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Chapter 2

An empirical Bayes approach to
network recovery using external
knowledge

Reconstruction of a high-dimensional network may benefit substantially from the in-
clusion of prior knowledge on the network topology. In the case of gene interaction
networks such knowledge may come for instance from pathway repositories like KEGG,
or be inferred from data of a pilot study. The Bayesian framework provides a nat-
ural means of including such prior knowledge. Based on a Bayesian Simultaneous
Equation Model, we develop an appealing Empirical Bayes (EB) procedure which au-
tomatically assesses the agreement of the used prior knowledge with the data at hand.
We use variational Bayes method for posterior densities approximation and compare
its accuracy with that of Gibbs sampling strategy. Our method is computationally fast,
and can outperform known competitors. In a simulation study we show that accurate
prior data can greatly improve the reconstruction of the network, but need not harm
the reconstruction if wrong. We demonstrate the benefits of the method in an analysis
of gene expression data from GEO. In particular, the edges of the recovered network
have superior reproducibility (compared to that of competitors) over resampled ver-
sions of the data.

This chapter was published as: G.B. Kpogbezan, A. W. van der Vaart, W. N. van Wieringen,

Gwenaël G. R. Leday and M.A. van de Wiel (2017). An empirical Bayes approach to network

recovery using external knowledge. Biometrical Journal, 59(5), 932–947. The research leading to

these results has received funding from the European Research Council under ERC Grant Agree-

ment 320637.
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2.1 Introduction

Many areas of the quantitative sciences have witnessed a data deluge in recent years.
This is due to an increased capacity of measuring and storing data in combination
with a reduction in costs of acquiring this data. For instance, in the medical field
high-throughput platforms yield measurements of many molecular aspects (e.g. gene
expression) of the cell. As many as 20, 000 genes of a single patient can be char-
acterized simultaneously. However, although the costs of such techniques have gone
down over the years, the number of patients n in a typical clinical study is still small
compared to the number of variables p measured. Reliable analysis of data of such a
“n≪ p” study is difficult. In this paper we try to solve the problem of few replicate
measurements by incorporating external (or ”prior”) data in the analysis. To allow
interpretation, we restrict ourselves to predefined subsets of genes (e.g. pathways) for
which p is usually moderately larger than n.

High-dimensional modelling based on a small data set is particularly challenging
in studies of relationships between variables. The number of potential pairwise rela-
tionships between even a modest number of genes is p(p − 1)/2. However, some of
these relationships may be known from the vast body of medical literature available.
For instance, the current beliefs on interactions among genes is condensed in repos-
itories like KEGG and Reactome. Although such information may not be reliable,
or be only partially relevant for the case at hand, its flexible inclusion may help the
analysis of high-dimensional data. Methodology that exploits such prior information
may accelerate our understanding of complex systems like the cell.

The cohesion of variables constituting a complex system is often represented by a
network, also referred to as a graph. A graph G consists of a pair (I, E) where I =
{1, ..., p} is a set of indices representing nodes (the variables of the system) and E is the
set of edges (relations between the variables) in I×I. An edge can be characterized in
many ways, we concentrate on it representing conditional independence between the
node pair it connects. More formally, a pair (i1, i2) ∈ E if and only if random variables
represented by nodes i1 and i2 are conditionally dependent, given all remaining nodes
in I. All pairs of nodes of I not in E are conditionally independent given the remaining
nodes. Graphs endowed with this operationalization of the edges are referred to as
conditional independence graphs (Whittaker, 1990).

Conditional independence graphs are learned from data by graphical models.
Graphical models specify how data are generated obeying the relations among the
variables as specified by a conditional independence graph. A Gaussian Graphical
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Model (GGM) assumes data are drawn from a multivariate normal distribution:

(2.1) Y j ∼iid N(0,Ω−1
p ), j ∈ {1, ..., n}.

Here Y j is a p-dimensional random vector comprising the p random variables Y j
1 , . . . , Y

j
p

corresponding to the nodes of I and Ω−1
p is a non-singular (p×p)-dimensional covari-

ance matrix. The matrix Ωp, as opposed to its inverse, is referred to as the precision
matrix. For a GGM the edge set E of the underlying conditional independence graph
corresponds to the nonzero elements of Ωp (Lauritzen, 1996). Hence, to reconstruct
the conditional independence graph it suffices to determine the non-zeros elements of
this matrix.

