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Chapter 3

Incorporating prior information
and borrowing information in
high-dimensional sparse regression
using the horseshoe and variational
Bayes

We introduce a sparse high-dimensional regression approach that can incorporate prior
information on the regression parameters and can borrow information across a set of
similar datasets. Prior information may for instance come from previous studies or
genomic databases, and information borrowed across a set of genes or genomic net-
works. The approach is based on prior modelling of the regression parameters using
the horseshoe prior, with a prior on the sparsity index that depends on external in-
formation. Multiple datasets are integrated by applying an empirical Bayes strategy
on hyperparameters. For computational efficiency we approximate the posterior dis-
tribution using a variational Bayes method. The proposed framework is useful for
analysing large-scale data sets with complex dependence structures. We illustrate this
by applications to the reconstruction of gene regulatory networks and to eQTL map-
ping.

This chapter is submitted as: Gino B. Kpogbezan, Mark A. van de Wiel, Wessel N. van Wierin-
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3.1 Introduction

The analysis of high-dimensional data is important in many scientific areas, and of-
ten poses the challenge of the availability of a relatively small number of cases versus
a large number of unknown parameters. It has been documented both practically
and theoretically that under the assumption of sparsity of the underlying model,
larger effects or dependencies can be inferred even in the very high-dimensional case
[53, 57]. Still in many cases conclusions can be much improved by incorporating prior
knowledge in the analysis, or by “borrowing information” by simultaneously analysing
multiple related datasets. In this paper we introduce a methodology that achieves
both, and that is at the same time scalable to large datasets in its computational
complexity. It is based on an empirical Bayesian setup, where external information is
incorporated through the prior, and information is borrowed across similar analyses
by empirical Bayes estimation of hyperparameters. Sparsity is induced through utili-
sation of the horseshoe prior, and computational efficiency through novel variational
Bayes approximations to the posterior distribution. We illustrate the methodology by
two applications in genomics: network reconstruction and eQTL mapping, but the
proposed framework should be useful also for analysing other large-scale data sets
with complex dependence structures.

Our working model is a collection of linear regression models, indexed by i =
1, . . . , p, corresponding to p characteristics (e.g. genes). For each characteristic we
have measurements on n individuals, labelled j = 1, . . . , n, consisting of a univariate
response Y j

i and a vector Xj
i of si explanatory variables. We collect the n responses

on characteristic i in the n-vector Yi = (Y 1
i , . . . , Y

n
i )T and similarly collect the ex-

planatory variables in the n×si-matrix Xi, having rows Xj
i , and adopt the regression

models

(3.1) Yi = Xiβi + ϵi, i = 1, . . . , p.

Here the regression coefficients βi form a vector in Rsi , and the error vectors ϵi’s are
unobserved. The dimension si of the regression parameter βi may be different for
different characteristics i.

Our full set of observations consists of the pairs (Y1, X1), . . . , (Yp, Xp), whose
stochastic dependence will not be used and hence need not be modelled. In addi-
tion to these regression pairs we assume available prior information on the vectors
βi in the form of a 2-dimensional array P , whose ith row presents a grouping of the



3.1 Introduction 63

coordinates of βi into G groups, indexed by g = 1, . . . , G: the value Pi,t is the index
of the group to which the tth coordinate of βi belongs. (Because the βi may have
different lengths, P is a possibly “ragged array” and not a matrix.) The information
in P is considered to be soft in that coordinates of βi that are assigned to the same
group are thought to be similar in size, but not necessarily equal. The information
may for instance come from a previous analysis of similar data, or be taken from a
genomic database.

We wish to analyse this data, satisfying four aims:
• Borrow information across the characteristics i = 1, . . . , p by linking the analy-

ses of the models (3.1) for different i.
• Incorporate the prior information P in a soft manner so that it informs the

analysis if correct, but can be overruled if completely incompatible with the
data.

• Allow for sparsity of the explanatory models, i.e. focus the estimation towards
parameter vectors βi with only a small number of significant coefficients, en-
abling analysis for small n relative to si and/or p.

• Achieve computational efficiency, enabling analysis with large si and/or p.
To this purpose we model the parameters βi and the scales σi of the error vectors
through a prior, and next perform empirical Bayesian inference. This analysis is in-
formed by the model (3.1) and the following hierarchy of a generating model (referred
to as pInc later on) for the errors and a prior model for (βi, σi):

(3.2)

ϵi|σi ∼ N(0n, σ
2
i In),

βi,t|σi, τi,Pi,t
, λi,t ∼ N

(
0, σ2

i τ
2
i,Pi,t

λ2
i,t

)
, t = 1, . . . , si,

σ−2
i ∼ Γ(c, d),
λi,t ∼ C+(0, 1), t = 1, . . . , si,

τ−2
i,g ∼ Γ(ag, bg), g = 1, . . . , G.

Here N is a (multivariate) normal distribution, In is the (n × n)-identity matrix,
C+(0, 1) denotes the standard Cauchy distribution restricted to the positive real axis,
and Γ(u, v) denotes the gamma distribution with shape and rate parameters u and
v. As usual the hierarchy should be read from bottom to top, where dependencies
of distributions on variables at lower levels are indicated by conditioning, and ab-
sence of these variables in the conditioning should be understood as the assumption
of conditional independence on variables at lower levels of the hierarchy. The specifi-
cation (3.2) gives the model for the ith characteristic. The models for different i are
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linked by assuming the same values of the hyperparameters a1, b1, . . . , aG, bG, c, d for
all i = 1, . . . , p. These hyperparameters will be estimated from the combined data
(Y1, X1), . . . , (Yp, Xp) by the empirical Bayes method, thus borrowing strength across
responses and achieving the first of the four aims, as listed previously.

We also consider a variant of the model (later referred to as pInc2 ) in which the
last line of the hierarchy is dropped and the parameters τi,g are pooled into a single
parameter τi,g = τg per group (i = 1, . . . , si). The parameters τg are then estimated
by empirical Bayes on the data pooled over i. In some of the simulations this model
outperformed (3.2).

The ith row of P gives a grouping of the si coordinates βi,t of βi into G groups.
The scheme (3.2) attaches a latent variable τi,g to each group, for g = 1, . . . , G, whose
squares possess inverse gamma distributions, independently across groups. These
latent variables enter the prior distributions of the coordinates of βi, which marginally
given τi,g are scale mixtures of the normal distribution. Choosing the scale parameters
λi,t from the half-Cauchy distribution gives the so-called horseshoe prior [19, 20]. This
may be viewed as a continuous alternative to the traditional spike-and-slab prior,
which is a mixture of a Dirac measure at zero and a widely spread second component,
and is widely used as a prior that induces sparsity.

The horseshoe density with scale τ is the mixture of the univariate normal dis-
tributions N(0, τλ) relative to the parameter λ ∼ C+(0, 1). It combines an infinite
peak at zero with heavy tails, and is able to either shrink parameters to near zero
or estimate them unbiasedly, much as an improper flat prior. The relative weights of
the two effects are moderated by the value of τ . In the model (3.2) the coordinates
of βi corresponding to the same group g receive a common parameter τi,g, and are
thus either jointly shrunk to zero or left free, depending on the value of τi,g. This
allows to achieve the aims two and three as listed previously. Theoretical work in
[20, 31, 136–138] (in a simpler model) suggests an interpretation of τi,g as approx-
imately the fraction of nonzero coordinates in the gth group, and corroborates the
interpretation of τi,g as a sparsity parameter. In model (3.2) this number is implicitly
set by the data, based on the inverse gamma prior on τ 2

i,g. Requiring the hyperparam-
eters of these gamma distributions to be the same across the characteristics i induces
the borrowing of information between the characteristics i, in particular with respect
to the sparsity of the vectors βi.

Model (3.2) chooses the squares of the scales σi of the error variables from an
inverse gamma distribution, which is the usual conjugate prior. The priors on the
regression parameters βi are also scaled by σi, thus giving them a priori the same



3.1 Introduction 65

order of magnitude. This seems generally preferable.
The Bayesian model described by (3.1) and (3.2) leads to a posterior distribution of

(βi, σi) in the usual way, but this depends on the hyperparameters a1, b1, . . . , aG, bG, c, d.
In Section 3.4.2 we introduce a method to estimate these hyperparameters from the
full data (Y1, X1), . . . , (Yp, Xp), and next base further inference on the posterior dis-
tributions of the parameters (βi, σi) evaluated at the plugged-in estimates of the
hyperparameters. Because the prior on the coefficients βi is continuous, the poste-
rior distribution does not provide automatic model (or variable) selection, which is
a disadvantage of the horseshoe prior relative to the spike-and-slab priors. To over-
come this, we develop a way of testing for nonzero regression coefficients based on
the marginal posterior distributions of the βi,t in Section 3.4.3.

