(n−1)
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has a limit for N →∞ which we call `2 and we have `2 = Eφ(2).

The proof of Proposition 3.5.18 will follow steps somewhat similar to
those in the proof of Proposition 3.5.11. However, there will be now four
cases rather than merely three, the reason being the presence of the term
1v2(b1)≥%−t−2 in the definition of Eφ(2) in (3.56). The four cases will be
% ≤ t, % = t + 1, % = t + 2, and % ≥ t + 3 that will be dealt with in
Lemmas 3.5.19, 3.5.20, 3.5.21 and 3.5.22 respectively. There are further
minor differences between the proofs of Proposition 3.5.11 and Proposi-
tion 3.5.18. They are related to the difference between the two formulas
`p = (1− 1/p)Eφ(p) and `2 = Eφ(2).

Recall the definition of Sa,q in (3.13) and that of ξi,j(m) in (3.60).

Lemma 3.5.19. Under the assumptions of Theorem 3.1.3 the following two
series converge absolutely:

∞∑
t=0

t∑
%=0

1

2t
1

2%n

∑
b∈(Z∩[0,2%))2

gcd(b1,b2,2%)=1

Sb,2% e(−b12t−%)1v2(b1)≥%−t−2,

and
∞∑
t=0

ξt,t(t)

2t(n−1)
.

In addition, they are equal.

Proof. The absolute convergence of the former sum is a direct consequence
of (3.28), while the absolutely convergence of the latter sum is a conse-
quence of (3.63). To verify the claimed equality observe that the first sum
in the lemma can clearly be written as∑

t≥0

1

2t

∑
0≤%≤t

1

2%n

∑
b∈(Z∩[0,2%))2

gcd(b1,b2,2%)=1

Sb,2%

and by (3.61) the new sum over % equals ξt,t(t)2
−t(n−2).

Lemma 3.5.20. Under the assumptions of Theorem 3.1.3 all series over
t ≥ 0 in the following two expressions converge absolutely:∑

t≥0

1

2t
1

2(t+1)n

∑
b∈(Z∩[0,2t+1))2

gcd(b1,b2,2)=1

Sb,2t+1 e(−b12−1),
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and

2
∑
t≥0

(ξt,t+1(t+ 1)− ξt+1,t+1(t+ 1))

2(1+t)(n−1)
−
∑
t≥0

ξt,t(t)

2t(n−1)
.

In addition, the two expressions are equal.

Proof. The absolute convergence follows from taking M = t, m2 = t,
m1 = t − 1 in Lemma 3.5.10, as well as (3.28) and (3.63). Furthermore,
the sum over b in the lemma equals∑

b2∈Z∩[0,2t+1)
x∈Z∩[0,2t+1)n

e

(
b2f2(x)

2t+1

) ∑
b1∈Z∩[0,2t+1)

2-b

e(−b1/2) e

(
b1f1(x)

2t+1

)
.

The contribution of the even values of b1 is the following (after writing
b1 = 2c),

12-b2

∑
c∈Z∩[0,2t)

e

(
cf1(x)

2t

)
= 2t12-b212t|f1(x)

and the contribution of the odd values equals

− e

(
f1(x)

2t+1

) ∑
c∈Z∩[0,2t)

e

(
cf1(x)

2t

)
= − e

(
f1(x)

2t+1

)
2t12t|f1(x)

after writing b1 = 2c+ 1. Recalling (3.6), we infer that the sum over b in
the lemma is

2t
∑

b2∈Z∩[0,2t+1)
x∈Z∩[0,2t+1)n

2t|f1(x)

e

(
b2f2(x)

2t+1

)(
12-b2 − e

(
f1(x)2−t

2

))
,

which is plainly

2t

( ∑
x∈Z∩[0,2t+1)n

2t|f1(x)

c2t+1(f2(x))

)
− 21+2t

( ∑
x∈Z∩[0,2t+1)n

2t+1|f1(x),2t+1|f2(x)

1

)

+ 21+2t

( ∑
x∈Z∩[0,2t+1)n

v2(f1(x))=t,2t+1|f2(x)

1

)
.
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Using (3.7) to simplify the first sum over x shows that the left side of the
equation in the current lemma is∑

t≥0

1

2t
1

2(t+1)n
(22+2tξt,t+1(t+ 1)− 22+2tξt+1,t+1(t+ 1)− 2n+2tξt,t(t)),

which concludes the proof.

Write λt(M) for

#
{
x ∈

(
Z ∩ [0, 2M

))n
: v2(f1(x)) = t, 2M | f2(x), f1(x)odd ≡ 1 (mod 4)

}
,

where for any integer n we write nodd for n · 2−v2(n).

Lemma 3.5.21. Under the assumptions of Theorem 3.1.3 all series over t
in the following two quantities converge absolutely:∑

t≥0

1

2t
1

2n(t+2)

∑
b∈(Z∩[0,2t+2))2

gcd(b1,b2,2t+2)=1

Sb,2t+2 e(−b1/4),

4
∑
t≥0

λt(t+ 2)

2(n−1)(t+2)
− 2

∑
t≥0

(ξt,t+1(t+ 1)− ξt+1,t+1(t+ 1))

2(n−1)(t+1)
.

Furthermore, the two quantities are equal.

Proof. The first series and the second term in the second series can be
proven to converge absolutely in the same way as in the proof of Lemma
3.5.20. To prove absolute convergence for the first term of the second
series we note that we may bound λt(t + 2) ≤ ξt,t+2(t + 2) and hence by
Lemma 3.5.10 we have λt(t+ 2)� 2nt+2n−2t, which is sufficient.

Let us now proceed with the proof of the claimed equality. The sum over
b is ∑

b2∈Z∩[0,2t+2)
x∈Z∩[0,2t+2)n

e

(
b2f2(x)

2t+2

) ∑
b1∈Z∩[0,2t+2)

2-b

e(−b1/4) e

(
b1f1(x)

2t+2

)
.

The new sum over b1 can be written as follows (after writing b1 = 4y+ j),∑
j∈Z∩[0,4)
2|j⇒2-b2

e(−j/4) e
(jf1(x)

2t+2

) ∑
y∈Z∩[0,2t)

e
(yf1(x)

2t

)
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which is equal to

2t12t|f1(x)

∑
j∈Z∩[0,4)
2|j⇒2-b2

e(−j/4) e
(jf1(x)

2t+2

)
.

A moment’s thought allows to verify the following identity for any inte-
ger c: ∑

j∈Z∩[0,4)
2|j⇒2-b2

e(jc/4) = 2(12-b2 + e(c/4))12|c.

Using this for c = f1(x)2−t − 1 provides us with the equality of the sum
over b1 with

2t+11v2(f1(x))=t(12-b2 + e((f1(x)2−t − 1)/4)).

Hence the sum over b in the lemma is

2t+1
∑

b2∈Z∩[0,2t+2)
x∈Z∩[0,2t+2)n,v2(f1(x))=t

e
(b2f2(x)

2t+2

)(
12-b2 + e((f1(x)2−t − 1)/4)

)
,

which is

2t+1
∑

x∈Z∩[0,2t+2)n

v2(f1(x))=t

c2t+2(f2(x))+23+2t
∑

x∈Z∩[0,2t+2)n

v2(f1(x))=t,2t+2|f2(x)

e((f1(x)2−t−1)/4).

Furthermore we have∑
x∈Z∩[0,2t+2)n

v2(f1(x))=t
2t+2|f2(x)

e((f1(x)2−t − 1)/4) =
∑

x∈Z∩[0,2t+2)n

v2(f1(x))=t,2t+2|f2(x)
f1(x)odd≡1(mod 4)

1−
∑

x∈Z∩[0,2t+2)n

v2(f1(x))=t,2t+2|f2(x)
f1(x)odd≡3(mod 4)

1,

and, since v2(f1(x)) = t implies f1(x)odd = f1(x)2−t, this can now be
written as

2
∑

x∈Z∩[0,2t+2)n

v2(f1(x))=t
2t+2|f2(x)

f1(x)odd≡1(mod 4)

1−
∑

x∈Z∩[0,2t+2)n

v2(f1(x))=t
2t+2|f2(x)

1 = 2λt(t+ 2)− (ξt,t+2(t+ 2)− ξt+1,t+2(t+ 2)).
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Hence, the sum over b in the lemma is

2t+1
∑

x∈Z∩[0,2t+2)n

v2(f1(x))=t

c2t+2(f2(x))+23+2t
(

2λt(t+2)−(ξt,t+2(t+2)−ξt+1,t+2(t+2))
)
.

Utilising (3.7) to evaluate c2t+2(f2(x)) concludes the proof.

The next lemma is the last one in the established line of similar results.

Lemma 3.5.22. Under the assumptions of Theorem 3.1.3 both series over
t in the following expression converge absolutely:∑

t≥0

λt(t+ 2)

2(t+2)(n−1)
+

1

4

∑
t≥0
%≥t+3

1

2t
1

2%n

∑
b∈(Z∩[0,2%))2

2%−t−2|b1,2-b2

Sb,2% e(−b12t−%).

Furthermore, the limit

lim
M→∞

#
{
x ∈

(
Z ∩ [0, 2M

))n
: f2(x) ≡ 0

(
mod 2M

)
, f1(x)odd ≡ 1 (mod 4)

}
2M(n−1)

exists and is equal to the previous expression.

Proof. The proof of the absolute convergence is similar to that in the proof
of Lemma 3.5.21, thus we shall next concentrate on showing the existence
of the limit in the lemma. Writing b1 = 2%−t−2(4y + j) and using (3.7),
we see that the sum over b becomes∑

x∈(Z∩[0,2%))n

c2%(f2(x))
∑

j∈Z∩[0,4)

e(−j/4) e
(jf1(x)

2t+2

) ∑
y∈Z∩[0,2t)

e
(yf1(x)

2t

)
,

which equals

2t+%
∑

x∈(Z∩[0,2%))n

2t|f1(x)

(
12%|f2(x) −

12%−1|f2(x)

2

) ∑
j∈Z∩[0,4)

e(−j/4) e
(jf1(x)

2t+2

)
.

Noting that the sum over j equals 4 when 4 | f1(x)2−t − 1 holds, and it
otherwise vanishes, we obtain

2t+%+2
∑

x∈(Z∩[0,2%))n

2t|f1(x),4|f1(x)2−t−1

(
12%|f2(x) −

12%−1|f2(x)

2

)
,
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which can be written as

2t+%+2

( ∑
x∈(Z∩[0,2%))n

v2(f1(x))=t,2%|f2(x)
f1(x)odd≡1(mod 4)

1

)
− 2t+%+1+n

( ∑
x∈(Z∩[0,2%−1))n

v2(f1(x))=t,2%−1|f2(x)
f1(x)odd≡1(mod 4)

1

)
.

Therefore, whenever M is an integer with M > t+ 3, we have∑
t≥0

t+3≤%≤M

1

2t
1

2%n

∑
b∈(Z∩[0,2%))2

2%−t−2|b1,2-b2

Sb,2% e(−b12t−%)

= 4
∑
t≥0

M∑
%=t+3

(
λt(%)

2%(n−1)
− λt(%− 1)

2(%−1)(n−1)

)
.

The sum over % is telescopic, thus we get∑
t≥0

t+3≤%≤M

1

2t
1

2%n

∑
b∈(Z∩[0,2%))2

2%−t−2|b1,2-b2

Sb,2% e(−b12t−%) = 4

(
λt(M)

2M(n−1)
− λt(t+ 2)

2(t+2)(n−1)

)
.

Using the bound (3.28) we obtain∑
t≥0

1

2t

∑
%>M

1

2%n

∑
b∈(Z∩[0,2%))2

2%−t−2|b1,2-b2

|Sb,2% e(−b12t−%)| �
∑
t≥0

1

2t

∑
%>M

1

2%n
2ρ(n−3)

� 2−M ,

and therefore also∑
t≥0
%≥t+3

1

2t
1

2%n

∑
b∈(Z∩[0,2%))2

2%−t−2|b1,2-b2

Sb,2% e(−b12t−%)− 4
∑
t≥0

(
λt(M)

2M(n−1)
− λt(t+ 2)

2(t+2)(n−1)

)

is O(2−M ). Taking M →∞ and noting∑
t≥0

λt(M)

2M(n−1)
=

#
{
x ∈

(
Z ∩ [0, 2M

))n
: 2M | f2(x), f1(x)odd ≡ 1 (mod 4)

}
2M(n−1)

shows that the limit

lim
M→∞

#
{
x ∈

(
Z ∩ [0, 2M

))n
: 2M | f2(x), f1(x)odd ≡ 1 (mod 4)

}
2M(n−1)
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exists and equals∑
t≥0

λt(t+ 2)

2(t+2)(n−1)
+

1

4

∑
t≥0
%≥t+3

1

2t
1

2%n

∑
b∈(Z∩[0,2%))2

2%−t−2|b1,2-b2

Sb,2% e(−b12t−%).

This concludes the proof.

Proof of Proposition 3.5.18. First, the contribution of those t with
f2(t) being zero in the quantity inside the limit defining `2 in Proposi-
tion 3.5.18 can be dealt with in an identical manner as in our proof of
Proposition 3.5.11.

Using Hilbert symbols (see, for example, [Ser73, Ch.III,Th.1]) one can
obtain that for an integer m the curve x2

0 + x2
1 = mx2

2 has a point over
Q2 if and only if the odd part of m is 1 (mod 4). Hence the limit `2
in Proposition 3.5.18 coincides with the limit in Lemma 3.5.22, thus `2
exists. Finally, to prove Eφ(2) = `2, recall that Eφ(2) can be represented
as the sum over t, % in (3.56) and combine the equalities proved in Lemmas
3.5.19, 3.5.20, 3.5.21 and 3.5.22.

3.5.4 Concluding steps

For every prime p we define

τp :=
(1− 1

pn−d
)

(1− 1
p)

lim
N→∞

LN

where LN is equal

#
{
t ∈ (Z ∩ [0, pN ))n :pN | f2(t), x2

0 + x2
1 = f1(t)x2

2 has a Qp-point
}

pN(n−1)
.