Reconstruction of the conditional independence graph may concentrate on the di-
rect estimation of the precision matrix. Here we choose a different estimation strategy.
This exploits an equivalence between Gaussian graphical models and Simultaneous
Equations Models (SEMs), which we introduce first before pointing out the equiva-
lence. Our choice for SEM is mainly motivated by its flexibility and its performance.
It can account for experimental or biological covariates in the regression, and exten-
sions to non-Gaussian data are available (Chen et al., 2015; Allen and Liu, 2013; Yang
et al., 2012; Ravikumar et al., 2010). Its Bayesian counterpart is appealing for in-
cluding prior knowledge, which likely is more complicated in many other frameworks.
Its good performance in comparison with alternatives including (sparse) graphical
models was demonstrated by Leday et al. (2017). In addition, SEM is also compu-
tational efficient (Meinshausen and Bühlmann, 2006). We treat SEMs as a system of
regression equations, with each equation modelling the conditional distribution of a
node given the other nodes. If we collect all observations on node i ∈ I in a vector
Yi := (Y 1

i , . . . , Y
n

i )T , then we can write:

(2.2) Yi = Xiβi + ϵi, i ∈ I,

where Xi is the n× (p− 1)-matrix with columns the observations of the p− 1 nodes
different from i, i.e. Xi = [Y1, Y2, ..., Yi−1, Yi+1, ..., Yp] (where the square brackets mean
“combine the vectors in a matrix”). The error vector ϵi is defined by the equation,
and possesses a multivariate Gaussian distribution N(0, σ2

i In) under the GGM. (The
covariances between the errors of different equations are in general non-zero, but are
left unspecified.) The equivalence between the thus formulated SEM and the GGM as
specified above stems from the one-to-one relationship between the regression param-
eters of the SEM and the elements of the GGM’s precision matrix (Lauritzen (1996)):
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βi,r = −ω−1
ii ωir. In particular, (non)zero entries in the i-th row vector of the precision

matrix Ωp correspond to the (non)zero coefficients of βi. The problem of identifying
(non)zero entries in Ωp can therefore be cast as a variable selection problem in the p
regression models (2.2). Lasso regression (Tibshirani, 1996) may be used for this pur-
pose (as in Meinshausen and Bühlmann (2006)), but other variable selection methods
have also been employed. The problem that every partial correlation appears in two
regression equations is usually resolved by post-symmetrization through application
of the ‘AND’-rule: an edge (i, j) ∈ E if and only if βi,j ̸= 0 and βj,i ̸= 0 (Meinshausen
and Bühlmann, 2006). Graph structures recovery based on model (2.2) performs well
and is widely used in practice.

Previously, we proposed a Bayesian formulation of the SEM (Leday et al., 2017).
In this Bayesian SEM (henceforth BSEM) the structural model (2.2) is endowed with
the following prior:

(2.3)

ϵi|σ2
i , τ

2
i ∼ N(0n, σ

2
i In),

βi|σ2
i , τ

2
i ∼ N(0s, σ

2
i τ

−2
i Is),

τ 2
i ∼ Gamma(a1, b1),

σ−2
i ∼ Gamma(a2, b2),

where I is an identity matrix, s = p−1, and Gamma(a, b) denotes a gamma distribu-
tion with shape parameter a and rate parameter b, and τ 2

i and σ−2
i are independent.

The normal-gamma-gamma (NGG) prior of model (2.3) regularizes the parameter es-
timates (e.g. estimated as the posterior mean) in two distinct ways. First, due to the
normal prior on the regression coefficients βi,r (corresponding to a ridge penalty), the
estimates of these parameters are shrunken locally (i.e. within each equation) to zero.
Second, the estimates are simultaneously shrunken globally (i.e. across equations),
due to the fact that the hyperparameters α = {a1, b1, a2, b2} do not depend on the
index i. There seems to be no reason to connect the error variances (which reflect
the noise levels of the genes) across the equations, and hence we use a vague prior
(e.g. a2 = b2 = 0.001). In contrast, estimating the parameters a1, b1 in EB fashion
is advantageous, as it further “borrows information” across the regression equations.
The resulting global shrinkage improves inference in particular for large networks (see
also Section 2.5). Note that assuming a Gaussian distribution for the regression coef-
ficients is also done in ridge regression and random effects models. The BSEM model
can be fit computationally efficiently by a variational method, and generally outper-
forms the aforementioned lasso regression approach to the estimation of model (2.2).
Furthermore, variables can be accurately selected based on the marginal posterior
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distributions of the regression coefficients (Leday et al., 2017).

The problem of network reconstruction is challenging due to the vast space of
possible graphs for even a moderate number of variables. This endeavour is further
complicated by the inherent noise in the measurements used for the reconstruction.
Fortunately, network reconstruction need not start from scratch, as often similar
networks have been studied previously. Prior information on the network may be
available in the literature, repositories, or simply as pilot data. It is natural to take
such information along in network reconstruction. Many works have already been
devoted to incorporating prior knowledge into network reconstruction. Among these
studies, Imoto et al. (2003) use energy functions to incorporate prior knowledge
sources into Bayesian gene regulatory network models and propose the incorporation
of many types of different prior knowledge, including literature-based knowledge. The
approach of Imoto et al. has been extended by Werhli and Husmeier which proposed a
framework to incorporate multiple sources of prior knowledge into dynamic Bayesian
network using MCMC sampling (Werhli and Husmeier, 2007). In the same line,
Steele et al. proposed an advanced text-mining technique to incorporate literature-
based prior knowledge into Bayesian network learning of gene networks. Similarly, Li
et al. developed an approach that combines literature mining and microarray analysis
in constructing biological networks (Li et al., 2006). Murkherjee and Speed (2008)
proposed a method to incorporate network features including edges, classes of edges,
degree distributions, and sparsity using MCMC sampling in Bayesian network learn-
ing. Still in Bayesian network learning, Isci et al. (2013) proposed also a framework
to incorporate multiple sources of external knowledge where the incorporation of ex-
ternal knowledge uses Bayesian network infrastructure itself. However, none of these
proposed methods explicitly estimate the agreement of the prior knowledge with the
data at hand.

