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Introduction

The rapid evolution of data acquisition technologies in the last 25 years has enabled
a massive production of high-dimensional and highly complex datasets in many sci-
entific domains, including genomics, finance and statistical pattern recognition, to
name but a few. In genomics, high-throughput platforms such as microarrays pro-
vide measurements of many thousands of molecular aspects (e.g. gene expression)
of the cell. While between 20,000 and 25,000 genes of a single patient are easily
characterized simultaneously, the number n of patients runs typically in the tens or
hundreds. This typically gives rise to data characterized by ‘large p, small n’. The
analysis of such high-dimensional data (n≪ p) is very challenging as the traditional
statistical methods become useless. For instance, the sample covariance matrix be-
comes rank deficient and can not be inverted. Our contribution in this thesis consists
of incorporating prior knowledge in the analysis of these data, which we model using
mainly graphical models.

0.1 Graphical models

A graphical model is a way to ‘marry’ probability theory with graph theory. A graph
G, as used in this thesis, is a pair (I, E), where I is a set of indices (or vertices) and
the set of edges E is a subset of the set I ×I of ordered pairs of distinct vertices . An
edge between vertices r and s is undirected if both (r, s) and (s, r) are in E , whereas
an edge (r, s) ∈ E whose opposite (s, r) /∈ E is called directed. In the diagram of G an
undirected edge is usually represented by a line between the corresponding vertices
whereas a directed edge is represented by an arrow. A graph is called undirected if it
possesses only undirected edges, and it is called directed if all edges are directed. Let
Y = (Y1, Y2, · · · , Yp) denote a random field with index set I = {1, 2, · · · , p} taking
values in probability spaces Yi, i ∈ I and Y = ×i∈IYi being the product space.
Furthermore, let D denote the set of all probability distributions on Y . A graphical
model consists of a graph G = (I, E) and a set of properties (called Markov properties)
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that together determine a sub-family of probability distributions in D. According to
both the type of the allowed graphs G and the set of properties we distinguish between
several graphical models - e.g. Markov networks.

Markov networks (or Markov Random Fields) arise when only undirected graphs
over the p vertices are allowed and the family of distributions in D consists of prob-
ability distributions on Y obeying the local Markov property. The latter states that:
conditional on its adjacent variables, any variable is independent of all the remaining
variables. If furthermore, the distribution admits a strictly positive density with re-
spect to some product measure µ on Y then, the local Markov property is equivalent
to the pairwise Markov property [108]: any two non-adjacent variables are condition-
ally independent given all other variables. In the latter case the pairwise Markov
property is in turn equivalent to the global Markov property. An undirected graph
satisfiying the local Markov property is also referred to as a Conditional Independence
Graph (CIG). Conditional independence graphs are of prime interest in this thesis.

Other type of graphical models are Bayesian networks which are based on directed
acyclic graphs (DAG) [78, 79] and independence chain graphs based on chain graphs
[4, 78]. Chain graphs contain both directed and undirected edges.

Gaussian Graphical Models.

A Gaussian Graphical Model (GGM) assumes data are drawn from a multivariate
normal distribution:

(1) Y ∼ N(0,Ω−1
p )

where Y is a p-dimensional random vector comprising the p random variables Y1, . . . , Yp

corresponding to the nodes of I and Ω−1
p is a non-singular (p × p)-dimensional co-

variance matrix. The matrix Ωp is referred to as the precision matrix. For a GGM
the edge set E of the underlying conditional independence graph corresponds to the
nonzero elements of Ωp [78]. Hence, reconstructing the conditional independence
graph is equivalent to determining the non-zero elements of this matrix.

Both frequentist and Bayesian approaches are used in the literature to estimate the
conditional independence graph. Standard frequentist approaches rely on penalized
likelihood estimation. The augmented penalty to the likelihood aims at resolving
the high-dimensionality issue of the data. The commonly employed lasso and ridge
penalties amount to adding the ℓ1- and ℓ2-norm, respectively, of the precision matrix
to the likelihood [43, 139]. Both penalties shrink the elements of the precision matrix
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towards zero. The lasso penalty may shrink these to exactly zero, thus performing
variable selection. The ridge penalization requires a post-hoc step to sparsify its
precision matrix estimate. The usual Bayesian approach is to put a prior π on the
structure of the conditional independence graph G and given G a prior p(Ωp|G) on
the precision matrix [33, 50, 68]. The joint density is given by

p(G,Ωp,Y) = π(G)p(Ωp|G)p(Y|G,Ωp) where Y = (Y 1, · · · , Y n)

and a joint structural and quantitative learning is performed by computing the pos-
terior p(G,Ωp|Y) ∝ p(G,Ωp,Y). Except in very small problems, the space of graphs
to consider is typically restricted to - e.g. decomposable graphs, forests, or trees.

In a multivariate Gaussian distribution, all conditional distributions are Gaussian
linear regressions. Hence, to Gaussian model determination (with non-decomposable
graphs), [33] propose estimating these conditional regressions from data using (Bayesian)
sparse regression techniques (often called Simultaneous Equations Models).

Simultaneous Equations Models.

Simultaneous Equations Models (SEMs) are a framework for modeling and coding
path diagrams. We will use the very basic SEMs consisting in modeling the full
conditional distribution of each univariate random variable Yi, i ∈ I and thus resulting
in a system of regressions

(2) Yi =
∑
t̸=i

βi,tYt + ϵi, ϵi {Yt; t ̸= i}, i ∈ I.

SEMs are flexible tools and computationally very attractive. They account for exper-
imental or biological covariates in the regressions and are appropriate for many types
of data distribution [3, 25, 115]. They allow the integration of multiple data sets and
at the same time are scalable to large datasets in their computational complexity.
Moreover, there is an equivalence between GGM and SEMs, namely, the regression
coefficients βi = (βi,t : t ̸= i) can be expressed in the precision matrix of Y as [97]

βi,t = − (Ωp)it

(Ωp)ii ,

in which case the residuals in (2) when regressing a single coordinate Yi of a multi-
variate Gaussian vector linearly on the other coordinates Yt, for t ̸= i, are Gaussian.
That means, the (non)zero entries in the ith row vector of the precision matrix Ωp
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correspond to the (non)zero coordinates of βi. Consequently, the problem of identi-
fying the Gaussian graphical model can be cast as a variable selection problem in the
p regression models (2). This approach of recasting the estimation of the (support of
the) precision matrix as a collection of regression problems was first suggested by [33]
and latter introduced by [97], who employed Lasso regression [43, 130] to estimate
the parameters. Other variable selection methods can be employed as well [73].

In this thesis, we introduce a Bayesian approach of the SEMs. In Chapter 1
we develop a Bayesian formulation of the SEMs with Gaussian, ridge-type priors on
the regression coefficients. In Chapter 2, we extent the latter model to incorporate
prior knowledge on the conditional independence graph. A disadvantage of the Gaus-
sian priors employed in these papers is that they are not able to selectively shrink
parameters, but shrink them jointly towards zero (although prior information used
in Chapter 2 alleviates this by making this dependent on prior group). Chapter 3
proposes a general framework for analysing large-scale data sets with complex de-
pendence structures using a collection of linear regression models corresponding to p
characteristics (e.g. genes). The horseshoe prior [19, 20] has been introduced in order
to better model the sparsity of the explanatory variables, thus being able to selec-
tively shrink parameters towards zero. Reconstruction of conditional independence
graphs by incorporating prior information is a special case of the proposed framework
in Chapter 3.

0.2 Prior information

High-dimensional modeling is important in many scientific areas but is also a chal-
lenging task. In genomics, the identification of gene regulatory networks is crucial for
understanding gene function, and hence important for both treatment and prediction
of diseases. This challenge of analysing data consisting of few replicate measure-
ments against large number of covariates “n≪ p” can be alleviated by incorporating
external (or “prior”) information in the analysis. In gene regulatory networks re-
construction, prior knowledge on the topology on the to-be-reconstructed network is
readily available. For instance, the current beliefs on interactions among genes is con-
densed in repositories like KEGG and Reactome. The Bayesian framework provides
a natural architecture to incorporate and accommodate such prior information. It
may be believed that such priors can affect the integrity of the current study results
and can even lead to conclusions that are driven not by the data but by a prior re-
sulting from some non-relevant previous studies. However, the incorporation in a soft
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manner, so that it informs the analysis if correct, but can be overruled if completely
incompatible with the data, helps overcoming this situation.

Many works have already been devoted to incorporating prior knowledge into net-
work reconstruction. These sudies include [64, 65, 87, 102, 127, 149] for the incorpora-
tion of many types of different prior knowledge, including literature-based knowledge
in Bayesian network learning and dynamic Bayesian network learning. However, none
of these proposed methods explicitly estimate the agreement of the prior knowledge
with the data at hand.

Our approach in this thesis is based on prior modelling of the regression param-
eters of the SEMs in a soft manner using respectively the Gaussian, ridge-type prior
in Chapter 2 with a prior on the regularization parameter that depends on external
information, and the horseshoe prior in Chapter 3 with a prior on the sparsity index
that also depends on external information. Multiple sources of information are in-
corporated simultaneously. The proposed scheme attaches a latent variable to each
source of information independently across sources. These latent variables enter the
prior distributions of the coordinates of βi, which marginally given the latent variable
are scale mixtures of the normal distribution. Our soft borrowing of prior information
is based on the estimation of these prior hyperparameters by an appealing empirical
Bayes procedure (called global empirical Bayes).

In Chapter 4, we investigate how gene regulatory networks (GRNs) can be re-
constructed from combining observational and time-course gene expression (cell line)
data. We present strategies to borrow information respectively in a soft and hard
manner from either study type in reconstructing both the CIG-based gene regulatory
network and the human independence (or time-series) chain graph. The hard bor-
rowing of prior information here means that the prior information is hard-wired in
our analysis, because we intend to steer the results for reasons of interpretation or
because we have a strong belief in the prior information.

0.3 Variational Bayes approximation

In Bayesian statistics, a prior is assigned to the parameter of interest. The prior belief
is subsequently updated by means of current data and inference is based on the poste-
rior distribution. Traditional Bayesian computation methods rely on Markov Chain
Monte Carlo (MCMC). However, modern datasets (e.g. gene expression data) are
extremely high-dimensional and the use of MCMC is often a computational bottle-
neck due to high-dimensional integral computations. Approximate Bayesian methods
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have emerged in recent years as fast alternatives methods to MCMC to overcome
these shortcomings. Among the proposed methods variational Bayes approximations
seem very promising.

Variational approximations are a set of deterministic methods used to make ap-
proximate inference for parameters in complex statistical models. The name varia-
tional approximations originates from the mathematical topic known as variational
calculus. The latter is concerned with the problem of optimizing a functional over
a class of functions. The problem becomes usually feasible when the domain of the
functional is restricted to some sub-class of functions. The variational Bayes ap-
proximation to a distribution is the closest element q∗ in a given target set Q of
distributions, usually with “distance” measured by Kullback-Leibler divergence [141].
The set Q is chosen as a compromise between computational tractability and accu-
racy of approximation. If θ denote the parameter of interest in a generic Bayesian
model and Y the observed data, the Kullback-Leibler divergence is defined as

(3) KL
(
q||p(·|Y)

)
= Eq log q(θ)

p(θ|Y) = log p(Y)− Eq log p(Y, θ)
q(θ) ,

where θ 7→ p(θ|Y) is the posterior density, the expectation is taken with respect to
θ having the density q ∈ Q, and (y, θ) 7→ p(y, θ) = p(y| θ) π(θ) and y 7→ p(y) =∫
p(y, θ) dθ are the joint density of (Y, θ) and the marginal density of Y, respectively,

in the model with prior density π on θ. Minimization of (3) is equivalent to the
maximization of the expression on the far right hand side of (3) which is usually
referred to as “the evidence lower bound”, or “elbo”. By the non-negativity of the
Kullback-Leibler divergence it holds

(4) log p(Y) ≥ Eq log p(Y, θ)
q(θ) =: elbo(q; Y).

Early applications involved standard distributions such as Gaussian, Dirichlet,
Laplace and extreme value models [5–7, 96, 142]. In the present thesis we use nonpara-
metric approximations, restricted only by the assumption that the various parameters
are (block) independent. (This may be referred to as mean-field variational Bayes,
although this term appears to be used more often for independence of all univariate
marginals, whereas we use block independence.) The restriction of Q to a subclass of
product densities gives rise to explicit solutions for each product component in terms
of the others, leading to iterative scheme for obtaining the solutions. Precisely, the
assumption q(θ) =

M∏
i=1

qi(θi) yields
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elbo(q; Y) =
∫
q(θ) log p(Y, θ)

q(θ) dθ

=
∫ M∏

i=1
qi(θi)

[
log p(Y, θ)−

M∑
i=1

log qi(θi)
]
dθ1 · · · dθM

=
∫
q1(θ1)

[ ∫
log p(Y, θ)

M∏
i=2

qi(θi)dθ2 · · · dθM

]
dθ1

−
∫
q1(θ1) log q1(θ1)dθ1 + terms not involving q1

Define
G1(θ1) =

∫
log p(Y, θ)

M∏
i=2

qi(θi)dθ2 · · · dθM

Then,

elbo(q;Y ) =
∫
q1(θ1) log

(exp(G1(θ1))
q1(θ1)

)
dθ1 + terms not involving q1

=
∫
q1(θ1) log

exp(G1(θ1))/
∫

exp(G1(θ1))dθ1

q1(θ1)

dθ1 + terms not involving q1

= −KL
q1||

exp(G1(θ1))∫
exp(G1(θ1))dθ1

+ terms not involving q1.

Hence by the non-negativity of the Kullback-Leibler divergence, the optimal q∗
1 sat-

isfies

q∗
1(θ1) = exp(G1(θ1))∫

exp(G1(θ1))dθ1

∝ exp
[ ∫

log p(Y, θ)
M∏

i=2
qi(θi)dθ2 · · · dθM

]
= exp

[
Eq−1 log p(Y, θ)

]

where Eq−1 indicates the expectation over (θ2, · · · , θM) with respect to q2× · · · × qM .
Unfortunately, this expression depends on q2, · · · , qM . However, analog expressions
for q∗

2, · · · , q∗
M can be derived, and it is hoped that repeatedly updating a density

q∗
i using the current values of q∗

1, · · · , q∗
i−1, q

∗
i+1 · · · , q∗

M will in the limit yield the
maximizer of (4).

Variational Bayes typically produces accurate approximations to posterior means,
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but have been observed to underestimate posterior spread [12, 18, 48, 94, 131, 143,
145, 151], even for the marginal distributions. We find that in our setting the approx-
imations agree reasonably well to MCMC approximations of the marginals, although
the latter take much longer to compute.

High-dimensional Bayesian regressions

In high-dimensional linear regression, a regularization is required to guarantee the ex-
istence and accuracy of estimates. This is done in the Bayesian case by introducing a
latent variable in the parameter vector θi, and the priors on the regression coefficients
βi are referred to as regularization priors. Scale mixtures of normal distributions are
a well-known class of regularization priors giving rise to different priors for different
choices of the mixing densities. In Chapter 1 and 2 we used an inverse-gamma mixing
density which results in a ridge-type prior for the regression coefficients, whereas in
Chapter 3 we employ a half-Cauchy mixing density. The latter is known as horseshoe
prior [19, 20]. We fix the hyperparameters to the same values across regressions,
thus allowing their estimation by our global empirical Bayes procedure. The clas-
sical empirical Bayes procedure estimates prior hyperparameters by maximizing the
marginal likelihood of the data. Our global empirical Bayes procedure maximizes a
sum of marginal likelihoods which is enabled by our global-local type prior for mod-
eling multiple related high-dimensional and complex datasets. The procedure has
been shown to be very efficient, specially in very high-dimensional settings [135]. The
global empirical Bayes enables the borrowing of information across regressions.

0.4 Outline of this thesis

The thesis consists of four chapters organized as follows.

Chapter 1: Gene network reconstruction using global-local shrinkage priors
This chapter introduces a new global-local shrinkage ridge-type prior for undi-

rected networks reconstruction based on SEMs with posterior edge selection. The
proposed approach is computationally fast and outperforms known competitors such
as the graphical lasso.

Chapter 2: An empirical Bayes approach to network recovery using external
knowledge
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Chapter 2 extends Chapter 1 to include prior information in reconstructing undi-
rected networks. The incorporation of the prior knowledge is done in a soft manner
allowing the data at hand to overrule the prior information if not relevant. Further-
more, the proposed method is able to explicitly estimate the agreement of the prior
knowledge with the data at hand which is a novelty in incorporating prior information
in network inference.

Chapter 3: Incorporating prior information and borrowing information in high-
dimensional sparse regression using the horseshoe and variational Bayes

Chapter 3 introduces a framework for simultaneously analysing multiple related
high-dimensional and complex datasets. Such analyses include gene regulatory net-
work reconstruction, genetic association studies (e.g. eQTL mapping) and data inte-
gration in genomics, to name but a few. To enable the analysis for small n relative to
large p, we introduce the horseshoe prior which allows for sparsity; a desired property
for the analysis of such data. We illustrate the approach by two applications, namely:
to the reconstruction of gene regulatory networks and to eQTL mapping.

Chapter 4: Borrow network information between observational and time-course
studies: explorations

This chapter explores several approaches to reconstruct gene regulatory networks
from combining observational (in vivo) and time-course cell line (in vitro) gene ex-
pression data. The dynamics of the human cell are assumed to obey a first-order
vector autoregression VAR(1) model and it is investigated how the underlying model
parameters can be efficiently learned using the two types of datasets. We saw in an
application to real data that reconstruction of the conditional independence graph by
borrowing information from the cell line data improved significantly. Moreover, our
newly proposed strategies to learn the VAR(1) model parameters are able to indicate
preserved transcriptional dynamics between the in vitro and in vivo environments.





Chapter 1

Gene network reconstruction using
global-local shrinkage priors

Reconstructing a gene network from high-throughput molecular data is an important
but challenging task, as the number of parameters to estimate easily is much larger
than the sample size. A conventional remedy is to regularize or penalize the model
likelihood. In network models, this is often done locally in the neighbourhood of each
node or gene. However, estimation of the many regularization parameters is often
difficult and can result in large statistical uncertainties. In this paper we propose to
combine local regularization with global shrinkage of the regularization parameters to
borrow strength between genes and improve inference. We employ a simple Bayesian
model with non-sparse, conjugate priors to facilitate the use of fast variational approx-
imations to posteriors. We discuss empirical Bayes estimation of hyper-parameters
of the priors, and propose a novel approach to rank-based posterior thresholding. Us-
ing extensive model- and data-based simulations, we demonstrate that the proposed
inference strategy outperforms popular (sparse) methods, yields more stable edges,
and is more reproducible. The proposed method, termed ShrinkNet, is then applied
to Glioblastoma to investigate the interactions between genes associated with patient
survival.

This chapter was published as: Gwenaël G.R. Leday, Mathisca C.M. de Gunst, Gino. B. Kpog-

bezan, Aad W. van der Vaart, Wessel N. van Wieringen and Mark A. van de Wiel (2017). Gene

network reconstruction using global-local shrinkage priors. The Annals of Applied Statistics, 11(1),

41–68. The research leading to these results has received funding from the European Research

Council under ERC Grant Agreement 320637.
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1.1 Introduction

Gaussian Graphical Models (GGMs) are a popular tool in genomics to describe func-
tional dependencies between biological units of interest, such as genes or proteins.
These models provide means to apprehend the complexity of molecular processes
using high-throughput experimental data, and shed light on key regulatory genes
or proteins that may be interesting for further follow-up studies. Among the many
approaches that have been advanced, simultaneous-equation models (SEMs), which
express each gene or protein expression profile as a function of other ones, have been
found particularly valuable owing to their flexibility and simplicity. Notably, SEMs
facilitate local regularization, where for each gene the set of parameters that model
its dependence on the other genes is penalized separately and possibly to a different
amount. However this comes at the price of having many regularization parameters,
which may be difficult to tune. Motivated by works in the field of differential expres-
sion analysis, in this paper we combine local regularization with global shrinkage of
the regularizing parameters to stabilize and improve estimation. Adopting a Bayesian
approach, we demonstrate, using extensive model- and data-based simulations, that
such global shrinkage may substantially improve statistical inference.

High-throughput technologies such as microarrays provide the opportunity to
study the interplay between molecular entities, which is central to the understanding
of disease biology. The statistical description and analysis of this interplay is natu-
rally carried out with GGMs in which nodes represent genes and edges between them
represent interactions. The set of edges, which determines the network structure or
topology, is often used to generate valuable hypotheses about the disease patholo-
gies. Inferring this set from experimental data is, however, a challenging task as the
number of parameter to estimate easily is much larger than the sample size. In this
context statistical regularization techniques become necessary.

GGMs characterize the dependence structure between molecular variables using
partial correlations. It is well known that two coordinates Yi and Yj of a multivariate
normal random vector Y = (Y1, . . . , Yp)T are conditionally independent given the set
of all other coordinates if and only if the partial correlation corr(Yi, Yj|YJ \{i,j}) is
zero, where J = {1, . . . , p}. Furthermore, if Y ∼ Np(0,Ω−1) with positive-definite
precision matrix Ω = (ωij), then these partial correlations can be expressed as
corr(Yi, Yj|YJ \{i,j}) = −ωij/

√
ωiiωjj, for i ̸= j. Thus the conditional dependence

structure is fully coded in the precision matrix, and a network structure may be de-
fined by discriminating the zero and non-zero entries of the precision matrix. It is
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convenient to represent this structure by an undirected graph G = {J , E}, with the
nodes J corresponding to the variables, and the edge set E consisting of all {i, j}
such that ωij ̸= 0.

Most modern inference techniques for GGMs focus on estimating Ω or this under-
lying graph. For brevity we only discuss the most popular methods, which will also
be used as benchmarks in our simulations.

Penalized likelihood estimation amounts to maximizing ℓ(Ω) = log |Ω|−tr(SΩ)−
λJ(Ω), where S is the sample covariance estimate, J a penalty function, and λ a scalar
tuning parameter. The penalty J may serve two purposes: (1) to ensure identifia-
bility and improve the quality of estimation; (2) to discriminate zero from non-zero
entries in Ω. The ℓ1-norm (or versions thereof) is a popular choice [43], because it
simultaneously achieves (1) and (2). Alternatively, a ridge-type penalty [81, 140, 147]
may be used in combination with a thresholding procedure [93, 122]. Appropriate
tuning of the penalty through the parameter λ is crucial for good performance. Var-
ious solutions, usually based on resampling or cross-validation, have been proposed
[41, 46, 49, 89, 98, 158].

Simultaneous-equation modelling estimates Ω by regressing each molecular vari-
able Yj against all others. The coefficients βj,k in the equations

(1.1) Yj =
∑

k∈J \j

Ykβj,k + ϵj, j ∈ J ,

where ϵj ∼ N (0, σ2
j ) is independent of (Yk : k ̸= j), can be shown to be given

by βj,k = −ω−1
jj ωjk. Also σ2

j = ω−1
jj . Consequently, identifying the nonzero entries

of Ω can be recast as a variable selection problem in p Gaussian regression models.
This approach to graphical modeling was popularized by Meinshausen and Bühlmann
[97]. They dealt with high-dimensionality by adding an ℓ1-penalty to each regression
problem, but other penalties are also used [74]. Because the model (1.1) misses the
symmetry ωij = ωji in Ω, estimation may lack efficiency. This may be overcome by
working directly on partial correlations, as shown by Peng et al. [110]. Alternatively,
Meinshausen and Bühlmann [97] proposed a post-symmetrization step with an ‘AND’
rule: edge (i, j) ∈ E if βi,j ̸= 0 and βj,i ̸= 0. Despite the symmetry issue, network
reconstruction using (1.1) performs well and is widely used in practice.

Simultaneous-equation models are quite flexible. Experimental or biological co-
variates can easily be accounted for in the regression, and extensions to non-Gaussian
data were suggested by [2, 25, 115, 156]. Also SEMs arise naturally from the differen-
tial equations of a general dynamical system model of gene regulation [103] and are
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often used to model directed graphs [155].
In this paper we develop a Bayesian approach to Gaussian graphical model-

ing using SEMs. Our contribution is three-fold: (1) we employ (1.1) in combi-
nation with (non-sparse) priors that induce both local and global shrinkage and
provide evidence that global shrinkage may substantially improve inference; (2) we
present a new approach to posterior thresholding using a concept similar to the local
false discovery rate [37] and show that non-sparse priors coupled with a posteriori
edge selection are a simple and attractive alternative to sparse priors; and (3) we
provide a computationally attractive software tool called ShrinkNet (available at
http://github.com/gleday/ShrinkNet), which is based on a coherent and complete
estimation procedure that does not rely on resampling or cross-validation schemes to
tune parameter(s).

