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Chapter 1

Gene network reconstruction using
global-local shrinkage priors

Reconstructing a gene network from high-throughput molecular data is an important
but challenging task, as the number of parameters to estimate easily is much larger
than the sample size. A conventional remedy is to regularize or penalize the model
likelihood. In network models, this is often done locally in the neighbourhood of each
node or gene. However, estimation of the many regularization parameters is often
difficult and can result in large statistical uncertainties. In this paper we propose to
combine local regularization with global shrinkage of the regularization parameters to
borrow strength between genes and improve inference. We employ a simple Bayesian
model with non-sparse, conjugate priors to facilitate the use of fast variational approx-
imations to posteriors. We discuss empirical Bayes estimation of hyper-parameters
of the priors, and propose a novel approach to rank-based posterior thresholding. Us-
ing extensive model- and data-based simulations, we demonstrate that the proposed
inference strategy outperforms popular (sparse) methods, yields more stable edges,
and is more reproducible. The proposed method, termed ShrinkNet, is then applied
to Glioblastoma to investigate the interactions between genes associated with patient
survival.

This chapter was published as: Gwenaël G.R. Leday, Mathisca C.M. de Gunst, Gino. B. Kpog-

bezan, Aad W. van der Vaart, Wessel N. van Wieringen and Mark A. van de Wiel (2017). Gene

network reconstruction using global-local shrinkage priors. The Annals of Applied Statistics, 11(1),

41–68. The research leading to these results has received funding from the European Research

Council under ERC Grant Agreement 320637.
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1.1 Introduction

Gaussian Graphical Models (GGMs) are a popular tool in genomics to describe func-
tional dependencies between biological units of interest, such as genes or proteins.
These models provide means to apprehend the complexity of molecular processes
using high-throughput experimental data, and shed light on key regulatory genes
or proteins that may be interesting for further follow-up studies. Among the many
approaches that have been advanced, simultaneous-equation models (SEMs), which
express each gene or protein expression profile as a function of other ones, have been
found particularly valuable owing to their flexibility and simplicity. Notably, SEMs
facilitate local regularization, where for each gene the set of parameters that model
its dependence on the other genes is penalized separately and possibly to a different
amount. However this comes at the price of having many regularization parameters,
which may be difficult to tune. Motivated by works in the field of differential expres-
sion analysis, in this paper we combine local regularization with global shrinkage of
the regularizing parameters to stabilize and improve estimation. Adopting a Bayesian
approach, we demonstrate, using extensive model- and data-based simulations, that
such global shrinkage may substantially improve statistical inference.

High-throughput technologies such as microarrays provide the opportunity to
study the interplay between molecular entities, which is central to the understanding
of disease biology. The statistical description and analysis of this interplay is natu-
rally carried out with GGMs in which nodes represent genes and edges between them
represent interactions. The set of edges, which determines the network structure or
topology, is often used to generate valuable hypotheses about the disease patholo-
gies. Inferring this set from experimental data is, however, a challenging task as the
number of parameter to estimate easily is much larger than the sample size. In this
context statistical regularization techniques become necessary.

GGMs characterize the dependence structure between molecular variables using
partial correlations. It is well known that two coordinates Yi and Yj of a multivariate
normal random vector Y = (Y1, . . . , Yp)T are conditionally independent given the set
of all other coordinates if and only if the partial correlation corr(Yi, Yj|YJ \{i,j}) is
zero, where J = {1, . . . , p}. Furthermore, if Y ∼ Np(0,Ω−1) with positive-definite
precision matrix Ω = (ωij), then these partial correlations can be expressed as
corr(Yi, Yj|YJ \{i,j}) = −ωij/

√
ωiiωjj, for i ̸= j. Thus the conditional dependence

structure is fully coded in the precision matrix, and a network structure may be de-
fined by discriminating the zero and non-zero entries of the precision matrix. It is
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convenient to represent this structure by an undirected graph G = {J , E}, with the
nodes J corresponding to the variables, and the edge set E consisting of all {i, j}
such that ωij ̸= 0.

Most modern inference techniques for GGMs focus on estimating Ω or this under-
lying graph. For brevity we only discuss the most popular methods, which will also
be used as benchmarks in our simulations.

Penalized likelihood estimation amounts to maximizing ℓ(Ω) = log |Ω|−tr(SΩ)−
λJ(Ω), where S is the sample covariance estimate, J a penalty function, and λ a scalar
tuning parameter. The penalty J may serve two purposes: (1) to ensure identifia-
bility and improve the quality of estimation; (2) to discriminate zero from non-zero
entries in Ω. The ℓ1-norm (or versions thereof) is a popular choice [43], because it
simultaneously achieves (1) and (2). Alternatively, a ridge-type penalty [81, 140, 147]
may be used in combination with a thresholding procedure [93, 122]. Appropriate
tuning of the penalty through the parameter λ is crucial for good performance. Var-
ious solutions, usually based on resampling or cross-validation, have been proposed
[41, 46, 49, 89, 98, 158].

Simultaneous-equation modelling estimates Ω by regressing each molecular vari-
able Yj against all others. The coefficients βj,k in the equations

(1.1) Yj =
∑

k∈J \j

Ykβj,k + ϵj, j ∈ J ,

where ϵj ∼ N (0, σ2
j ) is independent of (Yk : k ̸= j), can be shown to be given

by βj,k = −ω−1
jj ωjk. Also σ2

j = ω−1
jj . Consequently, identifying the nonzero entries

of Ω can be recast as a variable selection problem in p Gaussian regression models.
This approach to graphical modeling was popularized by Meinshausen and Bühlmann
[97]. They dealt with high-dimensionality by adding an ℓ1-penalty to each regression
problem, but other penalties are also used [74]. Because the model (1.1) misses the
symmetry ωij = ωji in Ω, estimation may lack efficiency. This may be overcome by
working directly on partial correlations, as shown by Peng et al. [110]. Alternatively,
Meinshausen and Bühlmann [97] proposed a post-symmetrization step with an ‘AND’
rule: edge (i, j) ∈ E if βi,j ̸= 0 and βj,i ̸= 0. Despite the symmetry issue, network
reconstruction using (1.1) performs well and is widely used in practice.