In this paper we develop a method for incorporating external data or prior infor-
mation into the reconstruction of a conditional independence network. To this aim we
extend in Section 2.2 the Bayesian SEM framework (2.2)-(2.3). The extension incor-
porates prior knowledge in a flexible manner. Next in Section 2.3 we develop a vari-
ational Bayes approach to approximate the posterior distributions of the regression
parameters for given hyperparameters, and show this to be comparable in accuracy
to Gibbs sampling, although computationally much more efficient. In Section 2.4 this
is complemented by a derivation of an empirical Bayes approach to estimate the hy-
perparameters. Using simulations we show in Section 2.5 that the method performs
better, in terms of ROC curves, than BSEM when the prior knowledge agrees with
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the data, and is as accurate when it is not. In Section 2.6 we show the full potential
of our approach on real data. We conclude the paper with a discussion.

2.2 Model

The BSEM approach, comprising model (2.2) with priors (2.3), is modified to incor-
porate external information on the to-be-reconstructed network. The resulting model
is referred to as BSEMed (BSEM with external data).

Prior knowledge on the network is assumed to be available as a “prior network”,
which specifies which edges (conditional independencies) are present and absent. This
is coded in an adjacency matrix P, which contains only zeros and ones corresponding
to the absence and presence of an edge in the prior network. That is, Pi,r = 1 if node
i is connected with node r and Pi,r = 0 otherwise. Note that the adjacency matrix P
is symmetric (for the purpose of undirected network reconstruction).

The BSEMed approach keeps equation (2.2), but replaces the priors (2.3) of BSEM
by:

(2.4)

ϵi|σ2
i , τ

2
i,0, τ

2
i,1 ∼ N(0n, σ

2
i In),

βi|σ2
i , τ

2
i,0, τ

2
i,1 ∼ N(0s, σ

2
i Dτ−2

i
),

Dτ−2
i

= diag(τ−2
i,1 , ..., τ

−2
i,s ),

τ 2
i,r =


τ 2

i,0 ∼ Gamma(a0, b0), if Pi,r = 0,

τ 2
i,1 ∼ Gamma(a1, b1), if Pi,r = 1,

σ−2
i ∼ Gamma(a2, b2).

where βi = βi,1, ..., βi,i−1, βi,i+1, ..., βi,p.
The normal-gamma-gamma-gamma (NGGG) prior (2.4) retains the ridge-type reg-
ularization of the regression parameters βi,r of (2.3), through Gaussian priors on
these coefficients. The crucial difference between the two priors reveals itself in the
variances of the latter priors. For each regression equation i there are two possible
variances:

βi,r ∼


N(0, σ2

i τ
−2
i,0 ), if Pi,r = 0,

N(0, σ2
i τ

−2
i,1 ), if Pi,r = 1.

Hence, the regression coefficients corresponding to edges that are present according
to the prior information share the same variance, and similarly for the other set of
regression coefficients. Both variances can be both small and large, as they are them-
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selves modelled through Gamma priors, where small values lead to small regression
coefficients. If the prior information on the network were correct, then naturally a
small value of τ−2

i,0 would be desirable, smaller than the value of τ−2
i,1 . However, the

construction is flexible in that the two values, and even their priors, are not fixed
a-priori. In (2.4) the two parameters τ−2

i,0 and τ−2
i,1 are assumed to have gamma pri-

ors, with different hyperparameters (a0, b0) and (a1, b1). For further flexibility these
hyperparameters will be estimated from the data with an empirical Bayes method.
Then, if the absence of an edge in the prior network is supported by the current data,
the corresponding regression coefficient βi,r may stem from a prior with a small vari-
ance, and will tend to be small; a similar, but opposite, situation will occur for edges
that are present in the prior network. Indeed in Section 2.5 we shall see that the EB
approach will tend to find similar values of τ 2

i,0 and τ 2
i,1 when the prior knowledge is

non-informative, and rather different values otherwise.
The fact that model (2.4) contains the model (2.3) as a submodel, provides ro-

bustness against the misspecification of the prior information. Although the number
of latent variables in (2.4) is considerably higher (namely p− 1 additional variances,
one for each regression equation), the actual number of extra parameters is only two
(the pair (a1, b1)). This suggests that if the prior information doesn’t agree with the
data at hand, then the cost in terms of precision of the estimators is minor. It is
amply compensated by the gains if the prior information is correct. We corroborate
this in our simulation study in Section 2.5. In this connection it is also of interest
to note the flexible roles of τ 2

i,0 and τ 2
i,1, τ 2

i,0 (resp. τ 2
i,1) is freely estimated from the

data using the absent (resp. present) prior connections. We allow τ 2
i,0 < τ 2

i,1 which
accommodates (rare) situations in which a prior is complementary to the data.