This is well defined because for p ≡ 1 (mod 4) the limit coincides with
τf2(p) which was introduced in (3.50), and for p 6≡ 1 (mod 4) the limit
coincides with `p and `2 from Propositions 3.5.11 and 3.5.18 respectively.
The definition of τp is motivated by the construction of the Tamagawa
measure by Loughran in [Lou13, §5.7.2]. It is useful to recall that if
one were counting Q-rational points on the hypersurface f2 = 0 then the
corresponding Peyre constant would involve a p-adic density that is the
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same as the number τp except for the condition on Qp-solubility, see [PT01,
Cor.3.5]. For s ∈ C with <(s) > 1 let

L(s) :=
√
ζ(s) (3.65)

denote the p-adic factor of L(s) by Lp(s) and write λp for Lp(1), i.e.

λp :=

(
1− 1

p

)−1/2

.

Recall the definition of the real density J in (3.33) and that d denotes the
degrees of f1 and f2 (which are equal and even).

Theorem 3.5.23. Keep the assumptions of Theorem 3.1.3.

1. If φ has a smooth fibre with a Q-point then the constant cφ in The-
orem 3.1.3 is strictly positive.

2. The infinite product
∏
p
τp
λp

taken over all non-archimedean places
converges.

3. The constant cφ in Theorem 3.1.3 satisfies

cφ =

1√
d
J
∏
p
τp
λp√

π
.

Remark 3.5.24. Recalling that
√
π is the value of the Euler Gamma func-

tion at 1/2 and noting that

1 = lim
s→1+

(s− 1)1/2L(s)

allows for a comparison of Theorem 3.5.23 with the case of [Lou13, Th.
5.15] that corresponds to

ρB(X) =
1

2
.

Proof of Theorem 3.5.23. To prove (1) observe that due to (3.40), it suf-
fices to show that if φ has a smooth fibre with a Q-point then

J > 0 and Lφ > 0.

For the former part, we point the reader to the definition of J in (3.33).
One should first notice that if V ⊂ [−1, 1]n is an area without zeroes of
f2, then the integral ∫

Γ∈R

∫
t∈V

e(Γf2(t))dtdΓ
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vanishes.

Let us write A := {t ∈ (−1, 1)n | f1(t) > 0}. Then the closure of A is the
region of integration that appears in J. Since the boundary has measure
zero, integrating overA gives the same result. DivideA up into sufficiently
small boxes with sides parallel to the coordinate axes, not necessarily finite
in number and not necessarily of equal sizes. Since we already know that
the integral J converges to a finite value, this value is equal to the possibly
infinite sum of integrals over these boxes.

It is proved in [Bir62, §6], that if B ⊂ (−1, 1)n is a box with sides parallel
to the coordinate axes and the hypersurface f2 = 0 has a non-singular real
point inside B then the corresponding integral∫

Γ∈R

∫
t∈B

e(Γf2(t))dtdΓ

is positive. In our case, every real zero of f2 is non-singular by assumption.
Combined with the vanishing mentioned above, the integral over any box
in the subdivision of A is non-negative, so we only need to prove the
existence of one box containing a real zero of f2.

Now, in (1) it is assumed that φ has a smooth fibre with a Q-point. This
means that there exists a point t ∈ Pn−1(Q) such that for any representa-
tive t0 ∈ Qn we have f2(t0) = 0, and moreover the curve x2

0+x2
1 = f1(t0)x2

2

is smooth and has a Q-point, hence in particular an R-point. Therefore
we have f1(t0) > 0. Choosing such t0 inside (−1, 1)n, we get the desired
existence of t0 ∈ A satisfying f2(t0) = 0. Subsequently we find a box
B ⊂ A with sides parallel to the coordinate axes containing t0. Therefore
the integral over this particular box is positive, and in conclusion J is
positive.

To prove Lφ > 0, we invoke Lemma 3.5.9 to see that it is enough to show

Eφ(2) > 0, and

p ≡ 1 (mod 4)⇒ τf2(p) > 0, and

p ≡ 3 (mod 4)⇒ Eφ(p) > 0.

(3.66)

For this, choose a representative t0 in Znprim (rather than in (−1, 1)n as
in the previous paragraph) and note that for every prime p the point t0

can be viewed as a smooth Qp-point on the hypersurface f2 = 0 and such
that the curve x2

0 + x2
1 = f1(t0)x2

2 has a Qp-point. For p ≡ 1 (mod 4)
this forces no condition on f1(t0), thus τf2(p) > 0 because, as mentioned
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in [Bir62, §7], one can use Hensel’s lemma to prove that if f2 = 0 has a
smooth Qp-point then the analogous p-adic density is strictly positive.
If p ≡ 3 (mod 4) or if p = 2 then the existence of such a t0 can be
used with Hensel’s lemma to prove that the quantities `2 and `p (defined
in Propositions 3.5.11 and 3.5.18 respectively) are strictly positive. The
equalities Eφ(p) = `p/(1 − 1/p) and Eφ(2) = `2 (proved in Propositions
3.5.11 and 3.5.18) then show the validity of (3.66), which concludes the
proof of (1).

Let us now commence the proof of (2). Denoting the limit in the definition
of τp by `p we see

lim
t→∞

∏
p≤t

τp
λp

= lim
t→∞

∏
p≤t

(1− 1
pn−d

)

(1− 1
p)

`p

(
1− 1

p

)1/2

=
`221/2

ζ(n− d)
lim
t→∞

∏
2 6=p≤t

`p

(1− 1p≡3(mod 4)

p )

(
(1− 1p≡3(mod 4)

p )

(1− 1p≡1(mod 4)

p )

)1/2

.

We now let χ stand for the non-trivial Dirichlet character (mod 4) to
obtain ∏

p≤t

(1− 1p≡3(mod 4)

p )

(1− 1p≡1(mod 4)

p )
=

(∏
p≤t

1

1− χ(p)
p

) ∏
p≤t

p≡3(mod 4)

(
1− 1

p2

)
.

Applying the Leibniz formula for π, or in other words, that the Euler
product for the Dirichlet series L(χ, s) of χ converges to π/4 for s = 1, we
get

lim
t→∞

∏
p≤t

(
(1− 1p≡3(mod 4)

p )

(1− 1p≡1(mod 4)

p )

)1/2

=
π1/2

2
C0,

where C0 was defined in equation (3.8).

We have so far shown the validity of

lim
t→∞

∏
p≤t

τp
λp

=
`221/2

ζ(n− d)

(
lim
t→∞

∏
p≤t

`p

(1− 1p≡3(mod 4)

p )

)
π1/2

2
C0.

It is clear that for p ≡ 1 (mod 4) we have `p = τf2(p), and thus (3.53)
leads to the absolute convergence of

lim
t→∞

∏
p≡1(mod 4)

p≤t

`p =
∏

p≡1(mod 4)

τf2(p).
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By Proposition 3.5.11 one gets∏
p≡3(mod 4)

p≤t

`p

(1− 1
p)

=
∏

p≡3(mod 4)
p≤t

Eφ(p).

It is now clear from Lemma 3.5.9 that the last product converges. There-
fore the product

∏
p τp/λp is convergent, which proves (2).

For the proof of (3) we note that the arguments at the end of the proof
of (2) provided us with the equality

∏
p

τp
λp

=
`221/2

ζ(n− d)

( ∏
p≡1(mod 4)

τf2(p)

)( ∏
p≡3(mod 4)

Eφ(p)

)
π1/2

2
C0.

We have Eφ(2) = `2 due to Proposition 3.5.18. Recalling Lemma 3.5.9 we
get ∏

p

τp
λp

=
21/2

ζ(n− d)
Lφ

π1/2

2
C0.

A comparison with (3.40) makes the proof of (3) immediately apparent.

Let us remark that the arguments in the proof of Theorem 3.5.23 can be
easily rearranged to show that

∏
p≤t τp diverges. Therefore the numbers

λp can be viewed as ‘convergence factors’. We are very grateful to Daniel
Loughran for suggesting this choice for λp, as well as for the L-function in
(3.65).

In fact, the above proof of (1) shows a stronger statement. We thank
Jean-Louis Colliot-Thélène for asking the question that prompted us to
recognize this.

Theorem 3.5.25. If for every prime p there exists a smooth fibre with a
Qp-point, and moreover there exists a smooth fibre with an R-point, then
cφ is positive.

Proof. We have seen in Lemma 3.5.9 that the product

Lφ = Eφ(2)
∏

p≡1(mod 4)

τf2(p)
∏

p≡3(mod 4)

Eφ(p)

converges absolutely. Hence its value is positive if the values of the in-
dividual factors are positive. In the proof of Theorem 3.5.23 we showed
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that each of the factors in the product above is positive by starting with a
Q-point and considering it as a Qp-point for every p. However, every indi-
vidual prime was then treated separately, so one may as well have started
with Qp-points for every p which are not necessarily defined over Q.

The same strategy was used to prove J > 0, and again here one might have
started with an R-point that is not necessarily also defined over Q.

Remark 3.5.26. Theorem 3.5.25 shows that the Hasse principle holds for
the total space of smooth fibres. Since the main term in Theorem 3.1.3
only takes care of smooth fibres, the singular fibres lie outside the reach
of the proof.
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Chapter 4

Effective bounds for Brauer
groups of Kummer surfaces
over number fields

O dear Ophelia, I am ill at these numbers

Polonius, Hamlet, Scene 2.2, line 123

The following chapter was written together with Victoria Cantoral-Farfán,
Yunqing Tang and Sho Tanimoto. It is published in the Journal of the
London Mathematical Society as [CFTTV18].

The general idea of the proof of the main result arose from discussions
between all authors during the Arizona Winter School in March 2015.
Thereafter, the contributions of the author of this thesis largely lie in
writing parts of §4.3 and the entirety of §4.5, as well as taking part in
discussing and carefully checking every result in this chapter. In particular,
the expertise of the author of this thesis does not lie in §4.2.

The numbering of results in this chapter only slightly differs from the pub-
lished paper. Any result numbered x in the published paper, is numbered
4.x in this thesis.

4.1 Introduction

In 1971, Manin observed that failures of Hasse principle and weak ap-
proximation can be explained by Brauer–Manin obstructions for many
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examples [Man71]. Let X be a smooth projective variety defined over a
number field k. The Brauer group of X is defined as

Br(X) := H2
ét(X,Gm).

Then one can define an intermediate set using class field theory

X(k) ⊂ X(Ak)Br(X) ⊂ X(Ak),

where Ak is the adèlic ring associated to k. It is possible that X(Ak) 6= ∅,
but X(Ak)Br(X) = ∅, whereby the Hasse principle fails for X. When
this happens, we say that there is a Brauer–Manin obstruction to the
Hasse principle. When X(Ak)Br(X) 6= X(Ak), we say that there is a
Brauer–Manin obstruction to weak approximation. There is a large body
of work on Brauer–Manin obstructions to the Hasse principle and weak
approximation (see, e.g., the work by Manin [Man86], or any of the follow-
ing [BSD75], [CTCS80], [CTSSD87], [CTKS87], [SD93], [SD99], [KT04],
[Bri06], [BBFL07], [KT08], [Log08], [VA08], [LvL09], [EJ10], [HVAV11],
[ISZ11], [EJ12b], [HVA13], [CTS13], [MSTVA17], [SZ14], [IS15], [Wit16])
and it is an open question if for K3 surfaces, Brauer–Manin obstructions
suffice to explain failures of Hasse principle and weak approximation, i.e.,
X(k) is dense in X(Ak)Br(X) (see [HS16] for some evidence supporting this
conjecture.)

The main question discussed in this paper is of computational nature:
how can one compute Br(X) explicitly? It is shown by Skorobogatov
and Zarhin in [SZ08] that Br(X)/Br(k) is finite for any K3 surface X
defined over a number field k, but they did not provide any effective bound
for this group. Such an effective algorithm is obtained for degree 2 K3
surfaces in [HKT13] using explicit constructions of moduli spaces of degree
2 K3 surfaces and principally polarized abelian varieties. In this paper,
we provide an effective algorithm to compute a bound for the order of
Br(X)/Br(k) when X is the Kummer surface associated to the Jacobian
of a curve of genus 2:

Theorem 4.1.1. There is an effective algorithm that takes as input an
equation of a smooth projective curve C of genus 2 defined over a number
field k, and outputs an effective bound for the order of Br(X)/Br(k) where
X is the Kummer surface associated to the Jacobian Jac(C) of the curve
C.

We obtain the following corollary as a consequence of results in [KT11]
and [PTvL15]:
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Corollary 4.1.2. Given a smooth projective curve C of genus 2 defined
over a number field k, there is an effective description of the set

X(Ak)Br(X)

where X is the Kummer surface associated to the Jacobian Jac(C) of the
curve C.

Note that given a curve C of genus 2, the surface Y = Jac(C)/{±1} can
be realized as a quartic surface in P3 (see [FS97, §2]) and the Kummer
surface X associated to Jac(C) is the minimal resolution of Y , so one can
find defining equations for X explicitly.

The quartic surface Y has sixteen nodes, and by considering the projec-
tion from one of these nodes, we may realize Y as a double cover of the
plane. Thus X can be realized as a degree 2 K3 surface and our Theorem
4.1.1 follows from [HKT13]. It is remarked in [HKT13] that using the
algebraic correspondence between X and Jac(C) it is possible to make
[HKT13] into an actual algorithm for Kummer surfaces. However we take
a different approach from [HKT13], and instead of using the Kuga–Satake
construction we use a result of [SZ12] reducing our problem to the case of
abelian surfaces. In particular, our algorithm provides a large, but explicit
bound for the Brauer group of X. (See the example we discuss in §4.6.)

The method in this paper combines many results from the literature. The
first key observation is that the Brauer group Br(X) admits the following
stratification:

Definition 4.1.3. Let X denote X×k Spec k where k is a given separable
closure of k. Then we write

Br0(X) = im (Br(k)→ Br(X)) and Br1(X) = ker
(
Br(X)→ Br(X)

)
.

Elements in Br1(X) are called algebraic elements; those in the complement
Br(X) \ Br1(X) are called transcendental elements.

Thus to obtain an effective bound for Br(X)/Br0(X), it suffices to study
Br1(X)/Br0(X) and Br(X)/Br1(X). The group Br1(X)/Br0(X) is well-
studied, and it admits the following isomorphism:

Br1(X)/Br0(X) ∼= H1(k,Pic(X)).

