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Introduction

The rapid evolution of data acquisition technologies in the last 25 years has enabled
a massive production of high-dimensional and highly complex datasets in many sci-
entific domains, including genomics, finance and statistical pattern recognition, to
name but a few. In genomics, high-throughput platforms such as microarrays pro-
vide measurements of many thousands of molecular aspects (e.g. gene expression)
of the cell. While between 20,000 and 25,000 genes of a single patient are easily
characterized simultaneously, the number n of patients runs typically in the tens or
hundreds. This typically gives rise to data characterized by ‘large p, small n’. The
analysis of such high-dimensional data (n≪ p) is very challenging as the traditional
statistical methods become useless. For instance, the sample covariance matrix be-
comes rank deficient and can not be inverted. Our contribution in this thesis consists
of incorporating prior knowledge in the analysis of these data, which we model using
mainly graphical models.

0.1 Graphical models

A graphical model is a way to ‘marry’ probability theory with graph theory. A graph
G, as used in this thesis, is a pair (I, E), where I is a set of indices (or vertices) and
the set of edges E is a subset of the set I ×I of ordered pairs of distinct vertices . An
edge between vertices r and s is undirected if both (r, s) and (s, r) are in E , whereas
an edge (r, s) ∈ E whose opposite (s, r) /∈ E is called directed. In the diagram of G an
undirected edge is usually represented by a line between the corresponding vertices
whereas a directed edge is represented by an arrow. A graph is called undirected if it
possesses only undirected edges, and it is called directed if all edges are directed. Let
Y = (Y1, Y2, · · · , Yp) denote a random field with index set I = {1, 2, · · · , p} taking
values in probability spaces Yi, i ∈ I and Y = ×i∈IYi being the product space.
Furthermore, let D denote the set of all probability distributions on Y . A graphical
model consists of a graph G = (I, E) and a set of properties (called Markov properties)
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that together determine a sub-family of probability distributions in D. According to
both the type of the allowed graphs G and the set of properties we distinguish between
several graphical models - e.g. Markov networks.

Markov networks (or Markov Random Fields) arise when only undirected graphs
over the p vertices are allowed and the family of distributions in D consists of prob-
ability distributions on Y obeying the local Markov property. The latter states that:
conditional on its adjacent variables, any variable is independent of all the remaining
variables. If furthermore, the distribution admits a strictly positive density with re-
spect to some product measure µ on Y then, the local Markov property is equivalent
to the pairwise Markov property [108]: any two non-adjacent variables are condition-
ally independent given all other variables. In the latter case the pairwise Markov
property is in turn equivalent to the global Markov property. An undirected graph
satisfiying the local Markov property is also referred to as a Conditional Independence
Graph (CIG). Conditional independence graphs are of prime interest in this thesis.

Other type of graphical models are Bayesian networks which are based on directed
acyclic graphs (DAG) [78, 79] and independence chain graphs based on chain graphs
[4, 78]. Chain graphs contain both directed and undirected edges.

Gaussian Graphical Models.

A Gaussian Graphical Model (GGM) assumes data are drawn from a multivariate
normal distribution:

(1) Y ∼ N(0,Ω−1
p )

where Y is a p-dimensional random vector comprising the p random variables Y1, . . . , Yp

corresponding to the nodes of I and Ω−1
p is a non-singular (p × p)-dimensional co-

variance matrix. The matrix Ωp is referred to as the precision matrix. For a GGM
the edge set E of the underlying conditional independence graph corresponds to the
nonzero elements of Ωp [78]. Hence, reconstructing the conditional independence
graph is equivalent to determining the non-zero elements of this matrix.

Both frequentist and Bayesian approaches are used in the literature to estimate the
conditional independence graph. Standard frequentist approaches rely on penalized
likelihood estimation. The augmented penalty to the likelihood aims at resolving
the high-dimensionality issue of the data. The commonly employed lasso and ridge
penalties amount to adding the ℓ1- and ℓ2-norm, respectively, of the precision matrix
to the likelihood [43, 139]. Both penalties shrink the elements of the precision matrix
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towards zero. The lasso penalty may shrink these to exactly zero, thus performing
variable selection. The ridge penalization requires a post-hoc step to sparsify its
precision matrix estimate. The usual Bayesian approach is to put a prior π on the
structure of the conditional independence graph G and given G a prior p(Ωp|G) on
the precision matrix [33, 50, 68]. The joint density is given by

p(G,Ωp,Y) = π(G)p(Ωp|G)p(Y|G,Ωp) where Y = (Y 1, · · · , Y n)

and a joint structural and quantitative learning is performed by computing the pos-
terior p(G,Ωp|Y) ∝ p(G,Ωp,Y). Except in very small problems, the space of graphs
to consider is typically restricted to - e.g. decomposable graphs, forests, or trees.