2.3 Variational Bayes method and Gibbs sampling

In this section we develop a variational Bayes approach to approximate the (marginal)
posterior distributions of the parameters βi,r, τ

2
i,0, τ

2
i,1, σ

2
i in model (2.4). The algorithm

is similar, but still significantly different, from the algorithm developed in Leday et
al. (2017) for the model (2.3). In the following we can see that, due to (2.4), the
variational parameters have a form which renders the implementation of (2.4) much
more challenging. We also verify that these approximations are accurate by comparing
them to the results obtained using a Gibbs sampling strategy, which is much slower.
Computational efficiency is an important characteristic, especially for fitting large
networks.
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In this section we work on a single regression equation, i.e. for a fixed index i,
and given hyperparameters ak, bk, for k = 0, 1, 2. In the next section we combine the
regression equations to estimate the hyperparameters.

2.3.1 Variational Bayes inference.

In general a “variational approximation” to a distribution is simply the closest ele-
ment in a given target set Q of distributions, usually with “distance” measured by
Kullback-Leibler divergence. The setQ is chosen both for its computational tractabil-
ity and accuracy of approximation. Distributions Q with stochastically independent
marginals (i.e. product laws) are popular, and then the “accuracy” of approximation
is naturally restricted to the marginal distributions.

In our situation we wish to approximate the posterior distribution of the parameter
θ := (βi, τ

2
i,0, τ

2
i,1, σ

2
i ) given the prior (2.4) and the observation Yi given in (2.2), for a

fixed i. Here in (2.2) we take Xi (which depends on Yj for j ̸= i) as given, as in a
fixed-effects linear regression model. For p(·|Yi) the posterior density in this model,
the variational Bayes approximation is given as

q∗ = argmin
q∈Q

Eq log q(θ)
p(θ|Yi)

,

where the expectation is taken with respect to the density q ∈ Q. For p(Yi, θ) the
joint density of (Yi, θ), this is equivalent to finding the maximizer of

(2.5) Eq log p(Yi, θ)
q(θ) .

By the nonnegativity of the Kullback-Leibler divergence, the latter expression is a
lower bound on the marginal density p(Yi) =

∫
p(Yi, θ) dθ of the observation, and it is

usually referred to as “the lower bound”. Solving the variational problem is equivalent
to maximizing this lower bound (over Q).

We choose the collection Q equal to the set of distributions of θ for which the
components βi, τ 2

i,0, τ 2
i,1 and σ2

i are stochastically independent, i.e. q(θ) = ∏4
l=1 ql(θl),

where the marginal densities ql are arbitrary. Given such a factorization of q it can
be shown in general (see e.g. Ormerod and Wand (2010)), that the optimal marginal
densities q∗

l satisfy:

q∗
l (θl) ∝ exp(Eq−l

log p(Yi, θ)), where Eq−l
= Eq1 . . .Eql−1Eql+1 . . .Eq4 .
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It can be shown (see the Supplementary Material) that in model (2.4) for regression
equation i, with θ = (βi, τ

2
i,0, τ

2
i,1, σ

−2
i ), this identity can be written in the “conjugate”

closed-form

(2.6)

βi|Yi ∼ N
(
β∗

i ,Σ∗
i

)
,

τ 2
i,0|Yi ∼ Gamma

(
a∗

i,0, b
∗
i,0

)
,

τ 2
i,1|Yi ∼ Gamma

(
a∗

i,1, b
∗
i,1

)
,

σ−2
i |Yi ∼ Gamma

(
a∗

i,2, b
∗
i,2

)
,

where

Σ∗
i =

[
Eq∗

4
(σ−2

i )
(
XT

i Xi + DEq∗
2 ·q∗

3
(τ2

i )

)]−1
,

β∗
i =

[
XT

i Xi + DEq∗
2 ·q∗

3
(τ2

i )

]−1
XT

i Yi,

a∗
i,0 = a0 + 1

2s
0, b∗

i,0 = b0 + 1
2Eq∗

4
(σ−2

i )Eq∗
1
(β0

i
T
β0

i ),
a∗

i,1 = a1 + 1
2s

1, b∗
i,1 = b1 + 1

2Eq∗
4
(σ−2

i )Eq∗
1
(β1

i
T
β1

i ),
a∗

i,2 = a2 + 1
2n+ 1

2s, b∗
i,2 = b2 + 1

2Eq∗
−4

(
βT

i Dτ2
i
βi

)
+ 1

2Eq∗
1
(Yi −Xiβi)T (Yi −Xiβi),

where s0 and s1 are the number of 0’s and 1’s in the i-th row of the adjacency
matrix P, not counting the diagonal element; and β0

i = {βi,r : r ∈ I\i,Pi,r = 0}
and β1

i = {βi,r : r ∈ I\i,Pi,r = 1} are the coordinates of the vector of regression
parameters corresponding to these 0’s and 1’s. Furthermore

DEq∗
2 ·q∗

3
(τ2

i ) = diag
(

Eq∗
2
Eq∗

3
(τ 2

i,1), ...,Eq∗
2
Eq∗

3
(τ 2

i,s)
)
.