The paper is organized as follows. Section 1.2 presents the Bayesian SEM, the
variational approximation to posteriors and a novel posterior thresholding procedure
to reconstruct the network. In this section we also describe estimation of the global
shrinkage prior and discuss the important role of the proposed empirical Bayes pro-
cedure, along with its connection to existing literature. In Sections 1.3 and 1.4 we
compare the performance of the new method with state-of-the-art sparse and non-
sparse approaches, using both model- and data-based simulations. Notably in Sec-
tion 1.4 we employ two mRNA expression data sets from The Cancer Genome Atlas
(TCGA) and a random-splitting strategy to compare the reproducibility and stabil-
ity of the various methods. Finally, in Section 1.5 the proposed method is applied
to TCGA Glioblastoma data to investigate the interactions between genes associated
with patient survival.

1.2 Methods

In this section we introduce the Bayesian SEM with global and local shrinkage priors
along with a variational approximation of the resulting posterior distribution(s). Next
we present empirical Bayes estimation of prior hyper-parameters. We conclude with
a selection procedure for inferring the edge set E .

1.2.1 The Bayesian SEM

Consider mRNA expression data on p genes from n sample tissues. Denote by yj the
n × 1 vector of mRNA expression (log2) values for gene j ∈ J = {1, . . . , p}. The

http://github.com/gleday/ShrinkNet
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Bayesian SEM is defined by equation (1.1) together with a hierarchical specification
of prior distributions:

yj =
∑

k∈J \j

ykβjk + ϵj, j = 1, . . . , p

ϵj ∼ Nn(0, σ2
j In),

βjk ∼ N (0, σ2
j τ

2
j ),

τ−2
j ∼ G(a, b),
σ−2

j ∼ G(c, d).

(1.2)

Here every line is understood to be conditional on the lines below it and variables
within a line are assumed independent, as are variables referring to different genes j.
Furthermore, G (s, r) denotes a gamma distribution with shape and rate parameters s
and r, and In is the n×n identity matrix. Throughout the paper the hyper-parameters
c and d are fixed to small values, e.g. 0.001, in contrast to a and b, which we will
estimate (see Section 1.2.3). Although c and d could also be estimated, we prefer a
non-informative prior for the parameters σj, as there seems no reason to connect the
error variances across the equations.

The regression parameters βjk are endowed with gene-specific, Gaussian priors
for local shrinkage. A small value of the prior variance τ 2

j encourages the posterior
distributions of the βjk (including their expectations E(βjk|yj)) to be shrunken to-
wards zero. The stabilizing effect of this ridge-type shrinkage has been observed to
be useful for ranking regression parameters as a first step in variable selection [14].
In Section 1.2.4 we show how similarly the marginal posterior distributions of the βjk

can be used for rank-based edge selection in a GGM. The prior variances of the βjk

are also defined proportional to the error variances σ2
j to bring the variances τ 2

j , and
the induced shrinkage, on a comparable scale [107].

The equations for different genes j are connected through the gamma priors placed
on the precisions τ−2

j and the error variances σ2
j , for j ∈ J . The prior on the error

variances has no structural role, and, as mentioned, we prefer a fixed non-informative
prior. In contrast, the G(a, b)-prior on the precisions τ−2

j induces global shrinkage
by borrowing strength across the regression equations. The exchangeability of the
precisions expressed through this prior acknowledges the fact that the equations for
the different genes are similar in a broad sense, which is plausible given that they share
many common elements. When informative (i.e. small or moderate value of a/b2),
this prior shrinks the posterior distributions of τ−2

j towards the prior mean a/b, which
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stabilizes estimation. This type of shrinkage is different from the shrinkage of the
regression coefficients βjk, which through their centered priors are always shrunken to
zero. Of course, the “informed” shrinkage of the precisions τ−2

j will be beneficial only if
the hyper parameters a and b are chosen appropriately. We propose to set their values
based on the data, using an empirical Bayes approach, discussed in Section 1.2.3.

The conjugacy of the Gaussian and gamma priors in model (1.2) confers the
method a computational advantage over complex sparse priors. Fast approximations
to the posteriors are readily available [106, 114, 118], whereas sparse, non-conjugate
priors often require MCMC. The Gaussian priors allow to reparameterize the problem
employing an SVD decomposition of the design matrix [150], and back-transform the
posteriors to the original space (at least in our setting with approximately Gaussian
posteriors; see Section 1.2.2), which is computationally advantageous.

A disadvantage of these priors is that they do not have an intrinsic variable selec-
tion property, whence the posterior does not automatically recover the graph struc-
ture. We solve this by a separate procedure for variable selection, which essentially
consists of thresholding the scaled posterior means of the regression coefficients βjk.
In Section 1.2.4 we present an approach based on Bayes factors and a local false
discovery rate.

1.2.2 Variational approximation to posteriors

Because intractable integrals make it difficult to obtain the exact marginal posterior
distribution of the parameters, we use a variational approximation. Variational infer-
ence is a fast deterministic alternative to MCMC methods, and consists of computing
a best approximation to the posterior distribution from a prescribed family of distri-
butions. In our situation it provides an analytic expression for a lower bound on the
log-marginal likelihood, which is useful for monitoring convergence of the algorithm
and to assess model fit (Section 1.2.3).

For given hyper-parameters (a, b) and with the variables yk in the right side of
(1.2) considered fixed covariates, the prior and posterior distributions factorize (i.e.
are independent) across the genes j. For simplicity of notation we shall omit the
index j from τ−2

j , σ−2
j , yj and βj in the remainder of this section. Hence the formulas

for λ := (β, τ−2, σ−2) below apply to the joint posterior distribution of (βj, τ
−2
j , σ−2

j ),
for (any) given j ∈ J .

We shall seek a variational approximation to the posterior distribution of λ within
the class of all distributions with independent marginals over β, τ−2 and σ−2, where
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we measure the discrepancy by the Kullback-Leibler (KL) divergence. Thus letting
p(λ|y) denote the posterior density in model (1.2), we seek to find a density q(λ) of
the form

(1.3) q(λ) = q1(β)q2(τ−2)q3(σ−2),

for some marginal densities q1, q2, q3, that minimizes the Kullback-Leibler divergence

KL(q||p) =
∫
q(λ) log q(λ)

p(λ|y) dλ

= Eq log q(λ)− Eq log p(λ,y) + log p(y),
(1.4)

over all densities q of product form. Here p(y) denotes the marginal density of the
observation in model (1.2). Because the Kullback-Leibler divergence is nonnegative
we have that

(1.5) Eq log p(λ,y)− Eq log q(λ) ≤ log p(y).

Furthermore, minimization of the Kullback-Leibler divergence is equivalent to max-
imization of the left side of this inequality. Thus we may think of the procedure as
maximizing a lower bound on the log marginal likelihood.

The solution q∗ of this maximization problem, with the marginal densities q1, q2, q3

left completely free, can be seen to be given by densities q∗
1, q

∗
2, q

∗
3 satisying (see

[13, 106])

(1.6) q∗
m(λm) ∝ exp

E ∏
m′ ̸=m

qm′ log p(λ,y)
 , m = 1, 2, 3.

In the context of our model this yields q∗(λ) = q∗
1(β)q∗

2(τ−2)q∗
3(σ−2), with the marginal

densities (see Section 1 of Supplementary Material (SM)) given by standard distribu-
tions,

(1.7)
q∗

1(β) =d Np−1 (β∗,Σ∗)
q∗

2(τ−2) =d G (a∗, b∗) ,
q∗

3(σ−2) =d G (c∗, d∗) ,
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where the parameters on the right side satisfy

β∗ =
(

XT X + Eq∗
2

[
τ−2

]
Ip−1

)−1
XT y

Σ∗ =
[
Eq∗

3

[
σ−2

] (
XT X + Eq∗

2

[
τ−2

]
Ip−1

)]−1

a∗ = a+ p− 1
2 ,

b∗ = b+ 1
2Eq∗

3

[
σ−2

]
Eq∗

1

[
βT β

]
,

c∗ = c+ n+ p− 1
2 ,

d∗ = d+ 1
2Eq∗

1

[
(y−Xβ)T (y−Xβ)

]
+ 1

2Eq∗
2

[
τ−2

]
Eq∗

1

[
βT β

]
.

Here X represents the n by p − 1 fixed design matrix of (1.2). For the jth equation
in (1.2) this is equal to y−j = (yT

1 , . . . ,yT
j−1,yT

j+1, . . . ,yT
p )T .

Furthermore, the variational lower bound on the log-marginal likelihood log p(y)
(the left side of (1.5)) evaluated at q = q∗ simplifies to:

L =− n

2 log(2π) + 1
2 log |Σ∗|+ 1

2(p− 1) + a log b− log Γ(a)−

a∗ log b∗ + log Γ(a∗) + c log d− log Γ(c)− c∗ log d∗+

log Γ(c∗) + 1
2Eq∗

3

[
σ−2

]
Eq∗

2

[
τ−2

]
Eq∗

1

[
βT β

]
.

(1.8)

See SM Section 1 for the details.

The equations (1.7) express the optimal densities q∗
1, q∗

2 and q∗
3 (or equivalently

the parameters in the right side of (1.7)) in terms of each other. This motivates a
coordinate ascent algorithm [13, 106] (depicted in Algorithm 1), which proceeds by
updating the parameters in turn, replacing the variational densities on the right hand
sides of the equations by their current estimates, at every iteration.

Upon convergence the marginal posteriors p(β|y), p(τ−2|y) and p(σ−2|y) are ap-
proximated by q∗

1(β), q∗
2(τ−2) and q∗

3(σ−2). Although the algorithm needs to be
repeated for each regression equation in (1.2), the overall computational cost of the
procedure is low.
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Algorithm 1 Variational algorithm for local shrinkage
1: Initialize:
2: b = d = b∗(0) = d∗(0) = 0.001, ξ = 10−3, M = 1000 and t = 1
3: while |L(t) − L(t−1)| ≥ ξ and 2 ≤ t ≤M do

4: update Σ∗(t) ←
[
E

q
∗(t−1)
3

(σ−2)
(

XT X + E
q

∗(t−1)
2

(τ−2)Ip′

)]−1

5: update β∗(t) ← E
q

∗(t−1)
3

(σ−2)Σ∗(t)XT y
6: update

d∗(t) ← d+ 1
2

[
(y−Xβ∗(t))T (y−Xβ∗(t)) + tr{XT XΣ∗(t)}

]
+

1
2Eq

∗(t−1)
2

(τ−2)
[
β∗(t)T

β∗(t) + tr{Σ∗(t)}
]

7: update b∗(t) ← b+ 1
2Eq

∗(t−1)
3

(σ−2)
[
β∗(t)T

β∗(t) + tr{Σ∗(t)}
]

8: update L(t)

9: t← t+ 1
10: end while

1.2.3 Empirical Bayes and prior calibration

In the preceding discussion we have treated the vector of hyper-parameters α = (a, b)
as fixed. We now turn to its estimation and present a modified variational algorithm
in which α is updated along with the other parameters. The new algorithm is akin
to an EM algorithm [15] in which the two steps are, respectively, replaced with a
variational E-step, where the lower bound is optimized over the variational parameters
via coordinate ascent updates, and a variational M-step, where the lower bound is
optimized over α with the variational parameters held fixed.

We now use the SEM for all genes together, and write the variational approxima-
tion for the posterior density of the parameters for the jth gene as qj. (For each j

this is given by a triple of three marginal densities.) The target is to maximize the
sum over the genes of the lower bounds on the log-marginal likelihood, i.e. the sum
over j of the left side of (1.5), which can be written as

(1.9)
p∑

j=1
Eqj log p(yj|λj) +

p∑
j=1

Eqj log pα(λj)
qj(λj)

≤
p∑

j=1
log pα(yj).

Maximization of the left side with respect to the densities qj for a fixed hyper-
parameter α would lead to the variational estimates qj∗ given by (1.7). However,
rather than iterating (1.7) until convergence, we now alternate between ascending in
q and in α. For the variational estimates qj fixed at their current iterates, optimizing
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the left-hand side of (1.9) relative to the parameter α amounts to maximizing, with
the current iterate qj∗ replacing qj,

p∑
j=1

Eqj∗ log pα(τ−2
j ) =

p∑
j=1

(
a log b− log Γ(a)

+ (a− 1)Eqj∗ log τ−2
j − bEqj∗τ−2

j

)
.

(1.10)

The exact solution to this problem can be found using a fixed-point iteration method,
as in [132]. Alternatively, the following approximate solution arises by analytical
maximization after replacing the digamma function ψ(x) = ∂

∂x
log Γ(x) by the ap-

proximation log(x)− 0.5x−1:

(1.11)



â = 1
2

log
 p∑

j=1
Eqj∗τ−2

j

− p−1
p∑

j=1
Eqj∗ log τ−2

j − log p


−1

b̂ = â · p ·

 p∑
j=1

Eqj∗τ−2
j

−1

Algorithm 2 outlines how the updates of the hyper-parameters are folded into the
variational algorithm. At iteration t the hyper-parameters a(t) and b(t) are computed
according to (1.11) with the expectations Eqj∗τ−2

j and Eqj∗ log τ−2
j computed under

the current estimates qj∗. Next the variational parameters defining the densities qj∗

are updated according to (1.7) using the values a(t) and b(t) for a and b. Figure 1.1(a)
illustrates the convergence of the algorithm and shows that the lower bound on the
sum of log-marginal likelihoods increases at each step of the algorithm (red line).
Although this is not true for the lower bounds of each regression equation in the
SEM, this does demonstrate that the estimation procedure yields a well-informed
prior that is beneficial overall.

The second summand on the left-hand side of (1.9) is equal to minus∑p
j=1 KL(qj∗||pα).

This suggests that the procedure will seek to set the hyper parameters α so that the
prior density pα of the λj on the average most resembles their (approximate) posteri-
ors qj∗, based on the different genes. This connects to the recent work of van de Wiel
et al. [133] on shrinkage priors for differential gene expression analysis, whose em-
pirical Bayes procedure consists in finding α such that pα(τ−2

j ) ≈ n−1∑
j pα(τ−2

j |yj).
Figure 1.1(b) shows that our approach fulfills the same objective. It is natural for
the empirical Bayes procedure to have this “averaging of marginal posteriors” prop-
erty, as it attempts to calibrate the prior according to the data. The role of the
global shrinkage prior G(a, b) is to encourage the posterior distributions of the τ−2

j ,
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for j ∈ J , to shrink to a common distribution, centered around the (prior) mean a/b.

Algorithm 2 Variational EM algorithm with global-local shrinkage priors
1: Initialize:
2: a(0) = b(0) = a∗(0) = 0.001,∀j ∈ J , b∗(0)

j = d
∗(0)
j = 0.001, ξ = 10−3, M = 1000 and t = 1

3: while max|L(t)
j − L

(t−1)
j | ≥ ξ and 2 ≤ t ≤M do

E-step: Update variational parameters:
4: for j = 1 to p do
5: update a∗(t) ← a(t−1) + p−1

2
6: update Σ∗(t)

j , β
∗(t)
j , d∗(t)

j , b∗(t)
j and L(t)

j in that order (as in Algorithm 1)
7: end for

M-step: Update hyper-parameters:

8: a(t) ← 0.5

p−1
p∑

j=1

(
log(b∗(t)

j )− ψ(a∗(t))
)
− log p+ log

p∑
j=1

a∗(t)

b
∗(t)
j

−1

9: b(t) ← a(t) · p

 p∑
j=1

a∗(t)

b
∗(t)
j

−1

10: t← t+ 1
11: end while

1.2.4 Edge selection

In this section we describe a separate procedure for edge selection. This consists of
first ranking the edges based on summary statistics from the (marginal) posterior
distributions under the model (1.2) obtained in the preceding sections, and next
performing forward selection along this ordering. For the latter we use Bayes factors
and their relation to a Bayesian version of the local false discovery rate [37, lfdr].

Edge ordering

Denote the approximate posterior expectation and variance of βj,k obtained in Sec-
tions 1.2.2 and 1.2.3 for SEM (1.2) by Eqj∗

[
βj,k|yj

]
and Vqj∗

[
βj,k|yj

]
, and define

(1.12) κj,k =

∣∣∣∣Eqj∗

[
βj,k|yj

]∣∣∣∣√
Vqj∗

[
βj,k|yj

] , j, k ∈ J with j ̸= k.

Next for a given edge (j, k) (between genes j and k) define the quantity κ̄j,k =
(κj,k +κk,j)/2, and order the set of P = p(p−1)/2 edges according to their associated
values κ̄j,k, from large to small. Let (j(r), k(r)) denote the rth edge in this ordering,
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Figure 1.1: Illustration of (a) the convergence of the variational algorithm and (b) the
estimated global shrinkage prior on the breast cancer data set (P53 pathway). Figure
(a) displays the variational lower bounds Lj of each regression equation in the SEM as
a function of iterations. The red continuous line represents the average lower bound.
Figure (b) displays an empirical mixture of marginal posteriors of τ−2

j obtained by
drawing 1000 samples from qj

2(τ−2
j ; yj), ∀j. The continuous line represents the density

of the estimated global shrinkage prior on τ−2
j , which correspond to G(7.404, 0.073).

and abbreviate its associated value to κ̄r = κ̄j(r),k(r). This ordering is retained in
all of the following. However, we do not necessarily select all edges below a certain
threshold, but proceed by forward selection, for r = 1, . . . , P .

Bayes factors

Selection at stage r (see Section 1.2.4) will be based on Bayes factors BF(j(r), k(r))
and BF(k(r), j(r)) for the two regression parameters βj(r),k(r) and βk(r),j(r) associated
with the rth edge.

Denote by mj(r),k(r),1 the model in SEM (1.2) for the response variable yj(r), with
the covariates (or nonzero βj(r),k) restricted to the edge (j(r), k(r)) and any previously
selected edge (involving node j(r)) with rank lower or equal to r−1. Likewise, define
mj(r),k(r),0, but with the restriction βj(r),k(r) = 0, which is equivalent to the exclusion
of edge (j(r), k(r)). The Bayes factor associated with this model is

(1.13) BF(j(r), k(r)) = p(yj(r)|mj(r),k(r),1)
p(yj(r)|mj(r),k(r),0)

, r = 1, . . . , P.
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The Bayes factor BF(k(r), j(r)) is defined analogously from the regression models
mk(r),j(r),1 and mk(r),j(r),0 for response variable yj(k).

Prior for Bayesian variable selection

The global shrinkage prior for the precision parameters τ−2
j estimated from the data

in Section 1.2.3 is not appropriate for computing the Bayes factors (1.13). Because
it has been calibrated (by the variational Bayes method outlined in Algorithm 2) for
the network comprised of all edges, it is likely to be located away from zero, which
will induce strong regularization on the regression parameters, making it difficult for
the Bayes factors to discriminate between the subsequent models (in particular when
n is small). A non-informative prior runs into the same problem (perhaps even in a
more sever manner).

Motivated by the Zellner-Siow prior [90, 160] we propose to employ instead the
“default prior” τ−2

j ∼ G(1/2, n/2). This concentrates near its prior expectation n−1

(i.e. the fixed unit information prior of Kass and Wasserman [70]), and hence is
concentrated near 0 for moderate and large values of n, while less stringent for small
n (see illustration in SM Section 4).

Bayesian analogue of lfdr

Since both Bayes factors BF(j(r), k(r)) and BF(k(r), j(r)) are informative for the
relevance of edge (j(r), k(r)), we need to combine these and find a suitable thresh-
old. For that purpose, we link the Bayes factors to the posterior null-probability
P0(κ̄r) = P (βj(r),k(r) = 0, βk(r),j(r) = 0|y), where y = (yT

1 , . . . ,yT
p )T . The absence

of edge (j(r), k(r)) is reflected by βj(r),k(r) = βk(r),j(r) = 0, which, in the spirit of
forward selection, implies the null models mj(r),k(r),0 and mk(r),j(r),0. The posterior
null-probability is linked to the local false discovery rate [37, lfdr]. However, as in
van de Wiel et al. [133], we condition on the data y rather than on a test statistic.
Then, we have

P0(κ̄r) = P (βj(r),k(r) = 0, βk(r),j(r) = 0|y)
≤ min{P (βj(r),k(r) = 0|y), P (βk(r),j(r) = 0|y)}.

(1.14)

Here, the bound is used because the SEM may not provide accurate joint probabilities
on regression coefficients from different regression models. Now, assume the prior null
probability P (βj,k = 0|y−j) = p0, ∀j ∈ J , where y−j = (yT

1 , . . . ,yT
j−1,yT

j+1, . . . ,yT
p )T .

Note that a constant value of p0 is reasonable, because it simply reflects the prior
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probability that response yj does not respond to covariate yk (which is a member of
y−j). Then,

P (βj,k = 0|y) = P (βj,k = 0|yj,y−j)

= P (yj|βj,k = 0,y−j)P (βj,k = 0|y−j)
P (yj|y−j)

= P (yj|mj,k,0)p0

P (yj|mj,k,0)p0 + (1− p0)P (yj|mj,k,1)
= p0

p0 + (1− p0)BF(j, k) .

(1.15)

Define the max Bayes factor: BF(κ̄r) = max{BF(j(r), k(r)),BF(k(r), j(r)}. Then,
after substituting (1.15) into (1.14) we have, for threshold γ = (1−α)p0/(α(1− p0)),

(1.16) BF(κ̄r) ≥ γ ⇐⇒ P0(κ̄r) ≤ α.

Equation (1.16) suggests that edges in the graph can be selected using a thresholding
rule on the Bayes factors that controls the posterior null-probability. For example,
when we have p0 = 0.9, then BF(κ̄r) > 81 implies P0(κ̄r) < 0.1. However, to use this
approach an estimate of p0 is required. We simply propose

(1.17) p̂0 = 1
2P

(
P∑

r=1
(I{BF′(j(r),k(r))≤1} + I{BF′(k(r),j(r))≤1})

)
.

where BF′(j(r), k(r)) is defined analogously to BF(j(r), k(r)), but without forward
selection (so all covariates corresponding to edge ranks ≤ r are included), because
the forward selection procedure requires knowing p̂0.

Forward selection procedure

We introduce the following sequential procedure to update the set E of selected edges
and the models mj(r),k(r),0, mj(r),k(r),1, mk(r),j(r),0, mk(r),j(r),1 when increasing r:

1. Initiate α, r = 1, ℓ = 0 and E0 = ∅. Compute γ from α and p̂0.

2. Determine the models mj(r),k(r),0 and mk(r),j(r),0 which are the current models
for yj(r) and yk(r) that correspond to Er−1. Augment those models with covari-
ates yk(r) and yj(r), respectively, and fit these models to obtain mj(r),k(r),1 and
mk(r),j(r),1.
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3. Calculate the max Bayes factor BF(κ̄r)

4. Only if BF(κ̄r) > γ update Er = Er−1 ∪ {(j(r), k(r))}

5. Update r = r + 1 and go back to step 2

For the purpose of variable selection we include intercepts in the SEM. Finally, we
estimate E by the last update of E.

The selection procedure respects the initial ranking of the edges in terms of the
order in which they are considered for inclusion in the forward selection. However, the
procedure is set up to proceed when a given edge is not selected, because in the light
of the current model subsequent edges may (slightly) increase the marginal likelihood.
As in practice we observed that the Bayes factor decreases with r (see Supplementary
Figure 2), a stopping criterion may be practical if P is large; e.g. stop if r reaches
rmax = (1− p̂0)P , or if BF(κ̄r) has not exceeded γ for, say, 100 consecutive values of
r.

1.2.5 Computational considerations

In Algorithm 1 and 2 it is generally preferable to reparameterize the model relative to
the principal components of XT X. This way the variational updates and lower bound
can be modified to achieve important computational savings (see SM Section 2). For
edge selection, when the number of edges is large it is preferable to approximate
(1.17) using a random subset of, say, 1000 edges. With these considerations the
proposed methodology is shown to be computationally attractive (see Table 1.1 and
SM Section 13).

p = 50 p = 100 p = 200 p = 500 p = 1000
n = 50 0:00:01 0:00:10 0:00:08 0:00:52 0:08:51

n = 100 0:00:01 0:00:21 0:00:31 0:01:50 0:12:02
n = 200 0:00:02 0:00:40 0:01:20 0:05:25 0:21:14
n = 500 0:00:07 0:01:12 0:02:14 0:23:42 1:51:21

Table 1.1: Average elapsed time (H:MM:SS) as a function of the number of samples
n and variables p. For n and p fixed, 10 random data sets were generated from the
complete Breast cancer data set (Section 1.4.1). When p > 100 we approximated
(1.17) using a random subset of 1000 edges. Computations were made on 2.60GHz
CPU without parallelization strategy.

For very large p, ShrinkNet contains an option to restrict the number of reported
edges, e.g. to 1000, which may be practical from both a computational and inter-
pretational point of view. Then, when n = 200, computing times drop to 5 and 21
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minutes for p = 500 and p = 1000, respectively. For the curated Breast cancer data
used by Schäfer and Strimmer [121, 49 samples and 3,883 genes], ShrinkNet takes 2
hours and 15 minutes when the forward selection is limited to the top 10,000 edges.