Simultaneous-equation models are quite flexible. Experimental or biological co-
variates can easily be accounted for in the regression, and extensions to non-Gaussian
data were suggested by [2, 25, 115, 156]. Also SEMs arise naturally from the differen-
tial equations of a general dynamical system model of gene regulation [103] and are
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often used to model directed graphs [155].
In this paper we develop a Bayesian approach to Gaussian graphical model-

ing using SEMs. Our contribution is three-fold: (1) we employ (1.1) in combi-
nation with (non-sparse) priors that induce both local and global shrinkage and
provide evidence that global shrinkage may substantially improve inference; (2) we
present a new approach to posterior thresholding using a concept similar to the local
false discovery rate [37] and show that non-sparse priors coupled with a posteriori
edge selection are a simple and attractive alternative to sparse priors; and (3) we
provide a computationally attractive software tool called ShrinkNet (available at
http://github.com/gleday/ShrinkNet), which is based on a coherent and complete
estimation procedure that does not rely on resampling or cross-validation schemes to
tune parameter(s).

The paper is organized as follows. Section 1.2 presents the Bayesian SEM, the
variational approximation to posteriors and a novel posterior thresholding procedure
to reconstruct the network. In this section we also describe estimation of the global
shrinkage prior and discuss the important role of the proposed empirical Bayes pro-
cedure, along with its connection to existing literature. In Sections 1.3 and 1.4 we
compare the performance of the new method with state-of-the-art sparse and non-
sparse approaches, using both model- and data-based simulations. Notably in Sec-
tion 1.4 we employ two mRNA expression data sets from The Cancer Genome Atlas
(TCGA) and a random-splitting strategy to compare the reproducibility and stabil-
ity of the various methods. Finally, in Section 1.5 the proposed method is applied
to TCGA Glioblastoma data to investigate the interactions between genes associated
with patient survival.

1.2 Methods

In this section we introduce the Bayesian SEM with global and local shrinkage priors
along with a variational approximation of the resulting posterior distribution(s). Next
we present empirical Bayes estimation of prior hyper-parameters. We conclude with
a selection procedure for inferring the edge set E .

1.2.1 The Bayesian SEM

Consider mRNA expression data on p genes from n sample tissues. Denote by yj the
n × 1 vector of mRNA expression (log2) values for gene j ∈ J = {1, . . . , p}. The

http://github.com/gleday/ShrinkNet
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Bayesian SEM is defined by equation (1.1) together with a hierarchical specification
of prior distributions:

yj =
∑

k∈J \j

ykβjk + ϵj, j = 1, . . . , p

ϵj ∼ Nn(0, σ2
j In),

βjk ∼ N (0, σ2
j τ

2
j ),

τ−2
j ∼ G(a, b),
σ−2

j ∼ G(c, d).

(1.2)

Here every line is understood to be conditional on the lines below it and variables
within a line are assumed independent, as are variables referring to different genes j.
Furthermore, G (s, r) denotes a gamma distribution with shape and rate parameters s
and r, and In is the n×n identity matrix. Throughout the paper the hyper-parameters
c and d are fixed to small values, e.g. 0.001, in contrast to a and b, which we will
estimate (see Section 1.2.3). Although c and d could also be estimated, we prefer a
non-informative prior for the parameters σj, as there seems no reason to connect the
error variances across the equations.

The regression parameters βjk are endowed with gene-specific, Gaussian priors
for local shrinkage. A small value of the prior variance τ 2

j encourages the posterior
distributions of the βjk (including their expectations E(βjk|yj)) to be shrunken to-
wards zero. The stabilizing effect of this ridge-type shrinkage has been observed to
be useful for ranking regression parameters as a first step in variable selection [14].
In Section 1.2.4 we show how similarly the marginal posterior distributions of the βjk

can be used for rank-based edge selection in a GGM. The prior variances of the βjk

are also defined proportional to the error variances σ2
j to bring the variances τ 2

j , and
the induced shrinkage, on a comparable scale [107].

The equations for different genes j are connected through the gamma priors placed
on the precisions τ−2

j and the error variances σ2
j , for j ∈ J . The prior on the error

variances has no structural role, and, as mentioned, we prefer a fixed non-informative
prior. In contrast, the G(a, b)-prior on the precisions τ−2

j induces global shrinkage
by borrowing strength across the regression equations. The exchangeability of the
precisions expressed through this prior acknowledges the fact that the equations for
the different genes are similar in a broad sense, which is plausible given that they share
many common elements. When informative (i.e. small or moderate value of a/b2),
this prior shrinks the posterior distributions of τ−2

j towards the prior mean a/b, which
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stabilizes estimation. This type of shrinkage is different from the shrinkage of the
regression coefficients βjk, which through their centered priors are always shrunken to
zero. Of course, the “informed” shrinkage of the precisions τ−2

j will be beneficial only if
the hyper parameters a and b are chosen appropriately. We propose to set their values
based on the data, using an empirical Bayes approach, discussed in Section 1.2.3.

The conjugacy of the Gaussian and gamma priors in model (1.2) confers the
method a computational advantage over complex sparse priors. Fast approximations
to the posteriors are readily available [106, 114, 118], whereas sparse, non-conjugate
priors often require MCMC. The Gaussian priors allow to reparameterize the problem
employing an SVD decomposition of the design matrix [150], and back-transform the
posteriors to the original space (at least in our setting with approximately Gaussian
posteriors; see Section 1.2.2), which is computationally advantageous.

A disadvantage of these priors is that they do not have an intrinsic variable selec-
tion property, whence the posterior does not automatically recover the graph struc-
ture. We solve this by a separate procedure for variable selection, which essentially
consists of thresholding the scaled posterior means of the regression coefficients βjk.
In Section 1.2.4 we present an approach based on Bayes factors and a local false
discovery rate.

1.2.2 Variational approximation to posteriors

Because intractable integrals make it difficult to obtain the exact marginal posterior
distribution of the parameters, we use a variational approximation. Variational infer-
ence is a fast deterministic alternative to MCMC methods, and consists of computing
a best approximation to the posterior distribution from a prescribed family of distri-
butions. In our situation it provides an analytic expression for a lower bound on the
log-marginal likelihood, which is useful for monitoring convergence of the algorithm
and to assess model fit (Section 1.2.3).

For given hyper-parameters (a, b) and with the variables yk in the right side of
(1.2) considered fixed covariates, the prior and posterior distributions factorize (i.e.
are independent) across the genes j. For simplicity of notation we shall omit the
index j from τ−2

j , σ−2
j , yj and βj in the remainder of this section. Hence the formulas

for λ := (β, τ−2, σ−2) below apply to the joint posterior distribution of (βj, τ
−2
j , σ−2

j ),
for (any) given j ∈ J .