The horseshoe prior has gained popularity, mainly due to its computational ad-
vantage over spike-and-slab priors. However, in our high-dimensional setting the
approximation of the posterior distribution by an MCMC scheme turns out to be still
a computational bottleneck. The algorithm studied by [9], which can be applied in
the special case of a single group (G = 1) has complexity O(n2si) for a single regres-
sion (i.e. p = 1) per MCMC iteration. We show in Section 3.5.2 that this is too slow
to be feasible in our setting. For this reason we develop in Section 3.4.1 a variational
Bayesian (VB) scheme to approximate the posterior distribution, in order to satisfy
the fourth aim in our list.

The variational Bayesian method consists of approximating the posterior distri-
bution by a distribution of simpler form, which is chosen as a compromise between
computational tractability and accuracy of approximation. The quality of the approx-
imation is typically measured by the Kullback-Leibler divergence [141]. Early applica-
tions involved standard distributions such as Gaussian, Dirichlet, Laplace and extreme
value models [5–7, 96, 142]. In the present paper we use nonparametric approxima-
tions, restricted only by the assumption that the various parameters are (block) inde-
pendent. (This may be referred to as mean-field variational Bayes, although this term
appears to be used more often for independence of all univariate marginals, whereas
we use block independence.) In this case the variational posterior approximation can
be calculated by iteratively updating the marginal distributions [11, 104]. Variational
Bayes typically produces accurate approximations to posterior means, but have been
observed to underestimate posterior spread [12, 18, 48, 94, 131, 143, 145, 151]. We
find that in our setting the approximations agree reasonably well to MCMC approx-
imations of the marginals, although the latter take much longer to compute.

The model (3.1)-(3.2) may be useful for data integration in a variety of scientific
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setups, and for data sources as diverse as gene expression, copy number variations,
single nucleotide polymorphisms, functional magnetic resonance imaging, or social
media data. The external information incorporated in the array P may reflect data
of a different type, and/or of a different stage of research, and the simultaneous
analysis of different characteristics allows further data integration. For example, in
genetic association studies data from multiple stages can help the identification of true
associations [54, 58, 116]. In this paper we consider applications to gene regulation
networks and to eQLT mapping, which we describe in the next two sections, before
developing the general algorithms for models (3.1) and (3.2).

The remainder of the paper is organised as follows. In Section 3.4.1 we develop
a variational Bayes approach to approximate the posterior distributions of the re-
gression parameters for given hyperparameters, and show this to be comparable in
accuracy to Gibbs sampling in Section 3.5.2, although computationally much more ef-
ficient. In Section 3.4.2 we develop the Empirical Bayes (EB) approach for estimating
the hyperparameters, and in Section 3.4.3 we present a threshold based-procedure for
selecting nonzero regression coefficients based on the marginal posterior distributions
of the βi,t. We show in Section 3.5 by means of model-based simulations that the pro-
posed approach performs better, in terms of both average ℓ1-error and average ROC
curves, than its ridge counterpart in the framework of network reconstruction. The
potential of our approach is shown on real data in Section 3.6 both in gene regulatory
network reconstruction and in eQTL mapping. Section 3.7 concludes the paper.

3.2 Network reconstruction

The identification of gene regulatory networks is crucial for understanding gene func-
tion, and hence important for both treatment and prediction of diseases. Prior knowl-
edge on a given network is often available in the literature, from repositories or pilot
studies, and combining this with the data at hand can significantly improve the ac-
curacy of reconstruction [72].

A Gaussian graphical model readily gives rise to a special case of the model (3.1)-
(3.2). In such a model the data concerning p genes measured in a single individual
(e.g. tissue) is assumed to form a multivariate Gaussian p-vector, and the network of
interest is the corresponding conditional independence graph [152]. The nodes of this
graph are the genes and correspond to the p coordinates of the Gaussian vector. Two
nodes/genes are connected by an edge in the graph if the corresponding coordinates
are not conditionally independent given the other coordinates. It is well known that
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this is equivalent to the corresponding element in the precision matrix of the Gaussian
vector being nonzero [78].

Assume that we observe a gene vector for n individuals, giving rise to n indepen-
dent copies Y 1, . . . , Y n of p-vectors satisfying

(3.3) Y j ∼iid N(0p,Ω−1
p ), j = 1, . . . , n.

Here Ωp is the precision matrix ; its inverse is the covariance matrix of the vector
Y j and is assumed to be positive-definite. The Gaussian graphical model consists of
a graph with nodes 1, 2, . . . , p and with edges (i, j) given by the nonzero elements
(Ωp)i,j of the precision matrix. Hence to reconstruct the conditional independence
graph it suffices to determine the non-zero elements of the latter matrix.

We relate this to the notation used in the introduction by writing Y j = (Y j
1 , . . . , Y

j
p )T ,

and next collecting the observations Y j
i per gene i, giving the n-vector Yi = (Y 1

i , . . . , Y
n

i )T ,
for i = 1, . . . , p. We next define

Xi = [Y1, Y2, ..., Yi−1, Yi+1, ..., Yp]

as the (n×(p−1))-matrix with columns Yt, for t ̸= i. It is well known that the residual
when regressing a single coordinate Y j

i of a multivariate Gaussian vector linearly
on the other coordinates Y j

t , for t ̸= i, is Gaussian. Furthermore, the regression
coefficients βi = (βi,t : t ̸= i) can be expressed in the precision matrix of Y j as

βi,t = − (Ωp)it

(Ωp)ii .

This shows that (3.1) holds with si = p − 1 and a multivariate normal error vector
ϵi with variance σ2

i equal to the residual variance. Moreover, the (non)zero entries in
the ith row vector of the precision matrix Ωp correspond to the (non)zero coordinates
of βi. Consequently, the problem of identifying the Gaussian graphical model can be
cast as a variable selection problem in the p regression models (3.1).

This approach of recasting the estimation of the (support of the) precision matrix
as a collection of regression problems was introduced by [97], who employed Lasso
regression [43, 130] to estimate the parameters. Other variable selection methods can
be employed as well [73]. A Bayesian approach with Gaussian, ridge-type priors on
the regression coefficients was developed in [80], and extended in [72] to incorporate
prior knowledge on the conditional independence graph. A disadvantage of the Gaus-
sian priors employed in these papers is that they are not able to selectively shrink
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parameters, but shrink them jointly towards zero (although prior information used in
[72] alleviates this by making this dependent on prior group). This is similar to the
shrinkage effect of the ridge penalty [139] relative to the Lasso, which can shrink some
of the precision matrix elements to exactly zero, and hence possesses intrinsic model
selection properties. The novelty of the present paper is to introduce the horseshoe
prior in order to better model the sparsity of the network.

We assume that the prior knowledge on the to-be-reconstructed network is avail-
able as a “prior network”, which specifies which edges (conditional independencies)
are likely present or absent. This information can be coded in an adjacency matrix
P, whose entries take the values 0 or 1 corresponding to the absence and presence of
an edge: Pi,t = 1 if variable i is connected with variable t and Pi,t = 0 otherwise.
Thus in this example we only have two groups, i.e. G = 2.

The advantage of reducing the network model to structural equation models of the
type (3.1) is computational efficiency. An alternative would be to model the precision
matrix directly through a prior. This would typically consist of a prior on the graph
structure, followed by a specification of the numerical values of the precision matrix
given its set of nonzero coefficients. The space of graphs is typically restricted to e.g.
decomposable graphs, forests, or trees [33, 50, 68]. The posterior distribution of the
graph structure can then be used as the basis of inference on the network topology.
However, except in very small problems, the computational burden is prohibitive.

3.3 eQTL mapping

In eQTL mapping the expression of a gene is taken as a quantitative trait, and it
is desired to identify the genomic loci that influence it, much as in a classical study
of quantitative trait loci (QTL) of a general phenotype. Typically one measures the
expression of many genes simultaneously and tries to map these to their QTL. Since
gene expression levels are related to disease susceptibility, elucidating these eQLT
(expression QTL) may give important insights into the genetic underpinnings of com-
plex traits. We shall identify genetic loci here with single nucleotide polymorphisms
(SNPs), but other biomarkers can be substituted.