In these identities the optimal densities q∗
l appear both on the left and the right of

the equations and hence the identities describe the optimal densities only as a fixed
point. In practice the identities are iterated “until convergence” from suitable starting
values.

The iterations also depend on the hyperparameters ak, bk. In the next section
we describe how these parameters can be estimated from the data by incorporating
updates of these parameters in the iterations.
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2.3.2 Variational Bayes vs Gibbs sampling.

Under the true posterior distribution the coordinates βi, τ
2
i,0, τ

2
i,1, σ

2
i are not indepen-

dent. This raises the question how close the variational approximation is to the
true posterior distribution. As the latter is not available in closed form, we inves-
tigate this question in this section by comparing the variational approximation to
the distribution obtained by running a Gibbs sampling algorithm. As for the net-
work reconstruction we only use the marginal posterior distributions of the regression
parameters, we restrict ourselves to these marginal distributions.

The full conditional densities of BSEMed can be seen to take the explicit form:

βi|Yi, τ
2
i,0, τ

2
i,1, σ

−2
i ∼ N(β∗

i ,Σ∗
i ),

τ 2
i,0|Yi, βi, τ

2
i,1, σ

−2
i ∼ Gamma(a∗

i,0, b
∗
i,0),

τ 2
i,1|Yi, βi, τ

2
i,0, σ

−2
i ∼ Gamma(a∗

i,1, b
∗
i,1),

σ−2
i |Yi, βi, τ

2
i,0, τ

2
i,1 ∼ Gamma(a∗

i,2, b
∗
i,2),

where the parameters Σ∗
i , β∗

i , a∗
i,k and b∗

i,k satisfy the same system of equations
as in the variational algorithm, except that all expectations Eq∗ must be replaced
by the “current” values taken from the conditioning (see Supplementary Material).
Thus Gibbs sampling of the full posterior (βi, τ

2
i,0, τ

2
i,1, σ

−2
i )|Yi is easy to implement,

although slow.
We ran a simulation study with a single regression equation (say i = 1) with

n = p = 50, and compared the variational Bayes estimates of the marginal densities
with the corresponding Gibbs sampling-based estimates. Thus we sampled n = 50
independent replicates from a p = 50-dimensional normal distribution with mean
zero and (p × p)-precision matrix Ω, and formed the vector Y1 and matrix X1 as
indicated in (2.2). The precision matrix was chosen to be a band matrix with a
lower bandwidth bl equal to the upper bandwith bu. It is bl = bu = 4, thus a
total number of 9 band elements including the diagonal. For both the variational
approximation and the Gibbs sampler we used prior hyperparameters a2 = b2 =
0.001 and prior hyperparameters â0, b̂0, â1, b̂1 fixed to the values set by the global
empirical Bayes method described in Section 2.4. The Gibbs iterations were run
nIter = 100, 000 times, after which the first nBurnin = 1000 iterates were discarded.
Histograms based on subsampling every 10th value of the iterations are compared
with the variational Bayes approximation to the marginal posterior densities. The
correspondence between the two methods is remarkably good (see the Supplementary
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Material).
We conclude that the variational Bayes method gives reliable estimates of the pos-

terior marginal distributions. The computing times in seconds are 40 for BSEMed and
2542× 50 = 35h 18min 20sec for the Gibbs sampling (in R). The variational method
clearly outperforms the Gibbs sampling method, which would hardly be feasible even
for n = p = 50.

2.4 Global empirical Bayes for BSEMed

Model (2.4) possesses three pairs of hyperparameters (ak, bk), for k ∈ {0, 1, 2}. The
pair (a2, b2) controls the prior of the error variances σ2

i ; we fix this to numerical values
that render a vague prior, e.g. to (0.001, 0.001). In contrast, we let the values of the
parameters α = (a0, b0, a1, b1) be determined by the data. As these hyperparameters
are the same in every regression model i, this allows information to be borrowed across
the regression equations, leading to global shrinkage of the regression parameters.

A natural method to estimate the parameter α is to apply maximum likelihood
to the marginal likelihood of the observations in the Bayesian BSEMed model deter-
mined by (2.2) and (2.4). Here “marginal” means that all parameters except α are
integrated out of the likelihood according to their prior. The approach is similar to
the one in van de Wiel et al. (2012). As a first simplification of this procedure we
treat the vectors Y1, . . . , Yp as independent, thus leading to a likelihood of product
form. As the exact marginal likelihoods of the Yi are intractable, we make a second
simplication and replace these likelihoods by the lower bound (2.5) to the variational
Bayes criterion (see Supplementary Material).

Recall that in model (2.4) each regression parameter βi,r corresponds to one of
two normal priors, that is:

βi,r ∼


N(0, σ2

i τ
−2
i,0 ), if Pi,r = 0,

N(0, σ2
i τ

−2
i,1 ), if Pi,r = 1.