We shall seek a variational approximation to the posterior distribution of λ within
the class of all distributions with independent marginals over β, τ−2 and σ−2, where
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we measure the discrepancy by the Kullback-Leibler (KL) divergence. Thus letting
p(λ|y) denote the posterior density in model (1.2), we seek to find a density q(λ) of
the form

(1.3) q(λ) = q1(β)q2(τ−2)q3(σ−2),

for some marginal densities q1, q2, q3, that minimizes the Kullback-Leibler divergence

KL(q||p) =
∫
q(λ) log q(λ)

p(λ|y) dλ

= Eq log q(λ)− Eq log p(λ,y) + log p(y),
(1.4)

over all densities q of product form. Here p(y) denotes the marginal density of the
observation in model (1.2). Because the Kullback-Leibler divergence is nonnegative
we have that

(1.5) Eq log p(λ,y)− Eq log q(λ) ≤ log p(y).

Furthermore, minimization of the Kullback-Leibler divergence is equivalent to max-
imization of the left side of this inequality. Thus we may think of the procedure as
maximizing a lower bound on the log marginal likelihood.

The solution q∗ of this maximization problem, with the marginal densities q1, q2, q3

left completely free, can be seen to be given by densities q∗
1, q

∗
2, q

∗
3 satisying (see

[13, 106])

(1.6) q∗
m(λm) ∝ exp

E ∏
m′ ̸=m

qm′ log p(λ,y)
 , m = 1, 2, 3.

In the context of our model this yields q∗(λ) = q∗
1(β)q∗

2(τ−2)q∗
3(σ−2), with the marginal

densities (see Section 1 of Supplementary Material (SM)) given by standard distribu-
tions,

(1.7)
q∗

1(β) =d Np−1 (β∗,Σ∗)
q∗

2(τ−2) =d G (a∗, b∗) ,
q∗

3(σ−2) =d G (c∗, d∗) ,
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where the parameters on the right side satisfy

β∗ =
(

XT X + Eq∗
2

[
τ−2

]
Ip−1

)−1
XT y

Σ∗ =
[
Eq∗

3

[
σ−2

] (
XT X + Eq∗

2

[
τ−2

]
Ip−1

)]−1

a∗ = a+ p− 1
2 ,

b∗ = b+ 1
2Eq∗

3

[
σ−2

]
Eq∗

1

[
βT β

]
,

c∗ = c+ n+ p− 1
2 ,

d∗ = d+ 1
2Eq∗

1

[
(y−Xβ)T (y−Xβ)

]
+ 1

2Eq∗
2

[
τ−2

]
Eq∗

1

[
βT β

]
.

Here X represents the n by p − 1 fixed design matrix of (1.2). For the jth equation
in (1.2) this is equal to y−j = (yT

1 , . . . ,yT
j−1,yT

j+1, . . . ,yT
p )T .

Furthermore, the variational lower bound on the log-marginal likelihood log p(y)
(the left side of (1.5)) evaluated at q = q∗ simplifies to:

L =− n

2 log(2π) + 1
2 log |Σ∗|+ 1

2(p− 1) + a log b− log Γ(a)−

a∗ log b∗ + log Γ(a∗) + c log d− log Γ(c)− c∗ log d∗+

log Γ(c∗) + 1
2Eq∗

3

[
σ−2

]
Eq∗

2

[
τ−2

]
Eq∗

1

[
βT β

]
.

(1.8)

See SM Section 1 for the details.

The equations (1.7) express the optimal densities q∗
1, q∗

2 and q∗
3 (or equivalently

the parameters in the right side of (1.7)) in terms of each other. This motivates a
coordinate ascent algorithm [13, 106] (depicted in Algorithm 1), which proceeds by
updating the parameters in turn, replacing the variational densities on the right hand
sides of the equations by their current estimates, at every iteration.

Upon convergence the marginal posteriors p(β|y), p(τ−2|y) and p(σ−2|y) are ap-
proximated by q∗

1(β), q∗
2(τ−2) and q∗

3(σ−2). Although the algorithm needs to be
repeated for each regression equation in (1.2), the overall computational cost of the
procedure is low.
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Algorithm 1 Variational algorithm for local shrinkage
1: Initialize:
2: b = d = b∗(0) = d∗(0) = 0.001, ξ = 10−3, M = 1000 and t = 1
3: while |L(t) − L(t−1)| ≥ ξ and 2 ≤ t ≤M do

4: update Σ∗(t) ←
[
E

q
∗(t−1)
3

(σ−2)
(

XT X + E
q

∗(t−1)
2

(τ−2)Ip′

)]−1

5: update β∗(t) ← E
q

∗(t−1)
3

(σ−2)Σ∗(t)XT y
6: update

d∗(t) ← d+ 1
2

[
(y−Xβ∗(t))T (y−Xβ∗(t)) + tr{XT XΣ∗(t)}

]
+

1
2Eq

∗(t−1)
2

(τ−2)
[
β∗(t)T

β∗(t) + tr{Σ∗(t)}
]

7: update b∗(t) ← b+ 1
2Eq

∗(t−1)
3

(σ−2)
[
β∗(t)T

β∗(t) + tr{Σ∗(t)}
]

8: update L(t)

9: t← t+ 1
10: end while

1.2.3 Empirical Bayes and prior calibration

In the preceding discussion we have treated the vector of hyper-parameters α = (a, b)
as fixed. We now turn to its estimation and present a modified variational algorithm
in which α is updated along with the other parameters. The new algorithm is akin
to an EM algorithm [15] in which the two steps are, respectively, replaced with a
variational E-step, where the lower bound is optimized over the variational parameters
via coordinate ascent updates, and a variational M-step, where the lower bound is
optimized over α with the variational parameters held fixed.

We now use the SEM for all genes together, and write the variational approxima-
tion for the posterior density of the parameters for the jth gene as qj. (For each j

this is given by a triple of three marginal densities.) The target is to maximize the
sum over the genes of the lower bounds on the log-marginal likelihood, i.e. the sum
over j of the left side of (1.5), which can be written as

(1.9)
p∑

j=1
Eqj log p(yj|λj) +

p∑
j=1

Eqj log pα(λj)
qj(λj)

≤
p∑

j=1
log pα(yj).

Maximization of the left side with respect to the densities qj for a fixed hyper-
parameter α would lead to the variational estimates qj∗ given by (1.7). However,
rather than iterating (1.7) until convergence, we now alternate between ascending in
q and in α. For the variational estimates qj fixed at their current iterates, optimizing
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the left-hand side of (1.9) relative to the parameter α amounts to maximizing, with
the current iterate qj∗ replacing qj,

p∑
j=1

Eqj∗ log pα(τ−2
j ) =

p∑
j=1

(
a log b− log Γ(a)

+ (a− 1)Eqj∗ log τ−2
j − bEqj∗τ−2

j

)
.