In a multivariate Gaussian distribution, all conditional distributions are Gaussian
linear regressions. Hence, to Gaussian model determination (with non-decomposable
graphs), [33] propose estimating these conditional regressions from data using (Bayesian)
sparse regression techniques (often called Simultaneous Equations Models).

Simultaneous Equations Models.

Simultaneous Equations Models (SEMs) are a framework for modeling and coding
path diagrams. We will use the very basic SEMs consisting in modeling the full
conditional distribution of each univariate random variable Yi, i ∈ I and thus resulting
in a system of regressions

(2) Yi =
∑
t̸=i

βi,tYt + ϵi, ϵi {Yt; t ̸= i}, i ∈ I.

SEMs are flexible tools and computationally very attractive. They account for exper-
imental or biological covariates in the regressions and are appropriate for many types
of data distribution [3, 25, 115]. They allow the integration of multiple data sets and
at the same time are scalable to large datasets in their computational complexity.
Moreover, there is an equivalence between GGM and SEMs, namely, the regression
coefficients βi = (βi,t : t ̸= i) can be expressed in the precision matrix of Y as [97]

βi,t = − (Ωp)it

(Ωp)ii ,

in which case the residuals in (2) when regressing a single coordinate Yi of a multi-
variate Gaussian vector linearly on the other coordinates Yt, for t ̸= i, are Gaussian.
That means, the (non)zero entries in the ith row vector of the precision matrix Ωp
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correspond to the (non)zero coordinates of βi. Consequently, the problem of identi-
fying the Gaussian graphical model can be cast as a variable selection problem in the
p regression models (2). This approach of recasting the estimation of the (support of
the) precision matrix as a collection of regression problems was first suggested by [33]
and latter introduced by [97], who employed Lasso regression [43, 130] to estimate
the parameters. Other variable selection methods can be employed as well [73].

In this thesis, we introduce a Bayesian approach of the SEMs. In Chapter 1
we develop a Bayesian formulation of the SEMs with Gaussian, ridge-type priors on
the regression coefficients. In Chapter 2, we extent the latter model to incorporate
prior knowledge on the conditional independence graph. A disadvantage of the Gaus-
sian priors employed in these papers is that they are not able to selectively shrink
parameters, but shrink them jointly towards zero (although prior information used
in Chapter 2 alleviates this by making this dependent on prior group). Chapter 3
proposes a general framework for analysing large-scale data sets with complex de-
pendence structures using a collection of linear regression models corresponding to p
characteristics (e.g. genes). The horseshoe prior [19, 20] has been introduced in order
to better model the sparsity of the explanatory variables, thus being able to selec-
tively shrink parameters towards zero. Reconstruction of conditional independence
graphs by incorporating prior information is a special case of the proposed framework
in Chapter 3.

0.2 Prior information

High-dimensional modeling is important in many scientific areas but is also a chal-
lenging task. In genomics, the identification of gene regulatory networks is crucial for
understanding gene function, and hence important for both treatment and prediction
of diseases. This challenge of analysing data consisting of few replicate measure-
ments against large number of covariates “n≪ p” can be alleviated by incorporating
external (or “prior”) information in the analysis. In gene regulatory networks re-
construction, prior knowledge on the topology on the to-be-reconstructed network is
readily available. For instance, the current beliefs on interactions among genes is con-
densed in repositories like KEGG and Reactome. The Bayesian framework provides
a natural architecture to incorporate and accommodate such prior information. It
may be believed that such priors can affect the integrity of the current study results
and can even lead to conclusions that are driven not by the data but by a prior re-
sulting from some non-relevant previous studies. However, the incorporation in a soft



0.3 Variational Bayes approximation 5

manner, so that it informs the analysis if correct, but can be overruled if completely
incompatible with the data, helps overcoming this situation.

Many works have already been devoted to incorporating prior knowledge into net-
work reconstruction. These sudies include [64, 65, 87, 102, 127, 149] for the incorpora-
tion of many types of different prior knowledge, including literature-based knowledge
in Bayesian network learning and dynamic Bayesian network learning. However, none
of these proposed methods explicitly estimate the agreement of the prior knowledge
with the data at hand.