Note that for a K3 surface X, we have an isomorphism Pic(X) = NS(X).
Thus as soon as we compute NS(X) as a Galois module, we are able to
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compute Br1(X)/Br0(X). An algorithm to compute NS(X) is obtained in
[PTvL15], but we consider another algorithm which is based on [Cha14].

To study Br(X)/Br1(X), we use effective versions of Faltings’ theorem
and combine them with techniques in [SZ08] and [HKT13]. Namely, we
have an injection

Br(X)/Br1(X) ↪→ Br(X)Γ

where Γ is the absolute Galois group of k. As a consequence of [SZ12], we
have an isomorphism of Galois modules

Br(X) = Br(A),

where A = Jac(C) is the Jacobian of C. Thus it suffice to bound the size
of Br(A)Γ. To bound the cardinal of this group, we consider the following
exact sequence as in [SZ08]:

0→
(
NS(A)/`n

)Γ fn→ H2
ét(A,µ`n)Γ → Br(A)Γ

`n →

→ H1(Γ,NS(A)/`n)
gn→ H1(Γ,H2

ét(A,µ`n)),

where ` is any prime and Br(A)`n is the `n-torsion part of the Brauer
group of A. Using effective versions of Faltings’ theorem, we bound the
cokernel of fn and the kernel of gn independently of n.

We emphasize that our algorithm is practical for any genus 2 curve whose
Jacobian has Néron–Severi rank 1, i.e., we can actually implement and
compute a bound for such a curve. For example, consider the following
hyperelliptic curve of genus 2 defined over Q:

C : y2 = x6 + x3 + x+ 1.

Let A = Jac(C) and let X = Kum(A) be the Kummer surface associ-
ated to A. The geometric Néron–Severi rank of A is 1. Combining our
algorithm with the work of [Die02] and [Sko17], we show that

|Br(X)/Br(Q)| < 210 · 10805050.

Our effective bound explicitly depends on the Faltings height of the Ja-
cobian of C, so it does not provide any uniform bound as conjectured in
[TVA16], [AVA18], and [VA17]. However, it is an open question whether
the Faltings height in Theorem 4.2.13 is needed. If there is a uniform
bound for Theorem 4.2.13 which does not depend on the Faltings height,
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then our proof provides a uniform bound for the Brauer group. Such a
uniform bound is obtained for elliptic curves in [VAV17].

Even though our method can handle any curve of genus 2 defined over a
number field k, we will focus on the case of curves whose Jacobians have
the geometric Picard rank 1. In other cases (non-simple cases), we can
provide better bounds but we will not discuss them in this paper. The
reader who is interested in these cases is encouraged to refer to the arXiv
version of this paper. ([CFTTV16])

The paper is organized as follows. In §4.2 we review effective versions of
Faltings’ theorem and consequences that will be useful for our purposes.
In §4.3 we review methods from the literature in order to compute the
Néron–Severi lattice as a Galois module. §4.4 proves our bounds for the
size of the transcendental part. §4.5 is devoted to Magma computations
in the lowest rank case and §4.6 explores an example.
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4.2. EFFECTIVE VERSION OF FALTINGS’ THEOREM

4.2 Effective version of Faltings’ theorem

One important input of our main theorem is an effective version of Falt-
ings’ isogeny theorem. Such a theorem was first proved by Masser and
Wüstholz in [MW95] and the computation of the constants involved was
made explicit by Bost [Bos96] and Pazuki [Paz12]. The work of Gaudron
and Rémond [GR14] gives a sharper bound. Although the general results
are valid for any abelian variety over a number field, we will only focus on
abelian surfaces.

The main result of this section is in §4.2.4. The reader may skip §4.2.2
and §4.2.3 on a first reading and refer to them later for the proof of the
main result. We use the idea of Masser and Wüstholz to reduce the
effective Faltings theorem to bound the minimal isogeny degree between
certain abelian varieties and to bound the volume of the Z-lattice of the
endomorphism ring of the given abelian surface. These two things are
bounded by a constant only depending on the Faltings height and the
degree of the field of definition using the idea of Gaudron and Rémond.
To compute a bound of Faltings height, we use a formula due to Pazuki
and Magma.

Let A be an abelian surface defined over a number field k. Without further
indication, A will be the Jacobian of some hyperelliptic curve C, princi-
pally polarized by the theta divisor, and we use L to denote the line bundle
on A corresponding to the theta divisor. Throughout this section, when
we say there is an isogeny between abelian varieties A1 and A2 of degree
at most D, it means that there exist isogenies A1 → A2 and A2 → A1

both whose degrees are at most D.

4.2.1 Faltings height

The bounds in the effective Faltings theorems discussed in our paper de-
pend on the stable Faltings height of the given abelian surface. We denote
the stable Faltings height of A by h(A) (with the normalization as in the
original work of Faltings [Fal86]). In order to obtain a bound without Falt-
ings height, we now describe how to obtain an upper bound of h(Jac(C))
using the work of Pazuki [Paz14] and Magma.

Assume that the hyperelliptic curve C is given by y2 + G(x)y = F (x),
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4.2. EFFECTIVE VERSION OF FALTINGS’ THEOREM

where G(x), F (x) are polynomials in x of degrees at most 3 and 6 respec-
tively.

Proposition 4.2.1. Given a complex embedding σ of k, we use τσ to de-
note a period matrix of the base change CC via σ. Let ∆ be 2−12 Disc6(4F+
G2), where Disc6 means taking the discriminant of a degree 6 polynomial.
Then h(Jac(C)) is bounded from above by

− log(2π2) +
1

[k : Q]

( 1

10
log(∆)−

∑
σ

log(2−1/5|J10(τσ)|1/10 det(=τσ)1/2)
)
,

where σ runs through all complex embeddings of k.

Notice that the functions AnalyticJacobian and Theta in Magma com-
pute period matrices τσ of Jac(C) and J10(τσ), which is the square of the
product of all even theta functions.

Proof. Let k′ be a finite extension of k such that after base change to k′,
the variety Jac(C)k′ has semistable reduction everywhere. For example, k′

can be taken to be the field of definition of all 12-torsion points. Then the
stable Faltings height of Jac(C) is given by the Faltings height of Jac(C)
over k′.

The inequality in the proposition follows from Pazuki’s formula [Paz14,
Thm. 2.4] once we bound the non-archimedean local term

1

d

∑
v|∆min

dvfv logNk′/Q(v),

where d = [k′ : Q], dv = [k′v : Qp] if v|p, ∆min is the minimal discrim-
inant of C over k′, and 10fv ≤ ordv(∆min). By definition of minimal
discriminant, we have ∆min|∆ and hence the local term is bounded by
1

d

∑
v|∆

dv
ordv(∆)

10
logNk′/Q(v) =

log(∆)

10[k : Q]
.

Remark 4.2.2. Following [Kau99, Sec. 4,5], one can compute the exact
local contribution in Pazuki’s formula at v - 2 by studying the roots of
F (x) assuming G = 0.

4.2.2 Preliminary results

In this subsection, we recall some key facts about Euclidean lattices and
results in transcendence theory that will be used to obtain an effective
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4.2. EFFECTIVE VERSION OF FALTINGS’ THEOREM

version of Faltings’ theorem.

Let B be the abelian variety A× A principally polarized by pr∗1L⊗ pr∗2L
and B′ an abelian variety over k isogenous to B over k. Let B̂′ be the dual
abelian variety of B′ and let Z(B′) be the principally polarizable abelian
variety (B′)4 × (B̂′)4. We fix a principal polarization on Z(B′).

Since A (resp. B and Z(B′)) is principally polarized, one defines the
Rosati involution (−)† on Endk(A) (resp. going from Homk(B,Z(B′)) to
Homk(Z(B′), B)). The quadratic form Tr(ϕϕ†) defines a norm on Endk(A)
(resp. Homk(B,Z(B′))).1 We use v(A) to denote vol(Endk(A)) with
respect to this norm. Let k1 be a Galois extension of k. We denote by
Λ (resp. Λ′, Λ′k1

) the smallest real number which bounds from above the
norms of all elements in some Z-basis of some sub-lattice (of finite index)
of Endk(A) (resp. Homk(B,Z(B′)), Homk1(B,Z(B′)))2.

By definition, v(A) ≤ Λr, where r is the Z-rank of Endk(A). Moreover,
Λ′k1

is also the smallest real number which bounds from above the norms
of all elements in some Z-basis of Homk1(A,Z(B′)).

Lemma 4.2.3 ([GR14, Lem. 3.3]). We have Λ′ ≤ [k1 : k]Λ′k1
.

The following three results are consequences of Faltings’ isogeny formula
and Bost’s lower bound for Faltings heights.

Lemma 4.2.4 (Faltings). Let φ : A1 → A2 be an isogeny between abelian
varieties. Then

h(A1)− 1

2
log deg(φ) ≤ h(A2) ≤ h(A1) +

1

2
log deg(φ).

Lemma 4.2.5 (Bost). For any abelian variety A1, one has

h(A1) ≥ −3
2 dimA1.

Lemma 4.2.6 (See for example [GR14, p. 2096]). Let H be a sub abelian
variety of a principally polarized abelian variety A1 and degH the degree
of H with respect to the polarization line bundle on A1. Then we have

h(H) ≤ h(A1) + log degH +
3

2
(dimA1 − dimH).

1This quadratic form is positive definite by [Mum70, p. 192] and [GR14, Prop. 2.5].
2This means that if r is the rank of Endk(A), then there exists a free family

w1, . . . , wr ∈ Endk(A) such that the norm of wi is no greater than Λ.
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4.2. EFFECTIVE VERSION OF FALTINGS’ THEOREM

The following result is a direct consequence of the Theorem of Periods by
Gaudron and Rémond. See for example [GR14, p. 2095–2096].

Lemma 4.2.7 (Theorem of Periods). Let H be a polarized abelian variety
over k1. Fix an embedding of k1 into C and let ΩH be the period lattice of
H(C) endowed with the norm || · || given by the real part of the Riemann
form of the polarization. Assume that ω ∈ ΩH is not contained in the
period lattice of any proper sub abelian variety of H. Then we have

(degH)1/ dimH ≤ 50[k1 : Q]h2 dimH+6 max(1, h(H), log degH)||ω||2.

Proof. Gaudron and Rémond’s Theorem of Periods implies that the same
inequality holds by replacing ||ω||2 by δ2, where δ is the supremum among
all proper sub abelian varieties H ′ of H of the minimum distance from
ω ∈ ΩH\Ω′H to the tangent space of H ′. By our assumption on ω, one has
δ ≤ ||ω||.

The following lemma is a direct consequence of Autissier’s Matrix Lemma
and it will be used to bound the norm of elements in period lattices.

Lemma 4.2.8 (Autissier). Let A1 be a principally polarized abelian variety
over k1 and for any embedding σ : k1 → C, let Ωσ be the period lattice
of A1,σ(C). We denote by Λσ the smallest real number which bounds the
norms of all elements in some Z-basis of some sub-lattice (of finite index)
of Ωσ. Then for any ε ∈ (0, 1)

∑
σ

Λ2
σ ≤

6[k1 : Q](2 dimA1)2

(1− ε)π

(
h(A1) +

dimA1

2
log
(2π2

ε

))
.

Proof. This follows from [Aut13, Cor. 1.4] and [GR14, Cor. 3.6]. See also
the proof of [GR14, Lem. 8.4].

Lemma 4.2.9 ([Sil92, Thm. 4.1, 4.2, Cor. 3.3]). Given abelian varieties
A1, A2 of dimension g, g′ defined over k, let K be the smallest field where
all the k-endomorphisms of A1 ×A2 are defined. Then we have

[K : k] ≤ 4(9g)2g(9g′)2g′ .

The following elementary lemma is useful.

Lemma 4.2.10 ([GR14, Lem. 8.5]). Let u ≥ e1/2 and v ≥ 0 be real num-
bers. Assume that x > 0 and x ≤ u(v + log x). Then x ≤ 2u(log u+ v).
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4.2. EFFECTIVE VERSION OF FALTINGS’ THEOREM

4.2.3 The bound of isogeny degrees

This subsection includes some upper bounds of the minimal isogeny degree
between B and any B′ over k isogenous to B. Here we will obtain an
upper bound depending on h(B′) and in the proof of main theorem in
next subsection, we will use the properties of the Faltings height to obtain
a bound only depending on h(A) and [k : Q]. This upper bound is a key
input to obtain our effective Faltings theorem.

An explicit bound of minimal isogeny degrees is given for general abelian
varieties in [GR14, Thm. 1.4] so readers may use their bound and Lemma
4.2.14 later to finish the proof of Theorem 4.2.13 when Endk(A) = Z.
However, we give a proof here since the same technique is used to bound
Λ, which in turn will be used to deduce the effective Faltings theorem from
the upper bound of minimal isogeny degree when Endk(A) 6= Z.

Proposition 4.2.11. There exists an isogeny B′ → B over k of degree at
most 248(Λ′)16Λ16r, where Λ,Λ′ are defined in §4.2.2 and r is the Z-rank
of Endk(A).

Proof. This follows from [GR14, Prop. 6.2] by noticing that the Ŵi term
there is not needed since A is principally polarized and by the fact that
v(A) ≤ Λr.

Lemma 4.2.12. Let mA and mA,B′ denote max(1, h(A)) and respectively
max(1, h(A), h(B′)). We have

Λ ≤


2 if r̄ = 1,

45 · 98
[
5.04 · 1024[k : Q]mA

·
(

5
4mA + log[k : Q] + logmA + 60

) ]8/r̄
if r̄ = 2 or 4.

and

ΛB,B′ ≤ 411 · 912
[
(4.4 · 1046[k : Q]mA,B′(

9mA,B′ + 8 logmA,B′ + 8 log[k : Q] + 920
) ]16/r̄

.

Proof. Recall that r̄ denotes the Z-rank of Endk̄(A). To deduce the bound
of Λ, we first study the case r̄ = 1. In this case, Endk̄(A) = Z and by
definition the norm of the identity map is

√
Tr(id) =

√
4 = 2. In other

words, Λ = 2.