Early work by [26, 128, 165] considered every gene separately for association. How-
ever, many genes are believed to be co-regulated and to share a common genetic basis
[113, 162]. In addition, SNPs with pleiotropic effects may be more easily identified
by considering multiple genes together. Therefore following [71, 83, 125], we focus on
a joint analysis, borrowing information across genes. We regress the expression of a
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given gene on SNPs both within and around the gene, where our model is informed
about the SNP location. The sparse parametrization offered by our model is suitable,
as most genetic variants are thought to have a negligible (if any) differential effect on
expression.

Suppose we collect the (standardized) expression levels of p genes over n indi-
viduals, and identify for each gene i a collection of si SNPs to be investigated for
association. For instance, the latter collections might contain all SNPs in a relatively
large window around the gene, some of which falling inside the gene and some outside.
For each individual and SNP we ascertain the number of minor alleles (0, 1 or 2), and
change all 2’s to 1’s. Because there are not many 2’s in the data this does not reduce
the information while it simplifies the modelling. We use these numbers to form the
n × si-matrix Xi. Let Yi be the n-vector of expression levels for gene i, and assume
the linear model (3.1).

It is believed that SNPs that occur within a gene may play a more direct role in
the gene’s function than SNPs at other genomic locations [84, 123]. Therefore, it is
natural to treat SNPs falling within a given gene differently than the ones not falling
within that gene. This gives rise to two groups of SNPs for a given gene, which we
can encode as prior knowledge in a 2-dimensional array P with values 0 and 1.

Thus we have another instance of model (3.1)-(3.2) with two groups, i.e. G = 2.

3.4 Posterior inference

In this section we discuss statistical inference for the model (3.1)-(3.2). This consists
of three steps: the approximation to the posterior distribution of the model for given
hyperparameters (and given i), the estimation of the hyperparameters (across i), and
finally a method of variable selection.

3.4.1 Variational Bayes approximation

The variational Bayes approximation to a distribution is simply the closest element in
a given target set Q of distributions, usually with “distance” measured by Kullback-
Leibler divergence [141]. In our situation we wish to approximate the posterior distri-
bution of the parameter θi := (βi, λi,1, · · · , λi,si

, τi,1, · · · , τi,G, σi) given Yi in the model
(3.1)-(3.2), for a fixed i. Here we take the regression matrix Xi as given.

Thus the variational Bayes approximation is given as the density q ∈ Q that
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minimizes over Q,

KL
(
q||p(·|Yi)

)
= Eq log q(θi)

p(θi|Yi)
= log p(Yi)− Eq log p(Yi, θi)

q(θi)
,

where θi 7→ p(θi|Yi) is the posterior density, the expectation is taken with respect
to θi having the density q ∈ Q, and (y, θi) 7→ p(y, θi) = p(y| θi) πi(θi) and y 7→
p(y) =

∫
p(y, θi) dθi are the joint density of (Yi, θi) and the marginal density of Yi,

respectively, in the model (3.1)-(3.2), with prior density πi on θi. As the marginal
density is free of q, minimization of this expression is equivalent to maximization of
the second term

(3.4) Eq log p(Yi, θi)
q(θi)

.

By the non-negativity of the Kullback-Leibler divergence, this expression is a lower
bound on the logarithm of the marginal density p(Yi) of the observation. For this
reason it is usually referred to as “the lower bound”, or “ELBO”, and solving the
variational problem is equivalent to maximizing this lower bound.

The set Q is chosen as a compromise between computational tractability and
accuracy of approximation. Restricting Q to distributions for which all marginals of
θi are independent is known as mean-field variational Bayes, or also as the “näıve
factorization” [141]. Here we shall use the larger set of distributions under which
the blocks of β, λ, τ and σ-parameters are independent. Thus we optimize over
probability densities q of the form

q(θi) = qβ(βi) · qλ(λi,1, · · · , λi,si
) · qτ (τi,1, · · · , τi,G) · qσ(σi).

There is no explicit solution to this optimization problem. However, if all marginal
factors but a single one in the factorization are fixed, then the latter factor can be
characterised easily, using the non-negativity of the Kullback-Leibler divergence. This
leads to an iterative algorithm, in which the factors are updated in turn.

In the Appendix Section we show that in our case the iterations take the form:

(3.5)

βi|Yi ∼ N
(
β∗

i ,Σ∗
i

)
,

λi,t|Yi ∼ Λλit
, t = 1, · · · , si,

τ−2
i,g |Yi ∼ Γ(a∗

i,g, b
∗
i,g), g = 1, · · · , G,

σ−2
i |Yi ∼ Γ

(
c∗

i , d
∗
i

)
,
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where Λl is the distribution with probability density function proportional to

λ 7→ 1
λ(1 + λ2)e

−lλ−2
, (λ > 0),

and the parameters on the right hand side satisfy

Σ∗
i =

[
Eq∗

σ
(σ−2

i )
(
XT

i Xi + D−1
Eq∗

τi
·q∗

λi

)]−1
,

β∗
i =

(
XT

i Xi + D−1
Eq∗

τi
·q∗

λi

)−1
XT

i Yi,

a∗
i,g = ag + 0.5 · s

g
i

2 ,

b∗
i,g = bg + 0.5 · Eq∗

σ
(σ−2

i )Eq∗
−τg

(
βg

i
T D−1

λi
βg

i

)
, g = 1, · · · , G,

c∗
i = c+ n

2 + si

2 ,

d∗
i = d+ 0.5 · Eq∗

−σ

(
βT

i D−1
τiλi

βi

)
+ 0.5 · Eq∗

β
(Yi −Xiβi)T (Yi −Xiβi),

Dλi
= diag(λ2

i,1, . . . , λ
2
i,si

),
Dτiλi

= diag(τ 2
i,Pi,1

λ2
i,1, . . . , τ

2
i,Pi,si

λ2
i,si

),

D−1
Eq∗

τi
·q∗

λi

= diag
(

Eq∗
τi

(τ−2
i,Pi,1

)Eq∗
λi1

(λ−2
i,1 ), . . . ,Eq∗

τi
(τ−2

i,Pi,si
)Eq∗

λisi

(λ−2
i,si

)
)
,

lit = 1
2Eq∗

σ
(σ−2

i )Eq∗
τ
(τ−2

i,Pi,t
)Eq∗

β
(β2

i,t).

In these expressions, sg
i is the number of g’s in the i-th row of the 2-dimensional array

P encoding the G groups, g = 1, · · · , G; and βg
i = {δ{Pi,r=g}βi,r : r ∈ {1, · · · , si}} is

the vector obtained from βi by replacing the coordinates not corresponding to group
g by 0.

The expected value of zit := (λit)−2, which appears in the expression of β∗
i , Σ∗

i ,
b∗

i,g and d∗
i above, is given in the following lemma.

Lemma 1. The norming constant for Λl is 2 exp(−l)/E1(l) and the expectation of
zit = (λit)−2 if λit ∼ Λλit

is given by

E(zit) = 1
lit · exp(lit) · E1(lit)

− 1,

where E1 is the exponential integral function of order 1, defined by

E1(x) ≡
∫ ∞

x

e−t

t
dt, x ∈ R+.
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Proof. This follows by easy manipulation and the standard density transform formula.

The function E1 can be evaluated effectively by the function expint E1() in the R
package gsl [56]. The latter uses the GNU Scientific Library [45].

In addition, the variational lower bound (3.8) on the log marginal likelihood at
q = q∗ takes the form (See Appendix for details)

(3.6)

Li = −n2 log(2π)− si log(π) + 1
2 log |Σ∗

i |+
1
2si

+
G∑

g=1
(ag log bg − log Γ(ag)− a∗

i,g log b∗
i,g + log Γ(a∗

i,g))

+ c log d− log Γ(c)− c∗
i log d∗

i + log Γ(c∗
i )

+
G∑

g=1

(1
2Eq∗

σ
(σ−2

i )Eq∗
τ
(τ−2

i,g )Eq∗(βg
i

T D−1
λi
βg

i )
)

+
si∑

t=1

(
logE1(lit) + 1

exp(lit)E1(lit)

)
.

3.4.2 Global Empirical Bayes

Model (3.2) possesses the G+ 1 pairs of hyperparameters (a1, b1), · · · , (aG, bG), (c, d).
The pair (c, d) controls the prior of the error variances σ2

i ; we fix this to numerical
values that render a vague prior, e.g. to (0.001, 0.001). In contrast, we let the values
of the parameters α = (a1, b1, · · · , aG, bG) be determined by the data. As these
hyperparameters are the same in every regression model i, this allows information
to be borrowed across the regression equations, leading to global shrinkage of the
regression parameters. The approach is similar to the one in [134].