1.3 Model-based simulation

In this section we investigate the performance of our approach, termed ShrinkNet,
in recovering the structure of an undirected network and compare it to popular ap-
proaches. We generate n ∈ {25, 50, 100} samples from a multivariate normal distri-
bution with mean vector 0 and 100× 100 precision matrix Ω, corresponding to four
different graph structures: band, cluster, hub and random [163] (see Figure 1.2 for
illustration), every of them sparse, with graph density ranging from 0.017 to 0.096.
We generated the inverse covariance matrix Ω corresponding to each graph struc-
ture from a G-Wishart distribution [100] with scale matrix equal to the identity and
b = 4 degrees of freedom. In SM Section 2 we provide statistical summaries on the
magnitude of the generated partial correlations.

(a) Band (b) Cluster (c) Hub (d) Random

Figure 1.2: Graph structures considered for the precision matrix Ω in our simulation.
Black and white dots represent non-zero and zero entries, respectively. Only off-
diagonal elements are displayed. For precision matrices with block-diagonal structures
(clusters and hubs), block sizes were set to 5 and 10. In (a) the bandwidth is equal
to four. The graph density δ is (a) δ = 0.079, (b) δ = 0.071, (c) δ = 0.017 and (d)
δ = 0.096.

We compared our approach ShrinkNet to the popular frequentist SEM with the
Lasso penalty (SEML) [97], the Graphical Lasso (GLλ) [43], and GeneNet [119]. The
latter combines a non-sparse linear shrinkage estimator with an a posteriori edge se-
lection procedure. For the purpose of comparison with ShrinkNet, we also consider the
Bayesian SEM (1.2) with the non-informative global shrinkage prior G(0.001, 0.001),
which we subsequently refer to as ‘NoShrink’.
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Briefly, graph selection is as follows. For SEML and GLλ we use the EBIC criterion
[23, 41] for selecting the optimal regularization parameter(s), whereas for GeneNet
and ShrinkNet a threshold of 0.1 on the local false discovery rate and the posterior
null probability P0 is employed. In SM Section 3 we provide more details as to how
an edge ranking is obtained for each method.

To evaluate the performance of the methods in recovering the graph structures we
report partial ROC curves (SM Section 5), which depict the true positive rate (TPR)
as a function of the false positive rate (FPR) for FPR< 0.2), and various performance
measures on selected graphs. Figure 1.3 below displays boxplots of F-scores and
partial AUCs (pAUC) [35] as a function of the method, n and the true graph structure.
The F-score=2 × (precision × TPR)/(precision + TPR) is a popular performance
measure, defined as the harmonic mean between the TPR=TP/(TP+FN) (also called
recall) and the precision=TP/(TP+FP), where TP, FP, and FN are the number of
true positives, false positives, and false negatives, respectively.

Figure 1.3 shows that ShrinkNet achieves the highest partial AUCs in almost
all situations. The results also indicate that NoShrink is often outperformed by
GeneNet, and comparable to GLλ, which suggests that the global shrinkage carried
out by ShrinkNet considerably improves edge ranking. SEML has the lowest pAUC
in almost all situations.

The performance of each method in recovering the true graph structure can also be
evaluated by the F-score. According to this metric the best performance is achieved
by NoShrink and ShrinkNet in all but two cases. In moderate- (n = 50) and high-
dimensional cases (n = 25), NoShrink and ShrinkNet show a much larger F-score
than others. This is particularly pronounced when n = 25, in which case GLλ and
GeneNet have an F-score (and TPR) very close to zero. In this context SEML is
performing better than GLλ and GeneNet, but worse than NoShrink and ShrinkNet.

All in all, the simulation study demonstrates that global shrinkage considerably
improves edge ranking. For network reconstruction, the small discrepancy between
ShrinkNet and NoShrink indicates that the selection procedure of Section 1.2.4 is
relatively robust to edge ranking. The proposed selection procedure is also shown to
outperform contenders in the most high-dimensional cases.

1.4 Data-based simulation

In this section we employ gene expression data from The Cancer Genome Atlas
(TCGA) to compare the performance of our approach in reconstructing networks
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Figure 1.3: Boxplots of F-scores (left column) and pAUCs (right column) over 100
repetitions as a function of the method, n and the true graph structure. The five
methods under comparison are from left to right: NoShrink (white), ShrinkNet (dark
grey), SEML (light grey), GLλ (diagonal pattern) and GeneNet (mesh pattern)
.
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with SEML, GLλ, GeneNet and NoShrink (see previous Section). Data were retrieved
from the TCGA cBioPortal using the R package ’cgdsr’ [21, 67]. In particular, we
focus on the p53 pathway in the Breast cancer data set (nbrca = 526), which comprise
pp53 = 67 genes, and the apoptosis pathway in the Ovarian data set (nov = 537) that
comprises papopt = 79 genes. Since the true molecular network is not exactly known,
we employ a random splitting strategy for the two data sets to assess discoveries.

1.4.1 Reproducibility

To compare reproducibility, we randomly split the data into a small data set where
np53

small ∈ {134, 67, 34} and napopt
small ∈ {158, 79, 40} to achieve low-, moderate- and high-

dimensional situations, and a large data set where np53
large ∈ {392, 459, 492} and napopt

large ∈
{379, 458, 497} (representing the complement). The large data set is then used to
validate discoveries made from the small one. As a benchmark for validation we
employ the edge set Sb defined by edges that are simultaneously selected by the
different methods based on the large data set. Because the lack of consensus between
the different methods may render Sb too small, we only compare two methods at a
time.

To assess performance in recovering Sb from the small data set we generate 100
random data splits and report average partial ROC curves and average TPR and
FPR from the selected graphs. Figure 1.4 summarizes results for the four pairwise
comparisons of GeneNet, SEML, GLλ and NoShrink with ShrinkNet for the apotosis
pathway in the Ovarian cancer data set. Simulation results for the p53 pathway for
the Breast cancer data are provided in SM Section 7. Table 1.2 and Supplementary
Table 2 summarize the number of selected edges in the small and large data sets for
each method.

napopt
small = napopt

large = napopt
small = napopt

large = napopt
small = napopt

large =
158 379 79 458 40 497

ShrinkNet 62.5 (5.7) 138.6 (5.9) 31.4 (5.1) 166.9 (6) 18.2 (4.8) 179.6 (5.6)
SEML 16.0 (3.9) 54.0 (5.3) 4.7 (2.3) 65.1 (4.7) 1.6 (1.2) 69.2 (4)

GL 25.8 (10.6) 145.7 (35.5) 9.6 (4.7) 224.1 (56) 5.3 (3.2) 282.2 (58.1)
GeneNet 10.2 (4.6) 22.9 (4.6) 2.2 (2.3) 25.8 (3.5) 0.3 (1.5) 26.1 (2.4)

Table 1.2: Average number of selected edges (and standard deviations in parentheses)
for each method in the small and large data sets over 100 random partitioning of the
Ovarian cancer data set.
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Figure 1.4: Average partial ROC-curves corresponding to all pairwise comparisons
of GeneNet, GLλ, SEML and NoShrink with ShrinkNet when the apoptosis data are
randomly split into a small data set of size np53

small ∈ {134, 67, 34} and a large validation
one of size np53

large ∈ {392, 459, 492}. Each plot depicts the performance of ShrinkNet
(black continuous line) versus one of the contenders (black discontinuous line). Circle
(ShrinkNet) and star (contender) points correspond to average TPR and FPR of
selected graph structures as obtained by the two inference methods under comparison.
Note that the circle point is not expected to be located on the curve.
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The number of selected edges differs a lot between GeneNet, SEML, GLλ and
ShrinkNet (Table 1.2). GeneNet is the most conservative approach whereas ShrinkNet
selects more edges than others in the small data sets. However, when the sample size
is large GLλ selects more than ShrinkNet, as illustrated by the number of discoveries
in the large data sets. It is interesting to see in Table 1.2 that ShrinkNet is remarkably
stable in selection. The variability (as measured by the standard deviations) of the
number of selected edges is relatively low, and in fact surprisingly constant in the
small and large data sets, regardless of the number of selected edges. Conversely, GLλ

exhibits relatively larger variability and also large differences in number of edges.
The results in Figure 1.4 suggest that ShrinkNet compares very favourably to the

other methods in recovering the benchmark edge set Sb. In particular, edge selection
(as represented by dots in the ROC plots) is shown to outperform the other methods
clearly in all situations. In the most high-dimensional case napopt

small = 40, GeneNet,
SEML and GLλ detect almost no edges in the small data set (see Table 1.2), whereas
ShrinkNet still detects a non-negligible number of edges, which translates into a higher
TPR (with negligible FPR). Partial ROC curves in Figure 1.4 also indicate that edge
ranking as provided by ShrinkNet is often superior to others. This is particularly
true when napopt

small = 79 and napopt
small = 40. In case napopt

small = 158, SEML and GLλ

outperform ShrinkNet for edge ranking, but not for edge selection. This suggests
that the selection procedure proposed in Section 1.2.4 is robust to the edge ranking
on which it is based. This is confirmed by comparing ShrinkNet with NoShrink, where
there is no difference in selection performance, whereas edge ranking appears to be
improved by the global shrinkage prior.

Finally Figure 1.5 displays rank correlation of edges between all pairs of data sets
of size napopt

small for ShrinkNet and NoShrink. The correlations are clearly higher for
ShrinkNet than for NoShrink when napopt

small ∈ {79, 40}, which indicates that the global
shrinkage improves the stability and, hence, reproducibility of edge ranking when the
sample size napopt

small is not large.

1.4.2 Stability

In this section, the random splitting strategy is used to study the stability of edges
selected by each method. Let π̂ij be the empirical selection probability of edge (i, j)
for a given method over the 100 generated small data sets of size napopt

small . We define
the set of stable edges by Sstable = {(i, j) : π̂ij ≥ πthr} where 0.5 < πthr ≤ 1. To
determine an appropriate cut-off πthr, which is comparable between methods, we use
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Figure 1.5: Correlations of edge ranking as provided by ShinkNet and NoShrink across
the 100 generated small data sets of size napopt

small. Each boxplot displays Spearman rank
correlations between the values of κ̄r, r = 1, . . . , P , obtained from all the (100 ×
99)/2 = 4950 pairs of data sets of size napopt

small for each of the two methods. Note that
one does not expect high rank correlation when considering all edges.

the stability criterion proposed by [98]. This is based on the following upper bound
on the expected number E(V ) of falsely selected edges:

(1.18) E(V ) ≤ q2

(2πthr − 1)P ,

where q is the expected number of edges selected by the given method and P is
the total number of edges (Papopt = 3081 and Pp53 = 2211). To compare the set of
stable edges between the different methods, we set E(V ) = 30 as in Meinshausen
and Bühlmann [98]. Then, πthr (and hence Sstable) is determined using an empirical
estimate of q (see Table 1.2 and SM Table 2). Because the type I error is controlled
in the same way for all methods, comparison can reasonably be based on the number
of stable edges.

To illustrate, when napopt
small = 158 for the apoptosis data we obtain that πShrinkNet

thr =
0.623, πSEML

thr = 0.508, πGLλ
thr = 0.522 and πGeneNet

thr = 0.503, which result in 27, 12, 12
and 8 stables edges, respectively. These are illustrated in the left column of Figure
1.6. As E(V ) is fixed, the value of πthr only varies between methods because estimates
of q differ. This is intuitive: if the method selects a lot of (few) edges we expect πthr

to be large (small).
Figure 1.6 and SM Figure 10 display stables edges obtained with each method as a

function of napopt
small and np53

small, respectively. For the two data sets ShrinkNet selects an
important number of stable edges. This is particularly true for the apoptosis pathway
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Figure 1.6: Stable edges for the apoptosis pathway obtained with ShrinkNet (red),
SEML (blue), GL (pink) and GeneNet (green) when E(V ) = 30 as a function of
napopt

small. Plots were generated using the R CRAN package rags2ridges.
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where the method clearly yields more stable edges than SEML, GLλ and GeneNet in
all situations. Specifically, when napopt

small = 79 ShrinkNet identifies a nearly identical
network to GLλ and SEML when napopt

small = 158. For the p53 pathway (see SM Figure
10), GLλ detects more stable edges than ShrinkNet when np53

small = 134, as many as
when np53

small = 67, and less when np53
small = 40. This suggests that when the sample size

is small ShrinkNet tends to select more stable edges than GLλ. Finally, for the two
data sets ShrinkNet detects more stable edges than SEML and GeneNet.

1.5 Real data application

Glioblastoma multiform (GBM) is a common and aggressive form of brain tumor in
adults which, unfortunately, is also one of the most malignant of glial tumors. Patients
with GBM have a poor prognosis and usually survive less than 15 months following
diagnosis. GBM mRNA expression and clinical data (level 3 normalized; Agilent
244K platform) were obtained from the TCGA data portal (tcga-data.nci.nih.gov).
The data contained measurements of 17,814 genes in tumor tissue samples from 532
GBM patients, of whom 505 had available survival information. Missing expression
values were imputed using the R function impute.knn (using default parameters) from
the Bioconductor package impute. Instead of characterizing globally the interactions
between all genes, we focused on the subset of the 66 genes with the strongest associ-
ation with patient survival (FDR≤0.01). These genes are expected to be related via
the different biological processes that promote cancer and thereby impact survival.
ShrinkNet was then used to identify the potential relationships between these genes,
which may help to further prioritize them (e.g. by node degree) and their potential
interactions (e.g. by edge strength). Indeed, highly connected ‘hub’ genes are thought
to play an important role into the disease biology.

Figure 1.7 displays the undirected gene network reconstructed by ShrinkNet us-
ing α = 0.10 (Bayesian analogue of lfdr; see Section 1.2.4). The graph comprises 260
edges which corresponds to a density of 0.12. Node degrees vary from 2 to 13. Among
the genes with highest degree (see SM Section 12), known regulators are found. For
example, LGALS1 (degree equal to 13) encodes the Galectin-1 protein which is a
multifaceted promoter of glioma malignancy [17]. This protein instigates increased
glioma invasiveness and its expression correlates directly with tumour grade [40].
SLC16A3 (also with degree equal to 13) encodes for the MCT4 protein whose over-
expression has been reported in several solid tumors, including metastases of breast
cancer to the brain, which suggests its association with aggressive tumor behavior
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Figure 1.7: Reconstructed network for the 66 genes associated with patient survival in
GBM. Node size is proportional to the node degree and edge width/opacity is propor-
tional to κ̄j,k.

[91]. SREBF1 (degree equal to 12), also known as SREBP1, is a protein regulat-
ing lipid composition that has been associated with the proliferation of cancer cells.
SREBP1 activity is known to be regulated by the Akt/mTORC1 signaling axis that is
responsible for the growth and survival of cancer cells by sustaining lipid biosynthesis
[85, 112]. As a final example, IL13RA1 (degree equal to 10) encodes for a protein be-
longing to the interleukin-13 (IL-13) receptor that elicits both proinflammatory and
anti-inflammatory immune responses, and is strongly associated with Glioblastoma
[95]. IL-13 has been widely suggested for cancer drug therapy.

Multiple links that are identified by ShinkNet were also previously reported in
relation to Glioblastoma. Using the complete human protein interaction network
from Pathway Commons (pathwaycommons.org; Cerami et al. [22]) we could validate

pathwaycommons.org
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several edges identified by ShrinkNet (see SM Section 12). This is true in particular for
the most significant edge (as measured by κ̄j,k; see Section 1.2.4), which links genes
CTSB and CTSL1. These genes participate in protein degradation and turnover
[27]. This finding hence supports the idea that cathepsins participate in enhancing
invasion and metastasis [51, 69], both so descriptive of GBM. Besides, the database
also confirmed the following interactions found by ShrinkNet: LGALS1 ↔ RPS28,
HSPA5 ↔ SLC16A3, ACADS ↔SLC16A3, and ACADS ↔ HSPA5.

1.6 Conclusion

In this paper we proposed a Bayesian SEM with global-local shrinkage priors for
gene network reconstruction. The model employs simple conjugate priors to impose
regularization. Because these are not sparse, a novel method for a posteriori edge
selection was introduced to infer the graph structure. Computational efficiency was
achieved by SVD decompositions and fast variational approximations. We discussed
empirical Bayes estimation of prior hyper-parameters and embedded this in a vari-
ational EM-type algorithm. The simulations showed that the proposed approach is
often superior to popular (sparse) methods in low-, moderate- and high-dimensional
cases. In particular, on real data the method yielded more stable and reproducible
discoveries. Network analysis of genes associated with patient survival in Glioblas-
toma confirmed the method’s ability to discover biologically meaningful interactions
and hub genes. Our method, termed ShrinkNet, is implemented as an R package and
available at http://github.com/gleday/ShrinkNet.

A novelty of our work is the use of global shrinkage priors, which allow the bor-
rowing of information across regression equations. We are not aware of any previous
works combining global and local shrinkage priors. In the frequentist setting Yuan
et al. [159] borrows information across the regularizing parameters corresponding to
ℓ1-penalties by combining local and global searches. In the Bayesian setting the focus
is often on studying the equivalence between the SEM and a proper joint distribution
[33, 47]. In this paper we have shown that the combined use of global and local
shrinkage priors improves statistical inference, in particular edge ranking.

Our variable selection method performs simultaneous selection of the two param-
eters that are associated with each edge, but unlike sparsity-based methods performs
separate estimation and selection steps. However, separating estimation and selection
may also come as an advantage in terms of optimizing performance with respect to
either of these criteria. In fact, “The idea of pre-ranking covariates and then selecting

http://github.com/gleday/ShrinkNet
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models has become a well established technique in the literature” [66, Remark 6].
An important practical advantage of our approach is that the estimation procedure

is coherent and complete, and does not rely on tuning, resampling, or cross-validation
to set regularization parameter(s). This is particularly encouraging for extending the
method to settings with multiple types of high-dimensional covariates, which would
require different amounts of shrinkage. For methods based on resampling or cross-
validation this may become overly computationally burdensome.

The proposed method is particularly suitable for gene network reconstruction
using expression data. This type of network aims at providing a picture of regulatory
mechanisms that act between genes. In practice, the interest often lies in a relatively
small subset of genes that are known to be functionally linked (e.g. a pathway).
In this context the Bayesian SEM may be more appropriate than others, because
such a gene set is usually of moderate dimension and, hence, due to the functional
link, the corresponding network is likely to be relatively less sparse. Therefore strong
dependencies between genes are more likely to occur and this may favor Normal-
Gamma (ridge-type) regularization. In addition, the coherence in functionality may
render shrinkage beneficial for parameter estimation in the SEM.

We have focused on recovering the support of the precision matrix, but it is also
possible to obtain an estimate of it. An immediate approach is to use the graph
structure provided by ShrinkNet as a prior for precision estimation (sometimes re-
ferred to as parameter learning [124]). Versions of the Wishart distribution, such as
the G-Wishart [34, 144], are computationally attractive. Other estimation strategies
have been proposed outside the Bayesian paradigm. See, for example, Zhou et al.
[164] and Yuan [157].

We foresee several extensions. SEMs are appropriate to describe directed networks
and it would be interesting to investigate different types of shrinkage priors suitable
in this context, for example to shrink in- and outgoing edges differently. Extension to
non-Gaussian data is possible, where it may be desirable to adopt a flexible likelihood
model and other types of posterior approximations may be considered [118]. Finally
the model suits construction of integrative networks when allowing different priors
for different types of interactions.





Chapter 2

An empirical Bayes approach to
network recovery using external
knowledge

Reconstruction of a high-dimensional network may benefit substantially from the in-
clusion of prior knowledge on the network topology. In the case of gene interaction
networks such knowledge may come for instance from pathway repositories like KEGG,
or be inferred from data of a pilot study. The Bayesian framework provides a nat-
ural means of including such prior knowledge. Based on a Bayesian Simultaneous
Equation Model, we develop an appealing Empirical Bayes (EB) procedure which au-
tomatically assesses the agreement of the used prior knowledge with the data at hand.
We use variational Bayes method for posterior densities approximation and compare
its accuracy with that of Gibbs sampling strategy. Our method is computationally fast,
and can outperform known competitors. In a simulation study we show that accurate
prior data can greatly improve the reconstruction of the network, but need not harm
the reconstruction if wrong. We demonstrate the benefits of the method in an analysis
of gene expression data from GEO. In particular, the edges of the recovered network
have superior reproducibility (compared to that of competitors) over resampled ver-
sions of the data.

This chapter was published as: G.B. Kpogbezan, A. W. van der Vaart, W. N. van Wieringen,

Gwenaël G. R. Leday and M.A. van de Wiel (2017). An empirical Bayes approach to network

recovery using external knowledge. Biometrical Journal, 59(5), 932–947. The research leading to

these results has received funding from the European Research Council under ERC Grant Agree-

ment 320637.
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2.1 Introduction

Many areas of the quantitative sciences have witnessed a data deluge in recent years.
This is due to an increased capacity of measuring and storing data in combination
with a reduction in costs of acquiring this data. For instance, in the medical field
high-throughput platforms yield measurements of many molecular aspects (e.g. gene
expression) of the cell. As many as 20, 000 genes of a single patient can be char-
acterized simultaneously. However, although the costs of such techniques have gone
down over the years, the number of patients n in a typical clinical study is still small
compared to the number of variables p measured. Reliable analysis of data of such a
“n≪ p” study is difficult. In this paper we try to solve the problem of few replicate
measurements by incorporating external (or ”prior”) data in the analysis. To allow
interpretation, we restrict ourselves to predefined subsets of genes (e.g. pathways) for
which p is usually moderately larger than n.

High-dimensional modelling based on a small data set is particularly challenging
in studies of relationships between variables. The number of potential pairwise rela-
tionships between even a modest number of genes is p(p − 1)/2. However, some of
these relationships may be known from the vast body of medical literature available.
For instance, the current beliefs on interactions among genes is condensed in repos-
itories like KEGG and Reactome. Although such information may not be reliable,
or be only partially relevant for the case at hand, its flexible inclusion may help the
analysis of high-dimensional data. Methodology that exploits such prior information
may accelerate our understanding of complex systems like the cell.

The cohesion of variables constituting a complex system is often represented by a
network, also referred to as a graph. A graph G consists of a pair (I, E) where I =
{1, ..., p} is a set of indices representing nodes (the variables of the system) and E is the
set of edges (relations between the variables) in I×I. An edge can be characterized in
many ways, we concentrate on it representing conditional independence between the
node pair it connects. More formally, a pair (i1, i2) ∈ E if and only if random variables
represented by nodes i1 and i2 are conditionally dependent, given all remaining nodes
in I. All pairs of nodes of I not in E are conditionally independent given the remaining
nodes. Graphs endowed with this operationalization of the edges are referred to as
conditional independence graphs (Whittaker, 1990).

Conditional independence graphs are learned from data by graphical models.
Graphical models specify how data are generated obeying the relations among the
variables as specified by a conditional independence graph. A Gaussian Graphical
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Model (GGM) assumes data are drawn from a multivariate normal distribution:

(2.1) Y j ∼iid N(0,Ω−1
p ), j ∈ {1, ..., n}.

Here Y j is a p-dimensional random vector comprising the p random variables Y j
1 , . . . , Y

j
p

corresponding to the nodes of I and Ω−1
p is a non-singular (p×p)-dimensional covari-

ance matrix. The matrix Ωp, as opposed to its inverse, is referred to as the precision
matrix. For a GGM the edge set E of the underlying conditional independence graph
corresponds to the nonzero elements of Ωp (Lauritzen, 1996). Hence, to reconstruct
the conditional independence graph it suffices to determine the non-zeros elements of
this matrix.

Reconstruction of the conditional independence graph may concentrate on the di-
rect estimation of the precision matrix. Here we choose a different estimation strategy.
This exploits an equivalence between Gaussian graphical models and Simultaneous
Equations Models (SEMs), which we introduce first before pointing out the equiva-
lence. Our choice for SEM is mainly motivated by its flexibility and its performance.
It can account for experimental or biological covariates in the regression, and exten-
sions to non-Gaussian data are available (Chen et al., 2015; Allen and Liu, 2013; Yang
et al., 2012; Ravikumar et al., 2010). Its Bayesian counterpart is appealing for in-
cluding prior knowledge, which likely is more complicated in many other frameworks.
Its good performance in comparison with alternatives including (sparse) graphical
models was demonstrated by Leday et al. (2017). In addition, SEM is also compu-
tational efficient (Meinshausen and Bühlmann, 2006). We treat SEMs as a system of
regression equations, with each equation modelling the conditional distribution of a
node given the other nodes. If we collect all observations on node i ∈ I in a vector
Yi := (Y 1

i , . . . , Y
n

i )T , then we can write:

(2.2) Yi = Xiβi + ϵi, i ∈ I,

where Xi is the n× (p− 1)-matrix with columns the observations of the p− 1 nodes
different from i, i.e. Xi = [Y1, Y2, ..., Yi−1, Yi+1, ..., Yp] (where the square brackets mean
“combine the vectors in a matrix”). The error vector ϵi is defined by the equation,
and possesses a multivariate Gaussian distribution N(0, σ2

i In) under the GGM. (The
covariances between the errors of different equations are in general non-zero, but are
left unspecified.) The equivalence between the thus formulated SEM and the GGM as
specified above stems from the one-to-one relationship between the regression param-
eters of the SEM and the elements of the GGM’s precision matrix (Lauritzen (1996)):
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βi,r = −ω−1
ii ωir. In particular, (non)zero entries in the i-th row vector of the precision

matrix Ωp correspond to the (non)zero coefficients of βi. The problem of identifying
(non)zero entries in Ωp can therefore be cast as a variable selection problem in the p
regression models (2.2). Lasso regression (Tibshirani, 1996) may be used for this pur-
pose (as in Meinshausen and Bühlmann (2006)), but other variable selection methods
have also been employed. The problem that every partial correlation appears in two
regression equations is usually resolved by post-symmetrization through application
of the ‘AND’-rule: an edge (i, j) ∈ E if and only if βi,j ̸= 0 and βj,i ̸= 0 (Meinshausen
and Bühlmann, 2006). Graph structures recovery based on model (2.2) performs well
and is widely used in practice.