(1.10)

The exact solution to this problem can be found using a fixed-point iteration method,
as in [132]. Alternatively, the following approximate solution arises by analytical
maximization after replacing the digamma function ψ(x) = ∂

∂x
log Γ(x) by the ap-

proximation log(x)− 0.5x−1:

(1.11)



â = 1
2

log
 p∑

j=1
Eqj∗τ−2

j

− p−1
p∑

j=1
Eqj∗ log τ−2

j − log p


−1

b̂ = â · p ·

 p∑
j=1

Eqj∗τ−2
j

−1

Algorithm 2 outlines how the updates of the hyper-parameters are folded into the
variational algorithm. At iteration t the hyper-parameters a(t) and b(t) are computed
according to (1.11) with the expectations Eqj∗τ−2

j and Eqj∗ log τ−2
j computed under

the current estimates qj∗. Next the variational parameters defining the densities qj∗

are updated according to (1.7) using the values a(t) and b(t) for a and b. Figure 1.1(a)
illustrates the convergence of the algorithm and shows that the lower bound on the
sum of log-marginal likelihoods increases at each step of the algorithm (red line).
Although this is not true for the lower bounds of each regression equation in the
SEM, this does demonstrate that the estimation procedure yields a well-informed
prior that is beneficial overall.

The second summand on the left-hand side of (1.9) is equal to minus∑p
j=1 KL(qj∗||pα).

This suggests that the procedure will seek to set the hyper parameters α so that the
prior density pα of the λj on the average most resembles their (approximate) posteri-
ors qj∗, based on the different genes. This connects to the recent work of van de Wiel
et al. [133] on shrinkage priors for differential gene expression analysis, whose em-
pirical Bayes procedure consists in finding α such that pα(τ−2

j ) ≈ n−1∑
j pα(τ−2

j |yj).
Figure 1.1(b) shows that our approach fulfills the same objective. It is natural for
the empirical Bayes procedure to have this “averaging of marginal posteriors” prop-
erty, as it attempts to calibrate the prior according to the data. The role of the
global shrinkage prior G(a, b) is to encourage the posterior distributions of the τ−2

j ,
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for j ∈ J , to shrink to a common distribution, centered around the (prior) mean a/b.

Algorithm 2 Variational EM algorithm with global-local shrinkage priors
1: Initialize:
2: a(0) = b(0) = a∗(0) = 0.001,∀j ∈ J , b∗(0)

j = d
∗(0)
j = 0.001, ξ = 10−3, M = 1000 and t = 1

3: while max|L(t)
j − L

(t−1)
j | ≥ ξ and 2 ≤ t ≤M do

E-step: Update variational parameters:
4: for j = 1 to p do
5: update a∗(t) ← a(t−1) + p−1

2
6: update Σ∗(t)

j , β
∗(t)
j , d∗(t)

j , b∗(t)
j and L(t)

j in that order (as in Algorithm 1)
7: end for

M-step: Update hyper-parameters:

8: a(t) ← 0.5

p−1
p∑

j=1

(
log(b∗(t)

j )− ψ(a∗(t))
)
− log p+ log

p∑
j=1

a∗(t)

b
∗(t)
j

−1

9: b(t) ← a(t) · p

 p∑
j=1

a∗(t)

b
∗(t)
j

−1

10: t← t+ 1
11: end while

1.2.4 Edge selection

In this section we describe a separate procedure for edge selection. This consists of
first ranking the edges based on summary statistics from the (marginal) posterior
distributions under the model (1.2) obtained in the preceding sections, and next
performing forward selection along this ordering. For the latter we use Bayes factors
and their relation to a Bayesian version of the local false discovery rate [37, lfdr].

Edge ordering

Denote the approximate posterior expectation and variance of βj,k obtained in Sec-
tions 1.2.2 and 1.2.3 for SEM (1.2) by Eqj∗

[
βj,k|yj

]
and Vqj∗

[
βj,k|yj

]
, and define

(1.12) κj,k =

∣∣∣∣Eqj∗

[
βj,k|yj

]∣∣∣∣√
Vqj∗

[
βj,k|yj

] , j, k ∈ J with j ̸= k.

Next for a given edge (j, k) (between genes j and k) define the quantity κ̄j,k =
(κj,k +κk,j)/2, and order the set of P = p(p−1)/2 edges according to their associated
values κ̄j,k, from large to small. Let (j(r), k(r)) denote the rth edge in this ordering,
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Figure 1.1: Illustration of (a) the convergence of the variational algorithm and (b) the
estimated global shrinkage prior on the breast cancer data set (P53 pathway). Figure
(a) displays the variational lower bounds Lj of each regression equation in the SEM as
a function of iterations. The red continuous line represents the average lower bound.
Figure (b) displays an empirical mixture of marginal posteriors of τ−2

j obtained by
drawing 1000 samples from qj

2(τ−2
j ; yj), ∀j. The continuous line represents the density

of the estimated global shrinkage prior on τ−2
j , which correspond to G(7.404, 0.073).

and abbreviate its associated value to κ̄r = κ̄j(r),k(r). This ordering is retained in
all of the following. However, we do not necessarily select all edges below a certain
threshold, but proceed by forward selection, for r = 1, . . . , P .

Bayes factors

Selection at stage r (see Section 1.2.4) will be based on Bayes factors BF(j(r), k(r))
and BF(k(r), j(r)) for the two regression parameters βj(r),k(r) and βk(r),j(r) associated
with the rth edge.

Denote by mj(r),k(r),1 the model in SEM (1.2) for the response variable yj(r), with
the covariates (or nonzero βj(r),k) restricted to the edge (j(r), k(r)) and any previously
selected edge (involving node j(r)) with rank lower or equal to r−1. Likewise, define
mj(r),k(r),0, but with the restriction βj(r),k(r) = 0, which is equivalent to the exclusion
of edge (j(r), k(r)). The Bayes factor associated with this model is

(1.13) BF(j(r), k(r)) = p(yj(r)|mj(r),k(r),1)
p(yj(r)|mj(r),k(r),0)

, r = 1, . . . , P.
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The Bayes factor BF(k(r), j(r)) is defined analogously from the regression models
mk(r),j(r),1 and mk(r),j(r),0 for response variable yj(k).

Prior for Bayesian variable selection

The global shrinkage prior for the precision parameters τ−2
j estimated from the data

in Section 1.2.3 is not appropriate for computing the Bayes factors (1.13). Because
it has been calibrated (by the variational Bayes method outlined in Algorithm 2) for
the network comprised of all edges, it is likely to be located away from zero, which
will induce strong regularization on the regression parameters, making it difficult for
the Bayes factors to discriminate between the subsequent models (in particular when
n is small). A non-informative prior runs into the same problem (perhaps even in a
more sever manner).