Precisely, we consider the criterion

α = (a1, b1, · · · , aG, bG) 7→
p∑

i=1
Eq log pα(Yi, θi)

q(θi)
(3.7)

=
p∑

i=1
Eq log p(Yi| θi)

q(θi)
+

p∑
i=1

Eq log πα(θi).

The maximization of the function on the right with respect to q ∈ Q for fixed α

leads to the variational estimator q∗ considered in Section 3.4.1 (which depends on
α = (a1, b1, · · · , aG, bG)). Rather than running the iterations (3.5) for computing this
estimator to “convergence”, next inserting q = q∗

α in the preceding display (3.15), and
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finally maximizing the resulting expression with respect to α, we blend iterations to
find q∗ and α∗ as follows. Given an iterate q∗ of (3.5) we set q in (3.15) equal to q∗

and find its maximizer α∗ with respect to α. Next given α∗ we set α (in the display
following (3.5) equal to α∗ and use (3.5) to find a next iterate of q∗. We repeat these
alternations to “convergence”.

For fixed q = q∗ the far right side in the second row of the preceding display
depends on α only through

p∑
i=1

Eq∗

(
log πα(θi)

)
.

Using the approximation log(x)− 1
2x
≈ Ψ(x) = ∂

∂x
log Γ(x), where Ψ is the digamma

function, the maximization yields (see Appendix for details)

âg ≈ 1
2

[
log
( p∑

i=1
Eq∗τ−2

i,g

)
− p−1

( p∑
i=1

Eq∗ log τ−2
i,g

)
− log p

]−1

b̂g = âg · p ·
[ p∑

i=1
Eq∗τ−2

i,g

]−1

where g ∈ {1, · · · , G}. The following algorithm summarizes the above described
procedure.

Variational algorithm with sparse local-global shrinkage priors
1: Initialize
a

(0)
g = b

(0)
g = 10−3, g ∈ {1, · · · , G} and ∀i ∈ I, b∗

i,g = d∗
i = 10−3, ϵ = 10−3,

M = 103 and k = 1
2: while max |L(k)

i − L
(k−1)
i | ≥ ϵ and 2 ≤ k ≤M do

E-step: Update variational parameters
3: for i = 1 to p update

a
∗(k)
i,g , c∗(k)

i ,
Σ∗(k)

i , β∗(k)
i , b∗(k)

i,g , d∗(k)
i , l(k)

it and L(k)
i ; ∀g and ∀t in that order

end for

M-step: Update hyperparameters
4: a

(k)
g , b(k)

g ; ∀g
5: k ← k + 1
6: end while
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3.4.3 Variable selection

Because the horseshoe prior is continuous, the resulting posterior distribution does
not set parameters exactly equal to zero, and hence variable selection requires an
additional step. We investigated two schemes that both take the marginal posterior
distributions of the parameters as input.

Thresholding

A natural method is to set a parameter βi,r equal to zero (i.e. remove the corresponding
independent variable from the regression model) if the point 0 is in the tails of its
marginal posterior distribution, or more precisely, if 0 does not belong to a central
marginal credible interval for the parameter. Given that our variational Bayes scheme
produces conditional Gaussian distributions, this is also equivalent to the absolute
ratio of posterior mean and standard deviation

(3.8) κi,r =

∣∣∣∣Eqi∗

[
βi,r|Yi

]∣∣∣∣
sdqi∗

[
βi,r|Yi

]
exceeding some threshold. (In the network setup of Section 3.2 we use the sym-
metrized quantity (κi,r + κr,i)/2, as the two constituents of the average refer to the
same parameter.)

To determine a suitable cutoff or credible level we applied the variational Bayes
procedure of Section 3.4.1 with all credible levels η on a grid with step size 5% within
the range [10%, 99.99%], resulting in a model, or set of ‘nonzero’ parameters βi,r, for
every η. We allow rather lenient credible levels because the model might benefit from
the inclusion of fewer variables, in particular when strong collinearity is present. We
next refitted the model (3.1)-(3.2) with the non-selected parameters βi,r set equal to
0, evaluated the variational Bayes lower bound on the likelihood (3.8) (equivalently
(3.6)), and chose the value of η and the corresponding model that maximized this
likelihood. When refitting we did not re-estimate the hyperparameters (a’s and b’s for
pInc, τ ’s for pInc2, as explained in Section 3.4.2), but used the values resulting from
the entire data set. Even though this procedure sounds involved, it is computationally
fast, because it is free of the empirical Bayes step and typically needs to evaluate only
models with few predictors.
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An alternative selection scheme

As an alternative selection scheme we investigated the decoupled shrinkage and selec-
tion (DSS) criterion proposed by [53]. For each regression model i, given the posterior
mean vector β̄i = Eqi∗

[
βi,·|Yi

]
determined by the pooled procedure of Sections 3.4.1-

3.4.2, this calculates the adaptive lasso type estimate

(3.9) γ̂i(λi) = argmin
γi

[ 1
n
∥Xiβ̄i −Xiγi∥2

2 + λi

p∑
t=1

|γi,t|
|β̄i,t|

]
,

and next chooses the model corresponding to the nonzero coordinates of γi. The
authors [53] advocate this method over thresholding, in particular because it may
better handle multi-collinearity. In genomics applications, such as the eQTL Example
(Section 3.6.2), multi-collinearity is likely strong, in particular between neighbouring
genomic locations. Another attractive aspect of (3.9) is that it only relies on the
posterior means, which we have shown to be accurately estimated by the variational
Bayes approximation.

In the DSS approach the thresholding in order to obtain models of different sizes is
performed through the smoothing parameters λi. The authors [53] propose a heuristic
to choose λi based on the credible interval of the explained variation. An alternative
is to apply K-fold cross-validation based on the squared prediction error:

(3.10) MSE(λi) = 1
n

K∑
k=1
∥Yk

i −Xk
i γ̂−k

i (λi)∥2
2,

where superscript k refers to the observations used as test sample in fold k = 1, . . . , K,
and −k to the complementary training sample used to calculate γ̂−k

i (λi), by (3.9) with
X−k

i and β̄−k
i replacing Xi and β̄i. Again we throughout fix the hyperparameters of

the priors to the ones resulting from the variational Bayes algorithm on the entire
data set. We have found that the function λi 7→ MSE(λi) can be flat, which, to some
extent, is a ‘by-product’ of the strong shrinkage properties of the horseshoe prior.
(Given a sparse true vector, many posterior means β̄i,r will be close to zero, which
renders the DSS solution (3.9) less dependent on λi.) To overcome this, and because
we prefer sparser models, we used the maximum value of λi for which the MSE is
within 1 standard error of the minimum of the mean square errors.

In the next sections, if not specified, selection should be understood as the first
scheme based on thresholding.
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3.5 Simulations

We performed model-based simulations to compare model (3.2), referred to as pInc,
with the alternative method pInc2, in which there is only one parameter τg per group,
and their ridge counterpart ShrinkNet ([80]). We refer to the latter paper for com-
parisons of ShrinkNet to other competing methods. ShrinkNet was indeed shown in
[80] to outperform the graphical lasso [43], the SEM Lasso [97] and the GeneNet [120]
using exactly the same data used below in this simulation. As ShrinkNet was devel-
oped for network reconstruction only and does not incorporate prior knowledge, we
initially considered the setup of network reconstruction in Section 3.2 and set G = 1
in (3.2). Next we compared pInc and pInc2 in the same network recovery context,
but incorporating prior information. Finally, we compared the accuracy and comput-
ing time of our variational Bayes approximation approach with Gibbs sampling-based
strategies [9].

3.5.1 Model-based simulation

We generated data Y 1, . . . , Y n according to (3.3), for p = 100 and n ∈ {10, 100, 200, 500}
to reflect high and low-dimensional designs. We generated precision matrices Ωp cor-
responding to band, cluster and hub network topologies [80, 163] from a G-Wishart
distribution [101] with scale matrix equal to the identity and b = 4 degrees of freedom.

The performance of the methods was investigated using average ℓ1 errors ∥β̂0 −
β0∥1 and ∥β̂1 − β1∥1 across 50 replicates of the experiment. Here β1 (or β0) is the
vector consisting of all nonzero (or zero) values of the partial correlation matrix
−(Ωp)it/(Ωp)ii except the diagonal elements, and β̂1 (or β̂0) is the vector consisting
of the corresponding posterior means.