Previously, we proposed a Bayesian formulation of the SEM (Leday et al., 2017).
In this Bayesian SEM (henceforth BSEM) the structural model (2.2) is endowed with
the following prior:

(2.3)

ϵi|σ2
i , τ

2
i ∼ N(0n, σ

2
i In),

βi|σ2
i , τ

2
i ∼ N(0s, σ

2
i τ

−2
i Is),

τ 2
i ∼ Gamma(a1, b1),

σ−2
i ∼ Gamma(a2, b2),

where I is an identity matrix, s = p−1, and Gamma(a, b) denotes a gamma distribu-
tion with shape parameter a and rate parameter b, and τ 2

i and σ−2
i are independent.

The normal-gamma-gamma (NGG) prior of model (2.3) regularizes the parameter es-
timates (e.g. estimated as the posterior mean) in two distinct ways. First, due to the
normal prior on the regression coefficients βi,r (corresponding to a ridge penalty), the
estimates of these parameters are shrunken locally (i.e. within each equation) to zero.
Second, the estimates are simultaneously shrunken globally (i.e. across equations),
due to the fact that the hyperparameters α = {a1, b1, a2, b2} do not depend on the
index i. There seems to be no reason to connect the error variances (which reflect
the noise levels of the genes) across the equations, and hence we use a vague prior
(e.g. a2 = b2 = 0.001). In contrast, estimating the parameters a1, b1 in EB fashion
is advantageous, as it further “borrows information” across the regression equations.
The resulting global shrinkage improves inference in particular for large networks (see
also Section 2.5). Note that assuming a Gaussian distribution for the regression coef-
ficients is also done in ridge regression and random effects models. The BSEM model
can be fit computationally efficiently by a variational method, and generally outper-
forms the aforementioned lasso regression approach to the estimation of model (2.2).
Furthermore, variables can be accurately selected based on the marginal posterior



2.1 Introduction 43

distributions of the regression coefficients (Leday et al., 2017).

The problem of network reconstruction is challenging due to the vast space of
possible graphs for even a moderate number of variables. This endeavour is further
complicated by the inherent noise in the measurements used for the reconstruction.
Fortunately, network reconstruction need not start from scratch, as often similar
networks have been studied previously. Prior information on the network may be
available in the literature, repositories, or simply as pilot data. It is natural to take
such information along in network reconstruction. Many works have already been
devoted to incorporating prior knowledge into network reconstruction. Among these
studies, Imoto et al. (2003) use energy functions to incorporate prior knowledge
sources into Bayesian gene regulatory network models and propose the incorporation
of many types of different prior knowledge, including literature-based knowledge. The
approach of Imoto et al. has been extended by Werhli and Husmeier which proposed a
framework to incorporate multiple sources of prior knowledge into dynamic Bayesian
network using MCMC sampling (Werhli and Husmeier, 2007). In the same line,
Steele et al. proposed an advanced text-mining technique to incorporate literature-
based prior knowledge into Bayesian network learning of gene networks. Similarly, Li
et al. developed an approach that combines literature mining and microarray analysis
in constructing biological networks (Li et al., 2006). Murkherjee and Speed (2008)
proposed a method to incorporate network features including edges, classes of edges,
degree distributions, and sparsity using MCMC sampling in Bayesian network learn-
ing. Still in Bayesian network learning, Isci et al. (2013) proposed also a framework
to incorporate multiple sources of external knowledge where the incorporation of ex-
ternal knowledge uses Bayesian network infrastructure itself. However, none of these
proposed methods explicitly estimate the agreement of the prior knowledge with the
data at hand.

In this paper we develop a method for incorporating external data or prior infor-
mation into the reconstruction of a conditional independence network. To this aim we
extend in Section 2.2 the Bayesian SEM framework (2.2)-(2.3). The extension incor-
porates prior knowledge in a flexible manner. Next in Section 2.3 we develop a vari-
ational Bayes approach to approximate the posterior distributions of the regression
parameters for given hyperparameters, and show this to be comparable in accuracy
to Gibbs sampling, although computationally much more efficient. In Section 2.4 this
is complemented by a derivation of an empirical Bayes approach to estimate the hy-
perparameters. Using simulations we show in Section 2.5 that the method performs
better, in terms of ROC curves, than BSEM when the prior knowledge agrees with
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the data, and is as accurate when it is not. In Section 2.6 we show the full potential
of our approach on real data. We conclude the paper with a discussion.

2.2 Model

The BSEM approach, comprising model (2.2) with priors (2.3), is modified to incor-
porate external information on the to-be-reconstructed network. The resulting model
is referred to as BSEMed (BSEM with external data).

Prior knowledge on the network is assumed to be available as a “prior network”,
which specifies which edges (conditional independencies) are present and absent. This
is coded in an adjacency matrix P, which contains only zeros and ones corresponding
to the absence and presence of an edge in the prior network. That is, Pi,r = 1 if node
i is connected with node r and Pi,r = 0 otherwise. Note that the adjacency matrix P
is symmetric (for the purpose of undirected network reconstruction).

The BSEMed approach keeps equation (2.2), but replaces the priors (2.3) of BSEM
by:

(2.4)

ϵi|σ2
i , τ

2
i,0, τ

2
i,1 ∼ N(0n, σ

2
i In),

βi|σ2
i , τ

2
i,0, τ

2
i,1 ∼ N(0s, σ

2
i Dτ−2

i
),

Dτ−2
i

= diag(τ−2
i,1 , ..., τ

−2
i,s ),

τ 2
i,r =


τ 2

i,0 ∼ Gamma(a0, b0), if Pi,r = 0,

τ 2
i,1 ∼ Gamma(a1, b1), if Pi,r = 1,

σ−2
i ∼ Gamma(a2, b2).

where βi = βi,1, ..., βi,i−1, βi,i+1, ..., βi,p.
The normal-gamma-gamma-gamma (NGGG) prior (2.4) retains the ridge-type reg-
ularization of the regression parameters βi,r of (2.3), through Gaussian priors on
these coefficients. The crucial difference between the two priors reveals itself in the
variances of the latter priors. For each regression equation i there are two possible
variances:

βi,r ∼


N(0, σ2

i τ
−2
i,0 ), if Pi,r = 0,

N(0, σ2
i τ

−2
i,1 ), if Pi,r = 1.

Hence, the regression coefficients corresponding to edges that are present according
to the prior information share the same variance, and similarly for the other set of
regression coefficients. Both variances can be both small and large, as they are them-
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selves modelled through Gamma priors, where small values lead to small regression
coefficients. If the prior information on the network were correct, then naturally a
small value of τ−2

i,0 would be desirable, smaller than the value of τ−2
i,1 . However, the

construction is flexible in that the two values, and even their priors, are not fixed
a-priori. In (2.4) the two parameters τ−2

i,0 and τ−2
i,1 are assumed to have gamma pri-

ors, with different hyperparameters (a0, b0) and (a1, b1). For further flexibility these
hyperparameters will be estimated from the data with an empirical Bayes method.
Then, if the absence of an edge in the prior network is supported by the current data,
the corresponding regression coefficient βi,r may stem from a prior with a small vari-
ance, and will tend to be small; a similar, but opposite, situation will occur for edges
that are present in the prior network. Indeed in Section 2.5 we shall see that the EB
approach will tend to find similar values of τ 2

i,0 and τ 2
i,1 when the prior knowledge is

non-informative, and rather different values otherwise.
The fact that model (2.4) contains the model (2.3) as a submodel, provides ro-

bustness against the misspecification of the prior information. Although the number
of latent variables in (2.4) is considerably higher (namely p− 1 additional variances,
one for each regression equation), the actual number of extra parameters is only two
(the pair (a1, b1)). This suggests that if the prior information doesn’t agree with the
data at hand, then the cost in terms of precision of the estimators is minor. It is
amply compensated by the gains if the prior information is correct. We corroborate
this in our simulation study in Section 2.5. In this connection it is also of interest
to note the flexible roles of τ 2

i,0 and τ 2
i,1, τ 2

i,0 (resp. τ 2
i,1) is freely estimated from the

data using the absent (resp. present) prior connections. We allow τ 2
i,0 < τ 2

i,1 which
accommodates (rare) situations in which a prior is complementary to the data.

2.3 Variational Bayes method and Gibbs sampling

In this section we develop a variational Bayes approach to approximate the (marginal)
posterior distributions of the parameters βi,r, τ

2
i,0, τ

2
i,1, σ

2
i in model (2.4). The algorithm

is similar, but still significantly different, from the algorithm developed in Leday et
al. (2017) for the model (2.3). In the following we can see that, due to (2.4), the
variational parameters have a form which renders the implementation of (2.4) much
more challenging. We also verify that these approximations are accurate by comparing
them to the results obtained using a Gibbs sampling strategy, which is much slower.
Computational efficiency is an important characteristic, especially for fitting large
networks.
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In this section we work on a single regression equation, i.e. for a fixed index i,
and given hyperparameters ak, bk, for k = 0, 1, 2. In the next section we combine the
regression equations to estimate the hyperparameters.

2.3.1 Variational Bayes inference.

In general a “variational approximation” to a distribution is simply the closest ele-
ment in a given target set Q of distributions, usually with “distance” measured by
Kullback-Leibler divergence. The setQ is chosen both for its computational tractabil-
ity and accuracy of approximation. Distributions Q with stochastically independent
marginals (i.e. product laws) are popular, and then the “accuracy” of approximation
is naturally restricted to the marginal distributions.

In our situation we wish to approximate the posterior distribution of the parameter
θ := (βi, τ

2
i,0, τ

2
i,1, σ

2
i ) given the prior (2.4) and the observation Yi given in (2.2), for a

fixed i. Here in (2.2) we take Xi (which depends on Yj for j ̸= i) as given, as in a
fixed-effects linear regression model. For p(·|Yi) the posterior density in this model,
the variational Bayes approximation is given as

q∗ = argmin
q∈Q

Eq log q(θ)
p(θ|Yi)

,

where the expectation is taken with respect to the density q ∈ Q. For p(Yi, θ) the
joint density of (Yi, θ), this is equivalent to finding the maximizer of

(2.5) Eq log p(Yi, θ)
q(θ) .

By the nonnegativity of the Kullback-Leibler divergence, the latter expression is a
lower bound on the marginal density p(Yi) =

∫
p(Yi, θ) dθ of the observation, and it is

usually referred to as “the lower bound”. Solving the variational problem is equivalent
to maximizing this lower bound (over Q).

We choose the collection Q equal to the set of distributions of θ for which the
components βi, τ 2

i,0, τ 2
i,1 and σ2

i are stochastically independent, i.e. q(θ) = ∏4
l=1 ql(θl),

where the marginal densities ql are arbitrary. Given such a factorization of q it can
be shown in general (see e.g. Ormerod and Wand (2010)), that the optimal marginal
densities q∗

l satisfy:

q∗
l (θl) ∝ exp(Eq−l

log p(Yi, θ)), where Eq−l
= Eq1 . . .Eql−1Eql+1 . . .Eq4 .
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It can be shown (see the Supplementary Material) that in model (2.4) for regression
equation i, with θ = (βi, τ

2
i,0, τ

2
i,1, σ

−2
i ), this identity can be written in the “conjugate”

closed-form

(2.6)

βi|Yi ∼ N
(
β∗

i ,Σ∗
i

)
,

τ 2
i,0|Yi ∼ Gamma

(
a∗

i,0, b
∗
i,0

)
,

τ 2
i,1|Yi ∼ Gamma

(
a∗

i,1, b
∗
i,1

)
,

σ−2
i |Yi ∼ Gamma

(
a∗

i,2, b
∗
i,2

)
,

where

Σ∗
i =

[
Eq∗

4
(σ−2

i )
(
XT

i Xi + DEq∗
2 ·q∗

3
(τ2

i )

)]−1
,

β∗
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XT

i Xi + DEq∗
2 ·q∗

3
(τ2

i )

]−1
XT

i Yi,

a∗
i,0 = a0 + 1

2s
0, b∗

i,0 = b0 + 1
2Eq∗

4
(σ−2

i )Eq∗
1
(β0

i
T
β0

i ),
a∗

i,1 = a1 + 1
2s

1, b∗
i,1 = b1 + 1

2Eq∗
4
(σ−2

i )Eq∗
1
(β1

i
T
β1

i ),
a∗

i,2 = a2 + 1
2n+ 1

2s, b∗
i,2 = b2 + 1

2Eq∗
−4

(
βT

i Dτ2
i
βi

)
+ 1

2Eq∗
1
(Yi −Xiβi)T (Yi −Xiβi),

where s0 and s1 are the number of 0’s and 1’s in the i-th row of the adjacency
matrix P, not counting the diagonal element; and β0

i = {βi,r : r ∈ I\i,Pi,r = 0}
and β1

i = {βi,r : r ∈ I\i,Pi,r = 1} are the coordinates of the vector of regression
parameters corresponding to these 0’s and 1’s. Furthermore

DEq∗
2 ·q∗

3
(τ2

i ) = diag
(

Eq∗
2
Eq∗

3
(τ 2

i,1), ...,Eq∗
2
Eq∗

3
(τ 2

i,s)
)
.

In these identities the optimal densities q∗
l appear both on the left and the right of

the equations and hence the identities describe the optimal densities only as a fixed
point. In practice the identities are iterated “until convergence” from suitable starting
values.

The iterations also depend on the hyperparameters ak, bk. In the next section
we describe how these parameters can be estimated from the data by incorporating
updates of these parameters in the iterations.
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2.3.2 Variational Bayes vs Gibbs sampling.

Under the true posterior distribution the coordinates βi, τ
2
i,0, τ

2
i,1, σ

2
i are not indepen-

dent. This raises the question how close the variational approximation is to the
true posterior distribution. As the latter is not available in closed form, we inves-
tigate this question in this section by comparing the variational approximation to
the distribution obtained by running a Gibbs sampling algorithm. As for the net-
work reconstruction we only use the marginal posterior distributions of the regression
parameters, we restrict ourselves to these marginal distributions.

The full conditional densities of BSEMed can be seen to take the explicit form:

βi|Yi, τ
2
i,0, τ

2
i,1, σ

−2
i ∼ N(β∗

i ,Σ∗
i ),

τ 2
i,0|Yi, βi, τ

2
i,1, σ

−2
i ∼ Gamma(a∗

i,0, b
∗
i,0),

τ 2
i,1|Yi, βi, τ

2
i,0, σ

−2
i ∼ Gamma(a∗

i,1, b
∗
i,1),

σ−2
i |Yi, βi, τ

2
i,0, τ

2
i,1 ∼ Gamma(a∗

i,2, b
∗
i,2),

where the parameters Σ∗
i , β∗

i , a∗
i,k and b∗

i,k satisfy the same system of equations
as in the variational algorithm, except that all expectations Eq∗ must be replaced
by the “current” values taken from the conditioning (see Supplementary Material).
Thus Gibbs sampling of the full posterior (βi, τ

2
i,0, τ

2
i,1, σ

−2
i )|Yi is easy to implement,

although slow.
We ran a simulation study with a single regression equation (say i = 1) with

n = p = 50, and compared the variational Bayes estimates of the marginal densities
with the corresponding Gibbs sampling-based estimates. Thus we sampled n = 50
independent replicates from a p = 50-dimensional normal distribution with mean
zero and (p × p)-precision matrix Ω, and formed the vector Y1 and matrix X1 as
indicated in (2.2). The precision matrix was chosen to be a band matrix with a
lower bandwidth bl equal to the upper bandwith bu. It is bl = bu = 4, thus a
total number of 9 band elements including the diagonal. For both the variational
approximation and the Gibbs sampler we used prior hyperparameters a2 = b2 =
0.001 and prior hyperparameters â0, b̂0, â1, b̂1 fixed to the values set by the global
empirical Bayes method described in Section 2.4. The Gibbs iterations were run
nIter = 100, 000 times, after which the first nBurnin = 1000 iterates were discarded.
Histograms based on subsampling every 10th value of the iterations are compared
with the variational Bayes approximation to the marginal posterior densities. The
correspondence between the two methods is remarkably good (see the Supplementary
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Material).
We conclude that the variational Bayes method gives reliable estimates of the pos-

terior marginal distributions. The computing times in seconds are 40 for BSEMed and
2542× 50 = 35h 18min 20sec for the Gibbs sampling (in R). The variational method
clearly outperforms the Gibbs sampling method, which would hardly be feasible even
for n = p = 50.

2.4 Global empirical Bayes for BSEMed

Model (2.4) possesses three pairs of hyperparameters (ak, bk), for k ∈ {0, 1, 2}. The
pair (a2, b2) controls the prior of the error variances σ2

i ; we fix this to numerical values
that render a vague prior, e.g. to (0.001, 0.001). In contrast, we let the values of the
parameters α = (a0, b0, a1, b1) be determined by the data. As these hyperparameters
are the same in every regression model i, this allows information to be borrowed across
the regression equations, leading to global shrinkage of the regression parameters.

A natural method to estimate the parameter α is to apply maximum likelihood
to the marginal likelihood of the observations in the Bayesian BSEMed model deter-
mined by (2.2) and (2.4). Here “marginal” means that all parameters except α are
integrated out of the likelihood according to their prior. The approach is similar to
the one in van de Wiel et al. (2012). As a first simplification of this procedure we
treat the vectors Y1, . . . , Yp as independent, thus leading to a likelihood of product
form. As the exact marginal likelihoods of the Yi are intractable, we make a second
simplication and replace these likelihoods by the lower bound (2.5) to the variational
Bayes criterion (see Supplementary Material).

Recall that in model (2.4) each regression parameter βi,r corresponds to one of
two normal priors, that is:

βi,r ∼


N(0, σ2

i τ
−2
i,0 ), if Pi,r = 0,

N(0, σ2
i τ

−2
i,1 ), if Pi,r = 1.

It is the regression coefficients corresponding to edges that are not present according
to the prior information share the same precision τ 2

i,0, and similarly the coefficients
corresponding to the edges that are present obtain the precision τ 2

i,1. Both precisions
are assumed to have gamma priors with different hyperparameters that are adapted
by the current data by the means of the global EB procedure described above. Then,
if the absence of an edge in the prior network is supported by the current data, the
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corresponding regression coefficient βi,r will have a small variance, and will tend to
be small; a similar, but opposite, situation will occur for edges that are present in the
prior network. In next Section we shall see that the EB approach will tend to find
similar values of τ 2

i,0 and τ 2
i,1 when the prior knowledge is non-informative, and rather

different values otherwise.
We developed a dedicated edge selection algorithm for BSEM model in Leday et

al. (2017). It is based on summarizing βi,r and βr,i by κ̄i,r,

(2.7) κ̄i,r = (κi,r + κr,i)/2 with κi,r =

∣∣∣∣Eqi∗

[
βi,r|yi

]∣∣∣∣√
Vqi∗

[
βi,r|yi

]

where Eqi∗

[
βi,r|yi

]
and Vqi∗

[
βi,r|yi

]
denote the approximate posterior expectation

and variance of βi,r obtained in Section 2.3. The κ̄i,r values are ranked and corre-
sponding edges are consecutively included according to a local false discovery rate
(lfdr) criterion, which explores the relationship between lfdr and Bayes factors. De-
tails are given in the Supplementary material.

2.5 Numerical investigation

To study the effect of including a prior network in the model framework we compare
BSEMed with BSEM. Hereto, we generated data Y 1, . . . , Y n according to (3.3), for
p = 100 and n ∈ {50, 200}, which reflect a high- and a low-dimensional situation,
respectively. We considered precision matrices Ωp, which imply band, cluster and hub
network topologies (Zhao et al., 2012) (See Supplementary Material).

For BSEMed we vary the quality of the prior network information: ‘perfect’ prior
information, i.e. the generating model; ‘75%’ true edges; ‘50%’ true edges; ‘0%’ true
edges. To generate 75% (or 50%, or 0%) true information, we swapped 25% (or 50%,
or 100%) of the true edges with the same number of absent edges, i.e. in the adjacency
matrix P that describes the prior network we swapped these percentages of 1s with
0s. It may be noted that in the last case the prior network is completely wrong for
the true edges, but not for the absent edges due to over-sampling of the 0’s, which
seems realistic. Each simulation is repeated 50 times. We display the performances of
BSEM and BSEMed by ROC curves, as based on ranking κ̄i,r, which summarizes βi,r

and βr,i (2.7) (see Figure 2.1). We observe from Figure 2.1 that BSEMed performs
better than BSEM when the prior information agrees the data and as good as BSEM
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when the prior doesn’t. The latter reflects the adaptive nature of the EB procedure.

We also consider the EB estimates. We summarize the precisions by their prior
means, as estimated by the EB procedure: E(τ 2

i,k) = âk/b̂k, for k ∈ {0, 1}. When there
is some agreement of the prior knowledge with the data, we expect â0/b̂0 > â1/b̂1.
In the case with 0% true edges, the prior is partly wrong: none of the truly present
edges are in the prior network while some of the truly absent edges are part of the
prior network. Hence, we expect the EB procedure to produce â1/b̂1 that are slightly
larger than â0/b̂0. As discussed in Section 2.2 for the complementary case, reversal
of the roles of the two priors can still improve performance of BSEMed, or at least
not deteriorate it.

The EB estimates of the prior means are presented in Table 2.1 for the case
corresponding to Figure 2.1(a): band structure, n = 50.

â0/b̂0 â1/b̂1 ratio
true 366.10 8.08 45.30

0.75% true edges 272.97 14,36 19.00
0.50% true edges 216.10 27.56 7.84

0% true edges 142.59 152.95 1.07

Table 2.1: EB estimates of the prior means of precisions τ 2
i,0 and τ 2

i,1 in case of the
band structure and n = 50 for various qualities of prior information

Table 2.1 displays the prior means of precision, as estimated by EB, for BSEMed
models with various qualities of prior information. It is clear that the better the
quality of the prior information is, the larger the ratio of mean prior precisions is.
Tables for other simulation settings are available in the Supplementary material.
These generally show the same pattern.

Figure 2.2 displays BSEM and BSEMed estimates of βi,r (2.3) and (2.4) for the
band structure when n = 50 and p = 100 using the R package rags2ridges (Peeters and
van Wieringen, 2014; van Wieringen and Peeters, 2014). Figures 2.1 & 2.2 show that
BSEMed estimates become more accurate when prior knowledge quality increases and
are as good as BSEM estimates when using 0% true edges information. It is also easy
to see (Figure 2.2) a convergence of the BSEMed estimates to the true graph when
the prior knowledge quality increases.
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Figure 2.1: ROC curves for BSEM (dashed) and BSEMed using perfect prior infor-
mation (blue), BSEMed using 75% true edges present in the prior (brown), BSEMed
using 50% true edges present in the prior (black) and BSEMed using 0% true edges
present in the prior (red). Here, p = 100 and n ∈ {50, 200}.
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(a) True graph

 

 

(b) BSEMed: perfect prior

 

 

(c) BSEMed: 50 % true Info

 

 

(d) BSEM

Figure 2.2: Visualization of BSEMed ’κ̄i,r’ using perfect prior (b), BSEMed ’κ̄i,r’
using 50% true edges information (c), BSEM ’κ̄i,r’ (d) and the true graph (a) in case
n = 50 and p = 100.
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2.6 Illustration

We turn to real data in this section. We use gene expression data from the Gene
Expression Omnibus (GEO) to illustrate and evaluate methods for reconstructing
gene networks. We consider two types of cancer and cancer-related pathways. First,
we focus on the Apoptosis pathway with p = 84 genes in a lung data set (Landi et
al., 2008), consisting of nlung

1 = 49 observations from normal tissue and nlung
2 = 58

observations from tumor tissue, so nlung = 107 in total. Secondly, we considered the
p53 pathway in a pancreas data set (Badea et al., 2008) with p = 68 genes, consisting
of npancreas

1 = 39 observations from normal tissue and npancreas
2 = 39 observations from

tumor tissue, hence npancreas = 78 in total. Note that the data were scaled per gene
prior to the computations.