It is the regression coefficients corresponding to edges that are not present according
to the prior information share the same precision τ 2

i,0, and similarly the coefficients
corresponding to the edges that are present obtain the precision τ 2

i,1. Both precisions
are assumed to have gamma priors with different hyperparameters that are adapted
by the current data by the means of the global EB procedure described above. Then,
if the absence of an edge in the prior network is supported by the current data, the
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corresponding regression coefficient βi,r will have a small variance, and will tend to
be small; a similar, but opposite, situation will occur for edges that are present in the
prior network. In next Section we shall see that the EB approach will tend to find
similar values of τ 2

i,0 and τ 2
i,1 when the prior knowledge is non-informative, and rather

different values otherwise.
We developed a dedicated edge selection algorithm for BSEM model in Leday et

al. (2017). It is based on summarizing βi,r and βr,i by κ̄i,r,

(2.7) κ̄i,r = (κi,r + κr,i)/2 with κi,r =

∣∣∣∣Eqi∗

[
βi,r|yi

]∣∣∣∣√
Vqi∗

[
βi,r|yi

]

where Eqi∗

[
βi,r|yi

]
and Vqi∗

[
βi,r|yi

]
denote the approximate posterior expectation

and variance of βi,r obtained in Section 2.3. The κ̄i,r values are ranked and corre-
sponding edges are consecutively included according to a local false discovery rate
(lfdr) criterion, which explores the relationship between lfdr and Bayes factors. De-
tails are given in the Supplementary material.

2.5 Numerical investigation

To study the effect of including a prior network in the model framework we compare
BSEMed with BSEM. Hereto, we generated data Y 1, . . . , Y n according to (3.3), for
p = 100 and n ∈ {50, 200}, which reflect a high- and a low-dimensional situation,
respectively. We considered precision matrices Ωp, which imply band, cluster and hub
network topologies (Zhao et al., 2012) (See Supplementary Material).

For BSEMed we vary the quality of the prior network information: ‘perfect’ prior
information, i.e. the generating model; ‘75%’ true edges; ‘50%’ true edges; ‘0%’ true
edges. To generate 75% (or 50%, or 0%) true information, we swapped 25% (or 50%,
or 100%) of the true edges with the same number of absent edges, i.e. in the adjacency
matrix P that describes the prior network we swapped these percentages of 1s with
0s. It may be noted that in the last case the prior network is completely wrong for
the true edges, but not for the absent edges due to over-sampling of the 0’s, which
seems realistic. Each simulation is repeated 50 times. We display the performances of
BSEM and BSEMed by ROC curves, as based on ranking κ̄i,r, which summarizes βi,r

and βr,i (2.7) (see Figure 2.1). We observe from Figure 2.1 that BSEMed performs
better than BSEM when the prior information agrees the data and as good as BSEM
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when the prior doesn’t. The latter reflects the adaptive nature of the EB procedure.

We also consider the EB estimates. We summarize the precisions by their prior
means, as estimated by the EB procedure: E(τ 2

i,k) = âk/b̂k, for k ∈ {0, 1}. When there
is some agreement of the prior knowledge with the data, we expect â0/b̂0 > â1/b̂1.
In the case with 0% true edges, the prior is partly wrong: none of the truly present
edges are in the prior network while some of the truly absent edges are part of the
prior network. Hence, we expect the EB procedure to produce â1/b̂1 that are slightly
larger than â0/b̂0. As discussed in Section 2.2 for the complementary case, reversal
of the roles of the two priors can still improve performance of BSEMed, or at least
not deteriorate it.

The EB estimates of the prior means are presented in Table 2.1 for the case
corresponding to Figure 2.1(a): band structure, n = 50.

â0/b̂0 â1/b̂1 ratio
true 366.10 8.08 45.30

0.75% true edges 272.97 14,36 19.00
0.50% true edges 216.10 27.56 7.84

0% true edges 142.59 152.95 1.07

Table 2.1: EB estimates of the prior means of precisions τ 2
i,0 and τ 2

i,1 in case of the
band structure and n = 50 for various qualities of prior information

Table 2.1 displays the prior means of precision, as estimated by EB, for BSEMed
models with various qualities of prior information. It is clear that the better the
quality of the prior information is, the larger the ratio of mean prior precisions is.
Tables for other simulation settings are available in the Supplementary material.
These generally show the same pattern.