Motivated by the Zellner-Siow prior [90, 160] we propose to employ instead the
“default prior” τ−2

j ∼ G(1/2, n/2). This concentrates near its prior expectation n−1

(i.e. the fixed unit information prior of Kass and Wasserman [70]), and hence is
concentrated near 0 for moderate and large values of n, while less stringent for small
n (see illustration in SM Section 4).

Bayesian analogue of lfdr

Since both Bayes factors BF(j(r), k(r)) and BF(k(r), j(r)) are informative for the
relevance of edge (j(r), k(r)), we need to combine these and find a suitable thresh-
old. For that purpose, we link the Bayes factors to the posterior null-probability
P0(κ̄r) = P (βj(r),k(r) = 0, βk(r),j(r) = 0|y), where y = (yT

1 , . . . ,yT
p )T . The absence

of edge (j(r), k(r)) is reflected by βj(r),k(r) = βk(r),j(r) = 0, which, in the spirit of
forward selection, implies the null models mj(r),k(r),0 and mk(r),j(r),0. The posterior
null-probability is linked to the local false discovery rate [37, lfdr]. However, as in
van de Wiel et al. [133], we condition on the data y rather than on a test statistic.
Then, we have

P0(κ̄r) = P (βj(r),k(r) = 0, βk(r),j(r) = 0|y)
≤ min{P (βj(r),k(r) = 0|y), P (βk(r),j(r) = 0|y)}.

(1.14)

Here, the bound is used because the SEM may not provide accurate joint probabilities
on regression coefficients from different regression models. Now, assume the prior null
probability P (βj,k = 0|y−j) = p0, ∀j ∈ J , where y−j = (yT

1 , . . . ,yT
j−1,yT

j+1, . . . ,yT
p )T .

Note that a constant value of p0 is reasonable, because it simply reflects the prior
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probability that response yj does not respond to covariate yk (which is a member of
y−j). Then,

P (βj,k = 0|y) = P (βj,k = 0|yj,y−j)

= P (yj|βj,k = 0,y−j)P (βj,k = 0|y−j)
P (yj|y−j)

= P (yj|mj,k,0)p0

P (yj|mj,k,0)p0 + (1− p0)P (yj|mj,k,1)
= p0

p0 + (1− p0)BF(j, k) .

(1.15)

Define the max Bayes factor: BF(κ̄r) = max{BF(j(r), k(r)),BF(k(r), j(r)}. Then,
after substituting (1.15) into (1.14) we have, for threshold γ = (1−α)p0/(α(1− p0)),

(1.16) BF(κ̄r) ≥ γ ⇐⇒ P0(κ̄r) ≤ α.

Equation (1.16) suggests that edges in the graph can be selected using a thresholding
rule on the Bayes factors that controls the posterior null-probability. For example,
when we have p0 = 0.9, then BF(κ̄r) > 81 implies P0(κ̄r) < 0.1. However, to use this
approach an estimate of p0 is required. We simply propose

(1.17) p̂0 = 1
2P

(
P∑

r=1
(I{BF′(j(r),k(r))≤1} + I{BF′(k(r),j(r))≤1})

)
.

where BF′(j(r), k(r)) is defined analogously to BF(j(r), k(r)), but without forward
selection (so all covariates corresponding to edge ranks ≤ r are included), because
the forward selection procedure requires knowing p̂0.

Forward selection procedure

We introduce the following sequential procedure to update the set E of selected edges
and the models mj(r),k(r),0, mj(r),k(r),1, mk(r),j(r),0, mk(r),j(r),1 when increasing r:

1. Initiate α, r = 1, ℓ = 0 and E0 = ∅. Compute γ from α and p̂0.

2. Determine the models mj(r),k(r),0 and mk(r),j(r),0 which are the current models
for yj(r) and yk(r) that correspond to Er−1. Augment those models with covari-
ates yk(r) and yj(r), respectively, and fit these models to obtain mj(r),k(r),1 and
mk(r),j(r),1.
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3. Calculate the max Bayes factor BF(κ̄r)

4. Only if BF(κ̄r) > γ update Er = Er−1 ∪ {(j(r), k(r))}

5. Update r = r + 1 and go back to step 2

For the purpose of variable selection we include intercepts in the SEM. Finally, we
estimate E by the last update of E.

The selection procedure respects the initial ranking of the edges in terms of the
order in which they are considered for inclusion in the forward selection. However, the
procedure is set up to proceed when a given edge is not selected, because in the light
of the current model subsequent edges may (slightly) increase the marginal likelihood.
As in practice we observed that the Bayes factor decreases with r (see Supplementary
Figure 2), a stopping criterion may be practical if P is large; e.g. stop if r reaches
rmax = (1− p̂0)P , or if BF(κ̄r) has not exceeded γ for, say, 100 consecutive values of
r.

1.2.5 Computational considerations

In Algorithm 1 and 2 it is generally preferable to reparameterize the model relative to
the principal components of XT X. This way the variational updates and lower bound
can be modified to achieve important computational savings (see SM Section 2). For
edge selection, when the number of edges is large it is preferable to approximate
(1.17) using a random subset of, say, 1000 edges. With these considerations the
proposed methodology is shown to be computationally attractive (see Table 1.1 and
SM Section 13).

p = 50 p = 100 p = 200 p = 500 p = 1000
n = 50 0:00:01 0:00:10 0:00:08 0:00:52 0:08:51

n = 100 0:00:01 0:00:21 0:00:31 0:01:50 0:12:02
n = 200 0:00:02 0:00:40 0:01:20 0:05:25 0:21:14
n = 500 0:00:07 0:01:12 0:02:14 0:23:42 1:51:21

Table 1.1: Average elapsed time (H:MM:SS) as a function of the number of samples
n and variables p. For n and p fixed, 10 random data sets were generated from the
complete Breast cancer data set (Section 1.4.1). When p > 100 we approximated
(1.17) using a random subset of 1000 edges. Computations were made on 2.60GHz
CPU without parallelization strategy.

For very large p, ShrinkNet contains an option to restrict the number of reported
edges, e.g. to 1000, which may be practical from both a computational and inter-
pretational point of view. Then, when n = 200, computing times drop to 5 and 21
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minutes for p = 500 and p = 1000, respectively. For the curated Breast cancer data
used by Schäfer and Strimmer [121, 49 samples and 3,883 genes], ShrinkNet takes 2
hours and 15 minutes when the forward selection is limited to the top 10,000 edges.