BSEMed, BSEM, Graphical Lasso (GLλ) (Friedman et al., 2008), SEM with the
Lasso penalty (SEML) (Meinshausen and Bühlmann, 2006) and GeneNet (Schäfer et
al., 2006) were applied on the tumor data parts of the data sets. For BSEMed, the
corresponding data parts from normal tissue were used as prior knowledge by fitting
genes networks on the normal data using BSEM. The idea is that, while tumors
and normal tissue may differ quite strongly in terms of mean gene expression, the
gene-gene interaction network may be relatively more stable.

We first illustrate the results from BSEM and BSEMed. Before considering the
edge selection, we compare the total log-marginal likehood, as estimated by the vari-
ational lower bound, across the regression models for BSEM (2.3) and BSEMed (2.4)
as a measure for goodness-of-fit. For the lung data set (resp. pancreas data set) we
obtained −7082.93 for BSEM and −7071.99 for BSEMed (resp. −3807.58 for BSEM
and −3798.91 for BSEMed). These improvements are clearly larger than what may
be expected under random prior information of the same size, as shown in Supple-
mentary Material in Section 7.

Figure 2.3 (Figure 2.4) displays the estimated gene-gene network interaction in
lung cancer (pancreas cancer) and their overlaps using the described selection proce-
dure with estimated lfdr ≤ 0.1. Considerable overlap (red edges), but also notable
differences can be seen.

Table 2.2 displays the prior means of precision, as estimated by EB. The prior
network is clearly of use: the mean prior precision for regression parameters corre-
sponding to the edges absent in the prior network is relatively large, which effectuates
stronger shrinkage towards zero than for parameters corresponding to edges present
in the prior network.
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(a) BSEM network estimate

1 2 3 4 5
6

7
8

9
10

11
12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32
33

34
35

36
37

38
394041424344454647

48
49

50
51

52
53

54
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72
73

74
75

76
77

78
79

80
81 82 83 84

(b) BSEMed network estimate

Figure 2.3: BSEM vs BSEMed network estimates in lung cancer. Red edges are the
overlap edges.
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(a) BSEM network estimate
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(b) BSEMed network estimate

Figure 2.4: BSEM vs BSEMed network estimates in pancreas cancer. Red edges are
the overlap edges.

â0/b̂0 â1/b̂1 ratio
Lung 27.32 1.71 15.97

Pancreas 20.03 1.21 12.97

Table 2.2: EB estimates of precisions τ 2
i,0 and τ 2

i,1 of prior distributions in lung data
(resp. pancreas data) set.
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In the following, we argue that BSEMed network estimates may be more reliable in
this setting than those of BSEM, Graphical Lasso (GLλ) (Friedman et al., 2008), SEM
with the Lasso penalty (SEML) (Meinshausen and Bühlmann, 2006) and GeneNet
(Schäfer et al., 2006) (see the Supplementary Material for methodological details).
For that, we assess performance of all methods by studying reproducibility of edges.
We randomly split the tumor data part of the lung data set (pancreas data set)
into two equal and independent parts: nlung

2,1 and nlung
2,2 (resp. npancreas

2,1 and npancreas
2,2 ).

BSEM, BSEMed, GLλ, GeneNet and SEML were applied on each subset of the tumor
data. We repeated the procedure 50 times. We report in Table 2.3 (Table 2.4) the
average number of overlapping edges between the two subsets for each method when
the total number of edges selected by each method on each subset is set to 50, 100
and 200.

# edges BSEM
overlap

GeneNet
overlap

SEML

overlap
GLλ

overlap
BSEMed
overlap

# prior edges
in BSEMed

50 4.56 1.88 1.32 3.42 29.58 13.4
100 10.68 5.7 5.64 7.86 37.88 22.14
200 24.16 17.2 16.46 18.14 51.54 33.7

Table 2.3
Lung data, reproducibility study: Average number of overlapping edges among the
top 50 (100, 200) strongest ones in two equally-sized splits of the tumor data for

BSEMed, BSEM, GLλ, GeneNet and SEML.

We observe from Tables 2.3 & 2.4 that the results from the BSEMed networks are
much more reproducible than that of BSEM, which is on its turn more reproducible
than the other ones. Clearly, the improvement can partly be explained by overlap-
ping edges that were also part of the prior network. However, it is clear from Figure
2.5 that the BSEMed network estimate in tumor tissue is not just a ‘finger print’ of

# edges BSEM
overlap

GeneNet
overlap

SEML

overlap
GLλ

overlap
BSEMed
overlap

# prior edges
in BSEMed

50 7.42 3.32 2.8 4.52 27.82 11.92
100 17.46 10.34 9.08 11.4 57.18 29.22
200 44.14 30.94 28.54 33.66 81.66 54.1

Table 2.4
Pancreas data, reproducibility study: Average number of overlapping edges among

the top 50 (100, 200) strongest ones in two equally-sized splits of the tumor data for
BSEMed, BSEM, GLλ, GeneNet and SEML.
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the prior network (normal tissue network): BSEMed can even reveal edges that are
neither in prior network nor in BSEM network estimate.

BSEM BSEMed 

Priors Edges 

2 

3.2 

0.7 20.14 

12.54 
4.78 

(a) Lung data

BSEM BSEMed 

Priors Edges 

4.24 

2 

0.24 24.98 

25.96 
10.98 

(b) Pancreas data

Figure 2.5: Venn diagrams displaying the mean overlap of reproduced top-ranking
edges, corresponding to the second row of Table 2.3 (Figure 2.5.a) and Table 2.4
(Figure 2.5.b).

Figure 2.6 (resp. Figure 2.7) displays the network in normal tissue against the
network in tumor tissue in the lung data (resp. in the pancreas data). The purpose
of displaying Figure 2.6 and 2.7 is to emphasize the dysregulation of gene-gene inter-
actions in cancer (Vogelstein and Kinzler, 2004; van Wieringen and van der Vaart,
2015) which may be caused by the heterogeneity of cancer (Nowell, 1976). Hetero-
geneity of tumor samples makes it more difficult to pinpoint reliable links, hence our
selection algorithm which is based on local fdr ≤ 0.1 is likely to select fewer links in
cancer samples.

2.7 Discussion

We have presented a new method for incorporating prior information in undirected
network reconstrustion based on Bayesian SEM. Our approach allows the use of two
central Gaussian distributions per regression equation for coefficients βi,r’s of our
SEMs, where the prior information determines which of the two applies to a specific
βi,r. Empirical Bayes estimation of the parameters of the two hyper priors of the
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(a) Network estimate in Normal tissue
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(b) BSEMed network estimate in tumor tis-
sue

Figure 2.6: Network in a normal cell vs BSEMed network in lung cancer. Red edges
are the overlap edges between prior and posterior networks.
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(a) Network estimate in Normal tissue
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(b) BSEMed network estimate in tumor tis-
sue

Figure 2.7: Network in a normal cell vs BSEMed network in pancreas cancer. Red
edges are the overlap edges between prior and posterior networks.

precisions introduces shrinkage and accommodates the situation where there would
not be an agreement of the prior information with the data at hand. We showed in
simulation with different graph structures that BSEMed outperforms BSEM when
the used prior knowledge (partially) agrees with the data and as good as when not.
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In addition, for two real data sets we showed better reproducibility of top ranking
edges with respect to other methods .

In some cases, it may be desirable to give more weight only to some important
edges of the prior graph rather than the whole graph. In gene regulatory networks
reconstruction particularly, this may be edges that are known to characterise the
disease biology. Assuming one is able to express such prior information as prior prob-
abilities on edges, our software is able to incorporate such information via the Bayes
factors used in the post-hoc selection procedure (Leday et al., 2017). Likewise, a user
can also increase the weight of the entire prior graph uniformly. (See Supplementary
Material for details).

Instead of assigning Gaussian distributions to the coefficients, other (e.g. sparse)
priors can be used. The complement property (Section 2.2 ) is preserved whenever the
same functional forms of the priors are used for both classes. However, a combination
of e.g. a Gaussian and a sparse prior ruins this property, which renders such a
combination less attractive.

Future research also focuses on extending our method to situations with more
than two classes. For example, when considering integrative networks for two sets of
molecular markers or two (related) pathways, the three class setting is relevant: two
classes represent the connections within the two sets and a third one between the two
sets. Finally, multiple sources of external data may be available for incorporation in
BSEMed. This requires to model the parameter(s) of the priors in terms of contibu-
tions of those external sources, and weigh those sources in a data-driven manner, as
it is unlikely that the sources are equally informative.





Chapter 3

Incorporating prior information
and borrowing information in
high-dimensional sparse regression
using the horseshoe and variational
Bayes

We introduce a sparse high-dimensional regression approach that can incorporate prior
information on the regression parameters and can borrow information across a set of
similar datasets. Prior information may for instance come from previous studies or
genomic databases, and information borrowed across a set of genes or genomic net-
works. The approach is based on prior modelling of the regression parameters using
the horseshoe prior, with a prior on the sparsity index that depends on external in-
formation. Multiple datasets are integrated by applying an empirical Bayes strategy
on hyperparameters. For computational efficiency we approximate the posterior dis-
tribution using a variational Bayes method. The proposed framework is useful for
analysing large-scale data sets with complex dependence structures. We illustrate this
by applications to the reconstruction of gene regulatory networks and to eQTL map-
ping.

This chapter is submitted as: Gino B. Kpogbezan, Mark A. van de Wiel, Wessel N. van Wierin-

gen, and Aad W. van der Vaart. Incorporating prior information and borrowing information in

high-dimensional sparse regression using the horseshoe and variational Bayes. The research leading

to these results has received funding from the European Research Council under ERC Grant Agree-

ment 320637.



62 pInc package

3.1 Introduction

The analysis of high-dimensional data is important in many scientific areas, and of-
ten poses the challenge of the availability of a relatively small number of cases versus
a large number of unknown parameters. It has been documented both practically
and theoretically that under the assumption of sparsity of the underlying model,
larger effects or dependencies can be inferred even in the very high-dimensional case
[53, 57]. Still in many cases conclusions can be much improved by incorporating prior
knowledge in the analysis, or by “borrowing information” by simultaneously analysing
multiple related datasets. In this paper we introduce a methodology that achieves
both, and that is at the same time scalable to large datasets in its computational
complexity. It is based on an empirical Bayesian setup, where external information is
incorporated through the prior, and information is borrowed across similar analyses
by empirical Bayes estimation of hyperparameters. Sparsity is induced through utili-
sation of the horseshoe prior, and computational efficiency through novel variational
Bayes approximations to the posterior distribution. We illustrate the methodology by
two applications in genomics: network reconstruction and eQTL mapping, but the
proposed framework should be useful also for analysing other large-scale data sets
with complex dependence structures.

Our working model is a collection of linear regression models, indexed by i =
1, . . . , p, corresponding to p characteristics (e.g. genes). For each characteristic we
have measurements on n individuals, labelled j = 1, . . . , n, consisting of a univariate
response Y j

i and a vector Xj
i of si explanatory variables. We collect the n responses

on characteristic i in the n-vector Yi = (Y 1
i , . . . , Y

n
i )T and similarly collect the ex-

planatory variables in the n×si-matrix Xi, having rows Xj
i , and adopt the regression

models

(3.1) Yi = Xiβi + ϵi, i = 1, . . . , p.

Here the regression coefficients βi form a vector in Rsi , and the error vectors ϵi’s are
unobserved. The dimension si of the regression parameter βi may be different for
different characteristics i.

Our full set of observations consists of the pairs (Y1, X1), . . . , (Yp, Xp), whose
stochastic dependence will not be used and hence need not be modelled. In addi-
tion to these regression pairs we assume available prior information on the vectors
βi in the form of a 2-dimensional array P , whose ith row presents a grouping of the
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coordinates of βi into G groups, indexed by g = 1, . . . , G: the value Pi,t is the index
of the group to which the tth coordinate of βi belongs. (Because the βi may have
different lengths, P is a possibly “ragged array” and not a matrix.) The information
in P is considered to be soft in that coordinates of βi that are assigned to the same
group are thought to be similar in size, but not necessarily equal. The information
may for instance come from a previous analysis of similar data, or be taken from a
genomic database.

We wish to analyse this data, satisfying four aims:
• Borrow information across the characteristics i = 1, . . . , p by linking the analy-

ses of the models (3.1) for different i.
• Incorporate the prior information P in a soft manner so that it informs the

analysis if correct, but can be overruled if completely incompatible with the
data.

• Allow for sparsity of the explanatory models, i.e. focus the estimation towards
parameter vectors βi with only a small number of significant coefficients, en-
abling analysis for small n relative to si and/or p.

• Achieve computational efficiency, enabling analysis with large si and/or p.
To this purpose we model the parameters βi and the scales σi of the error vectors
through a prior, and next perform empirical Bayesian inference. This analysis is in-
formed by the model (3.1) and the following hierarchy of a generating model (referred
to as pInc later on) for the errors and a prior model for (βi, σi):

(3.2)

ϵi|σi ∼ N(0n, σ
2
i In),

βi,t|σi, τi,Pi,t
, λi,t ∼ N

(
0, σ2

i τ
2
i,Pi,t

λ2
i,t

)
, t = 1, . . . , si,

σ−2
i ∼ Γ(c, d),
λi,t ∼ C+(0, 1), t = 1, . . . , si,

τ−2
i,g ∼ Γ(ag, bg), g = 1, . . . , G.

Here N is a (multivariate) normal distribution, In is the (n × n)-identity matrix,
C+(0, 1) denotes the standard Cauchy distribution restricted to the positive real axis,
and Γ(u, v) denotes the gamma distribution with shape and rate parameters u and
v. As usual the hierarchy should be read from bottom to top, where dependencies
of distributions on variables at lower levels are indicated by conditioning, and ab-
sence of these variables in the conditioning should be understood as the assumption
of conditional independence on variables at lower levels of the hierarchy. The specifi-
cation (3.2) gives the model for the ith characteristic. The models for different i are
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linked by assuming the same values of the hyperparameters a1, b1, . . . , aG, bG, c, d for
all i = 1, . . . , p. These hyperparameters will be estimated from the combined data
(Y1, X1), . . . , (Yp, Xp) by the empirical Bayes method, thus borrowing strength across
responses and achieving the first of the four aims, as listed previously.

We also consider a variant of the model (later referred to as pInc2 ) in which the
last line of the hierarchy is dropped and the parameters τi,g are pooled into a single
parameter τi,g = τg per group (i = 1, . . . , si). The parameters τg are then estimated
by empirical Bayes on the data pooled over i. In some of the simulations this model
outperformed (3.2).

The ith row of P gives a grouping of the si coordinates βi,t of βi into G groups.
The scheme (3.2) attaches a latent variable τi,g to each group, for g = 1, . . . , G, whose
squares possess inverse gamma distributions, independently across groups. These
latent variables enter the prior distributions of the coordinates of βi, which marginally
given τi,g are scale mixtures of the normal distribution. Choosing the scale parameters
λi,t from the half-Cauchy distribution gives the so-called horseshoe prior [19, 20]. This
may be viewed as a continuous alternative to the traditional spike-and-slab prior,
which is a mixture of a Dirac measure at zero and a widely spread second component,
and is widely used as a prior that induces sparsity.

The horseshoe density with scale τ is the mixture of the univariate normal dis-
tributions N(0, τλ) relative to the parameter λ ∼ C+(0, 1). It combines an infinite
peak at zero with heavy tails, and is able to either shrink parameters to near zero
or estimate them unbiasedly, much as an improper flat prior. The relative weights of
the two effects are moderated by the value of τ . In the model (3.2) the coordinates
of βi corresponding to the same group g receive a common parameter τi,g, and are
thus either jointly shrunk to zero or left free, depending on the value of τi,g. This
allows to achieve the aims two and three as listed previously. Theoretical work in
[20, 31, 136–138] (in a simpler model) suggests an interpretation of τi,g as approx-
imately the fraction of nonzero coordinates in the gth group, and corroborates the
interpretation of τi,g as a sparsity parameter. In model (3.2) this number is implicitly
set by the data, based on the inverse gamma prior on τ 2

i,g. Requiring the hyperparam-
eters of these gamma distributions to be the same across the characteristics i induces
the borrowing of information between the characteristics i, in particular with respect
to the sparsity of the vectors βi.

Model (3.2) chooses the squares of the scales σi of the error variables from an
inverse gamma distribution, which is the usual conjugate prior. The priors on the
regression parameters βi are also scaled by σi, thus giving them a priori the same
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order of magnitude. This seems generally preferable.
The Bayesian model described by (3.1) and (3.2) leads to a posterior distribution of

(βi, σi) in the usual way, but this depends on the hyperparameters a1, b1, . . . , aG, bG, c, d.
In Section 3.4.2 we introduce a method to estimate these hyperparameters from the
full data (Y1, X1), . . . , (Yp, Xp), and next base further inference on the posterior dis-
tributions of the parameters (βi, σi) evaluated at the plugged-in estimates of the
hyperparameters. Because the prior on the coefficients βi is continuous, the poste-
rior distribution does not provide automatic model (or variable) selection, which is
a disadvantage of the horseshoe prior relative to the spike-and-slab priors. To over-
come this, we develop a way of testing for nonzero regression coefficients based on
the marginal posterior distributions of the βi,t in Section 3.4.3.

The horseshoe prior has gained popularity, mainly due to its computational ad-
vantage over spike-and-slab priors. However, in our high-dimensional setting the
approximation of the posterior distribution by an MCMC scheme turns out to be still
a computational bottleneck. The algorithm studied by [9], which can be applied in
the special case of a single group (G = 1) has complexity O(n2si) for a single regres-
sion (i.e. p = 1) per MCMC iteration. We show in Section 3.5.2 that this is too slow
to be feasible in our setting. For this reason we develop in Section 3.4.1 a variational
Bayesian (VB) scheme to approximate the posterior distribution, in order to satisfy
the fourth aim in our list.

The variational Bayesian method consists of approximating the posterior distri-
bution by a distribution of simpler form, which is chosen as a compromise between
computational tractability and accuracy of approximation. The quality of the approx-
imation is typically measured by the Kullback-Leibler divergence [141]. Early applica-
tions involved standard distributions such as Gaussian, Dirichlet, Laplace and extreme
value models [5–7, 96, 142]. In the present paper we use nonparametric approxima-
tions, restricted only by the assumption that the various parameters are (block) inde-
pendent. (This may be referred to as mean-field variational Bayes, although this term
appears to be used more often for independence of all univariate marginals, whereas
we use block independence.) In this case the variational posterior approximation can
be calculated by iteratively updating the marginal distributions [11, 104]. Variational
Bayes typically produces accurate approximations to posterior means, but have been
observed to underestimate posterior spread [12, 18, 48, 94, 131, 143, 145, 151]. We
find that in our setting the approximations agree reasonably well to MCMC approx-
imations of the marginals, although the latter take much longer to compute.

The model (3.1)-(3.2) may be useful for data integration in a variety of scientific
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setups, and for data sources as diverse as gene expression, copy number variations,
single nucleotide polymorphisms, functional magnetic resonance imaging, or social
media data. The external information incorporated in the array P may reflect data
of a different type, and/or of a different stage of research, and the simultaneous
analysis of different characteristics allows further data integration. For example, in
genetic association studies data from multiple stages can help the identification of true
associations [54, 58, 116]. In this paper we consider applications to gene regulation
networks and to eQLT mapping, which we describe in the next two sections, before
developing the general algorithms for models (3.1) and (3.2).

The remainder of the paper is organised as follows. In Section 3.4.1 we develop
a variational Bayes approach to approximate the posterior distributions of the re-
gression parameters for given hyperparameters, and show this to be comparable in
accuracy to Gibbs sampling in Section 3.5.2, although computationally much more ef-
ficient. In Section 3.4.2 we develop the Empirical Bayes (EB) approach for estimating
the hyperparameters, and in Section 3.4.3 we present a threshold based-procedure for
selecting nonzero regression coefficients based on the marginal posterior distributions
of the βi,t. We show in Section 3.5 by means of model-based simulations that the pro-
posed approach performs better, in terms of both average ℓ1-error and average ROC
curves, than its ridge counterpart in the framework of network reconstruction. The
potential of our approach is shown on real data in Section 3.6 both in gene regulatory
network reconstruction and in eQTL mapping. Section 3.7 concludes the paper.

3.2 Network reconstruction

The identification of gene regulatory networks is crucial for understanding gene func-
tion, and hence important for both treatment and prediction of diseases. Prior knowl-
edge on a given network is often available in the literature, from repositories or pilot
studies, and combining this with the data at hand can significantly improve the ac-
curacy of reconstruction [72].

A Gaussian graphical model readily gives rise to a special case of the model (3.1)-
(3.2). In such a model the data concerning p genes measured in a single individual
(e.g. tissue) is assumed to form a multivariate Gaussian p-vector, and the network of
interest is the corresponding conditional independence graph [152]. The nodes of this
graph are the genes and correspond to the p coordinates of the Gaussian vector. Two
nodes/genes are connected by an edge in the graph if the corresponding coordinates
are not conditionally independent given the other coordinates. It is well known that
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this is equivalent to the corresponding element in the precision matrix of the Gaussian
vector being nonzero [78].

Assume that we observe a gene vector for n individuals, giving rise to n indepen-
dent copies Y 1, . . . , Y n of p-vectors satisfying

(3.3) Y j ∼iid N(0p,Ω−1
p ), j = 1, . . . , n.

Here Ωp is the precision matrix ; its inverse is the covariance matrix of the vector
Y j and is assumed to be positive-definite. The Gaussian graphical model consists of
a graph with nodes 1, 2, . . . , p and with edges (i, j) given by the nonzero elements
(Ωp)i,j of the precision matrix. Hence to reconstruct the conditional independence
graph it suffices to determine the non-zero elements of the latter matrix.

We relate this to the notation used in the introduction by writing Y j = (Y j
1 , . . . , Y

j
p )T ,

and next collecting the observations Y j
i per gene i, giving the n-vector Yi = (Y 1

i , . . . , Y
n

i )T ,
for i = 1, . . . , p. We next define

Xi = [Y1, Y2, ..., Yi−1, Yi+1, ..., Yp]

as the (n×(p−1))-matrix with columns Yt, for t ̸= i. It is well known that the residual
when regressing a single coordinate Y j

i of a multivariate Gaussian vector linearly
on the other coordinates Y j

t , for t ̸= i, is Gaussian. Furthermore, the regression
coefficients βi = (βi,t : t ̸= i) can be expressed in the precision matrix of Y j as

βi,t = − (Ωp)it

(Ωp)ii .

This shows that (3.1) holds with si = p − 1 and a multivariate normal error vector
ϵi with variance σ2

i equal to the residual variance. Moreover, the (non)zero entries in
the ith row vector of the precision matrix Ωp correspond to the (non)zero coordinates
of βi. Consequently, the problem of identifying the Gaussian graphical model can be
cast as a variable selection problem in the p regression models (3.1).

This approach of recasting the estimation of the (support of the) precision matrix
as a collection of regression problems was introduced by [97], who employed Lasso
regression [43, 130] to estimate the parameters. Other variable selection methods can
be employed as well [73]. A Bayesian approach with Gaussian, ridge-type priors on
the regression coefficients was developed in [80], and extended in [72] to incorporate
prior knowledge on the conditional independence graph. A disadvantage of the Gaus-
sian priors employed in these papers is that they are not able to selectively shrink
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parameters, but shrink them jointly towards zero (although prior information used in
[72] alleviates this by making this dependent on prior group). This is similar to the
shrinkage effect of the ridge penalty [139] relative to the Lasso, which can shrink some
of the precision matrix elements to exactly zero, and hence possesses intrinsic model
selection properties. The novelty of the present paper is to introduce the horseshoe
prior in order to better model the sparsity of the network.

We assume that the prior knowledge on the to-be-reconstructed network is avail-
able as a “prior network”, which specifies which edges (conditional independencies)
are likely present or absent. This information can be coded in an adjacency matrix
P, whose entries take the values 0 or 1 corresponding to the absence and presence of
an edge: Pi,t = 1 if variable i is connected with variable t and Pi,t = 0 otherwise.
Thus in this example we only have two groups, i.e. G = 2.

The advantage of reducing the network model to structural equation models of the
type (3.1) is computational efficiency. An alternative would be to model the precision
matrix directly through a prior. This would typically consist of a prior on the graph
structure, followed by a specification of the numerical values of the precision matrix
given its set of nonzero coefficients. The space of graphs is typically restricted to e.g.
decomposable graphs, forests, or trees [33, 50, 68]. The posterior distribution of the
graph structure can then be used as the basis of inference on the network topology.
However, except in very small problems, the computational burden is prohibitive.

3.3 eQTL mapping

In eQTL mapping the expression of a gene is taken as a quantitative trait, and it
is desired to identify the genomic loci that influence it, much as in a classical study
of quantitative trait loci (QTL) of a general phenotype. Typically one measures the
expression of many genes simultaneously and tries to map these to their QTL. Since
gene expression levels are related to disease susceptibility, elucidating these eQLT
(expression QTL) may give important insights into the genetic underpinnings of com-
plex traits. We shall identify genetic loci here with single nucleotide polymorphisms
(SNPs), but other biomarkers can be substituted.