Figure 2.2 displays BSEM and BSEMed estimates of βi,r (2.3) and (2.4) for the
band structure when n = 50 and p = 100 using the R package rags2ridges (Peeters and
van Wieringen, 2014; van Wieringen and Peeters, 2014). Figures 2.1 & 2.2 show that
BSEMed estimates become more accurate when prior knowledge quality increases and
are as good as BSEM estimates when using 0% true edges information. It is also easy
to see (Figure 2.2) a convergence of the BSEMed estimates to the true graph when
the prior knowledge quality increases.
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Figure 2.1: ROC curves for BSEM (dashed) and BSEMed using perfect prior infor-
mation (blue), BSEMed using 75% true edges present in the prior (brown), BSEMed
using 50% true edges present in the prior (black) and BSEMed using 0% true edges
present in the prior (red). Here, p = 100 and n ∈ {50, 200}.
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(a) True graph

 

 

(b) BSEMed: perfect prior

 

 

(c) BSEMed: 50 % true Info

 

 

(d) BSEM

Figure 2.2: Visualization of BSEMed ’κ̄i,r’ using perfect prior (b), BSEMed ’κ̄i,r’
using 50% true edges information (c), BSEM ’κ̄i,r’ (d) and the true graph (a) in case
n = 50 and p = 100.
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2.6 Illustration

We turn to real data in this section. We use gene expression data from the Gene
Expression Omnibus (GEO) to illustrate and evaluate methods for reconstructing
gene networks. We consider two types of cancer and cancer-related pathways. First,
we focus on the Apoptosis pathway with p = 84 genes in a lung data set (Landi et
al., 2008), consisting of nlung

1 = 49 observations from normal tissue and nlung
2 = 58

observations from tumor tissue, so nlung = 107 in total. Secondly, we considered the
p53 pathway in a pancreas data set (Badea et al., 2008) with p = 68 genes, consisting
of npancreas

1 = 39 observations from normal tissue and npancreas
2 = 39 observations from

tumor tissue, hence npancreas = 78 in total. Note that the data were scaled per gene
prior to the computations.

BSEMed, BSEM, Graphical Lasso (GLλ) (Friedman et al., 2008), SEM with the
Lasso penalty (SEML) (Meinshausen and Bühlmann, 2006) and GeneNet (Schäfer et
al., 2006) were applied on the tumor data parts of the data sets. For BSEMed, the
corresponding data parts from normal tissue were used as prior knowledge by fitting
genes networks on the normal data using BSEM. The idea is that, while tumors
and normal tissue may differ quite strongly in terms of mean gene expression, the
gene-gene interaction network may be relatively more stable.

We first illustrate the results from BSEM and BSEMed. Before considering the
edge selection, we compare the total log-marginal likehood, as estimated by the vari-
ational lower bound, across the regression models for BSEM (2.3) and BSEMed (2.4)
as a measure for goodness-of-fit. For the lung data set (resp. pancreas data set) we
obtained −7082.93 for BSEM and −7071.99 for BSEMed (resp. −3807.58 for BSEM
and −3798.91 for BSEMed). These improvements are clearly larger than what may
be expected under random prior information of the same size, as shown in Supple-
mentary Material in Section 7.

Figure 2.3 (Figure 2.4) displays the estimated gene-gene network interaction in
lung cancer (pancreas cancer) and their overlaps using the described selection proce-
dure with estimated lfdr ≤ 0.1. Considerable overlap (red edges), but also notable
differences can be seen.

Table 2.2 displays the prior means of precision, as estimated by EB. The prior
network is clearly of use: the mean prior precision for regression parameters corre-
sponding to the edges absent in the prior network is relatively large, which effectuates
stronger shrinkage towards zero than for parameters corresponding to edges present
in the prior network.
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(a) BSEM network estimate
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(b) BSEMed network estimate

Figure 2.3: BSEM vs BSEMed network estimates in lung cancer. Red edges are the
overlap edges.
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(a) BSEM network estimate
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(b) BSEMed network estimate

Figure 2.4: BSEM vs BSEMed network estimates in pancreas cancer. Red edges are
the overlap edges.

â0/b̂0 â1/b̂1 ratio
Lung 27.32 1.71 15.97

Pancreas 20.03 1.21 12.97

Table 2.2: EB estimates of precisions τ 2
i,0 and τ 2

i,1 of prior distributions in lung data
(resp. pancreas data) set.
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In the following, we argue that BSEMed network estimates may be more reliable in
this setting than those of BSEM, Graphical Lasso (GLλ) (Friedman et al., 2008), SEM
with the Lasso penalty (SEML) (Meinshausen and Bühlmann, 2006) and GeneNet
(Schäfer et al., 2006) (see the Supplementary Material for methodological details).
For that, we assess performance of all methods by studying reproducibility of edges.
We randomly split the tumor data part of the lung data set (pancreas data set)
into two equal and independent parts: nlung

2,1 and nlung
2,2 (resp. npancreas

2,1 and npancreas
2,2 ).

BSEM, BSEMed, GLλ, GeneNet and SEML were applied on each subset of the tumor
data. We repeated the procedure 50 times. We report in Table 2.3 (Table 2.4) the
average number of overlapping edges between the two subsets for each method when
the total number of edges selected by each method on each subset is set to 50, 100
and 200.

# edges BSEM
overlap

GeneNet
overlap

SEML

overlap
GLλ

overlap
BSEMed
overlap

# prior edges
in BSEMed

50 4.56 1.88 1.32 3.42 29.58 13.4
100 10.68 5.7 5.64 7.86 37.88 22.14
200 24.16 17.2 16.46 18.14 51.54 33.7

Table 2.3
Lung data, reproducibility study: Average number of overlapping edges among the
top 50 (100, 200) strongest ones in two equally-sized splits of the tumor data for

BSEMed, BSEM, GLλ, GeneNet and SEML.