124



4.2. EFFECTIVE VERSION OF FALTINGS’ THEOREM

We postpone the discussion of Λ for r̄ = 2, 4, since it is a simplified
version of the following discussion on the bound of Λ′. The estimate of
Λ′ is essentially [GR14, Lem. 9.1]. We modify its proof here to obtain a
sharper bound for this special case.

Let k1 be the field where all the k-endomorphisms of A×B′ are defined.
Then by Lemma 4.2.9, we have [k1 : k] ≤ 4 · 184 · 368 = 411 · 912. For any
complex embedding σ : k1 → C, we may view A and Z(B′) as abelian
varieties over C and let ΩA,σ and ΩZ(B′),σ be the period lattices. The
principal polarization induces a metric on ΩA,σ (resp. ΩZ(B′),σ). More
precisely, the polarization line bundle gives rise to the Riemann form (a
Hermitian form) on the tangent space of A (resp. Z(B)) and its real
part defines a norm on the real tangent space and hence on ΩA,σ (resp.
ΩZ(B′),σ). We use Λ(ΩA,σ) (resp. Λ(ΩZ(B′),σ)) to denote the smallest
real number which bounds from above the norms of all elements in some
Z-basis of some sublattice (of finite index) of ΩA,σ (resp. ΩZ(B′),σ).

Let ω1, . . . , ω4 (resp. χ1, . . . , χ64) be a free family in ΩA,σ (resp. ΩZ(B′),σ)
such that ||ωi|| ≤ Λ(ΩA,σ) (resp.||χi|| ≤ Λ(ΩZ(B′),σ)) hold. Let ω be
(ω1, χ1, . . . , χ64) ∈ ΩA,σ ⊕ (ΩZ(B′),σ)64 and let H be the smallest abelian
subvariety of A× (Z(B′))64 whose Lie algebra (over C) contains ω. Since
χ1, . . . , χ64 generate a sublattice of finite index of ΩZ(B′),σ, then for any
χ ∈ ΩZ(B′),σ, there exist `,m1, . . . ,m64 such that `χ +

∑
miχi = 0 and

hence H satisfies the assumption of [GR14, Prop. 7.1]. Therefore

Λ′k1
≤ (degH)2.

Let h = dimH. By [GR14, Lem. 8.1], we have 2 ≤ h ≤ 8/r̄ ≤ 8 and by
Lemma 4.2.7,

(degH)1/h ≤ 50[k1Q]h2h+6 max(1, h(H), log degH)||ω||2.

Now we bound ||ω||. Notice that by definition, we have

||ω||2 = ||ω1||2 +
∑
i

||χi||2 ≤ Λ(ΩA,σ)2 + 64Λ(ΩZ(B′),σ)2.

From now on, we fix a σ such that Λ(ΩA,σ)2 +64Λ(ΩZ(B′),σ)2 is the small-
est.

Then by Lemma 4.2.8, we have that, for any ε ∈ (0, 1),

||ω||2 ≤ 6

(1− ε)π

(
16h(A) + 87h(B′) + (16 + 164) log

(
2π2

ε

))
.
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4.2. EFFECTIVE VERSION OF FALTINGS’ THEOREM

By taking ε = 1
40 , we have ||ω||2 ≤ 5×106 max(1, h(A), h(B′)). Combining

the above inequalities, we have the bound

(degH)r̄/8 ≤ 1.85× 1028[k1 : Q] max(1, h(A), h(B′))

·
(
9 max(1, h(A), h(B′)) + log degH + 48

)
,

where we use Lemma 4.2.6 to obtain

hF (H) ≤ 9 max(1, h(A), h(B′)) + log degH + 48.

Then by Lemma 4.2.10, we have

degH ≤
[
3.7 · 1028[k1 : Q]mA,B′

·
(

9mA,B′ + 48 +
8

r̄
log

(
1.85 · 1028[k1 : Q]

8mA,B′

r̄

))]8/r̄
.

Then we have (by Lemma 4.2.3) that Λ′ can be bounded from above by

[k1 : k]Λ′k1
≤ [k1 : k](degH)2

and subsequently by

[k1 : k]

[
3.7 · 1028[k1 : Q]mA,B′

·
(

9mA,B′ + 48 +
8

r̄
log

(
1.85 · 1028[k1 : Q]

8mA,B′

r̄

))]16/r̄

≤ 411 · 912
[
4.4 · 1046[k : Q]mA,B′

·
(
9mA,B′ + 8 logmA,B′ + 8 log[k : Q] + 920

) ]16/r̄
.

Now we assume that r̄ = 2 or 4. In this case we cannot compute Λ so we
apply the same strategy as for the bound on Λ′. The proof is practically
identical, but the bounds are different. In this case we bound the degree
[k1 : k] ≤ 4 · 188 and there exists an abelian subvariety H of A× A4 over
k1 such that the bounds

Λ ≤ [k1 : k](degH)2

and

degH ≤
[
100 · 419 · 98 · 1063 · [k : Q]mA

· (5mA + 4 log[k : Q] + 4 logmA + 240)
]8/r̄
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are satisfied. Combining these two inequalities together, we obtain the
bound for Λ.

4.2.4 Effective Faltings’ theorem in the geometrically sim-
ple case

We assume that A is geometrically simple. Equivalently, A is not isogenous
to a product of two elliptic curves over k̄. Let Γ be its absolute Galois
group. For a positive integer m, let Am be the Z[Γ]-module of m-torsion
points of A(k̄).

Theorem 4.2.13. For any integer m, let Mm be the smallest positive in-
teger such that the cokernel of the map Endk(A) → EndΓ(Am) is killed

by Mm.3 There exists an upper bound M̃ for Mm depending on h(A) and

[k : Q] which is independent of m. Explicitly, when r̄ = 1, then M̃ equals

24664c16
1 c2(k)256

(
2h(A) + 8

17 log[k : Q] + 8 log c1 + 128 log c2(k) + 1503
)512

,

and when r̄ = 2 or 4,

M̃ = (r/4)r/2248·c16
1 c2(k)256c8(A, k)17r ·

(
16 log c1 +

256

r̄
log c2(k)

+ 16r log c8(A, k) + 4h(A) + 16
17 log[k : Q] + 1400

)512/r

.

Here r (resp. r̄) is the Z-rank of Endk(A) (resp. Endk̄(A)). We have that
r, r̄ ∈ {1, 2, 4} and r ≤ r̄.

The constants c1 and c2 are c1 = 411 · 912 and c2(k) = 7.5 · 1047[k : Q],
and c8(A, k) is

45 · 98
(
5.04 · 1024[k : Q]mA

(
5
4mA + log[k : Q] + logmA + 60

))8/r̄
,

where mA is max(1, h(A)).

We denote by b(B) the smallest integer such that for any abelian variety
B′ defined over k, if B′ is isogenous to B over k, then there exists an
isogeny φ : B′ → B over k of degree at most b(B).

Lemma 4.2.14. With notation as above, Mm ≤ (r/4)r/2Λrb(B).

3Such Mm exists since EndΓ(Am) is a finite group.
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Proof. By [MW95, Lem. 3.2], one bounds Mm by i(A)b(B), where i(A)
is the class index of the order Endk(A). By [MW95, eqn. 2.2] we have
i(A) ≤ d(A)1/2, where d(A) is the discriminant of Endk(A) as a Z-module.
Finally, by definition, d(A)1/2 = (r/4)r/2v(A) ≤ (r/4)r/2Λr.

Proof of Theorem 4.2.13. We start by bounding the smallest degree of
isogenies from B′ to B, for which we have used the notation b(B). Let
φ : B′ → B be an isogeny of the smallest degree d. We want to bound d
in terms of h(A) and [k : Q]. First, by Lemma 4.2.4, we have

h(B′) ≤ h(B) + 1
2 log deg(φ) = 2h(A) + 1

2 log deg(φ) = 2h(A) + 1
2 log d.

Then mA,B′ = max(1, h(A), h(B′)) ≤ 2h(A)+ 1
2 log d+7, since h(A) ≥ −3

by Lemma 4.2.5. Then by Lemma 4.2.12 and the fact mA,B′ ≥ logmA,B′ ,
we have

Λ′ ≤ c1

(
c2(k)

(
c3(A, k) + 1

2 log d
)2) 16

r̄
, (4.2.1)

where r̄ = 1, 2 or 4 and the constants are defined as


c1 = 411 · 912,

c2(k) = 7.5 · 1047[k : Q],

c3(A, k) = 2h(A) + 8
17 log[k : Q] + 1039

17 .

We furthermore introduce the constants
c4(A, k) =

√
c2(k)c3(A, k),

c5(k) =

√
c2(k)

2
,

c6(A, k) = 248 · c16
1 · Λ16r,

and we rewrite inequality (4.2.1) as:

Λ′ ≤ c1[c4(A, k) + c5(k) log d]
32
r̄ .

Then by Lemma 4.2.11, we have

d = deg φ ≤ 248(Λ′)16Λ16r ≤ c6(A, k) [c4(A, k) + c5(k) log d]
32·16
r̄ . (4.2.2)

We define c7(A, k) = 248 · c16
1 · c8(A, k)16r with c8(A, k) defined as

c8(A, k) =


2 if r̄ = 1,

45 · 98 ·
(

5.04 · 1024[k : Q]mA

·
(

5
4mA + log[k : Q] + logmA + 60

) )8/r̄
if r̄ = 2, 4.
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Then by Lemma 4.2.12, c6(A, k) ≤ c7(A, k). We rewrite inequality (4.2.2)
as

d
r̄

32·16 ≤ u(A, k)
(

r̄
32·16 log d+ v(A, k)

)
,

where 
u(A, k) = c7(A, k)

r̄
32·16 c5(A, k) · 32 · 16

r̄
,

v(A, k) =
c4(A, k)r̄

32 · 16c5(A, k)
.

Then by Lemma 4.2.10, we have

d
r̄

32·16 ≤ 2u(A, k)[log u(A, k) + v(A, k)].

Define
C(A, k) = 2u(A, k)[log u(A, k) + v(A, k)],

which only depends on h(A) and [k : Q]. Then we find

b(B) ≤ C(A, k)
32·16
r̄ .

By Lemmas 4.2.14, 4.2.12, we obtain:

Mm ≤ (r/4)r/2Λrb(B) ≤ (r/4)r/2c8(A, k)rC(A, k)
32·16
r̄ .

Using r ≤ r̄, in the case r̄ = 1 we find

Mm ≤ 24664c16
1 c2(k)256

(
2h(A) + 8

17 log[k : Q]

+ 8 log c1 + 128 log c2(k) + 1503
)512

,

and in the case r̄ = 2 or 4 we find that Mm is bounded above by

(r/4)r/2248 · c16
1 c2(k)256

·
(

45 · 98
(
5.04 · 1024[k : Q]mA

(
5
4mA + log[k : Q] + logmA + 60

))8/r̄)17r

·
[
16 log c1 +

256

r̄
log c2(k) + 16r log c8(A, k)

+ 4h(A) + 16
17 log[k : Q] + 1400

]512/r̄
.

The constants c1, c2(k) and c8(A, k) only depend on the Faltings height
and the degree of the field extension [k : Q].
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4.3 Effective computations of the Néron–Severi
lattice as a Galois module

Our goal of this section is to prove the following theorem:

Theorem 4.3.1. There is an explicit algorithm that takes input a smooth
projective curve Cof genus 2 defined over a number field k, and outputs
a bound of the algebraic Brauer group Br1(X)/Br0(X) where X is the
Kummer surface associated to the Jacobian Jac(C).

A general algorithm to compute Néron–Severi groups for arbitrary pro-
jective varieties is developed in [PTvL15], so here we consider algorithms
specialized to the Kummer surface X associated to a principally polarized
abelian surface A.

4.3.1 The determination of the Néron–Severi rank of A

Theorem 4.3.2. The following is a complete list of possibilities for the
rank ρ of NS(A). For any prime p we denote by ρp the reduction of ρ
modulo p.

1. When A is geometrically simple, we consider D = Endk̄(A) ⊗ Q,
which has the following possibilities:

(a) D = Q and ρ = 1. There exists a density one set of primes p
with ρp = 2.

(b) D is a totally real quadratic field. Then ρ = 2 and there exists
a density one set of primes p with ρp = 2.

(c) D is a indefinite quaternion algebra over Q. Then ρ = 3 and
there exists a density one set of primes p with ρp = 4.

(d) D is a degree 4 CM field. Then ρ = 2 and there exists a density
one set of primes p with ρp = 2. In fact this holds for the set
of p’s such that A has ordinary reduction at p.

2. When A is isogenous over k̄ to E1×E2 for two elliptic curves. Then

(a) if E1 is isogenous to E2 and CM, then ρ = 4 and ρp = 4 for all
ordinary reduction places.
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(b) if E1 is isogenous to E2 but not CM, then ρ = 3 and ρp = 4 for
all ordinary reduction places.

(c) if E1 is not isogenous to E2, then ρ = 2 and there exists a
density one set of primes p such that ρp = 2.

Notice that for all the above statements, by an abuse of language, being
density one means there exists a finite extension of k such that the primes
are of density one with respect to this finite extension.

Proof. We apply [Mum70, p. 201 Thm. 2 and p.208] (and the remark on p.
203 referring to the work of Shimura) to obtain the list of the rank ρ. When
A is geometrically simple, we can only have A of type I, II, and IV (in the
sense of the Albert’s classification). In the case of Type I, the totally real
field may be Q or quadratic. In this case, the Rosati involution is trivial.
This gives case (1)-(a,b). By [Mum70, p. 196], the Rosati involution of
Type II is the transpose and its invariants are symmetric 2-by-2 matrices,
which proves case (1)-(c). In the case of Type IV, D is a degree 4 CM
field. In this case, the Rosati involution is the complex conjugation and
this gives case (1)-(d). When A is not geometrically simple, then A is
isogenous to the product of two elliptic curves and all these cases are easy.