Early work by [26, 128, 165] considered every gene separately for association. How-
ever, many genes are believed to be co-regulated and to share a common genetic basis
[113, 162]. In addition, SNPs with pleiotropic effects may be more easily identified
by considering multiple genes together. Therefore following [71, 83, 125], we focus on
a joint analysis, borrowing information across genes. We regress the expression of a
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given gene on SNPs both within and around the gene, where our model is informed
about the SNP location. The sparse parametrization offered by our model is suitable,
as most genetic variants are thought to have a negligible (if any) differential effect on
expression.

Suppose we collect the (standardized) expression levels of p genes over n indi-
viduals, and identify for each gene i a collection of si SNPs to be investigated for
association. For instance, the latter collections might contain all SNPs in a relatively
large window around the gene, some of which falling inside the gene and some outside.
For each individual and SNP we ascertain the number of minor alleles (0, 1 or 2), and
change all 2’s to 1’s. Because there are not many 2’s in the data this does not reduce
the information while it simplifies the modelling. We use these numbers to form the
n × si-matrix Xi. Let Yi be the n-vector of expression levels for gene i, and assume
the linear model (3.1).

It is believed that SNPs that occur within a gene may play a more direct role in
the gene’s function than SNPs at other genomic locations [84, 123]. Therefore, it is
natural to treat SNPs falling within a given gene differently than the ones not falling
within that gene. This gives rise to two groups of SNPs for a given gene, which we
can encode as prior knowledge in a 2-dimensional array P with values 0 and 1.

Thus we have another instance of model (3.1)-(3.2) with two groups, i.e. G = 2.

3.4 Posterior inference

In this section we discuss statistical inference for the model (3.1)-(3.2). This consists
of three steps: the approximation to the posterior distribution of the model for given
hyperparameters (and given i), the estimation of the hyperparameters (across i), and
finally a method of variable selection.

3.4.1 Variational Bayes approximation

The variational Bayes approximation to a distribution is simply the closest element in
a given target set Q of distributions, usually with “distance” measured by Kullback-
Leibler divergence [141]. In our situation we wish to approximate the posterior distri-
bution of the parameter θi := (βi, λi,1, · · · , λi,si

, τi,1, · · · , τi,G, σi) given Yi in the model
(3.1)-(3.2), for a fixed i. Here we take the regression matrix Xi as given.

Thus the variational Bayes approximation is given as the density q ∈ Q that
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minimizes over Q,

KL
(
q||p(·|Yi)

)
= Eq log q(θi)

p(θi|Yi)
= log p(Yi)− Eq log p(Yi, θi)

q(θi)
,

where θi 7→ p(θi|Yi) is the posterior density, the expectation is taken with respect
to θi having the density q ∈ Q, and (y, θi) 7→ p(y, θi) = p(y| θi) πi(θi) and y 7→
p(y) =

∫
p(y, θi) dθi are the joint density of (Yi, θi) and the marginal density of Yi,

respectively, in the model (3.1)-(3.2), with prior density πi on θi. As the marginal
density is free of q, minimization of this expression is equivalent to maximization of
the second term

(3.4) Eq log p(Yi, θi)
q(θi)

.

By the non-negativity of the Kullback-Leibler divergence, this expression is a lower
bound on the logarithm of the marginal density p(Yi) of the observation. For this
reason it is usually referred to as “the lower bound”, or “ELBO”, and solving the
variational problem is equivalent to maximizing this lower bound.

The set Q is chosen as a compromise between computational tractability and
accuracy of approximation. Restricting Q to distributions for which all marginals of
θi are independent is known as mean-field variational Bayes, or also as the “näıve
factorization” [141]. Here we shall use the larger set of distributions under which
the blocks of β, λ, τ and σ-parameters are independent. Thus we optimize over
probability densities q of the form

q(θi) = qβ(βi) · qλ(λi,1, · · · , λi,si
) · qτ (τi,1, · · · , τi,G) · qσ(σi).

There is no explicit solution to this optimization problem. However, if all marginal
factors but a single one in the factorization are fixed, then the latter factor can be
characterised easily, using the non-negativity of the Kullback-Leibler divergence. This
leads to an iterative algorithm, in which the factors are updated in turn.

In the Appendix Section we show that in our case the iterations take the form:

(3.5)

βi|Yi ∼ N
(
β∗

i ,Σ∗
i

)
,

λi,t|Yi ∼ Λλit
, t = 1, · · · , si,

τ−2
i,g |Yi ∼ Γ(a∗

i,g, b
∗
i,g), g = 1, · · · , G,

σ−2
i |Yi ∼ Γ

(
c∗

i , d
∗
i

)
,
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where Λl is the distribution with probability density function proportional to

λ 7→ 1
λ(1 + λ2)e

−lλ−2
, (λ > 0),

and the parameters on the right hand side satisfy

Σ∗
i =

[
Eq∗

σ
(σ−2

i )
(
XT

i Xi + D−1
Eq∗

τi
·q∗

λi

)]−1
,

β∗
i =

(
XT

i Xi + D−1
Eq∗

τi
·q∗

λi

)−1
XT

i Yi,

a∗
i,g = ag + 0.5 · s

g
i

2 ,

b∗
i,g = bg + 0.5 · Eq∗

σ
(σ−2

i )Eq∗
−τg

(
βg

i
T D−1

λi
βg

i

)
, g = 1, · · · , G,

c∗
i = c+ n

2 + si

2 ,

d∗
i = d+ 0.5 · Eq∗

−σ

(
βT

i D−1
τiλi

βi

)
+ 0.5 · Eq∗

β
(Yi −Xiβi)T (Yi −Xiβi),

Dλi
= diag(λ2

i,1, . . . , λ
2
i,si

),
Dτiλi

= diag(τ 2
i,Pi,1

λ2
i,1, . . . , τ

2
i,Pi,si

λ2
i,si

),

D−1
Eq∗

τi
·q∗

λi

= diag
(

Eq∗
τi

(τ−2
i,Pi,1

)Eq∗
λi1

(λ−2
i,1 ), . . . ,Eq∗

τi
(τ−2

i,Pi,si
)Eq∗

λisi

(λ−2
i,si

)
)
,

lit = 1
2Eq∗

σ
(σ−2

i )Eq∗
τ
(τ−2

i,Pi,t
)Eq∗

β
(β2

i,t).

In these expressions, sg
i is the number of g’s in the i-th row of the 2-dimensional array

P encoding the G groups, g = 1, · · · , G; and βg
i = {δ{Pi,r=g}βi,r : r ∈ {1, · · · , si}} is

the vector obtained from βi by replacing the coordinates not corresponding to group
g by 0.

The expected value of zit := (λit)−2, which appears in the expression of β∗
i , Σ∗

i ,
b∗

i,g and d∗
i above, is given in the following lemma.

Lemma 1. The norming constant for Λl is 2 exp(−l)/E1(l) and the expectation of
zit = (λit)−2 if λit ∼ Λλit

is given by

E(zit) = 1
lit · exp(lit) · E1(lit)

− 1,

where E1 is the exponential integral function of order 1, defined by

E1(x) ≡
∫ ∞

x

e−t

t
dt, x ∈ R+.
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Proof. This follows by easy manipulation and the standard density transform formula.

The function E1 can be evaluated effectively by the function expint E1() in the R
package gsl [56]. The latter uses the GNU Scientific Library [45].

In addition, the variational lower bound (3.8) on the log marginal likelihood at
q = q∗ takes the form (See Appendix for details)

(3.6)

Li = −n2 log(2π)− si log(π) + 1
2 log |Σ∗

i |+
1
2si

+
G∑

g=1
(ag log bg − log Γ(ag)− a∗

i,g log b∗
i,g + log Γ(a∗

i,g))

+ c log d− log Γ(c)− c∗
i log d∗

i + log Γ(c∗
i )

+
G∑

g=1

(1
2Eq∗

σ
(σ−2

i )Eq∗
τ
(τ−2

i,g )Eq∗(βg
i

T D−1
λi
βg

i )
)

+
si∑

t=1

(
logE1(lit) + 1

exp(lit)E1(lit)

)
.

3.4.2 Global Empirical Bayes

Model (3.2) possesses the G+ 1 pairs of hyperparameters (a1, b1), · · · , (aG, bG), (c, d).
The pair (c, d) controls the prior of the error variances σ2

i ; we fix this to numerical
values that render a vague prior, e.g. to (0.001, 0.001). In contrast, we let the values
of the parameters α = (a1, b1, · · · , aG, bG) be determined by the data. As these
hyperparameters are the same in every regression model i, this allows information
to be borrowed across the regression equations, leading to global shrinkage of the
regression parameters. The approach is similar to the one in [134].

Precisely, we consider the criterion

α = (a1, b1, · · · , aG, bG) 7→
p∑

i=1
Eq log pα(Yi, θi)

q(θi)
(3.7)

=
p∑

i=1
Eq log p(Yi| θi)

q(θi)
+

p∑
i=1

Eq log πα(θi).

The maximization of the function on the right with respect to q ∈ Q for fixed α

leads to the variational estimator q∗ considered in Section 3.4.1 (which depends on
α = (a1, b1, · · · , aG, bG)). Rather than running the iterations (3.5) for computing this
estimator to “convergence”, next inserting q = q∗

α in the preceding display (3.15), and
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finally maximizing the resulting expression with respect to α, we blend iterations to
find q∗ and α∗ as follows. Given an iterate q∗ of (3.5) we set q in (3.15) equal to q∗

and find its maximizer α∗ with respect to α. Next given α∗ we set α (in the display
following (3.5) equal to α∗ and use (3.5) to find a next iterate of q∗. We repeat these
alternations to “convergence”.

For fixed q = q∗ the far right side in the second row of the preceding display
depends on α only through

p∑
i=1

Eq∗

(
log πα(θi)

)
.

Using the approximation log(x)− 1
2x
≈ Ψ(x) = ∂

∂x
log Γ(x), where Ψ is the digamma

function, the maximization yields (see Appendix for details)

âg ≈ 1
2

[
log
( p∑

i=1
Eq∗τ−2

i,g

)
− p−1

( p∑
i=1

Eq∗ log τ−2
i,g

)
− log p

]−1

b̂g = âg · p ·
[ p∑

i=1
Eq∗τ−2

i,g

]−1

where g ∈ {1, · · · , G}. The following algorithm summarizes the above described
procedure.

Variational algorithm with sparse local-global shrinkage priors
1: Initialize
a

(0)
g = b

(0)
g = 10−3, g ∈ {1, · · · , G} and ∀i ∈ I, b∗

i,g = d∗
i = 10−3, ϵ = 10−3,

M = 103 and k = 1
2: while max |L(k)

i − L
(k−1)
i | ≥ ϵ and 2 ≤ k ≤M do

E-step: Update variational parameters
3: for i = 1 to p update

a
∗(k)
i,g , c∗(k)

i ,
Σ∗(k)

i , β∗(k)
i , b∗(k)

i,g , d∗(k)
i , l(k)

it and L(k)
i ; ∀g and ∀t in that order

end for

M-step: Update hyperparameters
4: a

(k)
g , b(k)

g ; ∀g
5: k ← k + 1
6: end while
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3.4.3 Variable selection

Because the horseshoe prior is continuous, the resulting posterior distribution does
not set parameters exactly equal to zero, and hence variable selection requires an
additional step. We investigated two schemes that both take the marginal posterior
distributions of the parameters as input.

Thresholding

A natural method is to set a parameter βi,r equal to zero (i.e. remove the corresponding
independent variable from the regression model) if the point 0 is in the tails of its
marginal posterior distribution, or more precisely, if 0 does not belong to a central
marginal credible interval for the parameter. Given that our variational Bayes scheme
produces conditional Gaussian distributions, this is also equivalent to the absolute
ratio of posterior mean and standard deviation

(3.8) κi,r =

∣∣∣∣Eqi∗

[
βi,r|Yi

]∣∣∣∣
sdqi∗

[
βi,r|Yi

]
exceeding some threshold. (In the network setup of Section 3.2 we use the sym-
metrized quantity (κi,r + κr,i)/2, as the two constituents of the average refer to the
same parameter.)

To determine a suitable cutoff or credible level we applied the variational Bayes
procedure of Section 3.4.1 with all credible levels η on a grid with step size 5% within
the range [10%, 99.99%], resulting in a model, or set of ‘nonzero’ parameters βi,r, for
every η. We allow rather lenient credible levels because the model might benefit from
the inclusion of fewer variables, in particular when strong collinearity is present. We
next refitted the model (3.1)-(3.2) with the non-selected parameters βi,r set equal to
0, evaluated the variational Bayes lower bound on the likelihood (3.8) (equivalently
(3.6)), and chose the value of η and the corresponding model that maximized this
likelihood. When refitting we did not re-estimate the hyperparameters (a’s and b’s for
pInc, τ ’s for pInc2, as explained in Section 3.4.2), but used the values resulting from
the entire data set. Even though this procedure sounds involved, it is computationally
fast, because it is free of the empirical Bayes step and typically needs to evaluate only
models with few predictors.
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An alternative selection scheme

As an alternative selection scheme we investigated the decoupled shrinkage and selec-
tion (DSS) criterion proposed by [53]. For each regression model i, given the posterior
mean vector β̄i = Eqi∗

[
βi,·|Yi

]
determined by the pooled procedure of Sections 3.4.1-

3.4.2, this calculates the adaptive lasso type estimate

(3.9) γ̂i(λi) = argmin
γi

[ 1
n
∥Xiβ̄i −Xiγi∥2

2 + λi

p∑
t=1

|γi,t|
|β̄i,t|

]
,

and next chooses the model corresponding to the nonzero coordinates of γi. The
authors [53] advocate this method over thresholding, in particular because it may
better handle multi-collinearity. In genomics applications, such as the eQTL Example
(Section 3.6.2), multi-collinearity is likely strong, in particular between neighbouring
genomic locations. Another attractive aspect of (3.9) is that it only relies on the
posterior means, which we have shown to be accurately estimated by the variational
Bayes approximation.

In the DSS approach the thresholding in order to obtain models of different sizes is
performed through the smoothing parameters λi. The authors [53] propose a heuristic
to choose λi based on the credible interval of the explained variation. An alternative
is to apply K-fold cross-validation based on the squared prediction error:

(3.10) MSE(λi) = 1
n

K∑
k=1
∥Yk

i −Xk
i γ̂−k

i (λi)∥2
2,

where superscript k refers to the observations used as test sample in fold k = 1, . . . , K,
and −k to the complementary training sample used to calculate γ̂−k

i (λi), by (3.9) with
X−k

i and β̄−k
i replacing Xi and β̄i. Again we throughout fix the hyperparameters of

the priors to the ones resulting from the variational Bayes algorithm on the entire
data set. We have found that the function λi 7→ MSE(λi) can be flat, which, to some
extent, is a ‘by-product’ of the strong shrinkage properties of the horseshoe prior.
(Given a sparse true vector, many posterior means β̄i,r will be close to zero, which
renders the DSS solution (3.9) less dependent on λi.) To overcome this, and because
we prefer sparser models, we used the maximum value of λi for which the MSE is
within 1 standard error of the minimum of the mean square errors.

In the next sections, if not specified, selection should be understood as the first
scheme based on thresholding.
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3.5 Simulations

We performed model-based simulations to compare model (3.2), referred to as pInc,
with the alternative method pInc2, in which there is only one parameter τg per group,
and their ridge counterpart ShrinkNet ([80]). We refer to the latter paper for com-
parisons of ShrinkNet to other competing methods. ShrinkNet was indeed shown in
[80] to outperform the graphical lasso [43], the SEM Lasso [97] and the GeneNet [120]
using exactly the same data used below in this simulation. As ShrinkNet was devel-
oped for network reconstruction only and does not incorporate prior knowledge, we
initially considered the setup of network reconstruction in Section 3.2 and set G = 1
in (3.2). Next we compared pInc and pInc2 in the same network recovery context,
but incorporating prior information. Finally, we compared the accuracy and comput-
ing time of our variational Bayes approximation approach with Gibbs sampling-based
strategies [9].

3.5.1 Model-based simulation

We generated data Y 1, . . . , Y n according to (3.3), for p = 100 and n ∈ {10, 100, 200, 500}
to reflect high and low-dimensional designs. We generated precision matrices Ωp cor-
responding to band, cluster and hub network topologies [80, 163] from a G-Wishart
distribution [101] with scale matrix equal to the identity and b = 4 degrees of freedom.

The performance of the methods was investigated using average ℓ1 errors ∥β̂0 −
β0∥1 and ∥β̂1 − β1∥1 across 50 replicates of the experiment. Here β1 (or β0) is the
vector consisting of all nonzero (or zero) values of the partial correlation matrix
−(Ωp)it/(Ωp)ii except the diagonal elements, and β̂1 (or β̂0) is the vector consisting
of the corresponding posterior means.

The results are displayed in Tables 3.1 and 3.2. Both methods pInc and pInc2
outperform ShrinkNet in all simulation setups. For the nonzero parameters (‘signals’)
pInc and pInc2 are on par, but for the zero parameters pInc outperforms pInc2 for
small n in the Band and Cluster topologies, but when n increases and in the Hub
topology this turns around.

Somewhat worrisome is that the performance of all methods on the zero param-
eters initially seems to suffer from increasing sample size n. The empirical Bayes
choice of shrinkage level clearly favours strong shrinkage for small n, giving good
performance on the zero parameters, but relaxes this when the sample size increases.
Thus the better performance for increasing n on the nonzero parameters is partly
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Sample size ShrinkNet pInc2 pInc

Band

n = 10 25.26 1.77 0.66
n = 100 265.89 180.42 78.46
n = 200 291.33 113.12 121.29
n = 500 251.47 81.38 150.62

Cluster

n = 10 15.74 0.71 0.51
n = 100 224.89 186.88 39.97
n = 200 259.94 130.70 98.77
n = 500 231.33 82.82 107.58

Hub

n = 10 7.44 0.28 0.34
n = 100 155.87 8.70 47.85
n = 200 154.63 12.65 84.46
n = 500 132.50 21.51 106.31

Table 3.1: Average l1 error, ∥β̂0 − β0∥1 across 50 simulation replicates with sample
size n ∈ {10, 100, 200, 500} and p = 100. The precision matrices used correspond
respectively to Band, Cluster and Hub structure.

Sample size ShrinkNet pInc2 pInc

Band

n = 10 220.15 220.55 221.92
n = 100 162.58 112.01 134.82
n = 200 124.01 66.08 65.66
n = 500 72.51 29.08 29.25

Cluster

n = 10 288.86 288.64 289.44
n = 100 254.03 160.05 217.48
n = 200 215.88 75.24 86.54
n = 500 133.22 27.99 29.95

Hub

n = 10 40.25 39.34 40.52
n = 100 24.14 15.39 13.99
n = 200 17.58 9.42 8.65
n = 500 12.54 5.42 5.26

Table 3.2: Average l1 error, ∥β̂1 − β1∥1 across 50 simulation replicates with sample
size n ∈ {10, 100, 200, 500} and p = 100. The precision matrices used correspond
respectively to Band, Cluster and Hub structure.
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Quality of prior Info pInc2 pInc

Band True model 6.90 0.68
50% true edge info 6.66 5.30

Cluster True model 4.96 0.60
50% true edge info 3.25 3.28

Hub True model 0.22 0.27
50% true edge info 0.46 5.88

Table 3.3: Average l1 error, ∥β̂0 − β0∥1 across 50 simulation replicates with sample
size n = 10 and p = 100. Qualities of prior information correspond to true model
and 50% true edge information.

Quality of prior Info pInc2 pInc

Band True model 216.25 209.48
50% true edge info 219.57 217.39

Cluster True model 285.72 281.21
50% true edge info 286.98 286.73

Hub True model 29.40 27.55
50% true edge info 37.79 34.60

Table 3.4: Average l1 error, ∥β̂1 − β1∥1 across 50 simulation replicates with sample
size n = 10 and p = 100. Qualities of prior information correspond to true model
and 50% true edge information.

offset by a decline in performance on the zero parameters. This balance between zero
and nonzero parameters is restored only for relatively large sample sizes. A similar
phenomenon was observed in [135].

Tables 3.3 and 3.4 compare the performance of pInc and pInc2 when prior infor-
mation is available (both with sample size n = 10). The prior information consists
either of the correct adjacency matrix P for the network (i.e. Pi,t = 1 if Ωi,t ̸= 0 and
Pi,t = 0 otherwise), or an adjacency matrix in which 50 % of the positive entries are
correct. The latter matrix was obtained by swapping a random selection of half the
1s in the correct adjacency matrix with a random selection of equally many 0s. The
tables shows that pInc usually outperforms pInc2, the zero parameters in the Hub
case with 50% true edge prior knowledge being the only significant exception.

To study the performance of the different methods on model selection we computed
ROC curves, showing the true positive rate (TPR) and false positive rate (FPR) as
a function of the threshold on the test statistic (3.8) for inclusion of a parameter in
the model. Figure 3.1 shows that in the absence of prior information pInc2 performs
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Figure 3.1: Average partial-ROC curves comparing performance of ShrinkNet (dashed
red), pInc2 (dashed black) and pInc (dashed blue) where n ∈ {10, 100, 200, 500} and
p = 100. First, second, third and fourth rows correspond respectively to the perfor-
mances of n = 10, n = 100, n = 200 and n = 500.
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Figure 3.2: Average partial-ROC curves comparing performance of pInc using perfect
prior information (dashed blue), pInc2 using perfect prior information (black), pInc
using 50% true edge information (dashed dark green) and pInc2 using 50% true edge
information (darkmagenta). Sample size and network dimension were n = 10 and
p = 100.

best, closely followed by pInc, and both methods outperform ShrinkNet. Given either
correct or 50% correct information pInc is the winner, as seen in Figure 3.2, which also
shows the usefulness of incorporating prior information. These findings are consistent
with the results on estimation presented in Tables 3.1–3.4 in their ordering of pInc
above pInc2 in the case of availability of external information.

Figure 3.3 displays histograms of the EB estimates of prior parameter/hyperpa-
rameter τ 2’s by pInc (TauSq) and pInc2 (TauSq2) across the 50 simulation replicates.
The initial hyperparameter value for pInc2 was set to 0.05. The figure shows that the
estimated parameters are bigger (hence less shrinkage) when the sample size is larger.
Furthermore, for a fixed sample size the estimates are reasonably stable, the quotient
of the largest and smallest across the 50 replicates being below a small constant.

3.5.2 Variational Bayes vs MCMC

We investigated the quality of the variational approximation by comparing it to the
output of a long MCMC run. As we only use the univariate marginal posterior
distributions of the regression parameters for model selection, we focused on these. We
ran a simulation study with a single regression equation (say i = 1) with n = p = 100,
and compared the variational Bayes estimates of the marginal densities with the
corresponding MCMC-based estimates. We sampled n = 100 independent replicates
from a p = 100-dimensional normal distribution with mean zero and (p×p)-precision
matrix Ωp, and formed the vector Y1 and matrix X1 as indicated in Section 3.2. The
precision matrix was chosen to be a band matrix with lower and upper bandwidths
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Figure 3.3: Histograms of the global variance parameter τ 2 estimates by EB by pInc
(TauSq) and by pInc2 (TauSq2) across 50 simulation replicates. First, second and
third columns correspond respectively to Band, Cluster and Hub structures for the
precision matrix. First row (n = 10) and third row (n = 200) display τ 2 estimates by
pInc2 whereas second row (n = 10) and fourth row (n = 200) display τ 2 estimates by
pInc. We used p = 100.
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average l1 loss ||β̂1 − β1||1
in 20 replications (i = 1)

computing time needed
for all the 100 regressions

pInc 1.41 58 sec
MCMC method 2.22 13h 15 min

Table 3.5: Performance comparison between pInc and the MCMC method.

average l1 loss ||β̂1 − β1||1
in 20 replications (i = 1)

computing time needed
for all the 100 regressions

pInc2 2.25 1min 48 sec
MCMC method 3.03 13h 19 min

Table 3.6: Performance comparison between pInc2 and the MCMC method.

equal to 4, thus a band of total width 9. For both the variational approximations
and the MCMC method we used prior hyperparameters c = d = 0.001 and prior
hyperparameters (â, b̂) (resp. τ̂ 2 for pInc2 ) fixed to the values set by the global
empirical Bayes method described in Section 3.4.2. The MCMC iterations were run
nIter = 4 × 104 times without thinning, after which the first nBurnin = 2 × 104

iterates were discarded [111]. Tables 3.5 and 3.6 summarize the comparison.
The correspondence between the two methods is remarkably good. The posterior

means obtained from the variational method are even slightly better as estimates of
the true parameters than the ones from the MCMC method, in terms of ℓ1-loss. With
respect to computing time the variational method was vastly superior to the MCMC
method, which would hardly be feasible even for n = p = 100.