The results are displayed in Tables 3.1 and 3.2. Both methods pInc and pInc2
outperform ShrinkNet in all simulation setups. For the nonzero parameters (‘signals’)
pInc and pInc2 are on par, but for the zero parameters pInc outperforms pInc2 for
small n in the Band and Cluster topologies, but when n increases and in the Hub
topology this turns around.

Somewhat worrisome is that the performance of all methods on the zero param-
eters initially seems to suffer from increasing sample size n. The empirical Bayes
choice of shrinkage level clearly favours strong shrinkage for small n, giving good
performance on the zero parameters, but relaxes this when the sample size increases.
Thus the better performance for increasing n on the nonzero parameters is partly
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Sample size ShrinkNet pInc2 pInc

Band

n = 10 25.26 1.77 0.66
n = 100 265.89 180.42 78.46
n = 200 291.33 113.12 121.29
n = 500 251.47 81.38 150.62

Cluster

n = 10 15.74 0.71 0.51
n = 100 224.89 186.88 39.97
n = 200 259.94 130.70 98.77
n = 500 231.33 82.82 107.58

Hub

n = 10 7.44 0.28 0.34
n = 100 155.87 8.70 47.85
n = 200 154.63 12.65 84.46
n = 500 132.50 21.51 106.31

Table 3.1: Average l1 error, ∥β̂0 − β0∥1 across 50 simulation replicates with sample
size n ∈ {10, 100, 200, 500} and p = 100. The precision matrices used correspond
respectively to Band, Cluster and Hub structure.

Sample size ShrinkNet pInc2 pInc

Band

n = 10 220.15 220.55 221.92
n = 100 162.58 112.01 134.82
n = 200 124.01 66.08 65.66
n = 500 72.51 29.08 29.25

Cluster

n = 10 288.86 288.64 289.44
n = 100 254.03 160.05 217.48
n = 200 215.88 75.24 86.54
n = 500 133.22 27.99 29.95

Hub

n = 10 40.25 39.34 40.52
n = 100 24.14 15.39 13.99
n = 200 17.58 9.42 8.65
n = 500 12.54 5.42 5.26

Table 3.2: Average l1 error, ∥β̂1 − β1∥1 across 50 simulation replicates with sample
size n ∈ {10, 100, 200, 500} and p = 100. The precision matrices used correspond
respectively to Band, Cluster and Hub structure.
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Quality of prior Info pInc2 pInc

Band True model 6.90 0.68
50% true edge info 6.66 5.30

Cluster True model 4.96 0.60
50% true edge info 3.25 3.28

Hub True model 0.22 0.27
50% true edge info 0.46 5.88

Table 3.3: Average l1 error, ∥β̂0 − β0∥1 across 50 simulation replicates with sample
size n = 10 and p = 100. Qualities of prior information correspond to true model
and 50% true edge information.

Quality of prior Info pInc2 pInc

Band True model 216.25 209.48
50% true edge info 219.57 217.39

Cluster True model 285.72 281.21
50% true edge info 286.98 286.73

Hub True model 29.40 27.55
50% true edge info 37.79 34.60

Table 3.4: Average l1 error, ∥β̂1 − β1∥1 across 50 simulation replicates with sample
size n = 10 and p = 100. Qualities of prior information correspond to true model
and 50% true edge information.

offset by a decline in performance on the zero parameters. This balance between zero
and nonzero parameters is restored only for relatively large sample sizes. A similar
phenomenon was observed in [135].

Tables 3.3 and 3.4 compare the performance of pInc and pInc2 when prior infor-
mation is available (both with sample size n = 10). The prior information consists
either of the correct adjacency matrix P for the network (i.e. Pi,t = 1 if Ωi,t ̸= 0 and
Pi,t = 0 otherwise), or an adjacency matrix in which 50 % of the positive entries are
correct. The latter matrix was obtained by swapping a random selection of half the
1s in the correct adjacency matrix with a random selection of equally many 0s. The
tables shows that pInc usually outperforms pInc2, the zero parameters in the Hub
case with 50% true edge prior knowledge being the only significant exception.

To study the performance of the different methods on model selection we computed
ROC curves, showing the true positive rate (TPR) and false positive rate (FPR) as
a function of the threshold on the test statistic (3.8) for inclusion of a parameter in
the model. Figure 3.1 shows that in the absence of prior information pInc2 performs



3.5 Simulations 79

Band

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e
0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hub

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.1: Average partial-ROC curves comparing performance of ShrinkNet (dashed
red), pInc2 (dashed black) and pInc (dashed blue) where n ∈ {10, 100, 200, 500} and
p = 100. First, second, third and fourth rows correspond respectively to the perfor-
mances of n = 10, n = 100, n = 200 and n = 500.
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Figure 3.2: Average partial-ROC curves comparing performance of pInc using perfect
prior information (dashed blue), pInc2 using perfect prior information (black), pInc
using 50% true edge information (dashed dark green) and pInc2 using 50% true edge
information (darkmagenta). Sample size and network dimension were n = 10 and
p = 100.

best, closely followed by pInc, and both methods outperform ShrinkNet. Given either
correct or 50% correct information pInc is the winner, as seen in Figure 3.2, which also
shows the usefulness of incorporating prior information. These findings are consistent
with the results on estimation presented in Tables 3.1–3.4 in their ordering of pInc
above pInc2 in the case of availability of external information.

Figure 3.3 displays histograms of the EB estimates of prior parameter/hyperpa-
rameter τ 2’s by pInc (TauSq) and pInc2 (TauSq2) across the 50 simulation replicates.
The initial hyperparameter value for pInc2 was set to 0.05. The figure shows that the
estimated parameters are bigger (hence less shrinkage) when the sample size is larger.
Furthermore, for a fixed sample size the estimates are reasonably stable, the quotient
of the largest and smallest across the 50 replicates being below a small constant.

3.5.2 Variational Bayes vs MCMC

We investigated the quality of the variational approximation by comparing it to the
output of a long MCMC run. As we only use the univariate marginal posterior
distributions of the regression parameters for model selection, we focused on these. We
ran a simulation study with a single regression equation (say i = 1) with n = p = 100,
and compared the variational Bayes estimates of the marginal densities with the
corresponding MCMC-based estimates. We sampled n = 100 independent replicates
from a p = 100-dimensional normal distribution with mean zero and (p×p)-precision
matrix Ωp, and formed the vector Y1 and matrix X1 as indicated in Section 3.2. The
precision matrix was chosen to be a band matrix with lower and upper bandwidths
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Figure 3.3: Histograms of the global variance parameter τ 2 estimates by EB by pInc
(TauSq) and by pInc2 (TauSq2) across 50 simulation replicates. First, second and
third columns correspond respectively to Band, Cluster and Hub structures for the
precision matrix. First row (n = 10) and third row (n = 200) display τ 2 estimates by
pInc2 whereas second row (n = 10) and fourth row (n = 200) display τ 2 estimates by
pInc. We used p = 100.
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average l1 loss ||β̂1 − β1||1
in 20 replications (i = 1)

computing time needed
for all the 100 regressions

pInc 1.41 58 sec
MCMC method 2.22 13h 15 min

Table 3.5: Performance comparison between pInc and the MCMC method.

average l1 loss ||β̂1 − β1||1
in 20 replications (i = 1)

computing time needed
for all the 100 regressions

pInc2 2.25 1min 48 sec
MCMC method 3.03 13h 19 min

Table 3.6: Performance comparison between pInc2 and the MCMC method.

equal to 4, thus a band of total width 9. For both the variational approximations
and the MCMC method we used prior hyperparameters c = d = 0.001 and prior
hyperparameters (â, b̂) (resp. τ̂ 2 for pInc2 ) fixed to the values set by the global
empirical Bayes method described in Section 3.4.2. The MCMC iterations were run
nIter = 4 × 104 times without thinning, after which the first nBurnin = 2 × 104

iterates were discarded [111]. Tables 3.5 and 3.6 summarize the comparison.
The correspondence between the two methods is remarkably good. The posterior

means obtained from the variational method are even slightly better as estimates of
the true parameters than the ones from the MCMC method, in terms of ℓ1-loss. With
respect to computing time the variational method was vastly superior to the MCMC
method, which would hardly be feasible even for n = p = 100.

3.6 Applications

We applied the methods to two real datasets, both as illustration.