Notice that after a suitable field extension, there exists a density one set
of primes such that A has ordinary reduction (due to Katz, see [Ogu82]
Sec. 2). We first pass to such an extension and only focus on primes
where A has ordinary reduction. Then ρp = 2 if A mod p is geometrically
simple and ρp = 4 if A is not. Since ρp ≥ ρ, we see that ρp = 4 in (1)-(c),
(2)-(a,b) for any p where A has ordinary reduction. When ρ = 2 (case
(1)-(b,d), (2)-(c)), the dimension over Q of the orthogonal complement T
of NS(A) in the Betti cohomology H2(A,Q) is 4. By [Cha14, Thm. 1], if
ρp were 4 for a density one set of primes, then the endomorphism algebra
E of T as a Hodge structure would have been a totally real field of degree
ρp− ρ = 2 over Q. Then T would have been of dimension 2 over E, which
contradicts the assumption of the second part of Charles’ theorem. Now
the remaining case is (1)-(a). By [Cha14], for a density one set of p, the
rank ρp only depends on the degree of the endomorphism algebra E of
the transcendental part T of the H2(A,Q). This degree is the same for all
A in case (1)-(a) since E = End(T ) ⊂ End(H2(A,Q)) is a set of Hodge
cycles of A× A and all A in this case have the same set of Hodge cycles.
For more details we refer the reader to [CF16]. Hence we only need to
study a generic abelian surface. For a generic abelian surface, its ordinary
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reduction is a (geometrically) simple CM abelian surface and hence ρp is
2.

Algorithms to compute the geometric Néron–Severi rank of A

Here we discuss an algorithm provided by Charles in [Cha14]. Charles’
algorithm is to compute the geometric Néron–Severi rank of any K3 sur-
face X, and his algorithm relies on the Hodge conjecture for codimension
2 cycles in X ×X. However, the situation where the Hodge conjecture is
needed does not occur for abelian surfaces, so his algorithm is uncondi-
tional for abelian surfaces.

Suppose that A is a principally polarized abelian surface and Θ its prin-
cipal polarization. We run the following algorithms simultaneously:

1. Compute Hilbert schemes of curves on A with respect to Θ for each
Hilbert polynomial, and find divisors on A. Compute its intersec-
tion matrix using the intersection theory, and determine the rank of
lattices generated by divisors one finds. This gives a lower bound η
for ρ = rk NS(A).

2. For each finite place p of good reduction for A, compute the geo-
metric Néron–Severi rank ρp for Ap using explicit point counting on
the curve C combined with the Weil conjecture and the Tate conjec-
ture. Furthermore compute the square class δ(p) of the discriminant
of NS(Ap) in Q×/(Q×)2 using the Artin–Tate conjecture:

P2(q−s) ∼s→1

(
# Br(Ap) · | disc(NS(Ap))|

q
(1− q1−s)ρ(Ap)

)
,

where P2 is the characteristic polynomial of the Frobenius endomor-
phism on

H2
ét(Ap,Q`),

and q is the size of the residue field of p. When the characteristic
is not equal to 2, then the Artin-Tate conjecture follows from the
Tate conjecture for divisors ([Mil75]), and the Tate conjecture for
divisors in abelian varieties is known ([Tat66]). Note that as a result
of [LLR05], the size of the Brauer group must be a square. This
gives us an upper bound for ρ.
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When ρ is even, there exists a prime p such that ρ = ρp. Thus eventually
we obtain ρp = η and we compute ρ.

When ρ is odd, it is proved in [Cha14, Prop. 18] that there exist p and q
such that ρp = ρq = η + 1, but δ(p) 6= δ(q) in Q×/(Q×)2. If this happens,
then we can conclude that ρ = ρp − 1.

Remark 4.3.3. The algorithm (1) can be conducted explicitly in the fol-
lowing way: Suppose that our curve C of genus 2 is given as a subscheme
in the weighted projective space P(1, 1, 3). Let Y = Sym2(C) be the sym-
metric product of C. Then we have the following morphism

f : C × C → Y → Jac(C), (P,Q) 7→ [P +Q−KC ].

The first morphism C × C → Y is the quotient map of degree 2, and the
second morphism is a birational morphism contracting a smooth rational
curve R over the identity of Jac(C). We denote the diagonal of C × C
by ∆ and the image of the morphism C 3 P 7→ (P, ι(P )) ∈ C × C by
∆′ where ι is the involution associated to the degree 2 canonical linear
system. Then we have

f∗Θ ≡ 5p∗1{pt}+ 5p∗2{pt} −∆.

Note that f∗Θ is big and nef, but not ample. If we have a curve D on
Jac(C), then its pullback f∗D is a connected subscheme of C×C which is
invariant under the symmetric involution and f∗D.∆′ = 0, and vice verse.
Hence instead of doing computations on Jac(C), we can do computations
of Hilbert schemes and the intersection theory on C × C. This may be a
more effective way to find curves on Jac(C) and its intersection matrix.

Remark 4.3.4. The algorithm (2) is implemented in the paper [EJ12a].

4.3.2 The computation of the Néron–Severi lattice and its
Galois action

Here we discuss an algorithm to compute the Néron–Severi lattice and
its Galois structure. We have an algorithm to compute the Néron–Severi
rank of A, so we may assume it to be given. First we record the following
algorithm:

Lemma 4.3.5. Let S be a polarized abelian surface or a polarized K3 sur-
face over k, with an ample divisor H. Suppose that we have computed a
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full rank sublattice M ⊂ NS(S) containing the class of H, i.e., we know
its intersection matrix, the Galois structure on M ⊗Q, and we know gen-
erators for M as divisors in S. Then there is an algorithm to compute
NS(S) as a Galois module.

Proof. We fix a basis B1, · · · , Br for M which are divisors on S. First note
that the Néron–Severi lattice NS(S) is an overlattice of M . By Nikulin
[Nik79, Sec. 1-4], there are only finitely many overlattices, (they corre-
spond to isotropic subgroups in D(M) = M∨/M), and moreover we can
compute all possible overlattices of M explicitly. Let N be an overlattice
of M . We can determine whether N is contained in NS(S) in the following
way:

Let D1, . . . , Ds be generators for N/M . The overlattice N is contained in
NS(S) if and only if the classes Di are represented by integral divisors.
After replacing Di by Di+mH, we may assume D2

i > 0 and (Di ·H) > 0.
If Di is represented by an integral divisor, then it follows from Riemann–
Roch that Di is actually represented by an effective divisor Ci. We define
k = (Di ·H) and c = −1

2D
2
i . The Hilbert polynomial of Ci with respect

to H is Pi(t) = kt + c. Now we compute the Hilbert scheme HilbPi

associated with Pi(t). For each connected component of HilbPi , we take a
member Ei of the universal family and compute the intersection numbers
(B1 ·E), . . . , (Br ·E). If these coincide with the intersection numbers of Di,
then that member Ei is an integral effective divisor representing Di. If we
cannot find such an integral effective divisor for any connected component
of HilbPi , then we conclude that N is not contained in NS(S).

In this way we can compute the maximal overlattice Nmax all whose classes
are represented by integral divisors. This lattice Nmax must be NS(S).
Since M is full rank, the Galois structure on M induces the Galois struc-
ture on NS(S).

From now on we focus on the case where A is simple and has Néron–Severi
rank ρ = 1.

Proposition 4.3.6. Let A be a principally polarized abelian surface de-
fined over a number field k whose geometric Néron–Severi rank is 1. Let
X be the Kummer surface associated to A. Then there is an explicit algo-
rithm that computes NS(X) as a Galois module and furthermore computes
the group Br1(X)/Br0(X).
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The abelian surface A is a principally polarized abelian surface, so the
lattice NS(A) is isomorphic to the lattice 〈2〉 with the trivial Galois action.
We denote the blow up of 16 2-torsion points on A by Ã and the 16
exceptional curves on Ã by Ei. There is an isometry

NS(Ãk)
∼= NS(A)⊕

16⊕
i=1

ZEi.

We want to determine the Galois structure of this lattice. To this end,
one needs to understand the Galois action on the set of 2-torsion elements
on A. This can be done explicitly in the following way: Suppose that A
is given as a Jacobian of a smooth projective curve C of genus 2. Then
C is a hyperelliptic curve whose canonical linear series is a degree 2 mor-
phism. We denote the ramification points (over k) of this degree 2 map
by p1, · · · , p6. One can find the Galois action on these ramification points
from the polynomial defining C. All non-trivial 2-torsion points of A are
given by pi − pj where i < j. Note that pi − pj ∼ pj − pi as classes
in Pic(C). Thus, we can determine the Galois structure on the set of
2-torsion elements of A.

Let X be the Kummer surface associated to A with the degree 2 finite
morphism π : Ã→ X. We take the pushforward of NS(Ãk̄) in NS(X):

NS(X) ⊃ π∗NS(Ãk̄)
∼= π∗NS(A)⊕

16⊕
i=1

Zπ∗Ei.

This is a full rank sublattice. Thus the Galois representation for NS(Ãk̄)
tells us the representation for NS(X). Hence we need to determine the
lattice structure for NS(X). This is done in [LP80, Sec. 3]. Let us recall
the description of the Néron–Severi lattice for any Kummer surface.

According to [LP80, Prop. 3.4] and [LP80, Prop. 3.5], the sublattice
π∗NS(Ãk̄) is primitive in NS(X), and its intersection pairing is twice the

intersection pairing of NS(Ãk̄). In particular, in our situation, we have

π∗NS(Ãk̄)
∼= 〈4〉. Let K be the saturation of the sublattice generated by

the π∗Ei’s. Nodal classes π∗Ei have self intersection −2. We have the
following inclusions:

16⊕
i=1

Zπ∗Ei ⊂ K ⊂ K∨ ⊂

(
16⊕
i=1

Zπ∗Ei

)∨
=

16⊕
i=1

1

2
Zπ∗Ei
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where L∨ denotes the dual abelian group of a given lattice L. We denote
the set of 2-torsion elements of A by V . We can consider V as the 4 dimen-
sional affine space over F2. Then we can interpret

⊕16
i=1

1
2Zπ∗Ei/Zπ∗Ei

as the space of 1
2Z/Z-valued functions on V . [LP80, Prop 3.6] shows that

with this identification, the image of K (resp. K∨) in
⊕16

i=1
1
2Z/Z consists

of polynomial functions V → 1
2Z/Z of degree ≤ 1 (resp. ≤ 2.) Hence we

have [
K :

16⊕
i=1

Zπ∗Ei

]
= 25, [K∨ : K] = 26.

This description allows us to choose an explicit basis for K as well as to
find its intersection matrix. The discriminant group of K is isomorphic to
F6

2 whose discriminant form is given by

0 0 0 0 0 1
2

0 0 0 0 1
2 0

0 0 0 1
2 0 0

0 0 1
2 0 0 0

0 1
2 0 0 0 0

1
2 0 0 0 0 0

 .

This discriminant form is isometric to the discriminant form of π∗H
2(A,Z)

which is isomorphic to(
0 2
2 0

)
⊕
(

0 2
2 0

)
⊕
(

0 2
2 0

)
Now we have overlattices:

π∗NS(A)⊕K ⊂ NS(X).

To identify NS(X), we consider the following overlattices:

π∗H2(A,Z)⊕K ⊂ H2(X,Z).

One can describe H2(X,Z) using techniques in [Nik79, Sec 1.1-1.5]. Since
the second cohomology of any K3 surface is unimodular, we have the
following inclusions:

π∗H2(A,Z)⊕K ⊂ H2(X,Z) = H2(X,Z)∨ ⊂ (π∗H2(A,Z))∨ ⊕K∨

This gives us the following isotropic subgroup in the direct sum of the
discriminant forms:

H = H2(X,Z)/π∗H2(A,Z)⊕K ↪→ D(π∗H2(A,Z))⊕D(K)
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where D(L) denotes the discriminant group of a given lattice L.

Since π∗H2(A,Z) and K are primitive in H2(X,Z), each of the projec-
tions H → D(π∗H2(A,Z)) and H → D(K) is injective. Moreover, since
H2(X,Z) is unimodular, the isotropic subgroup H must be maximal inside
D(π∗H2(A,Z))⊕D(K). This implies that both injections are in fact iso-
morphisms. Thus we determine H2(X,Z) as an overlattice corresponding
to H in D(π∗H2(A,Z))⊕D(K). Note that we can apply the orthogonal
group O(K) to H so that H is unique up to this action. Namely if we
fix an identification qK = −qK ∼= qπ∗ H2(A,Z) and D(K) ∼= D(π∗H2(A,Z)),

then we can think of H as the diagonal in D(K)⊕D(π∗H2(A,Z)).

We succeeded in expressing our embedding π∗H
2(A,Z)⊕K ↪→ H2(X,Z),

hence we can express NS(X) as

NS(X) = H2(X,Z) ∩ (π∗NS(A)⊕K)⊗Q.

Note that an embedding of NS(A) into H2(A,Z) is unique up to isometries
because of [Nik79, Thm 1.1.24], so we can map a generator of NS(A) to

e+ f where e, f is a basis for the hyperbolic plane U =

(
0 1
1 0

)
. Thus we

determine the lattice structure of NS(X).

Remark 4.3.7. In §4.5, we will in fact use a somewhat simpler argument
in order to describe NS(X) as a Galois module. The advantage of the
argument given in the current section is that it can be made applicable
for higher rank cases.

4.4 Effective bounds for the transcendental part
of Brauer groups

Let A be a principally polarized abelian surface defined over a number field
k. Let X = Kum(A) be the Kummer surface associated to the abelian
surface A. The goal of this section is to prove the following theorem:

Theorem 4.4.1. There exists an effectively computable constant N1 de-
pending on the number field k, the Faltings height h(A), and NS(A) satis-
fying

#
Br(X)

Br1(X)
≤ N1.

4attributed to D.G. James
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Remark 4.4.2. In this section we focus on the proof of the method in the
general case. In case that A is not geometrically simple, better bounds
can be found based on recent work of Newton [New16].

First we use the following important theorem by Skorobogatov and Zarhin:

Theorem 4.4.3. [SZ12, Prop. 1.3] Let A be an abelian surface defined
over a number field k and X = Kum(A) the associated Kummer surface.
Then there is a natural map

Br(X) ∼= Br(A)

which is an isomorphism of Galois modules.

Hence there is an injection

Br(X)

Br1(X)
↪→ Br(X)Γ = Br(A)Γ,

where Γ = Gal(k̄/k). Thus, to bound Br(X)
Br1(X) in terms of k, the Faltings

height h(A), and δ = det(NS(A)), we only need to bound Br(Ā)Γ.