3.6 Applications

We applied the methods to two real datasets, both as illustration.

3.6.1 Reconstruction of the apoptosis pathway

The cells of multicellular organisms possess the ability to die by a process called
programmed cell death or apoptosis, which contributes to maintaining tissue home-
ostasis. Defects in the apoptosis-inducing pathways can eventually lead to expansion
of a population of neoplastic cells and cancer [55, 63, 75]. Resistance to apoptosis
may increase the escape of tumour cells from surveillance by the immune system.
Since chemotherapy and irradiation act primarily by inducing apoptosis, defects in
the apoptotic pathway can make cancer cells resistant to therapy. For this reason
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resistance to apoptosis remains an important clinical problem.
In this section we illustrate the power of our method in reconstructing the apop-

tosis network from lung cancer data [76] from the Gene Expression Omnibus (GEO).
The data comprises p = 84 genes, consisting of n1 = 49 observations from normal
tissue and n2 = 58 observations from tumor tissue, hence n = 107 observations in
total. We fitted pInc on the tumor data, using the data on normal tissue as prior
knowledge. To the latter aim we fitted pInc to the normal data with a single group
G = 1, and applied the model selection procedure of Section 3.4.3 to create an array
P of incidences, which served as input when fitting pInc on the tumor data. The idea
is that, while tumors and normal tissue may differ strongly in terms of mean gene
expression, the gene-gene interaction network may be relatively more stable.

When fitting the pInc model with the two groups (gene interaction absent or
present in normal tissue), we observed a huge difference in the empirical Bayes esti-
mates of the hyperparameters governing the priors of the parameters τ−2 of the two
groups, namely prior mean â0/b̂0 = 8476.97 for absent and â1/b̂1 = 3.70 for present in
the prior network. This strongly indicates the relevance of the prior knowledge [72],
so that superior performance of pInc in the reconstruction can be expected.

Figure 3.4 displays the reconstructed undirected network by pInc. A total number
of 27 edges were found with various edge strengths. The ten most significant edges
in decreasing order were: PRKACG ↔ FASLG, MYD88 ↔ CSF2RB, PIK3R2 ↔
CHUK, TNFRSF10B ↔ CHP1, PRKAR1B ↔ AKT2, PIK3R2 ↔ NGF, TRAF2 ↔
BAX, TNF ↔ IL1B, PRKAR2B ↔ AKT3, and TRAF2 ↔ PIK3R2.

Node degrees varied from 0 to 4 with PIK3R2 and PRKAR1A yielding the highest
degree 4, followed by TRAF2 having degree 3, and CHUK, CHP1, BIRC3, FAS, IL1B
and NFKBIA having each degree 2.

3.6.2 eQTL mapping of the p38MAPK pathway

The p38MAPK pathway is activated in vivo by environmental stress and inflam-
matory cytokines, and plays a key role in the regulation of inflammatory cytokines
biosynthesis. Evidence indicates that p38MAPK activity is critical for normal im-
mune and inflammatory response [8, 62, 82]. The pathway also plays an important
role in cell differentiation. Its key role in the conversion of myoblasts to differenti-
ated myotubes during myogenic progression has been established by [88, 154, 161].
More recently, in vivo studies demonstrated that p38MAPK signalling is a crucial
determinant of myogenic differentiation during early embryonic myotome develop-
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Figure 3.4: Apoptosis network reconstructed for the 84 genes by pInc.

ment [32]. Finally, the pathway is involved in chemotactic cell migration [59, 60].
Lack of p38MAPK function may lead to cell cycle deficiency and tumorigenesis, and
genetic variants of some genes in the p38MAPK pathway are associated with lung
cancer risk [39]. Studying the pathway in healthy cells may enhance understanding
the underlying biological mechanism, but has received less attention.

We investigated the association between single nucleotide polymorphisms (SNPs)
and the genes in the P38MAPK pathway, using GEUVADIS data. In the GEUVADIS
project [77], 462 RNA-Seq samples from lymphoblastoid cell lines were obtained, while
the genome sequence of the same individuals is provided by the 1000 Genomes Project.
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The samples in this project come from five populations: CEPH (CEU), Finns (FIN),
British (GBR), Toscani (TSI) and Yoruba (YRI). In our analysis we excluded the
YRI population samples and samples without expression and genotype data, which
resulted in a remaining sample size of 373. We also excluded SNPs with minor allele
frequency (MAF) < 5%. Using a window of 105 bases upstream and 105 downstream
of every gene, we obtained a total number of 42,054 SNPs for the 99 genes of the
pathway belonging to the 22 autosomes. This resulted in a system of 99 regression
models, with dimensions varying from 56 to 1169. We scaled (per gene) the gene
expression data prior to the computations.

Following Section 3.3 we classified the SNPs connected to each gene as located
either within the gene range or outside, and applied pInc with two groups (G = 2).
We observed a big difference in the empirical Bayes estimates of the hyperparameters
of the priors of τ−2: mean value â0/b̂0 = 27, 568.76 for SNPs outside the gene ranges
versus â1/b̂1 = 4102.46 for SNPs inside. The prior information is thus clearly relevant,
and hence an improved mapping by pInc can be expected.

We found using Selection procedure 3.4.3 (Thresholding) the expression levels of
13 out of the 99 genes (genes 15, 40, 48, 50, 51, 61, 75, 78, 85, 86, 93, 96, 98) to be
associated with a total number of 50 SNPs from the 42,054 SNPs under consideration.
Gene 50 yielded the highest number 9 of associated SNPs, followed by gene 40 with
6 SNPs and genes 86, 93 and 96 with 5 SNPs each. Figures 3.5 and 3.6 display the
estimates of the effect sizes of the SNPs (posterior means Eq∗(βi,r|Yi)), green for SNPs
outside the gene ranges and blue for SNPs within a gene, with ‘red stars’ indicating
the SNPs that were selected. The 6 largest associations were observed within genes
93, 15, 96, 98 and 78 (red vertical lines in Figures 3.5 and 3.6). The active SNPs for
all genes, except genes 40 and 50 (although for gene 50 only one of the selected SNPs
is not within), are located inside the gene range. This confirms the belief that SNPs
falling inside genes are more prone to influence these genes than SNPs outside. The
SNP effects on the remainder 86 (= 99− 13) genes are similar to the ones on gene 1
displayed in Figure 3.6. The selection obtained by using pInc-DSS is similar.

Comparison of pInc-DSS with lasso

From the many dedicated methods for eQTL analysis [16, 71, 83, 86, 125], we chose
the lasso as a bench-mark to compare the model selection by pInc combined with DSS
(Section 3.4.3). Our choice for DSS comes from the interest to investigate whether
’pInc + lasso’ indeed outperforms a direct lasso, as suggested for the basic horseshoe.
As a criterion we used predictive performance when using a sparse model restricted
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Figure 3.5: Estimates of SNP effects on genes 15, 40, 48, 50, 51, 61, 75 and 78 using
pInc. Green dots indicate effects estimates for SNPs outside the gene range and blue
dots for SNPs inside the gene range. Red ‘stars’ indicate selected SNP effects. Dashed
vertical lines indicate the 6 largest effects.
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Figure 3.6: Estimates of SNP effects on genes 75, 78, 85, 86, 93, 96, 98 and 1 using
pInc. Green dots indicate effects estimates for SNPs outside the gene range and blue
dots for SNPs inside the gene range. Red ‘stars’ indicate selected SNP effects. Dashed
vertical lines indicate the 6 largest effects.



88 pInc package

to include a maximal number of predictor variables (SNPs). As for the lasso, the
number of selected variables is easy to control by pInc-DSS, because the entire trace
of the adaptive lasso (3.9) is available. To evaluate predictive performance, we used
a single 2/3-1/3 split of the data, leading to training and test sets of 249 and 124
observations, respectively. The lasso was computed using GLMnet by [44], also (3.9).

The four panels of Figure 3.7 report the results for the maximal number of predic-
tor variables set equal to 1, 3, 5, or 10. The vertical axis shows the relative reduction
of the MSE on the test set as compared to the empty model (all βi = 0), defined by

(3.11) MSE0 −MSE(mi)
MSE0

,

where MSE0 is the MSE of the empty model and MSE(mi) the MSE of linear model
mi. This quantity was calculated for all 99 genes in the pathway (horizontal axis),
for both the lasso (displayed in black) and pInc-DSS (displayed in red), large values
indicating accurate prediction. The results of the lasso are somewhat more ‘noisy’,
likely due to less shrinkage of the (near-)zero parameter estimates, and the lasso
regularly performs inferior to both the empty model (negative values) and pInc-DSS,
with gene 13 an extreme case. For genes with considerable signal w.r.t. the empty
model (e.g. genes 61, 93 and 98), pInc-DSS explains much more of the signal than
the lasso. This could be explained by less shrinkage of the non-zero parameters by
the horseshoe prior, which is designed to separate zero and nonzero values. This is
illustrated in Figure 3.8 for gene 98. Gene 50 is the one exception, where lasso beats
pInc-DSS, in the case of selecting 3 variables.

3.7 Conclusion

We have introduced a sparse high-dimensional regression approach that can incor-
porate prior information on the regression parameters and can borrow information
across a set of similar datasets. It is based on an empirical Bayesian setup, where
external information is incorporated through the prior, and information is borrowed
across similar analyses by empirical Bayes estimation of hyperparameters. We have
shown the power of the approach both in model-based simulations of Gaussian graph-
ical models and in real data analyses in genomics. Incorporating the information was
shown to enhance the analysis, even when the prior information was only partly cor-
rect (e.g. 50 % accurate). We explain this by the fact that the empirical Bayesian
approach is able to incorporate prior information in a soft manner. Such a flexible
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Figure 3.7: Relative reduction of MSE (y-axis) for the lasso (black dots) and pInc-
DSS (red stars) for all genes i = 1, . . . , 99 (x-axis) when maximal number of variables
is fixed to 1, 3, 5, or 10 (top-left, top-right, bottom-left, bottom-right). The genes with
the large differences are highlighted by vertical lines

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500 600

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Gene 98

Figure 3.8: Estimates of SNP effects on gene 98 using pInc (red squares), and pInc-
DSS (red stars) and the lasso (black dots) with 3 predictor variables for the latter two.
X-axis denotes SNP index.
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approach is particularly attractive in high-dimensional situations where the amount
of data is small relative to the number of parameters and an increasing amount of
prior information is available.

To make our approach scalable to large models and/or datasets we developed
a variational Bayes approximation to the posterior distribution resulting from the
horseshoe prior distribution. We showed the accuracy of the resulting approximation
to the marginal posterior distributions of the regression parameters by comparison
to state-of-the-art MCMC schemes for the horseshoe prior. The variational Bayes
approach obtained the same (if not better) accuracy at a fraction of CPU time.

We studied two versions of the model, one with a gamma prior on the ‘sparsity’
parameters and one in which these parameters are estimated by the empirical Bayes
method. We found that the gamma prior is preferable when relevant prior knowledge
can be used, but in the absence of prior knowledge the alternative model may be
preferable.
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3.8 Appendix

1. Variational Bayes approximation

1.1. Variational marginal densities derivation.

We provide in this section the details of the variational approximation to the posterior
distribution for given hyperparameters and for a fixed regression i. Let recall the
likelihood and prior densities of the model.

Likelihood:
Yi|Xi, βi, σ

−2
i ∼ N(Xiβi, σ

2
i In).

Thus,

p(Yi|Xi, βi, σ
−2
i ) = (2π)− n

2 (σ−2
i )n

2 exp
(
− 1

2σ
−2
i (Yi −Xiβi)T (Yi −Xiβi)

)

Priors:

ϵi|σ−2
i ∼ N(0n, σ

2
i In),

βi|σ−2
i , τ−2

i,1 , . . . , τ
−2
i,G, λi,1, . . . , λi,si

∼ N(0si
, σ2

i Dτiλi
),

Dτiλi
= diag(τ 2

i,Pi1
λ2

i,1, . . . , τ
2
i,Pisi

λ2
i,si

),

λi,t ∼ C+(0, 1), t = 1, . . . , si,

τ−2
i,g ∼ Γ(ag, bg), g = 1, . . . , G,
σ−2

i ∼ Γ(c, d).

Hence,

p(βi|σ−2
i , τ−2

i,1 , . . . , τ
−2
i,G, λi,1, . . . , λi,si

) = (2π)− si
2
(
|σ2

i Dτiλi
|
)− 1

2

· exp
{
− 1

2σ
−2
i βT

i D−1
τiλi

βi

}
,

p(λi,t) = 2
π(1 + λ2

i,t)
, t = 1, . . . , si,

p(τ−2
i,g ) =

bag
g

Γ(ag)(τ−2
i,g )ag−1 exp

{
− bgτ

−2
i,g

}
,

g = 1, . . . , G,

p(σ−2
i ) = dc

Γ(c)(σ−2
i )c−1 exp

{
− dσ−2

i

}
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We wish to approximate the posterior distribution of the parameter
θi := (βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i ) given Yi, for a fixed i by minimizing the

Kullback-Leibler (KL) divergence from q ∈ Q to the joint posterior p(θi|Yi). Assum-
ing the approximate posterior q factorizes into a product of densities:

q(θi) = qβi
(βi) · qλi

(λi,1, · · · , λi,si
) · qτi

(τ−2
i,1 , · · · , τ−2

i,G) · qσi
(σ−2

i ),

the optimal q∗
lr , r = 1, · · · , 4; lr ∈ {βi, λi, τi, σi}, satisfy [105] (See also Introduction

chapter):
q∗

lr(.) ∝ exp
{

Eq∗
−lr

[
ln p(Yi, θi)

]}
where Eq∗

−lr
= Eq∗

l1
. . .Eq∗

lr−1
Eq∗

lr+1
. . .Eq∗

l4
.

The approximate marginal densities can now be derived. It is:

q∗
βi

(βi) ∝ exp
{

Eq∗
−βi

[
ln p(βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i , Yi)

]}
∝ exp

{
Eq∗

−βi

[
ln p(Yi|βi, σ

−2
i ) + ln p(βi|λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i )

]}

∝ exp
Eq∗

−βi

−σ−2
i

2

(
(Yi −Xiβi)T (Yi −Xiβi) + βT

i D−1
τiλi

βi

)
∝ exp

−Eq∗
σi

(σ−2
i )

2

[
(Yi −Xiβi)T (Yi −Xiβi) + βT

i D−1
Eq∗

τi
·q∗

λi

βi

]
∝ exp

−Eq∗
σi

(σ−2
i )

2

[
βT

i

(
XT

i Xi + D−1
Eq∗

τi
·q∗

λi

)
βi − 2βT

i X
T
i Yi

]
∝ exp

−Eq∗
σi

(σ−2
i )

2

[(
βi − β∗

i

)T
(
XT

i Xi + D−1
Eq∗

τi
·q∗

λi

)(
βi − β∗

i

)]

where the last line uses the matrix square completion formula

uTA−1u− 2uTv = (u− Av)TA−1(u− Av)− vTAv

and
D−1

Eq∗
τi

·q∗
λi

= diag
(

Eq∗
τi

(τ−2
i,Pi1

)Eq∗
λi1

(λ−2
i,1 ), . . . ,Eq∗

τi
(τ−2

i,Pisi
)Eq∗

λisi

(λ−2
i,si

)
)
.
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Hence, βi|Yi ∼ N(β∗
i ,Σ∗

i ) where

Σ∗
i =

[
Eq∗

σi
(σ−2

i )
(
XT

i Xi + D−1
Eq∗

τi
·q∗

λi

)]−1
,

β∗
i =

(
XT

i Xi + D−1
Eq∗

τi
·q∗

λi

)−1
XT

i Yi.

q∗
λit

(λi,t) ∝ exp
{

Eq∗
−λit

[
ln p(βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i , Yi)

]}
∝ exp

{
Eq∗

−λit

[
ln p(βi|λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i ) + ln p(λit)

]}
∝ exp

{
Eq∗

−λit

[
ln p(βi|λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i )

]}
· ln p(λit)

∝ exp
Eq∗

−λit

[
ln
(∏

v ̸=t

(λ−1
iv ) exp

(
− σ−2

i

2 τ−2
i,Piv

β2
ivλ

−2
iv

))]
· exp

Eq∗
−λit

[
ln
(

(λ−1
it ) exp

(
− σ−2

i

2 τ−2
i,Pit

β2
itλ

−2
it

))] · 1
1 + λ2

it

∝ 1
λit · (1 + λ2

it)
· exp

{
− 1

2Eq∗
σi

(σ−2
i )Eq∗

τi
(τ−2

i,Pit
)Eq∗

βi
(β2

it)λ−2
it

}
∝ 1
λit · (1 + λ2

it)
· exp

{
− litλ−2

it

}

where,
lit = 1

2Eq∗
σi

(σ−2
i )Eq∗

τi
(τ−2

i,Pit
)Eq∗

βi
(β2

it)

Let’s denote by Kit the normalizing factor for this kernel. It is

Kit =
∫ ∞

0

exp{−litλ−2
it }

λit(1 + λ2
it)

dλit.

Variable transformation zit := 1
λ2

it
and standard integration techniques yield

(3.12) Kit = 1
2

∫ ∞

0

exp{−litzit}
1 + zit

dzit = 1
2 exp(lit)E1(lit),

where E1 is the exponential integral function of order 1, defined by

E1(x) ≡
∫ ∞

x

e−t

t
dt, x ∈ R, x > 0.

(cf. 3.352(4) of Gradshteyn and Ryzhik (1994) [52]).
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Hence, λi,t|Yi ∼ Λλit
, t = 1, · · · , si which has density function

Λ′
λit

(λi,t) = 2
exp(lit)E1(lit) · λit · (1 + λ2

it)
· exp

{
− litλ−2

it

}
= π

exp(lit)E1(lit)
· p(λit) ·

1
λit

· exp
{
− litλ−2

it

}
.

q∗
τig

(τ−2
i,g ) ∝ exp

{
Eq∗

−τig

[
ln p(βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i , Yi)

]}
∝ exp

{
Eq∗

−τig

[
ln p(βi|λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i ) + ln p(τ−2

i,g )
]}

∝ exp
{

Eq∗
−τig

[
ln p(βi|λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i )

]}
· p(τ−2

i,g )

∝
(
τ−2

i,g

) s
g
i
2 exp

{
− 1

2Eq∗
σi

(σ−2
i )Eq∗

−τig

(
βg

i
T D−1

λi
βg

i

)
· τ−2

i,g

}
· (τ−2

i,g )ag−1 exp{−bg(τ−2
i,g )}

∝
(
τ−2
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)ag+
s

g
i
2 −1

exp
{
−
[
bg + 1

2Eq∗
σi

(σ−2
i )Eq∗

−τig

(
βg

i
T D−1

λi
βg

i

)]
· τ−2

i,g

}

where sg
i is the number of g’s in the i-row of P encoding the G groups,

Dλi
= diag(λ2

i,1, . . . , λ
2
i,si

) and βg
i = {δ{Pi,t=g}βi,t : t ∈ {1, · · · , si}}

Hence, τ−2
i,g |Yi ∼ Γ(a∗

i,g, b
∗
i,g) where

a∗
i,g = ag + 0.5 · s

g
i

2 ,

b∗
i,g = bg + 0.5 · Eq∗

σi
(σ−2

i )Eq∗
−τig

(
βg

i
T D−1

λi
βg

i

)
, g = 1, · · · , G.

q∗
σi

(σ−2
i ) ∝ exp

{
Eq∗

−σi

[
ln p(βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2
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−2
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]}
∝ exp

{
Eq∗

−σi

[
ln p(Yi|βi, σ

−2
i )
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· exp

{
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[
ln p(βi|λi,1, · · · , λi,si
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i,1 , · · · , τ−2
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−2
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· p(σ−2

i )

∝
(
σ−2

i
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2 · (σ−2
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si
2 exp

{
− σ−2

i

2 Eq∗
βi

(Yi −Xiβi)T (Yi −Xiβi)
}

· exp
{
− σ−2

i

2 Eq∗
−σi

(
βT

i D−1
τiλi

βi

)}
· (σ−2

i )c−1 exp
{
− d(σ−2

i )
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∝ (σ−2
i )c+ n

2 + si
2 −1

· exp
{
−
[
d+ 1

2Eq∗
−σi

(
βT

i D−1
τiλi

βi

)
+ 1

2Eq∗
βi

(Yi −Xiβi)T (Yi −Xiβi)
]
(σ−2

i )
}

Hence, σ−2
i |Yi ∼ Γ(c∗

i , d
∗
i ) where

c∗
i = c+ n

2 + si

2 ,

d∗
i = d+ 0.5 · Eq∗

−σi

(
βT

i D−1
τiλi

βi

)
+ 0.5 · Eq∗

βi
(Yi −Xiβi)T (Yi −Xiβi).

Therefore,

(3.13)

βi|Yi ∼ N
(
β∗

i ,Σ∗
i

)
,

λi,t|Yi ∼ Λλit
, t = 1, · · · , si,

τ−2
i,g |Yi ∼ Γ(a∗

i,g, b
∗
i,g), g = 1, · · · , G,

σ−2
i |Yi ∼ Γ

(
c∗

i , d
∗
i

)
,

1.2. Variational lower bound.

Let’s denote by Li the variational lower bound on the log-marginal likelihood. It is

Li = Eq∗ log p(Yi, θi)
q(θi)

= Eq∗ log p(Yi| θi) + Eq∗ log p(θi)− Eq∗ log q(θi)
= Eq∗ log p(Yi| βi, σ

−2
i ) + Eq∗ log p(βi, λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i )

− Eq∗ log q(βi, λi,1, · · · , λi,si
, τ−2

i,1 , · · · , τ−2
i,G, σ

−2
i )

= Eq∗ log p(Yi| βi, σ
−2
i ) + Eq∗ log p(βi|λi,1, · · · , λi,si

, τ−2
i,1 , · · · , τ−2

i,G, σ
−2
i )

+
si∑

t=1
Eq∗ log p(λi,t) +

G∑
g=1

Eq∗ log p(τ−2
i,g ) + Eq∗ log p(σ−2

i )

− Eq∗ log q(βi)−
si∑

t=1
Eq∗ log q(λi,t)−

G∑
g=1

Eq∗ log q(τ−2
i,g )− Eq∗ log q(σ−2

i ).

The sum elements can be found to satisfy:

Eq∗ log p(Yi| βi, σ
−2
i ) = −n2 log(2π) + n

2 Eq∗

[
log(σ−2

i )
]

− 1
2Eq∗(σ−2

i )Eq∗

[
(Yi −Xiβi)T (Yi −Xiβi)

]
,
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Eq∗ log p(βi|λi,1, · · · , λi,si
, τ−2

i,1 , · · · , τ−2
i,G, σ

−2
i ) =

−si

2 log(2π) + si

2 Eq∗

[
log(σ−2

i )
]

+
G∑

g=1

sg
i

2 Eq∗

[
log(τ−2

i,g )
]

+
si∑

t=1
Eq∗

[
log(λ−1

i,t )
]

−1
2Eq∗(σ−2

i )Eq∗

(
βT

i D−1
τiλi

βi

)
,

Eq∗ log q(βi) = −si

2 log(2π)− 1
2 log |Σ∗

i | −
si

2 ,

Eq∗ log q(λi,t) = log
[

π

exp(lit)E1(lit)

]
+ Eq∗

[
log(λ−1

i,t )
]

+ Eq∗ log p(λi,t)

− litEq∗(λ−2
i,t ),

Eq∗ log q(τ−2
i,g ) = log

 b∗
i,g

a∗
i,g

Γ(a∗
i,g) ·

Γ(ag)
bg

ag

+ sg
i

2 Eq∗

[
log(τ−2

i,g )
]

+ Eq∗ log p(τ−2
i,g )

− 1
2Eq∗(σ−2

i )Eq∗

(
βg

i
T D−1

λi
βg

i

)
· Eq∗(τ−2

i,g ),

Eq∗ log q(σ−2
i ) = log

 d∗
i

c∗
i

Γ(c∗
i )
· Γ(c)
dc

+
(
n

2 + si

2

)
Eq∗

[
log(σ−2

i )
]

+ Eq∗ log p(σ−2
i )

− 1
2Eq∗

(
βT

i D−1
τiλi

βi

)
Eq∗(σ−2

i )− 1
2Eq∗

[
(Yi −Xiβi)T (Yi −Xiβi)

]
Eq∗(σ−2

i ).

Replacing the sum elements by their respective expression the variational lower bound
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simplifies to

(3.14)

Li = −n2 log(2π)− si log(π) + 1
2 log |Σ∗

i |+
1
2si

+
G∑

g=1
(ag log bg − log Γ(ag)− a∗

i,g log b∗
i,g + log Γ(a∗

i,g))

+ c log d− log Γ(c)− c∗
i log d∗

i + log Γ(c∗
i )

+
G∑

g=1

(1
2Eq∗

σ
(σ−2

i )Eq∗
τ
(τ−2

i,g )Eq∗(βg
i

T D−1
λi
βg

i )
)

+
si∑

t=1

(
logE1(lit) + 1

exp(lit)E1(lit)

)
,

where we used the result Eq∗(λ−2
i,t ) = 1

lit·exp(lit)·E1(lit) − 1 from Lemma 1 of the main
manuscript.