Our approach in this thesis is based on prior modelling of the regression param-
eters of the SEMs in a soft manner using respectively the Gaussian, ridge-type prior
in Chapter 2 with a prior on the regularization parameter that depends on external
information, and the horseshoe prior in Chapter 3 with a prior on the sparsity index
that also depends on external information. Multiple sources of information are in-
corporated simultaneously. The proposed scheme attaches a latent variable to each
source of information independently across sources. These latent variables enter the
prior distributions of the coordinates of βi, which marginally given the latent variable
are scale mixtures of the normal distribution. Our soft borrowing of prior information
is based on the estimation of these prior hyperparameters by an appealing empirical
Bayes procedure (called global empirical Bayes).

In Chapter 4, we investigate how gene regulatory networks (GRNs) can be re-
constructed from combining observational and time-course gene expression (cell line)
data. We present strategies to borrow information respectively in a soft and hard
manner from either study type in reconstructing both the CIG-based gene regulatory
network and the human independence (or time-series) chain graph. The hard bor-
rowing of prior information here means that the prior information is hard-wired in
our analysis, because we intend to steer the results for reasons of interpretation or
because we have a strong belief in the prior information.

0.3 Variational Bayes approximation

In Bayesian statistics, a prior is assigned to the parameter of interest. The prior belief
is subsequently updated by means of current data and inference is based on the poste-
rior distribution. Traditional Bayesian computation methods rely on Markov Chain
Monte Carlo (MCMC). However, modern datasets (e.g. gene expression data) are
extremely high-dimensional and the use of MCMC is often a computational bottle-
neck due to high-dimensional integral computations. Approximate Bayesian methods
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have emerged in recent years as fast alternatives methods to MCMC to overcome
these shortcomings. Among the proposed methods variational Bayes approximations
seem very promising.

Variational approximations are a set of deterministic methods used to make ap-
proximate inference for parameters in complex statistical models. The name varia-
tional approximations originates from the mathematical topic known as variational
calculus. The latter is concerned with the problem of optimizing a functional over
a class of functions. The problem becomes usually feasible when the domain of the
functional is restricted to some sub-class of functions. The variational Bayes ap-
proximation to a distribution is the closest element q∗ in a given target set Q of
distributions, usually with “distance” measured by Kullback-Leibler divergence [141].
The set Q is chosen as a compromise between computational tractability and accu-
racy of approximation. If θ denote the parameter of interest in a generic Bayesian
model and Y the observed data, the Kullback-Leibler divergence is defined as

(3) KL
(
q||p(·|Y)

)
= Eq log q(θ)

p(θ|Y) = log p(Y)− Eq log p(Y, θ)
q(θ) ,

where θ 7→ p(θ|Y) is the posterior density, the expectation is taken with respect to
θ having the density q ∈ Q, and (y, θ) 7→ p(y, θ) = p(y| θ) π(θ) and y 7→ p(y) =∫
p(y, θ) dθ are the joint density of (Y, θ) and the marginal density of Y, respectively,

in the model with prior density π on θ. Minimization of (3) is equivalent to the
maximization of the expression on the far right hand side of (3) which is usually
referred to as “the evidence lower bound”, or “elbo”. By the non-negativity of the
Kullback-Leibler divergence it holds

(4) log p(Y) ≥ Eq log p(Y, θ)
q(θ) =: elbo(q; Y).

Early applications involved standard distributions such as Gaussian, Dirichlet,
Laplace and extreme value models [5–7, 96, 142]. In the present thesis we use nonpara-
metric approximations, restricted only by the assumption that the various parameters
are (block) independent. (This may be referred to as mean-field variational Bayes,
although this term appears to be used more often for independence of all univariate
marginals, whereas we use block independence.) The restriction of Q to a subclass of
product densities gives rise to explicit solutions for each product component in terms
of the others, leading to iterative scheme for obtaining the solutions. Precisely, the
assumption q(θ) =

M∏
i=1

qi(θi) yields
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elbo(q; Y) =
∫
q(θ) log p(Y, θ)

q(θ) dθ

=
∫ M∏

i=1
qi(θi)

[
log p(Y, θ)−

M∑
i=1

log qi(θi)
]
dθ1 · · · dθM

=
∫
q1(θ1)

[ ∫
log p(Y, θ)

M∏
i=2

qi(θi)dθ2 · · · dθM

]
dθ1

−
∫
q1(θ1) log q1(θ1)dθ1 + terms not involving q1

Define
G1(θ1) =

∫
log p(Y, θ)

M∏
i=2

qi(θi)dθ2 · · · dθM

Then,

elbo(q;Y ) =
∫
q1(θ1) log

(exp(G1(θ1))
q1(θ1)

)
dθ1 + terms not involving q1

=
∫
q1(θ1) log

exp(G1(θ1))/
∫

exp(G1(θ1))dθ1

q1(θ1)

dθ1 + terms not involving q1

= −KL
q1||

exp(G1(θ1))∫
exp(G1(θ1))dθ1

+ terms not involving q1.