Also we would like to recall the following important result about the geo-
metric Brauer groups:

Theorem 4.4.4. As abelian groups, we have the following isomorphisms:

Br(X) ∼= Br(A) ∼= (Q/Z)6−ρ,

where ρ = ρ(A) is the geometric Néron–Severi rank of A.

Proof. This follows from the remark before [SZ12, Lem. 1.1].

We discuss several lemmas to prove our main Theorem 4.4.1. Recall that
M̃ is the constant from Theorem 4.2.13.

Lemma 4.4.5. Let N2 = max{M̃, δ} where δ = disc(NS(A)). Then for
any prime number ` > N2 we have

Br(A)Γ
` = {0},

where Br(A)Γ
` denotes the `-torsion group of Br(A)Γ.
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Proof. This essentially follows from results in [SZ08] combined with The-
orem 4.2.13. The following exact sequence occurs as the n = 1 case of
[SZ08, p. 486 (5)]:

0→
(
NS(A)/`

)Γ f→ H2
ét(A,µ`)

Γ → Br(A)Γ
` →

→ H1(Γ,NS(A)/`)
g→ H1(Γ,H2

ét(A,µ`)).

The discussion in [SZ08, Prop. 2.5 (a)] shows that NS(A)⊗ Z` is a direct
summand of H2

ét(A,Z`(1)) for any prime ` - δ. For such `, the homomor-
phism g in the above exact sequence is injective.

Next, Theorem 4.2.13 asserts that there exists an effectively computable
integer M̃ > 0 depending on k and h(A) such that for any prime ` > M̃ ,
we have an isomorphism:

Endk(A)/` ∼= EndΓ(A`).

The discussion in [SZ08, Lem. 3.5] shows that for such `, the homomor-
phism f is bijective. Thus our assertion follows.

Thus, to prove our main theorem, we need to bound Br(A)Γ(`) for each
prime number ` where Br(A)Γ(`) denotes the `-primary subgroup of el-
ements whose orders are powers of `. To achieve this task, we employ
techniques from [HKT13, §7 and 8].

We fix an embedding k ↪→ C and consider the following lattice:

H2(A(C),Z).

It contains NS(A) as a primitive sublattice and we denote its orthogonal
complement by TA = 〈NS(A)〉⊥

H2(A(C),Z)
and call it the transcendental

lattice of A. The direct sum NS(A) ⊕ TA is a full rank sublattice of
H2(A(C),Z) and we can put it into the exact sequence:

0→ NS(A)⊕ TA → H2(A(C),Z)→ K → 0,

where K is a finite abelian group of order δ = disc(NS(A)). Tensoring
with Z` and using a comparison theorem for the different cohomologies,
we have

0→ NS(A)` ⊕ TA,` → H2
ét(A,Z`(1))→ K` → 0,
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where NS(A)` = NS(A) ⊗ Z`, TA,` = TA ⊗ Z`, and K` is the `-primary
part of K. The second étale cohomology H2

ét(A,Z`(1)) comes with a nat-
ural pairing which is compatible with Γ-action, and TS,` is the orthogonal
complement of NS(A)`. In particular, TA,` has a natural structure as a
Galois module.

Lemma 4.4.6. Fix a prime number `. Let N3,` = (6− ρ)log`M̃ . Then for
each integer n ≥ 1 the bound

#(TA/`
n)Γ ≤ `N3,`

is satisfied.

Proof. Since A is principally polarized, we have a natural isomorphism of
Galois modules:

H1
ét(A,Z`(1)) ∼= (H1

ét(A,Z`(1)))∗ ∼= T`(A),

where T`(A) is the Tate module of A. Hence we have

TA,` ↪→ H2
ét(A,Z`(1)) = ∧2 H1

ét(A,Z`(1))

↪→ H1
ét(A,Z`(1))⊗H1

ét(A,Z`(1)) ∼= End(T`(A)).

Thus we have

(TA/`
n) = (TA,`/`

n) ↪→ End(T`(A))/`n = End(A[`n]).

Hence we obtain a homomorphism

Φ : (TA/`
n)Γ ↪→ EndΓ(A[`n])→ EndΓ(A[`n])/End(A).

This composite homomorphism Φ must be injective because TA is the
transcendental lattice which does not meet the algebraic part End(A).
The order of this quotient is bounded by Theorem 4.2.13.

Taking a finite extension of k only increases the size of Br(A)Gal(k̄/k′),
so from now on we assume that the Galois action on the Néron–Severi
space NS(A) is trivial. This is automatically true when the geometric
Néron–Severi rank of A is 1.

Lemma 4.4.7. Suppose that the Galois action on NS(A) is trivial. Write

N4,` = (2v`(δ) + 10 log` M̃)(6− ρ)

where v` is the valuation at `. Then for each prime `, we have

# Br(A)Γ(`) ≤ `N4,` .
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Proof. Recall the exact sequence of [SZ08, p. 486 (5)]:

0→
(
NS(A)/`n

)Γ fn→ H2
ét(A,µ`n)Γ → Br(A)Γ

`n →

→ H1(Γ,NS(A)/`n)
gn→ H1(Γ,H2

ét(A,µ`n)),

so we need to bound the cokernel of fn and the kernel of gn independent
of n. By Theorem 4.4.4, it is enough to bound the orders of elements in
coker(fn) as well as ker(gn) independently of n.

Let `m be the order of K` and we assume that n ≥ m. We have the
following exact sequence:

0→ NS(A)` ⊕ TA,` → H2
ét(A,Z`(1))→ K` → 0.

Tensoring by Z/`nZ (as Z`-modules) and using Tor functors, we obtain a
four term exact sequence:

0→ K` → NS(A)/`n ⊕ TA/`n → H2
ét(A,µ`n)→ K` → 0, (4.4.1)

where we’ve used that the middle term H2
ét(A,Z`(1)) is a free (and hence

flat) Z`-module.

Note that the projection

K` → NS(A)/`n

is injective because TA/`
n → H2(A,µ`n) is injective. In particular, the

Galois action on K` is trivial. We split the exact sequence (4.4.1) as

0→ K` → NS(A)/`n ⊕ TA/`n → D → 0,

and

0→ D → H2
ét(A,µ`n)→ K` → 0.

These gives us the long exact sequences

0→ K` → NS(A)/`n ⊕ (TA/`
n)Γ → DΓ →

→ Hom(Γ,K`)→ Hom(Γ,NS(A)/`n)⊕H1(Γ, TA/`
n),

and

0→ DΓ → H2
ét(A,µ`n)Γ → K` → H1(Γ, D)→ H1(Γ,H2

ét(A,µ`n)).
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The map Hom(Γ,K`)→ Hom(Γ,NS(A)/`n) is injective, so the sequence

0→ K` → NS(A)/`n ⊕ (TA/`
n)Γ → DΓ → 0,

is exact. We conclude that

# coker(fn) =
# H2

ét(A,µ`n)Γ

# NS(A)/`n
≤ #K` ·#DΓ

# NS(A)/`n
= #(TA/`

n)Γ

is bounded independent of n by application of Lemma 4.4.6.

Next we discuss a uniform bound on the maximum order of elements in
ker(gn). The homomorphism gn is a composition of two homomorphisms:

H1(Γ,NS(A)/`n)→ H1(Γ, D)→ H1(Γ,H2
ét(A,µ`n)).

The kernel of H1(Γ, D)→ H1(Γ,H2
ét(A,µ`n)) is bounded by K`. We have

the exact sequence

0→ NS(A)/`n → D → D/NS(A)→ 0,

which gives the long exact sequence

0→ NS(A)/`n → DΓ → (D/NS(A))Γ → H1(Γ,NS(A)/`n)→ H1(Γ, D).

Thus to finish the proof we need to find an uniform bound for the max-
imum order of elements in (D/NS(A))Γ. To obtain this, we look at the
exact sequence

0→ K` → TA/`
n → D/NS(A)→ 0.

This gives us the long exact sequence

0→ K` → (TA/`
n)Γ → (D/NS(A))Γ → Hom(Γ,K`).

Note that the group Hom(Γ,K`) is killed by #K`. Finally, #(TA/`
n)Γ is

uniformly bounded by the result of Lemma 4.4.6. Therefore the maximum
order of elements in (D/NS(A))Γ is uniformly bounded and our assertion
follows.

Proof of Theorem 4.4.1. It follows from Lemma 4.4.5 and 4.4.7 that we
can take N1 as

δ10
∏
`≤N2

M̃50.
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4.5 Computations on rank 17

In this section we discuss some computations in order to determine the
group Br1(X)/Br0(X) through H1(k,NS(X)) using Magma, where the
geometric Néron–Severi rank of X is 17.5 Recall that the Néron–Severi
lattice of a Kummer surface is determined by the sixteen 2-torsion points
on the associated abelian surface and its Néron–Severi lattice. A princi-
pally polarized abelian surface is the Jacobian of a genus 2 curve C and
its 2-torsion points correspond to the classes pi − pj of differences of the
six ramification points of C → P1.

First we need to fix some ordering. Let {p1, . . . , p6} be the ramification
points of C. Then on Jac(C)[2] = {0, pi−pj : i < j} the following additive
rule holds

pi − pj = pk − pl + pn − pm

where {i, j} and {k, l,m, n} are two complementary subsets of {1, . . . , 6}.
Lemma 4.5.1. The set

{p1 − p2 =: v1, p1 − p3 =: v2, p1 − p4 =: v3, p1 − p5 =: v4}

forms a basis of Jac(C)[2] ∼= F4
2.

Proof. In order to write 0 as a linear combination of these elements (over
F2), we need to use an even number. Since any two of these are different,
this may only be done using all four of them. However, the sum of these
four elements is p2 − p3 + p4 − p5 = p1 − p6 6= 0.

We order the 2-torsion elements in terms of pi − pj and in terms of vi in
Table 4.1.

The Galois action is defined by a subgroup of S6, acting on the six ram-
ification points pi and hence on the set of ei. This action defines S6 as
a subgroup of S16. We know that S6 is generated by the two elements
(1, 2) and (1, 2, 3, 4, 5, 6), so to determine the map S6 → S16 we need only
specify the images of (1, 2) and (1, 2, 3, 4, 5, 6).

5In the published paper there is a typo: this rank is said to be assumed to be
1 instead. In the case we are considering, this does hold for the associated abelian
surface.
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Lemma 4.5.2. Let ρ : S6 → S16 be the map that represents the action of
S6 on the sixteen 2-torsion points ei. Then

ρ((1, 2)) = (3, 4)(5, 6)(9, 10)(15, 16)

and

ρ((1, 2, 3, 4, 5, 6)) = (2, 4, 7, 13, 8, 16)(3, 6, 11, 12, 9, 15)(5, 10, 14)

hold.

Proof. Direct computation on the elements in Table 4.1, e.g. ρ((1, 2))
maps e3 = p1 − p3 to p2 − p3 = e4.

e1 = 0 e9 = p1 − p5 = v4

e2 = p1 − p2 = v1 e10 = p2 − p5 = v1 + v4

e3 = p1 − p3 = v2 e11 = p3 − p5 = v2 + v4

e4 = p2 − p3 = v1 + v2 e12 = p4 − p6 = v1 + v2 + v4

e5 = p1 − p4 = v3 e13 = p4 − p5 = v3 + v4

e6 = p2 − p4 = v1 + v3 e14 = p3 − p6 = v1 + v3 + v4

e7 = p3 − p4 = v2 + v3 e15 = p2 − p6 = v2 + v2 + v4

e8 = p5 − p6 = v1 + v2 + v3 e16 = p1 − p6 = v1 + v2 + v3 + v4

Table 4.1: Chosen ordering of 2-torsion elements in both descriptions.

Using the description from [LP80, Prop. 3.4 and 3.5] as explained in §4.3.2,
the lattice K is generated by

⊕16
i=1 Zπ∗Ei together with lifts from poly-

nomials in four variables with values in 1
2Z/Z of degree at most 1. These

are generated as an abelian group by x1, x2, x3, x4, 1, where the set of xi’s
is dual to the set of vj ’s in the sense xi(vj) = δij . We identify the set of
exceptional curves with the set of 2-torsion points in the natural way by
identifying Ei and ei for each i = 1, . . . , 16.

From a theoretical perspective, one could use the approach as laid out in
§4.3.2 in order to calculate NS(X), but for the case rk NS(A) = 1, it turns
out that there is an easier approach which involves knowing the index of
π∗NS(A)⊕K in NS(X).

Lemma 4.5.3. Let A be an abelian surface of Néron–Severi rank ρ, write
X = Kum(A) and let K be the saturation of

⊕16
i=1 Zπ∗Ei inside NS(X).

Then the index of π∗NS(A)⊕K inside NS(X) is 2ρ.
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Proof. Write t = |disc NS(A)|, then also t = | discT (A)| holds, where
T (A) is the transcendental lattice of A, since H2(A,Z) is unimodular. We
have equality of ranks

rkT (X) = rkT (A) = 6− ρ,

and hence | discT (X)| = t ·26−ρ from which follows |disc NS(X)| = t ·26−ρ

since H2(X,Z) is unimodular.

Let L = π∗NS(A). Then rkL = ρ and |discL| = 2ρt hold.

We use the chain of inclusions

L⊕K ⊂ NS(X) ⊂ NS(X)∨ ⊂ L∨ ⊕K∨

The index of L⊕K ⊂ L∨ ⊕K∨ is 2ρt · 26 (see §4.3.2 for the discriminant
of K) and combining with the discriminants above, we find the statement
of the lemma.

From now on, assume ρ = 1, i.e. the geometric Néron–Severi rank of X is
17. Let l be the push-forward of the theta-divisor on A. Then l2 = 4 and
by Lemma 4.5.3, the index of Λ := 〈l〉 ⊕ K in NS(X) is 2. It therefore
suffices to find a single element D ∈ NS(X) such that 2D is an element of
Λ but D itself is not. Then Λ and D together span NS(X).

Lemma 4.5.4. Up to isomorphism there is only one index 2 even overlat-
tice of Λ.