1.3 Model-based simulation

In this section we investigate the performance of our approach, termed ShrinkNet,
in recovering the structure of an undirected network and compare it to popular ap-
proaches. We generate n ∈ {25, 50, 100} samples from a multivariate normal distri-
bution with mean vector 0 and 100× 100 precision matrix Ω, corresponding to four
different graph structures: band, cluster, hub and random [163] (see Figure 1.2 for
illustration), every of them sparse, with graph density ranging from 0.017 to 0.096.
We generated the inverse covariance matrix Ω corresponding to each graph struc-
ture from a G-Wishart distribution [100] with scale matrix equal to the identity and
b = 4 degrees of freedom. In SM Section 2 we provide statistical summaries on the
magnitude of the generated partial correlations.

(a) Band (b) Cluster (c) Hub (d) Random

Figure 1.2: Graph structures considered for the precision matrix Ω in our simulation.
Black and white dots represent non-zero and zero entries, respectively. Only off-
diagonal elements are displayed. For precision matrices with block-diagonal structures
(clusters and hubs), block sizes were set to 5 and 10. In (a) the bandwidth is equal
to four. The graph density δ is (a) δ = 0.079, (b) δ = 0.071, (c) δ = 0.017 and (d)
δ = 0.096.

We compared our approach ShrinkNet to the popular frequentist SEM with the
Lasso penalty (SEML) [97], the Graphical Lasso (GLλ) [43], and GeneNet [119]. The
latter combines a non-sparse linear shrinkage estimator with an a posteriori edge se-
lection procedure. For the purpose of comparison with ShrinkNet, we also consider the
Bayesian SEM (1.2) with the non-informative global shrinkage prior G(0.001, 0.001),
which we subsequently refer to as ‘NoShrink’.
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Briefly, graph selection is as follows. For SEML and GLλ we use the EBIC criterion
[23, 41] for selecting the optimal regularization parameter(s), whereas for GeneNet
and ShrinkNet a threshold of 0.1 on the local false discovery rate and the posterior
null probability P0 is employed. In SM Section 3 we provide more details as to how
an edge ranking is obtained for each method.

To evaluate the performance of the methods in recovering the graph structures we
report partial ROC curves (SM Section 5), which depict the true positive rate (TPR)
as a function of the false positive rate (FPR) for FPR< 0.2), and various performance
measures on selected graphs. Figure 1.3 below displays boxplots of F-scores and
partial AUCs (pAUC) [35] as a function of the method, n and the true graph structure.
The F-score=2 × (precision × TPR)/(precision + TPR) is a popular performance
measure, defined as the harmonic mean between the TPR=TP/(TP+FN) (also called
recall) and the precision=TP/(TP+FP), where TP, FP, and FN are the number of
true positives, false positives, and false negatives, respectively.

Figure 1.3 shows that ShrinkNet achieves the highest partial AUCs in almost
all situations. The results also indicate that NoShrink is often outperformed by
GeneNet, and comparable to GLλ, which suggests that the global shrinkage carried
out by ShrinkNet considerably improves edge ranking. SEML has the lowest pAUC
in almost all situations.

The performance of each method in recovering the true graph structure can also be
evaluated by the F-score. According to this metric the best performance is achieved
by NoShrink and ShrinkNet in all but two cases. In moderate- (n = 50) and high-
dimensional cases (n = 25), NoShrink and ShrinkNet show a much larger F-score
than others. This is particularly pronounced when n = 25, in which case GLλ and
GeneNet have an F-score (and TPR) very close to zero. In this context SEML is
performing better than GLλ and GeneNet, but worse than NoShrink and ShrinkNet.

All in all, the simulation study demonstrates that global shrinkage considerably
improves edge ranking. For network reconstruction, the small discrepancy between
ShrinkNet and NoShrink indicates that the selection procedure of Section 1.2.4 is
relatively robust to edge ranking. The proposed selection procedure is also shown to
outperform contenders in the most high-dimensional cases.

1.4 Data-based simulation

In this section we employ gene expression data from The Cancer Genome Atlas
(TCGA) to compare the performance of our approach in reconstructing networks
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Figure 1.3: Boxplots of F-scores (left column) and pAUCs (right column) over 100
repetitions as a function of the method, n and the true graph structure. The five
methods under comparison are from left to right: NoShrink (white), ShrinkNet (dark
grey), SEML (light grey), GLλ (diagonal pattern) and GeneNet (mesh pattern)
.
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with SEML, GLλ, GeneNet and NoShrink (see previous Section). Data were retrieved
from the TCGA cBioPortal using the R package ’cgdsr’ [21, 67]. In particular, we
focus on the p53 pathway in the Breast cancer data set (nbrca = 526), which comprise
pp53 = 67 genes, and the apoptosis pathway in the Ovarian data set (nov = 537) that
comprises papopt = 79 genes. Since the true molecular network is not exactly known,
we employ a random splitting strategy for the two data sets to assess discoveries.

1.4.1 Reproducibility

To compare reproducibility, we randomly split the data into a small data set where
np53

small ∈ {134, 67, 34} and napopt
small ∈ {158, 79, 40} to achieve low-, moderate- and high-

dimensional situations, and a large data set where np53
large ∈ {392, 459, 492} and napopt

large ∈
{379, 458, 497} (representing the complement). The large data set is then used to
validate discoveries made from the small one. As a benchmark for validation we
employ the edge set Sb defined by edges that are simultaneously selected by the
different methods based on the large data set. Because the lack of consensus between
the different methods may render Sb too small, we only compare two methods at a
time.

To assess performance in recovering Sb from the small data set we generate 100
random data splits and report average partial ROC curves and average TPR and
FPR from the selected graphs. Figure 1.4 summarizes results for the four pairwise
comparisons of GeneNet, SEML, GLλ and NoShrink with ShrinkNet for the apotosis
pathway in the Ovarian cancer data set. Simulation results for the p53 pathway for
the Breast cancer data are provided in SM Section 7. Table 1.2 and Supplementary
Table 2 summarize the number of selected edges in the small and large data sets for
each method.

napopt
small = napopt

large = napopt
small = napopt

large = napopt
small = napopt

large =
158 379 79 458 40 497

ShrinkNet 62.5 (5.7) 138.6 (5.9) 31.4 (5.1) 166.9 (6) 18.2 (4.8) 179.6 (5.6)
SEML 16.0 (3.9) 54.0 (5.3) 4.7 (2.3) 65.1 (4.7) 1.6 (1.2) 69.2 (4)

GL 25.8 (10.6) 145.7 (35.5) 9.6 (4.7) 224.1 (56) 5.3 (3.2) 282.2 (58.1)
GeneNet 10.2 (4.6) 22.9 (4.6) 2.2 (2.3) 25.8 (3.5) 0.3 (1.5) 26.1 (2.4)