Hence by the non-negativity of the Kullback-Leibler divergence, the optimal q∗
1 sat-

isfies

q∗
1(θ1) = exp(G1(θ1))∫

exp(G1(θ1))dθ1

∝ exp
[ ∫

log p(Y, θ)
M∏

i=2
qi(θi)dθ2 · · · dθM

]
= exp

[
Eq−1 log p(Y, θ)

]

where Eq−1 indicates the expectation over (θ2, · · · , θM) with respect to q2× · · · × qM .
Unfortunately, this expression depends on q2, · · · , qM . However, analog expressions
for q∗

2, · · · , q∗
M can be derived, and it is hoped that repeatedly updating a density

q∗
i using the current values of q∗

1, · · · , q∗
i−1, q

∗
i+1 · · · , q∗

M will in the limit yield the
maximizer of (4).

Variational Bayes typically produces accurate approximations to posterior means,
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but have been observed to underestimate posterior spread [12, 18, 48, 94, 131, 143,
145, 151], even for the marginal distributions. We find that in our setting the approx-
imations agree reasonably well to MCMC approximations of the marginals, although
the latter take much longer to compute.

High-dimensional Bayesian regressions

In high-dimensional linear regression, a regularization is required to guarantee the ex-
istence and accuracy of estimates. This is done in the Bayesian case by introducing a
latent variable in the parameter vector θi, and the priors on the regression coefficients
βi are referred to as regularization priors. Scale mixtures of normal distributions are
a well-known class of regularization priors giving rise to different priors for different
choices of the mixing densities. In Chapter 1 and 2 we used an inverse-gamma mixing
density which results in a ridge-type prior for the regression coefficients, whereas in
Chapter 3 we employ a half-Cauchy mixing density. The latter is known as horseshoe
prior [19, 20]. We fix the hyperparameters to the same values across regressions,
thus allowing their estimation by our global empirical Bayes procedure. The clas-
sical empirical Bayes procedure estimates prior hyperparameters by maximizing the
marginal likelihood of the data. Our global empirical Bayes procedure maximizes a
sum of marginal likelihoods which is enabled by our global-local type prior for mod-
eling multiple related high-dimensional and complex datasets. The procedure has
been shown to be very efficient, specially in very high-dimensional settings [135]. The
global empirical Bayes enables the borrowing of information across regressions.

0.4 Outline of this thesis

The thesis consists of four chapters organized as follows.

Chapter 1: Gene network reconstruction using global-local shrinkage priors
This chapter introduces a new global-local shrinkage ridge-type prior for undi-

rected networks reconstruction based on SEMs with posterior edge selection. The
proposed approach is computationally fast and outperforms known competitors such
as the graphical lasso.

Chapter 2: An empirical Bayes approach to network recovery using external
knowledge
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Chapter 2 extends Chapter 1 to include prior information in reconstructing undi-
rected networks. The incorporation of the prior knowledge is done in a soft manner
allowing the data at hand to overrule the prior information if not relevant. Further-
more, the proposed method is able to explicitly estimate the agreement of the prior
knowledge with the data at hand which is a novelty in incorporating prior information
in network inference.

Chapter 3: Incorporating prior information and borrowing information in high-
dimensional sparse regression using the horseshoe and variational Bayes

Chapter 3 introduces a framework for simultaneously analysing multiple related
high-dimensional and complex datasets. Such analyses include gene regulatory net-
work reconstruction, genetic association studies (e.g. eQTL mapping) and data inte-
gration in genomics, to name but a few. To enable the analysis for small n relative to
large p, we introduce the horseshoe prior which allows for sparsity; a desired property
for the analysis of such data. We illustrate the approach by two applications, namely:
to the reconstruction of gene regulatory networks and to eQTL mapping.

Chapter 4: Borrow network information between observational and time-course
studies: explorations

This chapter explores several approaches to reconstruct gene regulatory networks
from combining observational (in vivo) and time-course cell line (in vitro) gene ex-
pression data. The dynamics of the human cell are assumed to obey a first-order
vector autoregression VAR(1) model and it is investigated how the underlying model
parameters can be efficiently learned using the two types of datasets. We saw in an
application to real data that reconstruction of the conditional independence graph by
borrowing information from the cell line data improved significantly. Moreover, our
newly proposed strategies to learn the VAR(1) model parameters are able to indicate
preserved transcriptional dynamics between the in vitro and in vivo environments.