Proof. Even overlattices of index 2 correspond to isotropic subgroups of
the discriminant group D(Λ) = D(π∗NS(A))⊕D(K) of order 2. Since K is
saturated, a generating element of such a subgroup projects to an element
of D(π∗NS(A)) which has order exactly 2. Since D(π∗NS(A)) is isomor-
phic to 1

4Z/Z, there is only one such element, which has square 1 (mod 2).
We therefore need to consider order 2 elements of square 1 (mod 2) in
D(K). Since we remember the intersection form on D(K) from section
4.3.2, we easily see that there are four such elements, with coordinates
(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 1, 0), (0, 0, 1, 1, 0, 0) and (1, 1, 1, 1, 1, 1). By cal-
culating the centralizer of the intersection matrix of D(K) inside GL6(F2),
that is O(D(K)), it is easily found that each of these lie in the same orbit
under the action of O(D(K)).

It is worthwhile to remark that the Galois action on the 2-torsion points
of A induces an action on D(K) and only one of the four elements in the

145



4.6. AN EXAMPLE

previous proof is invariant under the action of the full symmetric group
S6, which in our chosen basis is (1, 1, 1, 1, 1, 1).

Lemma 4.5.5. The element

D =
1

2
(π∗E1 + π∗E8 + π∗E12 + π∗E14 + π∗E15 + π∗E16 + l)

together with Λ spans NS(X).

Proof. We already know that the coefficient of l is non-zero since K is
saturated in NS(X), and by adding a suitable element of 2Λ to D, we can
write D = 1

2 l + 1
2

∑16
i=1 aiπ∗Ei, where for each i we take ai ∈ {0, 1

2 , 1,
3
2}.

By intersecting D with any of the π∗Ei, we find ai ∈ {0, 1} since the
intersection needs to be integral. From D2 ∈ 2Z we deduce the congruence∑16

i=1 ai ≡ 2 (mod 4). Furthermore, the projection of D to D(K) needs to
be one of the four elements from the proof of Lemma 4.5.4. In order to
ensure that the lattice we generate is a Galois module for any subgroup
of S6, the element D from the statement is chosen so that it projects to
the unique S6-invariant one.

Now that we have computed NS(X), we can have Magma take Galois
cohomology by applying the action from Lemma 4.5.2 and we find

H1(k,NS(X)) = 1.

We can furthermore consider the case where the Galois group is not the
full S6. The Magma computations also yield the following:

Proposition 4.5.6. Up to conjugation there are only three subgroups H
of S6 for which H1(H,NS(X)) is non-trivial: one of order 4 (isomorphic
to Z/2Z×Z/2Z), one of order 12 (isomorphic to A4) and one of order 60
(isomorphic to A5). In each of these cases we find H1(H,NS(X)) ∼= Z/2Z.

4.6 An example

In this section we compute a concrete bound as stated in Theorem 4.2.13.
Let us consider the genus 2 curve defined over Q by:

C : y2 = x6 + x3 + x+ 1.
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Let A denote the Jacobian of C. Thanks to the algorithm provided by
Elsenhans and Jahnel in [EJ12a] we compute the Néron–Severi rank of A
and we obtain that its geometric Néron–Severi rank is 1. By Theorem
4.3.2 we know End(A) = Z.

Since x6 + x3 + x + 1 = (x + 1)(x2 + 1)(x3 − x2 + 1), the splitting field
F of x6 + x3 + x + 1 is the composite field of Q(

√
−1) and the splitting

field F1 of x3 − x2 + 1. The Galois group Gal(F/Q) has 12 elements
and two normal subgroups: Z/2Z and S3. By Proposition 4.5.6, the only
exceptional subgroup with 12 elements is A4. Since the only nontrivial
normal subgroup of A4 has 4 elements, Gal(F/Q) cannot be one of the
exceptional subgroups of S6. Therefore the algebraic Brauer group is
trivial.

To compute the bound of Theorem 4.2.13 we need to compute the Faltings
height of the abelian surface A. By Proposition 4.2.1, h(A) is bounded
above by

− log(2π2) + 1
10 log

(
2−12 Disc6

(
4(x6 + x3 + x+ 1)

))
− log

(
2−1/5|J10|1/10 det(=τ)1/2

)
,

with 2−12 Disc6

(
4(x6 + x3 + x+ 1)

)
= 212 · 25 · 23, |J10| = 0.001921635

and

τ =

(
−1.49097 + 1.64505i −0.50000 + 0.98058i
−0.50000 + 0.98058i −1.50903 + 1.64505i

)
.

Hence h(A) ≤ −0.79581. In our situation we have k = Q, so we can bound
M by plugging these into

M ≤ 24664c16
1 c2(k)256

(
2h(A) + 8

17 log[k : Q] + 8 log c1

+ 128 log c2(k) + 1503
)512

with c1 = 411 · 912 and c2(k) = 7.5 · 1047[k : Q].

Using Magma we get

M ≤ M̃ = 8.7× 1016100.

Let X = Kum(A). We may apply Theorem 4.4.1 directly to obtain an
explicit bound. However, since the curve C is defined over Q, we will
combine our bound in Lemma 4.4.7 with the results of Dieulefait and
Skorobogatov–Zarhin to obtain a sharper bound as pointed out by one of
the referees.
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Proposition 4.6.1 (Dieulefait6.). For ` ≥ 3, the image of Gal(Q/Q) in
Aut(A[`]) is GSp4(F`).

Proof. Note that C is isomorphic to the curve defined by y2 = x6−x3−x+1
and hence by [Die02, Thm. 4.2], the image of Gal(Q/Q) in Aut(A[`]) is
GSp4(F`) for ` 6= 2, 3, 5, 23. By [BLR90, Ex.9.2.8]7, one finds that [Die02
Prop 5.4] applies. The order of the component group of the Néron-model
is ordp(n) where n is the resultant of f(x) and f ′(x). For p = 5 (resp.
p = 23) this order is 2 (resp. 1). Now we apply [Die02, Thm. 5.4] and
we use MAGMA to compute characteristic polynomials of Frobenii for
hyperelliptic curves over Q. We first take p = 5 and q = 11 (resp. q = 19).
Since the characteristic polynomial of Frobq is irreducible modulo 3 (resp.
23), we conclude that the image of Gal(Q/Q) in Aut(A[`]) is GSp4(F`) for
` = 3, 23. We then take p = 23 and q = 29 to conclude that the image of
Gal(Q/Q) in Aut(A[`]) is GSp4(F`) for ` = 5.

Proposition 4.6.2 (Skorobogatov–Zarhin). For ` ≥ 3, we have

Br(A)Γ(`) = 0.

Proof. It suffices to show that the assumptions of [Sko17, Prop. 4.2] are
satisfied when image of Gal(Q/Q) in Aut(A[`]) is GSp4(F`). This follows
from PSp4(F`) being a simple non-abelian group of order > ` as in the
argument in Example 1 in loc. cit..

Corollary 4.6.3. For the Kummer surface X = Kum(Jac(C)) with C
defined by y2 = x6 + x3 + x+ 1, we have

|Br(X)/Br0(X)| < 210 · 10805050.

Proof. By Propositions 4.6.1 and 4.6.2, we have |Br(X)Γ| = |Br(A)Γ(2)|.
By Lemma 4.4.7, we have

|Br(A)Γ(2)| <
∏

`10v`(δ) · (8.7× 1016100)50 < 210 · 10805050.

Since Br1(X)/Br0(X) = 0, we conclude that

|Br(X)/Br0(X)| ≤ |Br(X)Γ| < 210 · 10805050.

6The results in [Die02] are stated as conditional upon Serre’s modularity conjecture,
which is now proved by Khare and Wintenberger [KW09a,KW09b]

7Alternatively one may use the SAGE function genus2reduction.
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Remark 4.6.4. The above algorithm works for any genus 2 (hyperelliptic)
curve over Q. More precisely, we may use Dieulefait’s algorithm in [Die02]
to find a finite set S such that for any ` /∈ S, the image of Gal(Q/Q) in
Aut(Jac(C)[`]) is GSp4(F`) and hence by [Sko17, Prop. 4.2], we conclude
that Br(A)Γ(`) = 0 for ` /∈ S. Then by Lemma 4.4.7, we have

|Br(X)/Br1(X)| < δ2(6−ρ) · M̃10(6−ρ)|S|.
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Exp. No. 795, 4, 115–161. Séminaire Bourbaki, Vol. 1994/95. ↑120
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[Paz14] F. Pazuki, Décompositions en hauteurs locales (2014). preprint available
at https://arxiv.org/abs/1205.4525. ↑120, 121

[Pey17] Emmanuel Peyre, Liberté et accumulation, Doc. Math. 22 (2017),
1615–1659. ↑10

[Pey18] , Beyond heights: slopes and distribution of rational points (2018).
preprint available at https://arxiv.org/abs/1806.11437. ↑10

[Pey95] , Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke
Math. J. 79 (1995), no. 1, 101–218. ↑9, 10

[PSD91] R. G. E. Pinch and H. P. F. Swinnerton-Dyer, Arithmetic of diagonal
quartic surfaces. I, L-functions and arithmetic (Durham, 1989), 1991,
pp. 317–338. ↑14

[PT01] Emmanuel Peyre and Yuri Tschinkel, Tamagawa numbers of diagonal cubic
surfaces, numerical evidence, Math. Comp. 70 (2001), no. 233, 367–387.
↑109

[PTvL15] Bjorn Poonen, Damiano Testa, and Ronald van Luijk, Computing Néron-
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R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 7, 397–402. ↑51

[Ser97] , Lectures on the Mordell-Weil theorem, Third, Aspects of Mathe-
matics, Friedr. Vieweg & Sohn, Braunschweig, 1997. Translated from the
French and edited by Martin Brown from notes by Michel Waldschmidt,
With a foreword by Brown and Serre. ↑10

[Sha08] William Shakespeare, Complete works, The RSC Shakespeare, Red Globe
Press, Basingstoke, 2008. Edited by Jonathan Bate and Eric Rasmussen. ↑

[Sil92] A. Silverberg, Fields of definition for homomorphisms of abelian varieties,
J. Pure Appl. Algebra 77 (1992), no. 3, 253–262. ↑123

[Sko17] A. N. Skorobogatov, Kummer varieties and their Brauer groups (2017).
preprint available at https://arxiv.org/abs/1612.05993. ↑118, 119, 148,
149

[Sof16] E. Sofos, Serre’s problem on the density of isotropic fibres in conic bundles,
Proc. Lond. Math. Soc. (3) 113 (2016), no. 2, 261–288. ↑51

[SVM18] Efthymios Sofos and Erik Visse-Martindale, The density of fibres with a ra-
tional point for a fibration over hypersurfaces of low degree (2018). preprint
available at https://arxiv.org/abs/1804.05768. ↑51

[SZ08] Alexei N. Skorobogatov and Yuri G. Zarhin, A finiteness theorem for the
Brauer group of abelian varieties and K3 surfaces, J. Algebraic Geom. 17
(2008), no. 3, 481–502. ↑11, 116, 118, 139, 141

[SZ12] , The Brauer group of Kummer surfaces and torsion of elliptic
curves, J. Reine Angew. Math. 666 (2012), 115–140. ↑117, 118, 138

[SZ14] , The Brauer group and the Brauer-Manin set of products of vari-
eties, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 4, 749–768. MR3191975
↑116

[Tan88] S. G. Tankeev, Surfaces of type K3 over number fields, and l-adic repre-
sentations, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 6, 1252–1271,
1328. ↑15

[Tat65] John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical
Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), 1965, pp. 93–110.
↑15

[Tat66] John Tate, Endomorphisms of abelian varieties over finite fields, Invent.
Math. 2 (1966), 134–144. ↑132
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Summary

Here’s the scroll,
The continent and summary of my fortune

Bassanio, The Merchant of Venice, Scene 3.2, lines 132-133

This PhD thesis concerns the topic of ‘arithmetic geometry’, that is, the
interplay between arithmetic on the one hand – integer numbers, their
addition and multiplication, and their fractions – and geometry on the
other – shapes and their intersections. We address three different questions
and each of the questions in some way is about counting how big some set
is or can be.

In arithmetic geometry we are interested in so called polynomial equations:
we restrict ourselves to only use fractions of integers and any number of
indeterminates – sometimes also called variables – and the rules we may
use are just addition, multiplication, and exponentiation with positive
integer powers. That means no square roots, logarithms, or trigonometric
functions for example. That may feel like a relief (we may forget half of
our secondary school mathematics), but the questions that arise turn out
to be surprisingly difficult. Some of them date back at least to the ancient
Greeks, if not further!

So what are the questions that we want to study? Take for example the
equation

x2 + y2 = 1. (5.1)

You may remember from that half of secondary school mathematics that
we did not forget in the last paragraph that this is the equation of a circle
in a plane. In other words: if we label our axes x and y and we draw all
the points in the plane that have x- and y-coordinates which satisfy the
equation, our drawing will take the shape of a circle. This is where we
see the geometry appear naturally. How about the arithmetic? Well, we
cannot individually draw all the points on a circle – there are simply too
many of them. Let us separate them into two sets. One set, which we will
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call S, will contain all those points whose coordinates x and y are fractions
of integer numbers, for example (1, 0) lies in S, and so does (3

5 ,
4
5). The

other set will contain all the other points, for example (1
2

√
2, 1

2

√
2), and

we will ignore it. Now the set S is still infinite, but let us impose a further
restriction on its elements. What if we don’t take all possible fractions,
but we only use those whose numerator and denominator are small, let’s
say less than some number B that we may freely choose? This set is finite
so we can count the number N of elements of this set, which depends on
what we choose for B.

Question 1: How exactly does this number N depend on B?

In this case the answer is not too difficult to find and it turns out to be a
linear function in B. But if we replace equation (5.1) by a more difficult
equation, say

x4 + y4 − 3z4 = 1, (5.2)

then the question has become a whole lot more difficult. With the extra
variable z, the dimension of the corresponding geometric object is raised to
two (whereas the circle has dimension one), and with the higher exponent
4, the shapes get more complicated. For equations of this new shape, no
definitive answer has been proven to date. In Chapter 2 we give evidence
(which is not synonymous to ‘proof’) that the answer should be some
explicit power of logB. Indeed, to understand the answer, we need to
relearn about logarithms!