Table 1.2: Average number of selected edges (and standard deviations in parentheses)
for each method in the small and large data sets over 100 random partitioning of the
Ovarian cancer data set.
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Figure 1.4: Average partial ROC-curves corresponding to all pairwise comparisons
of GeneNet, GLλ, SEML and NoShrink with ShrinkNet when the apoptosis data are
randomly split into a small data set of size np53

small ∈ {134, 67, 34} and a large validation
one of size np53

large ∈ {392, 459, 492}. Each plot depicts the performance of ShrinkNet
(black continuous line) versus one of the contenders (black discontinuous line). Circle
(ShrinkNet) and star (contender) points correspond to average TPR and FPR of
selected graph structures as obtained by the two inference methods under comparison.
Note that the circle point is not expected to be located on the curve.
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The number of selected edges differs a lot between GeneNet, SEML, GLλ and
ShrinkNet (Table 1.2). GeneNet is the most conservative approach whereas ShrinkNet
selects more edges than others in the small data sets. However, when the sample size
is large GLλ selects more than ShrinkNet, as illustrated by the number of discoveries
in the large data sets. It is interesting to see in Table 1.2 that ShrinkNet is remarkably
stable in selection. The variability (as measured by the standard deviations) of the
number of selected edges is relatively low, and in fact surprisingly constant in the
small and large data sets, regardless of the number of selected edges. Conversely, GLλ

exhibits relatively larger variability and also large differences in number of edges.
The results in Figure 1.4 suggest that ShrinkNet compares very favourably to the

other methods in recovering the benchmark edge set Sb. In particular, edge selection
(as represented by dots in the ROC plots) is shown to outperform the other methods
clearly in all situations. In the most high-dimensional case napopt

small = 40, GeneNet,
SEML and GLλ detect almost no edges in the small data set (see Table 1.2), whereas
ShrinkNet still detects a non-negligible number of edges, which translates into a higher
TPR (with negligible FPR). Partial ROC curves in Figure 1.4 also indicate that edge
ranking as provided by ShrinkNet is often superior to others. This is particularly
true when napopt

small = 79 and napopt
small = 40. In case napopt

small = 158, SEML and GLλ

outperform ShrinkNet for edge ranking, but not for edge selection. This suggests
that the selection procedure proposed in Section 1.2.4 is robust to the edge ranking
on which it is based. This is confirmed by comparing ShrinkNet with NoShrink, where
there is no difference in selection performance, whereas edge ranking appears to be
improved by the global shrinkage prior.

Finally Figure 1.5 displays rank correlation of edges between all pairs of data sets
of size napopt

small for ShrinkNet and NoShrink. The correlations are clearly higher for
ShrinkNet than for NoShrink when napopt

small ∈ {79, 40}, which indicates that the global
shrinkage improves the stability and, hence, reproducibility of edge ranking when the
sample size napopt

small is not large.

1.4.2 Stability

In this section, the random splitting strategy is used to study the stability of edges
selected by each method. Let π̂ij be the empirical selection probability of edge (i, j)
for a given method over the 100 generated small data sets of size napopt

small . We define
the set of stable edges by Sstable = {(i, j) : π̂ij ≥ πthr} where 0.5 < πthr ≤ 1. To
determine an appropriate cut-off πthr, which is comparable between methods, we use
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(b) napopt
small = 79
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(c) napopt
small = 40

Figure 1.5: Correlations of edge ranking as provided by ShinkNet and NoShrink across
the 100 generated small data sets of size napopt

small. Each boxplot displays Spearman rank
correlations between the values of κ̄r, r = 1, . . . , P , obtained from all the (100 ×
99)/2 = 4950 pairs of data sets of size napopt

small for each of the two methods. Note that
one does not expect high rank correlation when considering all edges.

the stability criterion proposed by [98]. This is based on the following upper bound
on the expected number E(V ) of falsely selected edges:

(1.18) E(V ) ≤ q2

(2πthr − 1)P ,

where q is the expected number of edges selected by the given method and P is
the total number of edges (Papopt = 3081 and Pp53 = 2211). To compare the set of
stable edges between the different methods, we set E(V ) = 30 as in Meinshausen
and Bühlmann [98]. Then, πthr (and hence Sstable) is determined using an empirical
estimate of q (see Table 1.2 and SM Table 2). Because the type I error is controlled
in the same way for all methods, comparison can reasonably be based on the number
of stable edges.

To illustrate, when napopt
small = 158 for the apoptosis data we obtain that πShrinkNet

thr =
0.623, πSEML

thr = 0.508, πGLλ
thr = 0.522 and πGeneNet

thr = 0.503, which result in 27, 12, 12
and 8 stables edges, respectively. These are illustrated in the left column of Figure
1.6. As E(V ) is fixed, the value of πthr only varies between methods because estimates
of q differ. This is intuitive: if the method selects a lot of (few) edges we expect πthr

to be large (small).
Figure 1.6 and SM Figure 10 display stables edges obtained with each method as a

function of napopt
small and np53

small, respectively. For the two data sets ShrinkNet selects an
important number of stable edges. This is particularly true for the apoptosis pathway
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Figure 1.6: Stable edges for the apoptosis pathway obtained with ShrinkNet (red),
SEML (blue), GL (pink) and GeneNet (green) when E(V ) = 30 as a function of
napopt

small. Plots were generated using the R CRAN package rags2ridges.
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where the method clearly yields more stable edges than SEML, GLλ and GeneNet in
all situations. Specifically, when napopt

small = 79 ShrinkNet identifies a nearly identical
network to GLλ and SEML when napopt

small = 158. For the p53 pathway (see SM Figure
10), GLλ detects more stable edges than ShrinkNet when np53

small = 134, as many as
when np53

small = 67, and less when np53
small = 40. This suggests that when the sample size

is small ShrinkNet tends to select more stable edges than GLλ. Finally, for the two
data sets ShrinkNet detects more stable edges than SEML and GeneNet.

1.5 Real data application

Glioblastoma multiform (GBM) is a common and aggressive form of brain tumor in
adults which, unfortunately, is also one of the most malignant of glial tumors. Patients
with GBM have a poor prognosis and usually survive less than 15 months following
diagnosis. GBM mRNA expression and clinical data (level 3 normalized; Agilent
244K platform) were obtained from the TCGA data portal (tcga-data.nci.nih.gov).
The data contained measurements of 17,814 genes in tumor tissue samples from 532
GBM patients, of whom 505 had available survival information. Missing expression
values were imputed using the R function impute.knn (using default parameters) from
the Bioconductor package impute. Instead of characterizing globally the interactions
between all genes, we focused on the subset of the 66 genes with the strongest associ-
ation with patient survival (FDR≤0.01). These genes are expected to be related via
the different biological processes that promote cancer and thereby impact survival.
ShrinkNet was then used to identify the potential relationships between these genes,
which may help to further prioritize them (e.g. by node degree) and their potential
interactions (e.g. by edge strength). Indeed, highly connected ‘hub’ genes are thought
to play an important role into the disease biology.