3.6.1 Reconstruction of the apoptosis pathway

The cells of multicellular organisms possess the ability to die by a process called
programmed cell death or apoptosis, which contributes to maintaining tissue home-
ostasis. Defects in the apoptosis-inducing pathways can eventually lead to expansion
of a population of neoplastic cells and cancer [55, 63, 75]. Resistance to apoptosis
may increase the escape of tumour cells from surveillance by the immune system.
Since chemotherapy and irradiation act primarily by inducing apoptosis, defects in
the apoptotic pathway can make cancer cells resistant to therapy. For this reason
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resistance to apoptosis remains an important clinical problem.
In this section we illustrate the power of our method in reconstructing the apop-

tosis network from lung cancer data [76] from the Gene Expression Omnibus (GEO).
The data comprises p = 84 genes, consisting of n1 = 49 observations from normal
tissue and n2 = 58 observations from tumor tissue, hence n = 107 observations in
total. We fitted pInc on the tumor data, using the data on normal tissue as prior
knowledge. To the latter aim we fitted pInc to the normal data with a single group
G = 1, and applied the model selection procedure of Section 3.4.3 to create an array
P of incidences, which served as input when fitting pInc on the tumor data. The idea
is that, while tumors and normal tissue may differ strongly in terms of mean gene
expression, the gene-gene interaction network may be relatively more stable.

When fitting the pInc model with the two groups (gene interaction absent or
present in normal tissue), we observed a huge difference in the empirical Bayes esti-
mates of the hyperparameters governing the priors of the parameters τ−2 of the two
groups, namely prior mean â0/b̂0 = 8476.97 for absent and â1/b̂1 = 3.70 for present in
the prior network. This strongly indicates the relevance of the prior knowledge [72],
so that superior performance of pInc in the reconstruction can be expected.

Figure 3.4 displays the reconstructed undirected network by pInc. A total number
of 27 edges were found with various edge strengths. The ten most significant edges
in decreasing order were: PRKACG ↔ FASLG, MYD88 ↔ CSF2RB, PIK3R2 ↔
CHUK, TNFRSF10B ↔ CHP1, PRKAR1B ↔ AKT2, PIK3R2 ↔ NGF, TRAF2 ↔
BAX, TNF ↔ IL1B, PRKAR2B ↔ AKT3, and TRAF2 ↔ PIK3R2.

Node degrees varied from 0 to 4 with PIK3R2 and PRKAR1A yielding the highest
degree 4, followed by TRAF2 having degree 3, and CHUK, CHP1, BIRC3, FAS, IL1B
and NFKBIA having each degree 2.

3.6.2 eQTL mapping of the p38MAPK pathway

The p38MAPK pathway is activated in vivo by environmental stress and inflam-
matory cytokines, and plays a key role in the regulation of inflammatory cytokines
biosynthesis. Evidence indicates that p38MAPK activity is critical for normal im-
mune and inflammatory response [8, 62, 82]. The pathway also plays an important
role in cell differentiation. Its key role in the conversion of myoblasts to differenti-
ated myotubes during myogenic progression has been established by [88, 154, 161].
More recently, in vivo studies demonstrated that p38MAPK signalling is a crucial
determinant of myogenic differentiation during early embryonic myotome develop-
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Figure 3.4: Apoptosis network reconstructed for the 84 genes by pInc.

ment [32]. Finally, the pathway is involved in chemotactic cell migration [59, 60].
Lack of p38MAPK function may lead to cell cycle deficiency and tumorigenesis, and
genetic variants of some genes in the p38MAPK pathway are associated with lung
cancer risk [39]. Studying the pathway in healthy cells may enhance understanding
the underlying biological mechanism, but has received less attention.

We investigated the association between single nucleotide polymorphisms (SNPs)
and the genes in the P38MAPK pathway, using GEUVADIS data. In the GEUVADIS
project [77], 462 RNA-Seq samples from lymphoblastoid cell lines were obtained, while
the genome sequence of the same individuals is provided by the 1000 Genomes Project.
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The samples in this project come from five populations: CEPH (CEU), Finns (FIN),
British (GBR), Toscani (TSI) and Yoruba (YRI). In our analysis we excluded the
YRI population samples and samples without expression and genotype data, which
resulted in a remaining sample size of 373. We also excluded SNPs with minor allele
frequency (MAF) < 5%. Using a window of 105 bases upstream and 105 downstream
of every gene, we obtained a total number of 42,054 SNPs for the 99 genes of the
pathway belonging to the 22 autosomes. This resulted in a system of 99 regression
models, with dimensions varying from 56 to 1169. We scaled (per gene) the gene
expression data prior to the computations.

Following Section 3.3 we classified the SNPs connected to each gene as located
either within the gene range or outside, and applied pInc with two groups (G = 2).
We observed a big difference in the empirical Bayes estimates of the hyperparameters
of the priors of τ−2: mean value â0/b̂0 = 27, 568.76 for SNPs outside the gene ranges
versus â1/b̂1 = 4102.46 for SNPs inside. The prior information is thus clearly relevant,
and hence an improved mapping by pInc can be expected.

We found using Selection procedure 3.4.3 (Thresholding) the expression levels of
13 out of the 99 genes (genes 15, 40, 48, 50, 51, 61, 75, 78, 85, 86, 93, 96, 98) to be
associated with a total number of 50 SNPs from the 42,054 SNPs under consideration.
Gene 50 yielded the highest number 9 of associated SNPs, followed by gene 40 with
6 SNPs and genes 86, 93 and 96 with 5 SNPs each. Figures 3.5 and 3.6 display the
estimates of the effect sizes of the SNPs (posterior means Eq∗(βi,r|Yi)), green for SNPs
outside the gene ranges and blue for SNPs within a gene, with ‘red stars’ indicating
the SNPs that were selected. The 6 largest associations were observed within genes
93, 15, 96, 98 and 78 (red vertical lines in Figures 3.5 and 3.6). The active SNPs for
all genes, except genes 40 and 50 (although for gene 50 only one of the selected SNPs
is not within), are located inside the gene range. This confirms the belief that SNPs
falling inside genes are more prone to influence these genes than SNPs outside. The
SNP effects on the remainder 86 (= 99− 13) genes are similar to the ones on gene 1
displayed in Figure 3.6. The selection obtained by using pInc-DSS is similar.

Comparison of pInc-DSS with lasso

From the many dedicated methods for eQTL analysis [16, 71, 83, 86, 125], we chose
the lasso as a bench-mark to compare the model selection by pInc combined with DSS
(Section 3.4.3). Our choice for DSS comes from the interest to investigate whether
’pInc + lasso’ indeed outperforms a direct lasso, as suggested for the basic horseshoe.
As a criterion we used predictive performance when using a sparse model restricted
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Figure 3.5: Estimates of SNP effects on genes 15, 40, 48, 50, 51, 61, 75 and 78 using
pInc. Green dots indicate effects estimates for SNPs outside the gene range and blue
dots for SNPs inside the gene range. Red ‘stars’ indicate selected SNP effects. Dashed
vertical lines indicate the 6 largest effects.
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Figure 3.6: Estimates of SNP effects on genes 75, 78, 85, 86, 93, 96, 98 and 1 using
pInc. Green dots indicate effects estimates for SNPs outside the gene range and blue
dots for SNPs inside the gene range. Red ‘stars’ indicate selected SNP effects. Dashed
vertical lines indicate the 6 largest effects.
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to include a maximal number of predictor variables (SNPs). As for the lasso, the
number of selected variables is easy to control by pInc-DSS, because the entire trace
of the adaptive lasso (3.9) is available. To evaluate predictive performance, we used
a single 2/3-1/3 split of the data, leading to training and test sets of 249 and 124
observations, respectively. The lasso was computed using GLMnet by [44], also (3.9).

The four panels of Figure 3.7 report the results for the maximal number of predic-
tor variables set equal to 1, 3, 5, or 10. The vertical axis shows the relative reduction
of the MSE on the test set as compared to the empty model (all βi = 0), defined by

(3.11) MSE0 −MSE(mi)
MSE0

,

where MSE0 is the MSE of the empty model and MSE(mi) the MSE of linear model
mi. This quantity was calculated for all 99 genes in the pathway (horizontal axis),
for both the lasso (displayed in black) and pInc-DSS (displayed in red), large values
indicating accurate prediction. The results of the lasso are somewhat more ‘noisy’,
likely due to less shrinkage of the (near-)zero parameter estimates, and the lasso
regularly performs inferior to both the empty model (negative values) and pInc-DSS,
with gene 13 an extreme case. For genes with considerable signal w.r.t. the empty
model (e.g. genes 61, 93 and 98), pInc-DSS explains much more of the signal than
the lasso. This could be explained by less shrinkage of the non-zero parameters by
the horseshoe prior, which is designed to separate zero and nonzero values. This is
illustrated in Figure 3.8 for gene 98. Gene 50 is the one exception, where lasso beats
pInc-DSS, in the case of selecting 3 variables.