We observe from Tables 2.3 & 2.4 that the results from the BSEMed networks are
much more reproducible than that of BSEM, which is on its turn more reproducible
than the other ones. Clearly, the improvement can partly be explained by overlap-
ping edges that were also part of the prior network. However, it is clear from Figure
2.5 that the BSEMed network estimate in tumor tissue is not just a ‘finger print’ of

# edges BSEM
overlap

GeneNet
overlap

SEML

overlap
GLλ

overlap
BSEMed
overlap

# prior edges
in BSEMed

50 7.42 3.32 2.8 4.52 27.82 11.92
100 17.46 10.34 9.08 11.4 57.18 29.22
200 44.14 30.94 28.54 33.66 81.66 54.1

Table 2.4
Pancreas data, reproducibility study: Average number of overlapping edges among

the top 50 (100, 200) strongest ones in two equally-sized splits of the tumor data for
BSEMed, BSEM, GLλ, GeneNet and SEML.
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the prior network (normal tissue network): BSEMed can even reveal edges that are
neither in prior network nor in BSEM network estimate.

BSEM BSEMed 

Priors Edges 

2 

3.2 

0.7 20.14 

12.54 
4.78 

(a) Lung data

BSEM BSEMed 

Priors Edges 

4.24 

2 

0.24 24.98 

25.96 
10.98 

(b) Pancreas data

Figure 2.5: Venn diagrams displaying the mean overlap of reproduced top-ranking
edges, corresponding to the second row of Table 2.3 (Figure 2.5.a) and Table 2.4
(Figure 2.5.b).

Figure 2.6 (resp. Figure 2.7) displays the network in normal tissue against the
network in tumor tissue in the lung data (resp. in the pancreas data). The purpose
of displaying Figure 2.6 and 2.7 is to emphasize the dysregulation of gene-gene inter-
actions in cancer (Vogelstein and Kinzler, 2004; van Wieringen and van der Vaart,
2015) which may be caused by the heterogeneity of cancer (Nowell, 1976). Hetero-
geneity of tumor samples makes it more difficult to pinpoint reliable links, hence our
selection algorithm which is based on local fdr ≤ 0.1 is likely to select fewer links in
cancer samples.

2.7 Discussion

We have presented a new method for incorporating prior information in undirected
network reconstrustion based on Bayesian SEM. Our approach allows the use of two
central Gaussian distributions per regression equation for coefficients βi,r’s of our
SEMs, where the prior information determines which of the two applies to a specific
βi,r. Empirical Bayes estimation of the parameters of the two hyper priors of the



58 Prior knowledge in network reconstruction

1 2 3 4 5
6

7
8

9
10

11
12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32
33

34
35

36
37

38
394041424344454647

48
49

50
51

52
53

54
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72
73

74
75

76
77

78
79

80
81 82 83 84

(a) Network estimate in Normal tissue
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(b) BSEMed network estimate in tumor tis-
sue

Figure 2.6: Network in a normal cell vs BSEMed network in lung cancer. Red edges
are the overlap edges between prior and posterior networks.
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(a) Network estimate in Normal tissue
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(b) BSEMed network estimate in tumor tis-
sue

Figure 2.7: Network in a normal cell vs BSEMed network in pancreas cancer. Red
edges are the overlap edges between prior and posterior networks.

precisions introduces shrinkage and accommodates the situation where there would
not be an agreement of the prior information with the data at hand. We showed in
simulation with different graph structures that BSEMed outperforms BSEM when
the used prior knowledge (partially) agrees with the data and as good as when not.
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In addition, for two real data sets we showed better reproducibility of top ranking
edges with respect to other methods .

In some cases, it may be desirable to give more weight only to some important
edges of the prior graph rather than the whole graph. In gene regulatory networks
reconstruction particularly, this may be edges that are known to characterise the
disease biology. Assuming one is able to express such prior information as prior prob-
abilities on edges, our software is able to incorporate such information via the Bayes
factors used in the post-hoc selection procedure (Leday et al., 2017). Likewise, a user
can also increase the weight of the entire prior graph uniformly. (See Supplementary
Material for details).

Instead of assigning Gaussian distributions to the coefficients, other (e.g. sparse)
priors can be used. The complement property (Section 2.2 ) is preserved whenever the
same functional forms of the priors are used for both classes. However, a combination
of e.g. a Gaussian and a sparse prior ruins this property, which renders such a
combination less attractive.

Future research also focuses on extending our method to situations with more
than two classes. For example, when considering integrative networks for two sets of
molecular markers or two (related) pathways, the three class setting is relevant: two
classes represent the connections within the two sets and a third one between the two
sets. Finally, multiple sources of external data may be available for incorporation in
BSEMed. This requires to model the parameter(s) of the priors in terms of contibu-
tions of those external sources, and weigh those sources in a data-driven manner, as
it is unlikely that the sources are equally informative.