Figure 1.7 displays the undirected gene network reconstructed by ShrinkNet us-
ing α = 0.10 (Bayesian analogue of lfdr; see Section 1.2.4). The graph comprises 260
edges which corresponds to a density of 0.12. Node degrees vary from 2 to 13. Among
the genes with highest degree (see SM Section 12), known regulators are found. For
example, LGALS1 (degree equal to 13) encodes the Galectin-1 protein which is a
multifaceted promoter of glioma malignancy [17]. This protein instigates increased
glioma invasiveness and its expression correlates directly with tumour grade [40].
SLC16A3 (also with degree equal to 13) encodes for the MCT4 protein whose over-
expression has been reported in several solid tumors, including metastases of breast
cancer to the brain, which suggests its association with aggressive tumor behavior
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Figure 1.7: Reconstructed network for the 66 genes associated with patient survival in
GBM. Node size is proportional to the node degree and edge width/opacity is propor-
tional to κ̄j,k.

[91]. SREBF1 (degree equal to 12), also known as SREBP1, is a protein regulat-
ing lipid composition that has been associated with the proliferation of cancer cells.
SREBP1 activity is known to be regulated by the Akt/mTORC1 signaling axis that is
responsible for the growth and survival of cancer cells by sustaining lipid biosynthesis
[85, 112]. As a final example, IL13RA1 (degree equal to 10) encodes for a protein be-
longing to the interleukin-13 (IL-13) receptor that elicits both proinflammatory and
anti-inflammatory immune responses, and is strongly associated with Glioblastoma
[95]. IL-13 has been widely suggested for cancer drug therapy.

Multiple links that are identified by ShinkNet were also previously reported in
relation to Glioblastoma. Using the complete human protein interaction network
from Pathway Commons (pathwaycommons.org; Cerami et al. [22]) we could validate

pathwaycommons.org
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several edges identified by ShrinkNet (see SM Section 12). This is true in particular for
the most significant edge (as measured by κ̄j,k; see Section 1.2.4), which links genes
CTSB and CTSL1. These genes participate in protein degradation and turnover
[27]. This finding hence supports the idea that cathepsins participate in enhancing
invasion and metastasis [51, 69], both so descriptive of GBM. Besides, the database
also confirmed the following interactions found by ShrinkNet: LGALS1 ↔ RPS28,
HSPA5 ↔ SLC16A3, ACADS ↔SLC16A3, and ACADS ↔ HSPA5.

1.6 Conclusion

In this paper we proposed a Bayesian SEM with global-local shrinkage priors for
gene network reconstruction. The model employs simple conjugate priors to impose
regularization. Because these are not sparse, a novel method for a posteriori edge
selection was introduced to infer the graph structure. Computational efficiency was
achieved by SVD decompositions and fast variational approximations. We discussed
empirical Bayes estimation of prior hyper-parameters and embedded this in a vari-
ational EM-type algorithm. The simulations showed that the proposed approach is
often superior to popular (sparse) methods in low-, moderate- and high-dimensional
cases. In particular, on real data the method yielded more stable and reproducible
discoveries. Network analysis of genes associated with patient survival in Glioblas-
toma confirmed the method’s ability to discover biologically meaningful interactions
and hub genes. Our method, termed ShrinkNet, is implemented as an R package and
available at http://github.com/gleday/ShrinkNet.

A novelty of our work is the use of global shrinkage priors, which allow the bor-
rowing of information across regression equations. We are not aware of any previous
works combining global and local shrinkage priors. In the frequentist setting Yuan
et al. [159] borrows information across the regularizing parameters corresponding to
ℓ1-penalties by combining local and global searches. In the Bayesian setting the focus
is often on studying the equivalence between the SEM and a proper joint distribution
[33, 47]. In this paper we have shown that the combined use of global and local
shrinkage priors improves statistical inference, in particular edge ranking.

Our variable selection method performs simultaneous selection of the two param-
eters that are associated with each edge, but unlike sparsity-based methods performs
separate estimation and selection steps. However, separating estimation and selection
may also come as an advantage in terms of optimizing performance with respect to
either of these criteria. In fact, “The idea of pre-ranking covariates and then selecting

http://github.com/gleday/ShrinkNet
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models has become a well established technique in the literature” [66, Remark 6].
An important practical advantage of our approach is that the estimation procedure

is coherent and complete, and does not rely on tuning, resampling, or cross-validation
to set regularization parameter(s). This is particularly encouraging for extending the
method to settings with multiple types of high-dimensional covariates, which would
require different amounts of shrinkage. For methods based on resampling or cross-
validation this may become overly computationally burdensome.

The proposed method is particularly suitable for gene network reconstruction
using expression data. This type of network aims at providing a picture of regulatory
mechanisms that act between genes. In practice, the interest often lies in a relatively
small subset of genes that are known to be functionally linked (e.g. a pathway).
In this context the Bayesian SEM may be more appropriate than others, because
such a gene set is usually of moderate dimension and, hence, due to the functional
link, the corresponding network is likely to be relatively less sparse. Therefore strong
dependencies between genes are more likely to occur and this may favor Normal-
Gamma (ridge-type) regularization. In addition, the coherence in functionality may
render shrinkage beneficial for parameter estimation in the SEM.

We have focused on recovering the support of the precision matrix, but it is also
possible to obtain an estimate of it. An immediate approach is to use the graph
structure provided by ShrinkNet as a prior for precision estimation (sometimes re-
ferred to as parameter learning [124]). Versions of the Wishart distribution, such as
the G-Wishart [34, 144], are computationally attractive. Other estimation strategies
have been proposed outside the Bayesian paradigm. See, for example, Zhou et al.
[164] and Yuan [157].

We foresee several extensions. SEMs are appropriate to describe directed networks
and it would be interesting to investigate different types of shrinkage priors suitable
in this context, for example to shrink in- and outgoing edges differently. Extension to
non-Gaussian data is possible, where it may be desirable to adopt a flexible likelihood
model and other types of posterior approximations may be considered [118]. Finally
the model suits construction of integrative networks when allowing different priors
for different types of interactions.