3.7 Conclusion

We have introduced a sparse high-dimensional regression approach that can incor-
porate prior information on the regression parameters and can borrow information
across a set of similar datasets. It is based on an empirical Bayesian setup, where
external information is incorporated through the prior, and information is borrowed
across similar analyses by empirical Bayes estimation of hyperparameters. We have
shown the power of the approach both in model-based simulations of Gaussian graph-
ical models and in real data analyses in genomics. Incorporating the information was
shown to enhance the analysis, even when the prior information was only partly cor-
rect (e.g. 50 % accurate). We explain this by the fact that the empirical Bayesian
approach is able to incorporate prior information in a soft manner. Such a flexible
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Figure 3.7: Relative reduction of MSE (y-axis) for the lasso (black dots) and pInc-
DSS (red stars) for all genes i = 1, . . . , 99 (x-axis) when maximal number of variables
is fixed to 1, 3, 5, or 10 (top-left, top-right, bottom-left, bottom-right). The genes with
the large differences are highlighted by vertical lines
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Figure 3.8: Estimates of SNP effects on gene 98 using pInc (red squares), and pInc-
DSS (red stars) and the lasso (black dots) with 3 predictor variables for the latter two.
X-axis denotes SNP index.
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approach is particularly attractive in high-dimensional situations where the amount
of data is small relative to the number of parameters and an increasing amount of
prior information is available.

To make our approach scalable to large models and/or datasets we developed
a variational Bayes approximation to the posterior distribution resulting from the
horseshoe prior distribution. We showed the accuracy of the resulting approximation
to the marginal posterior distributions of the regression parameters by comparison
to state-of-the-art MCMC schemes for the horseshoe prior. The variational Bayes
approach obtained the same (if not better) accuracy at a fraction of CPU time.

We studied two versions of the model, one with a gamma prior on the ‘sparsity’
parameters and one in which these parameters are estimated by the empirical Bayes
method. We found that the gamma prior is preferable when relevant prior knowledge
can be used, but in the absence of prior knowledge the alternative model may be
preferable.
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3.8 Appendix

1. Variational Bayes approximation

1.1. Variational marginal densities derivation.

We provide in this section the details of the variational approximation to the posterior
distribution for given hyperparameters and for a fixed regression i. Let recall the
likelihood and prior densities of the model.

Likelihood:
Yi|Xi, βi, σ

−2
i ∼ N(Xiβi, σ

2
i In).

Thus,

p(Yi|Xi, βi, σ
−2
i ) = (2π)− n

2 (σ−2
i )n

2 exp
(
− 1

2σ
−2
i (Yi −Xiβi)T (Yi −Xiβi)

)

Priors:

ϵi|σ−2
i ∼ N(0n, σ

2
i In),

βi|σ−2
i , τ−2

i,1 , . . . , τ
−2
i,G, λi,1, . . . , λi,si

∼ N(0si
, σ2

i Dτiλi
),

Dτiλi
= diag(τ 2

i,Pi1
λ2

i,1, . . . , τ
2
i,Pisi

λ2
i,si

),

λi,t ∼ C+(0, 1), t = 1, . . . , si,

τ−2
i,g ∼ Γ(ag, bg), g = 1, . . . , G,
σ−2

i ∼ Γ(c, d).

Hence,

p(βi|σ−2
i , τ−2

i,1 , . . . , τ
−2
i,G, λi,1, . . . , λi,si

) = (2π)− si
2
(
|σ2

i Dτiλi
|
)− 1

2

· exp
{
− 1

2σ
−2
i βT

i D−1
τiλi

βi

}
,

p(λi,t) = 2
π(1 + λ2

i,t)
, t = 1, . . . , si,

p(τ−2
i,g ) =

bag
g

Γ(ag)(τ−2
i,g )ag−1 exp

{
− bgτ

−2
i,g

}
,

g = 1, . . . , G,

p(σ−2
i ) = dc

Γ(c)(σ−2
i )c−1 exp

{
− dσ−2

i

}
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We wish to approximate the posterior distribution of the parameter
θi := (βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i ) given Yi, for a fixed i by minimizing the

Kullback-Leibler (KL) divergence from q ∈ Q to the joint posterior p(θi|Yi). Assum-
ing the approximate posterior q factorizes into a product of densities:

q(θi) = qβi
(βi) · qλi

(λi,1, · · · , λi,si
) · qτi

(τ−2
i,1 , · · · , τ−2

i,G) · qσi
(σ−2

i ),

the optimal q∗
lr , r = 1, · · · , 4; lr ∈ {βi, λi, τi, σi}, satisfy [105] (See also Introduction

chapter):
q∗

lr(.) ∝ exp
{

Eq∗
−lr

[
ln p(Yi, θi)

]}
where Eq∗

−lr
= Eq∗

l1
. . .Eq∗

lr−1
Eq∗

lr+1
. . .Eq∗

l4
.

The approximate marginal densities can now be derived. It is:

q∗
βi

(βi) ∝ exp
{

Eq∗
−βi

[
ln p(βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i , Yi)

]}
∝ exp

{
Eq∗

−βi

[
ln p(Yi|βi, σ

−2
i ) + ln p(βi|λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i )

]}

∝ exp
Eq∗

−βi

−σ−2
i

2

(
(Yi −Xiβi)T (Yi −Xiβi) + βT

i D−1
τiλi

βi

)
∝ exp

−Eq∗
σi

(σ−2
i )

2

[
(Yi −Xiβi)T (Yi −Xiβi) + βT

i D−1
Eq∗

τi
·q∗

λi

βi

]
∝ exp
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σi

(σ−2
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2

[
βT

i

(
XT

i Xi + D−1
Eq∗
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λi
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βi − 2βT

i X
T
i Yi

]
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i
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(
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Eq∗

τi
·q∗

λi

)(
βi − β∗

i

)]

where the last line uses the matrix square completion formula

uTA−1u− 2uTv = (u− Av)TA−1(u− Av)− vTAv

and
D−1

Eq∗
τi

·q∗
λi

= diag
(

Eq∗
τi
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)Eq∗
λi1

(λ−2
i,1 ), . . . ,Eq∗
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Hence, βi|Yi ∼ N(β∗
i ,Σ∗

i ) where

Σ∗
i =

[
Eq∗

σi
(σ−2

i )
(
XT

i Xi + D−1
Eq∗

τi
·q∗
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)]−1
,
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)−1
XT

i Yi.

q∗
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{
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Let’s denote by Kit the normalizing factor for this kernel. It is

Kit =
∫ ∞

0

exp{−litλ−2
it }

λit(1 + λ2
it)

dλit.

Variable transformation zit := 1
λ2

it
and standard integration techniques yield

(3.12) Kit = 1
2

∫ ∞

0

exp{−litzit}
1 + zit

dzit = 1
2 exp(lit)E1(lit),

where E1 is the exponential integral function of order 1, defined by

E1(x) ≡
∫ ∞

x

e−t

t
dt, x ∈ R, x > 0.

(cf. 3.352(4) of Gradshteyn and Ryzhik (1994) [52]).
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Hence, λi,t|Yi ∼ Λλit
, t = 1, · · · , si which has density function

Λ′
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where sg
i is the number of g’s in the i-row of P encoding the G groups,

Dλi
= diag(λ2

i,1, . . . , λ
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i,g = bg + 0.5 · Eq∗

σi
(σ−2

i )Eq∗
−τig

(
βg

i
T D−1

λi
βg

i

)
, g = 1, · · · , G.

q∗
σi

(σ−2
i ) ∝ exp

{
Eq∗

−σi

[
ln p(βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i , Yi)

]}
∝ exp

{
Eq∗

−σi

[
ln p(Yi|βi, σ

−2
i )

]}
· exp

{
Eq∗

−σi

[
ln p(βi|λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i )

]}
· p(σ−2

i )

∝
(
σ−2

i

)n
2 · (σ−2

i )
si
2 exp

{
− σ−2

i

2 Eq∗
βi

(Yi −Xiβi)T (Yi −Xiβi)
}

· exp
{
− σ−2

i

2 Eq∗
−σi

(
βT

i D−1
τiλi

βi

)}
· (σ−2

i )c−1 exp
{
− d(σ−2

i )
}
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∝ (σ−2
i )c+ n

2 + si
2 −1

· exp
{
−
[
d+ 1

2Eq∗
−σi

(
βT

i D−1
τiλi

βi

)
+ 1

2Eq∗
βi

(Yi −Xiβi)T (Yi −Xiβi)
]
(σ−2

i )
}

Hence, σ−2
i |Yi ∼ Γ(c∗

i , d
∗
i ) where

c∗
i = c+ n

2 + si

2 ,

d∗
i = d+ 0.5 · Eq∗

−σi

(
βT

i D−1
τiλi

βi

)
+ 0.5 · Eq∗

βi
(Yi −Xiβi)T (Yi −Xiβi).