Chapter 3 deals with a similar question, and to explain this question, we
need to learn about modular arithmetic. In essence, this is arithmetic like
on a clock: every 12 hours the time on the clock is repeated. How can
we phrase this in mathematics? On the clock we know that 13 equals
1, 14 equals 2 and so on. Mathematically we equate a number with its
remainder upon division by 12. Indeed, we have 13 = 1 × 12 + 1, and
14 = 1× 12 + 2, and so on. There is no need to stop at 24: we also have
35 = 2 × 12 + 11, so we equate 35 with 11. Moreover, mathematically
there is nothing special about the number 12. We could imagine a clock
with any number of ‘hours’.

We now replace (5.1) by a different equation than before. For example we
may also look at the ellipse whose equation is

x2 + 3y2 = 2. (5.3)

Using the modular arithmetic just introduced, it is not hard to prove that
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this equation has no solutions where x and y are fractions of integers.
Equations (5.1) and (5.3) are very similar, in fact we can write down a
family of equations of which both are a member. In this case, equations
(5.1) and (5.3) are both members of the family defined by

x2 + (1 + 2t)y2 = 1 + t. (5.4)

We get members of this family when we choose values for the parameter t.
For example, if we set t = 0 then we recover equation (5.1), and for t = 1
we obtain equation (5.3).

Question 2: Given some family, can we count how many of its members
have fractional solutions?

This number could be infinite, so we need our question to be phrased
more carefully. For example, we may restrict ourselves to members with
a t that is a fraction of integers not exceeding some number B. Again we
are confronted with a question that can be described in simple terms, and
again the answer is quite difficult to prove. In fact, there are reasons to
believe that there exists some deeper meaning that covers the answers to
Questions 1 and 2, but we seem quite far from understanding this meaning.
In Chapter 3 we look at families of some prescribed shape and we answer
this counting question in full. Like in Chapter 2, the answer depends on B
and we find a formula for the number that we wanted to count. There are
two noteworthy observations about this: in the literature such formulas
are quite rare – normally one is only able to give upper bounds – and
the formula involves a complicated constant that we have unravelled. The
way that this constant is built up provides further evidence for the deeper
meaning that we alluded to above.

Equation (5.3) has no fractional solutions because of problems arising from
modular arithmetic. One may wonder if these are the only problems that
may occur, and this is exactly what Yuri Manin did in the 1970’s. He gave
a construction that may explain the existence of obstructions to fractional
solutions; this construction involves a set that we call the Brauer group.
For many simple geometric objects, Manin’s construction accounts for all
obstructions, but this need not always be the case. Recall the equations
of the shape (5.2) that we studied in Chapter 2. Their geometric objects
are examples of what we call K3 surfaces. In recent years people have
started to wonder if Manin’s construction is strong enough to explain
all obstructions to fractional solutions for K3 surfaces, and this question
remains open. In order to work towards an answer, we studied these
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Brauer groups for some type of K3 surfaces in Chapter 4. It is known for
K3 surfaces that Brauer groups only have finitely many elements, but the
theorem that shows this does not tell us how many.

Question 3: How big can a Brauer group of a K3 surface get?

Our result gives a recipe that takes as ingredients only a few basic nu-
merical values attached to the surface whose Brauer group one wants to
study. However, our method does not give the exact answer but only an
upper bound. We were not the first ones to give such upper bounds, but
our result has the benefit of being easy to compute. There is, however,
no reason to assume that our upper bounds are in any way sharp, which
means that these upper bounds may be far above the actual size.

In conclusion, the title of this thesis goes against the main strength of
mathematics: to describe complex phenomena with no room for ambiguity.
The title can be separated in two different ways. Reading it as “Counting
points on (K3 surfaces and other arithmetic-geometric objects)” empha-
sizes that in each chapter we focus on counting some quantities, while
reading it as “(Counting points on K3 surfaces) and other arithmetic-
geometric objects” shows that we are mainly interested in K3 surfaces,
but that the thesis also contains other results. In this case the ambiguity
does not hurt: both readings are correct.
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Hier is de rol papier,
de inhoud en de optelsom van mijn fortuin

Bassanio, De Koopman van Venetië, Scene 3.2, regels 132-133

Dit proefschrift valt in het vakgebied van de ‘aritmetische meetkunde’, dat
is het samenspel van aritmetiek, in het Nederlands ookwel rekenkunde, aan
de ene kant – gehele getallen, hun optelling en vermenigvuldiging, en hun
breuken – en meetkunde aan de andere – vormen en hun doorsnijdingen.
We beschouwen drie verschillende vragen en in elk van deze vragen zijn
we op enige manier gëınteresseerd in het tellen van hoe groot een zekere
verzameling kan zijn.

In de aritmetische meetkunde zijn we gëınteresseerd in zogenaamde polyno-
miale vergelijkingen: we beperken onszelf tot breuken van gehele getallen
en een willekeurig aantal variabelen. De operaties die we mogen toepassen
zijn slechts optelling, vermenigvuldiging, en machtsverheffen met positieve
gehele machten. Dat betekent dus geen vierkantswortels, logaritmes, of
trigonometrische functies. Dat voelt misschien als een opluchting (we mo-
gen immers de helft van onze schoolwiskunde vergeten), maar de vragen
die opkomen blijken verrassend moeilijk te zijn. Sommige daarvan dateren
in ieder geval terug tot de oude Grieken, zo niet verder!

Wat zijn dan de vragen die we willen bestuderen? Neem bijvoorbeeld de
vergelijking

x2 + y2 = 1. (5.1)

Misschien weet u nog wel van dat deel van de schoolwiskunde dat we
niet zojuist vergeten zijn dat dit de vergelijking is van een cirkel in het
platte vlak. In andere woorden: als we onze assen x en y noemen, en we
tekenen alle punten in het vlak die x- en y-coördinaten hebben die aan
de vergelijking voldoen, dan neemt onze tekening de vorm van een cirkel
aan. Dit is waar de meetkunde natuurlijkerwijs naar voren komt. Hoe zit
dat met de rekenkunde? Nou, we kunnen niet alle punten van de cirkel
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individueel tekenen – dat zijn er simpelweg te veel. Laten we ze in twee
verzamelingen opsplitsen. Een verzameling, die we S zullen noemen, geven
we alle punten waarvan de coördinaten x en y breuken van gehele getallen
zijn. Bijvoorbeeld (0, 1) ligt in S en zo ook (3

5 ,
4
5). De andere verzameling

geven we alle andere punten, bijvoorbeeld (1
2

√
2, 1

2

√
2); deze zullen we

negeren. De verzameling S is nog steeds oneindig groot, dus laten we ons
verder beperken. Wat als we niet alle mogelijke breuken toelaten, maar
alleen die waarvan de teller en de noemer klein zijn, zeg kleiner dan een
getal B dat we vrij mogen kiezen? Deze nieuwe verzameling is wel eindig,
dus we kunnen het aantal elementen N tellen, welke zal afhangen van wat
we kiezen voor B.

Vraag 1: Hoe hangt dit getal N precies van B af?

In dit geval is het niet al te ingewikkeld om het antwoord te vinden en
het blijkt een lineaire functie in B te zijn. Maar als we vergelijking (5.1)
vervangen door een ingewikkeldere vergelijking, zeg

x4 + y4 − 3z4 = 1, (5.2)

dan wordt de vraag een stuk moeilijker. Met de extra variabele z wordt
de dimensie van het corresponderende meetkundige object verhoogd naar
twee (terwijl de cirkel dimensie één heeft), en met de hogere exponent 4
worden de vormen ingewikkelder. Voor vergelijkingen van deze vorm
bestaat er tot nog toe geen bewezen antwoord. In Hoofdstuk 2 geven
we bewijsmateriaal (hetgeen niet synoniem is aan ‘bewijs’) dat laat zien
dat het antwoord een zekere expliciete macht van logB zou moeten zijn.
Dus om het antwoord te begrijpen, moeten we opnieuw over logaritmes
leren!

Hoofdstuk 3 behandelt een gelijksoortige vraag, en om deze vraag te be-
grijpen, moeten we iets leren over modulaire rekenkunde. In essentie is
dat rekenkunde zoals op een klok: iedere 12 uur wordt de tijd op de klok
herhaald. Hoe kunnen we dit in wiskunde vertalen? Op de klok weten we
dat 13 gelijk is aan 1, 14 aan 2, enzovoorts. Wiskundig gezien stellen we
een getal gelijk aan zijn rest bij deling door 12. We hebben 13 = 1×12+1,
en 14 = 1 × 12 + 2 en zo verder. Er is geen reden om te stoppen bij 24:
we hebben ook 35 = 2×12 + 11, dus we stellen 35 en 11 gelijk. Bovendien
is er wiskundig niets speciaals aan het getal 12. We zouden ons een klok
kunnen voorstellen met ieder willekeurig aantal ‘uren’.

Nu vervangen we (5.1) door een andere vergelijking dan eerst. Bijvoor-
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beeld kunnen we ook kijken naar de ellips met de vergelijking

x2 + 3y2 = 2. (5.3)

Met behulp van de modulaire rekenkunde die we zojuist gëıntroduceerd
hebben, is het niet zo moeilijk om aan te tonen dat deze vergelijking geen
oplossingen heeft waarbij x en y breuken zijn. Vergelijkingen (5.1) en (5.3)
lijken heel veel op elkaar, en we kunnen een familie van vergelijkingen
opschrijven waarvan beide lid zijn. In dit geval zijn beide vergelijkingen
lid van de familie die gedefinieerd wordt door

x2 + (1 + 2t)y2 = 1 + t. (5.4)

Wanneer we waarden voor de parameter t kiezen, krijgen we de leden
van deze familie. Als we bijvoorbeeld t = 0 kiezen, dan herontdekken we
vergelijking (5.1), en voor t = 1 vinden we vergelijking (5.3) terug.

Vraag 2: Gegeven een zekere familie, kunnen we het aantal leden tellen
dat een oplossing in breuken heeft?

Dit aantal zou oneindig kunnen zijn, dus we moeten onze vraag voor-
zichtiger stellen. Bijvoorbeeld kunnen we ons beperken tot alleen die leden
die horen bij een t die zelf een breuk is waarvan de teller en de noemer niet
groter zijn dan een zekere grenswaarde B. Nu worden we weer geconfron-
teerd met een vraag die in eenvoudige termen te beschrijven is, en weer
blijkt het antwoord lastig te bewijzen. Er zijn zelfs goede redenen om te
geloven dat er een onderliggend dieper verband is tussen de antwoorden
van Vragen 1 en 2, maar begrip hiervan lijkt nog vrij ver weg te zijn. In
Hoofdstuk 3 kijken we naar families van een zekere voorgeschreven vorm
en beantwoorden we deze telvraag in zijn geheel: we geven een formule
voor het aantal dat we wilden tellen. Er zijn twee belangrijke observaties
hierbij: in de literatuur zijn zulke formules zeldzaam – normaal kan men
slechts bovengrenzen geven – en de formule omvat een ingewikkelde con-
stante die we hebben ontrafeld. De wijze waarop deze constante is opge-
bouwd voorziet ons van verder bewijsmateriaal voor het diepere verband
waarop we hierboven al zinspeelden.

Vergelijking (5.3) heeft geen oplossingen in breuken wegens problemen die
uit de modulaire rekenkunde komen. Men zou zich kunnen afvragen of
dit de enige problemen zijn die kunnen voorkomen, en dit is precies wat
Yuri Manin deed in de jaren ’70 van de vorige eeuw. Hij beschreef een
constructie die het bestaan van obstructies tot oplossingen in breuken kan
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verklaren; deze constructie maakt gebruik van een verzameling die we de
Brauergroep noemen. Voor veel simpele meetkundige objecten worden
al zulke obstructies verklaard door de constructie van Manin, maar dit
hoeft niet altijd het geval te zijn. Laten we terugkijken naar vergelijkin-
gen van de vorm (5.2) die we in Hoofdstuk 2 bestudeerd hebben. Hun
meetkundige objecten zijn voorbeelden van wat we K3-oppervlakken noe-
men. Recent zijn onderzoekers begonnen zich af te vragen of de constructie
van Manin sterk genoeg is om alle obstructies tot oplossingen in breuken
voor K3-oppervlakken te verklaren, en deze vraag is nog onbeantwoord.
Om richting een antwoord te werken, bestuderen we deze Brauergroepen
voor een bepaald type K3-oppervlakken in Hoofdstuk 4. Het is bekend dat
Brauergroepen van K3-oppervlakken slechts eindig veel elementen kunnen
hebben, maar de stelling die dit laat zien zegt niets over het precieze aan-
tal.

Vraag 3: Hoe groot kan de Brauergroep van een K3-oppervlak zijn?

Ons resultaat geeft een recept dat als ingrediënten slechts een aantal
basale waardes heeft die gemoeid zijn met het oppervlak waarvan men
de Brauergroep wil bestuderen. Onze methode geeft desalniettemin geen
exact antwoord, maar slechts een bovengrens. Wij zijn niet de eersten
die zo’n bovengrens geven, maar ons resultaat heeft het voordeel dat het
gemakkelijk is uit te rekenen. Er is daarentegen geen enkele reden om aan
te nemen dat onze bovengrens op enige wijze scherp is, hetgeen betekent
dat deze bovengrenzen ver boven de werkelijke waarde kunnen liggen.

Ter afsluiting, de titel van dit proefschrift gaat in tegen de grootste kracht
van de wiskunde: het beschrijven van complexe fenomenen zonder ruimte
voor dubbelzinnigheid. De titel, vertaald naar het Nederlands, kan op twee
manieren opgedeeld worden. Een lezing als “Het tellen van punten op (K3-
oppervlakken en andere rekenkundig-meetkundige objecten)” benadrukt
dat we in elk hoofdstuk ons richten op het tellen van zekere hoeveelhe-
den, terwijl een lezing als “(Het tellen van punten op K3-oppervlakken)
en andere rekenkundig-meetkundige objecten” juist naar voren brengt
dat we in eerste instantie gëınteresseerd zijn in K3-oppervlakken, maar
dat dit proefschrift ook andere resultaten bevat. In dit geval schaadt de
dubbelzinnigheid niet: beide manieren van lezen zijn correct.
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