Therefore,

(3.13)

βi|Yi ∼ N
(
β∗

i ,Σ∗
i

)
,

λi,t|Yi ∼ Λλit
, t = 1, · · · , si,

τ−2
i,g |Yi ∼ Γ(a∗

i,g, b
∗
i,g), g = 1, · · · , G,

σ−2
i |Yi ∼ Γ

(
c∗

i , d
∗
i

)
,

1.2. Variational lower bound.

Let’s denote by Li the variational lower bound on the log-marginal likelihood. It is

Li = Eq∗ log p(Yi, θi)
q(θi)

= Eq∗ log p(Yi| θi) + Eq∗ log p(θi)− Eq∗ log q(θi)
= Eq∗ log p(Yi| βi, σ

−2
i ) + Eq∗ log p(βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i )

− Eq∗ log q(βi, λi,1, · · · , λi,si
, τ−2

i,1 , · · · , τ−2
i,G, σ

−2
i )

= Eq∗ log p(Yi| βi, σ
−2
i ) + Eq∗ log p(βi|λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i )

+
si∑

t=1
Eq∗ log p(λi,t) +

G∑
g=1

Eq∗ log p(τ−2
i,g ) + Eq∗ log p(σ−2

i )

− Eq∗ log q(βi)−
si∑

t=1
Eq∗ log q(λi,t)−

G∑
g=1

Eq∗ log q(τ−2
i,g )− Eq∗ log q(σ−2

i ).

The sum elements can be found to satisfy:

Eq∗ log p(Yi| βi, σ
−2
i ) = −n2 log(2π) + n

2 Eq∗

[
log(σ−2

i )
]

− 1
2Eq∗(σ−2

i )Eq∗

[
(Yi −Xiβi)T (Yi −Xiβi)

]
,
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Eq∗ log p(βi|λi,1, · · · , λi,si
, τ−2

i,1 , · · · , τ−2
i,G, σ

−2
i ) =

−si

2 log(2π) + si

2 Eq∗

[
log(σ−2

i )
]

+
G∑

g=1

sg
i

2 Eq∗

[
log(τ−2

i,g )
]

+
si∑

t=1
Eq∗

[
log(λ−1

i,t )
]

−1
2Eq∗(σ−2

i )Eq∗

(
βT

i D−1
τiλi

βi

)
,

Eq∗ log q(βi) = −si

2 log(2π)− 1
2 log |Σ∗

i | −
si

2 ,

Eq∗ log q(λi,t) = log
[

π

exp(lit)E1(lit)

]
+ Eq∗

[
log(λ−1

i,t )
]

+ Eq∗ log p(λi,t)

− litEq∗(λ−2
i,t ),

Eq∗ log q(τ−2
i,g ) = log

 b∗
i,g

a∗
i,g

Γ(a∗
i,g) ·

Γ(ag)
bg

ag

+ sg
i

2 Eq∗

[
log(τ−2

i,g )
]

+ Eq∗ log p(τ−2
i,g )

− 1
2Eq∗(σ−2

i )Eq∗

(
βg

i
T D−1

λi
βg

i

)
· Eq∗(τ−2

i,g ),

Eq∗ log q(σ−2
i ) = log

 d∗
i

c∗
i

Γ(c∗
i )
· Γ(c)
dc

+
(
n

2 + si

2

)
Eq∗

[
log(σ−2

i )
]

+ Eq∗ log p(σ−2
i )

− 1
2Eq∗

(
βT

i D−1
τiλi

βi

)
Eq∗(σ−2

i )− 1
2Eq∗

[
(Yi −Xiβi)T (Yi −Xiβi)

]
Eq∗(σ−2

i ).

Replacing the sum elements by their respective expression the variational lower bound
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simplifies to

(3.14)

Li = −n2 log(2π)− si log(π) + 1
2 log |Σ∗

i |+
1
2si

+
G∑

g=1
(ag log bg − log Γ(ag)− a∗

i,g log b∗
i,g + log Γ(a∗

i,g))

+ c log d− log Γ(c)− c∗
i log d∗

i + log Γ(c∗
i )

+
G∑

g=1

(1
2Eq∗

σ
(σ−2

i )Eq∗
τ
(τ−2

i,g )Eq∗(βg
i

T D−1
λi
βg

i )
)

+
si∑

t=1

(
logE1(lit) + 1

exp(lit)E1(lit)

)
,

where we used the result Eq∗(λ−2
i,t ) = 1

lit·exp(lit)·E1(lit) − 1 from Lemma 1 of the main
manuscript.

2. Global empirical Bayes estimation for prior parameters.

We consider the criterion

α = (a1, b1, · · · , aG, bG) 7→
p∑

i=1
Eq log pα(Yi, θi)

q(θi)
(3.15)

=
p∑

i=1
Eq log p(Yi| θi)

q(θi)
+

p∑
i=1

Eq log pα(θi).(3.16)

For fixed q = q∗ the far right side of the preceding display depends on α only
through its second term, which is

p∑
i=1

Eq∗

[
log pα(τ−2

i,1 ) + · · ·+ log pα(τ−2
i,G)

]
.

Since all prior densities are Gamma densities, we find that (ag, bg) maximizes, for
g = 1, · · · , G,

(ag, bg) 7→
p∑

i=1
Eq∗

[
(ag − 1) log τ 2

i,g − bgτ
2
i,g + ag log bg − log Γ(ag)

]

=
p∑

i=1

[
(ag − 1)

(
Ψ(a∗

i,g)− log b∗
i,g

)
− bg

a∗
i,g

b∗
i,g

+ ag log bg − log Γ(ag)
]

=
p∑

i=1

[
(ag − 1)

(
Ψ(a∗

i,g)− log b∗
i,g

)
− bg

a∗
i,g

b∗
i,g

]
+ p

(
ag log bg − log Γ(ag)

)



98 pInc package

= Lg(ag, bg).

where Ψ = Γ′/Γ denotes the digamma function and recall τ 2
i,g possesses a Γ(a∗

i,g, b
∗
i,g)-

distribution under q∗ for g = 1, · · · , G.

Taking the derivative of Lg with respect to bg yields

∂Lg

∂bg

= p
ag

bg

−
p∑

i=1

a∗
i,g

b∗
i,g

and we get by setting this to zero

b∗
g = a∗

g

(1
p

p∑
i=1

a∗
i,g

b∗
i,g

)−1
= a∗

gM

Where M = p/
∑p

i=1
a∗

i,g

b∗
i,g

. Now we get by substituting bg by b∗
g in Lg

Lg(ag,Mag) =
p∑

i=1

[
(ag − 1)

(
Ψ(a∗

i,g)− log b∗
i,g

)
−Mag

a∗
i,g

b∗
i,g

]
+ p

(
ag log(Mag)− log Γ(ag)

)
which by differentiating with respect to ag yields

∂Lg

∂ag

= p
(

1 + log(Mag)−Ψ(ag)
)

+
p∑

i=1

[(
Ψ(a∗

i,g)− log b∗
i,g

)
−M

a∗
i,g

b∗
i,g

]

= p
(

1 + log(ag) + logM −Ψ(ag)− 1
)

+
p∑

i=1

(
Ψ(a∗

i,g)− log b∗
i,g

)

Setting the derivative to zero, we obtain

log(a∗
g)−Ψ(a∗

g) = 1
p

p∑
i=1

(
log b∗

i,g −Ψ(a∗
i,g)
)
− logM.

Using the approximation log(a∗
g)−Ψ(a∗

g) ≈ 1
2a∗

g
, we finally find

a∗
g ≈ 1

2

(
log(a∗

g)−Ψ(a∗
g)
)−1

= 1
2

(1
p

p∑
i=1

(
log b∗

i,g −Ψ(a∗
i,g)
)
− logM

)−1
.