2. Global empirical Bayes estimation for prior parameters.

We consider the criterion

α = (a1, b1, · · · , aG, bG) 7→
p∑

i=1
Eq log pα(Yi, θi)

q(θi)
(3.15)

=
p∑

i=1
Eq log p(Yi| θi)

q(θi)
+

p∑
i=1

Eq log pα(θi).(3.16)

For fixed q = q∗ the far right side of the preceding display depends on α only
through its second term, which is

p∑
i=1

Eq∗

[
log pα(τ−2

i,1 ) + · · ·+ log pα(τ−2
i,G)

]
.

Since all prior densities are Gamma densities, we find that (ag, bg) maximizes, for
g = 1, · · · , G,

(ag, bg) 7→
p∑

i=1
Eq∗

[
(ag − 1) log τ 2

i,g − bgτ
2
i,g + ag log bg − log Γ(ag)

]

=
p∑

i=1

[
(ag − 1)

(
Ψ(a∗

i,g)− log b∗
i,g

)
− bg

a∗
i,g

b∗
i,g

+ ag log bg − log Γ(ag)
]

=
p∑

i=1

[
(ag − 1)

(
Ψ(a∗

i,g)− log b∗
i,g

)
− bg

a∗
i,g

b∗
i,g

]
+ p

(
ag log bg − log Γ(ag)

)
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= Lg(ag, bg).

where Ψ = Γ′/Γ denotes the digamma function and recall τ 2
i,g possesses a Γ(a∗

i,g, b
∗
i,g)-

distribution under q∗ for g = 1, · · · , G.

Taking the derivative of Lg with respect to bg yields

∂Lg

∂bg

= p
ag

bg

−
p∑

i=1

a∗
i,g

b∗
i,g

and we get by setting this to zero

b∗
g = a∗

g

(1
p

p∑
i=1

a∗
i,g

b∗
i,g

)−1
= a∗

gM

Where M = p/
∑p

i=1
a∗

i,g

b∗
i,g

. Now we get by substituting bg by b∗
g in Lg

Lg(ag,Mag) =
p∑

i=1

[
(ag − 1)

(
Ψ(a∗

i,g)− log b∗
i,g

)
−Mag

a∗
i,g

b∗
i,g

]
+ p

(
ag log(Mag)− log Γ(ag)

)
which by differentiating with respect to ag yields

∂Lg

∂ag

= p
(

1 + log(Mag)−Ψ(ag)
)

+
p∑

i=1

[(
Ψ(a∗

i,g)− log b∗
i,g

)
−M

a∗
i,g

b∗
i,g

]

= p
(

1 + log(ag) + logM −Ψ(ag)− 1
)

+
p∑

i=1

(
Ψ(a∗

i,g)− log b∗
i,g

)

Setting the derivative to zero, we obtain

log(a∗
g)−Ψ(a∗

g) = 1
p

p∑
i=1

(
log b∗

i,g −Ψ(a∗
i,g)
)
− logM.

Using the approximation log(a∗
g)−Ψ(a∗

g) ≈ 1
2a∗

g
, we finally find

a∗
g ≈ 1

2

(
log(a∗

g)−Ψ(a∗
g)
)−1

= 1
2

(1
p

p∑
i=1

(
log b∗

i,g −Ψ(a∗
i,g)
)
− logM

)−1
.



Chapter 4

Borrow network information
between observational and
time-course studies: explorations

The transcriptional dynamics of the cell are modelled by a first-order vector autore-
gression model. It is explored how this model (or aspects thereof) could be learned from
observational data, while having time-series data from the same system observed in
a possibly different environment available. With existing machinery it is investigated
whether incorporation of topological aspects of the dynamical system, as inferred from
the time-series data, aid in their reconstruction from the observational one. Sub-
sequently proposed strategies, making assumptions on the relationship between the
model parameters of the two enviroments, aim to learn the dynamic parameters from
the observational data. Throughout this chapter, cell line time-series and human ob-
servational gene expression data from cervical cancer studies are used to illustrate
what and how much can be borrowed from the cell lines to enhance knowledge on the
transcriptional dynamics in the human environment.

The research leading to these results has received funding from the European Research Council

under ERC Grant Agreement 320637.
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4.1 Introduction

The behaviour and interactions over time of the molecules in a cell are conceived as a
dynamical system and modelled as such. A simple but general, stochastic description
of a dynamical system is offered by a first-order Vector Auto Regressive model, in
short: VAR(1) model. It is used to explain the changes in expression levels of j =
1, . . . , p genes at time t+ 1, represented by the p-dimensional random vector Yt+1, in
terms of a linear combination of the expression of the previous time point Yt and an
error term:

(4.1) Yt+1 = AYt + εt+1,

where A is the matrix with lag-one auto-regression coefficients and εt ∼ N (0p,Σε) for
all t. The right-hand side of the VAR(1) model thus comprises an exogeneous part,
εt+1, representing an incoming signal, while an endogeneous part, AYt, tells how
this signal is processed by the system. Under stationarity assumption, the covariance
matrix of Yt, denoted Σy, satisfies the Lyapunov equation: Σy = AΣyA⊤ + Σε and
it is readily verified – by substitution – that Σy = ∑∞

t=0 AtΣε(At)⊤.
Two archetypical experiments provide information on the dynamical system of the

cell:
• An observational study in which multiple independent individuals are profiled

at a single, randomly sampled time point. For example, cancer patients gener-
ally undergo surgery once at which point the tumor material is recovered and
subsequently molecularly interrogated.

• A time-course study in which one (or more) individual is tracked over time and
profiled at various instances. For instance, a cell line is transfected with an onco-
genic agent (e.g., the human papilloma virus) and cultured in a petri dish from
which cells are sampled at various time points and molecularly interrogated.

The experiments thus differ by i) the environment in which the cells are studied: in
vivo vs. in vitro, and ii) the sampling scheme. These differences have implications
for what can be learned from each experiment. With data from humans being harder
to acquire and more revelant for medical practice, the remainder of this work concen-
trates on methods that learn the dynamics from the human observational data using
the information from the cell line time-course data.

Both study types aim to shed light on the same cellular system and a VAR(1)
model is thus assumed for both. Parameters, however, need not be identical due
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to the different environments of both study types and are – for the moment – to
be without restrictions. The data from the observational and time-course studies,
{Y(h)

t,ih
}Th,nh

t=1,ih=1 and {Y(c)
t,ic
}Tc,nc

t=1,ic=1 with indices h and c referring to the human and cell
line environments, are then described by the following VAR(1) models:

Y(h)
t+1,ih

= A(h)Y(h)
t,ih

+ ε
(h)
t+1,ih

and
Y(c)

t+1,ic
= A(c) Y(c)

t,ic
+ ε

(c)
t+1,ic

,

respectively. The A(h) and A(c) are the study type specific autoregression parame-
ters. Moreover, the errors are assumed to follow zero-mean Gaussians with possibly
different covariances: ε

(h)
t+1,ih

∼ N (0p,Σ(h)
ε ) and ε

(c)
t+1,ic

∼ N (0p,Σ(c)
ε ).

Here we explore what and how can be learned on (aspects of) the ‘human’ VAR(1)
model from the observational data. In these explorations cell line time-course data of
the same system are assumed available, thus enabling the borrowing of information
between the two environments. The remainder of the manuscript is organized as fol-
lows. In section 4.2 it is investigated using existing machinary whether information
on the conditional independence graph of the system, as inferred from the cell line
data, benefits the reconstruction of that graph from human data. An illustration on
cervical data compares different methods that serve this end. Section 4.3 proposes
strategies to recover information on the dynamic parameter from the human observa-
tional data. These strategies make parametric assumptions on the relation among the
model parameters of the in vitro and in vivo environments. Section 4.3.4 investigates
the empirical validity of one crucial assumption common to these strategies. Finally,
these strategies are applied to the same cervical cancer studies of both environments
as before. Analysis with the proposed strategies indicate that in vitro cell line studies
harbour useful information on the dynamical system of the human cell in vivo.

4.1.1 Related work

The statistical literature appears to devote little to no attention to the develop-
ment of methodology for combining observational and time-course studies. We have
found only one work that considers both studies types jointly [146]. This work
presents an algorithm referred to as cMIKANA (combined MIKANA) for gene regula-
tory networks inference which combines steady-state and time-series gene expression
data. Their proposed algorithm cMIKANA combines two versions of their previous
algorithm (MIKANA) [61, 126], which reconstructs gene regulatory networks from ei-
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ther steady-state datasets or temporal datasets. Motivated from ordinary differential
equations, with either a steady state assumption or a discretized differential operator,
the cMIKANA algorithm fits a system of nonlinear equations to the both data types
simultaneously. However, in their model the exogeneous part (pertubation) is set to
zero, thus, not allowing for randomness.

4.2 Shared precision information

First efforts concentrate on the recovery of the conditional independence graph (CIG)
of the variates of the system. Such a graph constitutes of nodes, representing the
molecules of the system, and edges, corresponding to interactions between these
molecules. A graph G is specified by the pair (V , E) with node set V = {1, . . . , p}
and edge set E ⊂ V × V . A graph is a CIG if and only if the absence/presence of an
edge implies conditional in/dependence between the random variables by the nodes
un/connected by the edge, given all other random variables. When the vector of
variates follows a multivariate Gaussian law, the Inverse Variance lemma [152] im-
plies that two variates are conditionally independent – given all other variates – if
the corresponding element in the inverse covariance matrix is zero. The inverse of the
marginal variance Σy of the VAR(1) process can then be thought of as harbouring
the ‘global’ conditional independencies, that may be determined by the verification
of the Wermuth condition from the the temporal and contemporaneous conditional
independencies depicted by the time-series chain graph [29].

The information on the CIG of the system is contained in the data from both
study types. The normality of the VAR(1) model (4.1) implies:

Y(h)
t,ih
∼ N (0p,Σ(h)

y ) and Y(c)
t,ic
∼ N (0p,Σ(c)

y ).

The VAR(1) model also yields structured – in terms of A and Σε – covariance matri-
ces, that harbour the dependencies represented by the time series chain graphs, but
this fact is explored in later sections. The inverse covariance matrices, also known
as precision matrices and denoted by Ω(h)

y and Ω(c)
y , may be estimated from the data

through maximization of the log-likelihood and the pseudo-likelihood (obtained by
multiplying the marginal densities of the Yt):

log(|Ω(h)
y |)− tr(S(h)

y Ω(h)
y ) and log(|Ω(c)

y |)− tr(S(c)
y Ω(c)

y ),

where S(h)
y and S(c)

y are the sample covariance matrices from the observational and
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time-course studies defined by:

S(h)
y = 1

nh

nh∑
ih=1

Y(h)
t,ih

[Y(h)
t,ih

]⊤ and S(c)
y = 1

ncT

nc∑
ic=1

T∑
t=1

Y(c)
t,ic

[Y(c)
t,ic

]⊤,

respectively. The maximization is hampered when the data are high-dimensional.
This is usually resolved by log-likelihood augmentation with a penalty. The commonly
employed lasso and ridge penalties amount to adding the ℓ1- and ℓ2-norm, respectively,
of the parameter of interest to the likelihood [43, 139]. Both penalties shrink the
elements of the precision matrix towards zero. The lasso penalty may shrink these
to exactly zero, thus performing variable selection. The ridge penalization requires
a post-hoc step to sparsify its precision matrix estimate, for which amongst others
the local FDR procedure of [36] provides. Alternative procedures to reconstruct the
conditional independence graph are Bayesian [50, 68], limited information [73, 97], or
a combination of the two [33, 80].

4.2.1 Joint precisions estimation

Estimation of multiple precision matrices in a fused penalized manner [10, 30] facil-
itates the borrowing of information among the various groups/datasets from which
these parameters are to be learned. Fusion aims to retain common features of the
parameters when the data provide evidence for it, but renounces sharing when the
data does not. In contrast to separate in vitro- and in vivo precision estimation,
a fused approach acknowledges possible similarities between environments while not
ignoring possible differences and may improve the recovery of the (human) precision
matrix by making use of that from the cell line study.

Fused penalized estimation amounts to jointly maximizing of the log- and pseudo-
likelihood:

L({Ω(h)
y ,Ω(c)

y }) = nh[log(|Ω(h)
y |)− tr(S(h)

y Ω(h)
y )] + ncT [log(|Ω(c)

y |)− tr(S(c)
y Ω(c)

y )]

augmented by, e.g. the fused ridge penalty

λ2(∥Ω(h)
y ∥2

F + ∥Ω(c)
y ∥2

F ) + λ2,f∥Ω(h)
y −Ω(c)

y ∥2
F .

where λ2, λ2,f are nonnegative tuning/penalty parameters. The first tuning parameter
λ2 shrinks the precision matrices towards the null matrix 0pp, while large values of
λ2,f force the estimates Ω̂(h)

y and Ω̂(c)
y towards each other. The tuning parameters are
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determined in a data-driven manner, e.g. through cross-validation.
Neither for lasso nor for ridge fused penalization does an explicit expression of

the precision estimator exist. However, it is a (strict) convex optimization problem
and one may – in line with [10, 30] – use an iterative procedure alternating between
the estimation of Ω(h)

y and Ω(c)
y (given the other) through penalized likelihood maxi-

mization. Then, for the ridge case at each step an explicit expression of the estimator
exists [10], from which it can be seen how exactly the information is borrowed between
the two studies.

4.2.2 Borrowing information from the time-course study

With primary interest in the human CIG, the balanced interest implicit in the fused
case may overweigh the cell line information for the reconstruction of the human CIG.
Knowledge of the dynamics learned from the in vitro study may serve as a prior and
enhance the reconstruction of the CIG from the human data. Such an approach is
facilitated by the method of [72], also discussed in Chapter 2, and outlined next.

In the work of [72] prior information on a CIG is operationalized simply as an
adjacency matrix. Such a matrix is obtained from the in vitro CIG, which is inferred
by means of the graphical lasso estimator of the inverse covariance matrix Ω(c)

y from
the cell line data through the maximization of the penalized pseudo-likelihood:

(4.2) log(|Ω(c)
y |)− tr(S(c)

y Ω(c)
y )− λ1∥Ω(c)

y ∥1.

For each value of the penalty parameter λ1, this (4.2) yields an estimate Ω̂(E) cor-
responding to a graph with a given edge set E. To choose between these estimates
(i.e. select the parameter λ1) we use the BIC and (eBIC), (extended) Bayesian Infor-
mation Criterion, for reasons of consistency and computational efficiency [24, 42, 46].
For a sample of n i.i.d observations, the eBIC criterion takes the form:

BICγ(E) = −2Ln[Ω̂(E)] + |E| log n+ 4|E|γ log p,

where γ ∈ [0, 1], E is the edge set of a candidate graph, |E| denotes its cardinality,
and Ln[Ω̂(E)] represents the maximized log-likelihood of the associated model. The
special case γ = 0 yields the classical BIC. In this work, we chose the model with the
smallest BIC (respectively, eBIC using γ = 0.5 [42]).

With an adjacency matrix obtained from the cell line data at hand, we invoke
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the method of [72] to infer the human CIG. The method exploits the equivalence
between the Gaussian graphical model and a formulation of this model as system of
regression equations (see also Chapter 2). It fits in a Bayesian manner the latter while
incorporating prior information on the absent and present edges – that correspond
one-to-one with the regression coefficients in the model – obtained from an indepen-
dent information source. The method has been shown to increase the reconstruction
performance when the prior graph is relevant but does not harm if not. This thus
invites the reconstruction of the CIG from the time-course data and use that in vitro
information to learn the graph from the in vivo data.

4.2.3 Illustration

Here we investigate, using the aforementioned methods, whether the cell line data
provides useful information for the reconstruction of the human CIG of the apoptosis
pathway.

The investigation uses data from an observational human and time-course cell line
study, [38] and [153] respectively, into cervical cancer. The observational data com-
prise 43 cervical cancer samples and are publicly available from the Gene Expression
Omnibus (GEO) repository under accession number GSE39001. The cell line data,
on the other hand, consists of n = 4 cell lines interrogated at T = 8 time points
and are also available via GEO (accession number GSE78279). Both data sets are
limited to those genes that i) map to the apoptosis pathway according to the KEGG
repository and ii) and are present in both data sets. This leaves p = 78 genes.

The human CIG is now reconstructed from the cervical cancer data described
above in the following ways:

• The human and the cell line precision matrices are jointly estimated (as de-
scribed in Section 4.2.1) by the fused ridge procedure using the R package
rags2ridges [109]. The associated ridge and fused penalty parameters λ2 and
fused λ2, f are chosen through leave-one-out cross-validation (LOOCV). The
resulting estimates are denoted by Ω̂(h)

joint and Ω̂(c)
joint for the in vivo and in vitro

environments, respectively.
• The human CIG is inferred as outlined in Section 4.2.2: by means of the method

of [72], using prior information from the cell line data. Hereto first the cell line
precision matrix is estimated from the time-course sample covariance matrix S(c)

y

by means of the graphical lasso (4.2), [43] with the penalty parameter chosen on
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the basis of the (e)BIC. The resulting cell line precision estimates are denoted
by Ω̂(c)

bic and Ω̂(c)
ebic. Because the latter pair of estimates will have edge sets of

different sizes, we reduced these edge sets for the clarity of comparison, to the
same number 50 or 100, of edges. For this reduction we used the single ranking
of all possible edges in the full graph, determined by the full regularization path
of the graphical lasso (i.e. when decreasing λ1 in (4.2) to zero the edges will
enter one by one into the model, thus giving their ordering). These resulting
estimates form the adjacency matrix that is to be used as prior information in
the reconstruction of the human CIG with the method of [72]. The estimated
human precision matrices are denoted by Ω̂(h)

bic and Ω̂(h)
ebic.

• For reference the previous ([72]) approach is also used without prior information
from the cell line data. This has actually been proposed by [80] (which was
expanded by the work of [72]). The resulting human precision estimate of it is
denoted by Ω̂(h)

bsem, with the subscript referring to the name of the method of
[80].

Performance of the reconstructed human precision matrices is assessed through
reproducibility of edges. Precisely, we split the human data set into two equal and
independent subsets. Then both above-mentioned methods are fit to these two subsets
separately and the overlapping edge set from the two subsets for each method is
reported. The procedure is repeated 100 times. Table 4.1 report the average number
of overlapping edges between the two subsets for each method when the total number
of edges selected by each method in each subset is fixed to either 50, 100 or 200.

# edges Ω̂(h)
joint Ω̂(h)

bsem Ω̂(h)
ebic Ω̂(h)

bic Ω̂(h)
ebic Ω̂(h)

bic

50 3.8 11.5 19.0 26.7 20.7 32.8
100 9.0 24.9 32.3 37.8 34.1 48.7
200 27.3 55.9 64.6 67.4 66.4 79.5

Table 4.1: Reproducibility of the apoptosis pathway. The first column contains the
number of edges selected in each split, subsequent columns show the (average) number
of overlapping edges between two equally-sized splits of the observational human data
for various methods (indicated by the subscript of the precision parameter in the top
row). The last two pair of columns both use the method of [72] but with fifty and
hundred, respectively, nonzero edges adopted from the inferred cell line CIG.

Table 4.1 shows joint learning of the precision matrices yields the poorest repro-
ducibility, even compared to method of [80] that uses no cell line data at all. When
contrasting the reproducibility results of the latter to that of [72], the method of [72]
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shows clear improvement, which can only be due to the incorporation of the cell line
data. This suggests the relevance of the cell line data for the reconstruction of the
human CIG.

4.3 Shared parameter information

Rather than studying a derivative of the parameters, i.e. the CIG, efforts may con-
centrate on the transfer of information on the parameter themselves between the two
study types. In this section this amounts to the estimation of the VAR(1) model
parameters from the cell line study and using these to learn those of the human ob-
servational study. That is, given estimates of Â(c) and Σ̂(c)

ε , can we – under some
assumptions – obtain Â(h) and Σ̂(h)

ε ? The former is briefly outlined after which the
latter is elaborated.

The estimation of the in vitro VAR(1) model parameters proceeds by maximiza-
tion of the log-likelihood:

L({Y(c)
t,ic
}T,nc

t=1,ic=1; A(c),Ω(c)
ε ) ∝ nc(T − 1) log(|Ω(c)

ε |)

−
nc∑

ic=1

T∑
t=2

(
Y(c)

∗,t,ic
−A(c)Y(c)

∗,t−1,ic

)⊤
Ω(c)

ε

(
Y(c)

∗,t,ic
−A(c)Y(c)

∗,t−1,ic

)
.(4.3)

Explicit expression for the estimators can be derived [92, 99]. However, the data
may be high-dimensional and the log-likelihood needs to be regularized to ensure
well-defined estimators of A(c) and Ω(c)

ε . Abegaz and Wit, (2013) [1] and Miok et al
(2017) [99] present lasso and ridge penalized maximum likelihood estimation, respec-
tively, of the VAR(1) model. In the remainder we resort to the latter. Miok et al [99]
reported that its performance is (slightly) better in terms of loss and on a par with
respect to selection than its lasso counterpart [1]. But practically, the implementa-
tion of the ridge approach can handle higher dimensional data sets where the lasso
implementation fails to converge (cf. the ragt2ridges and sparseTSCGM-packages,
respectively). The ridge penalty that augments the log-likelihood (4.3) is:

(4.4) P (A(c),Ω(c)
ε , λa, λω) = −1

2nc(T−1)λatr[A(c)⊤A(c)]−1
2nc(T−1)λωtr[Ω(c)

ε

⊤Ω(c)
ε ].

Analytic expressions for the ridge estimator of the parameters can be found in [99].
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4.3.1 Symmetric or triangular A(h) and known Σ(h)
ε

A first approach to learn the human VAR(1) parameters assumes, perhaps rather
boldly, A(h) to be symmetric but unknown while Σ(h)

ε is assumed known, possibly
obtained from the estimate of Σ(c)

ε . With Σ(h)
ε known and A(h) symmetric the 1

2p(p+1)
parameters of A(h) need to be estimated from the Lyapunov equation. When Σ(h)

y

has been estimated from the data of the observational study, this is feasible under
the assumption of stability, as the Lyapunov equation then contains exactly 1

2p(p+1)
degrees of freedom.

If both Σ(h)
ε and Σ(h)

y (or a – penalized – estimate thereof) are known and positive
definite, there exists a unique solution A(h) to the Lyapunov equation. The Lyapunov
equation then reduces to: Σ(h)

y = A(h)Σ(h)
y A(h) + Σ(h)

ε . Post-multiplication of this
equation by Σ(h)

y yields: (Σ(h)
y −Σ(h)

ε )Σ(h)
y = (A(h)Σ(h)

y )2. Solving for A(h) gives:

A(h) = [(Σ(h)
y −Σ(h)

ε )Σ(h)
y ]1/2(Σ(h)

y )−1 = (Σ(h)
y )−1[Σ(h)

y (Σ(h)
y −Σ(h)

ε )]1/2.

Of course, Σ(h)
ε is generally unknown and the symmetry of A(h) is not very plausible.

The symmetry assumption on A(h) is effectively one to guarantee identifiability.
Identifiability may be acheived in other ways. For instance, a lower triangular A(h)

also has 1
2p(p + 1) parameters. Consider the Cholesky decompositions of Σ(h)

y =
LσyL⊤

σy
and Σ(h)

y −Σ(h)
ε = Lσy,εL⊤

σy,ε
. Substitute this in the Lyapunov equation and

obtain:
A = Lσy,εL−1

σy
,

where we have used that i) the product of two lower triangular matrix is itself a
lower triangular matrix and ii) the inverse of a lower triangular matrix is one too.
Biologically, a lower triangular A(h) may be plausible as it could represent a signalling
pathway. It would, however, in addition to knowledge of Σ(h)

ε require knowledge of
the ordering of the variates to form this particular support.

4.3.2 A(h) = δA(c) and a diagonal Σ(h)
ε

Slightly more realistically one may assume that the endogeneous part of the sys-
tem is largely preserved across environments, but that the exogeneous part differs
considerably. This is operationalized as

• i) A(h) = δA(c), i.e. the endogeneous part differs only by a scalar between
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environments, and
• ii) an in vivo diagonal error covariance Σ(h)

ε being unrelated to its in vitro
counterpart Σ(c)

ε .

The parameters of the in vivo VAR(1) model, A(h) and Σ(h)
ε , are learned from the

Lyapunov equation, in which the aforementioned assumptions on the parameters are
used together with a – penalized – estimate of Σ(h)

y obtained from the observational
data (as outlined before in Section 4.2). Under stability the parameters A(h) and Σ(h)

ε

should satisfy the Lyapunov equation:

(4.5) Σ̂(h)
y = A(h)Σ̂(h)

y (A(h))⊤ + Σ(h)
ε ,

where the estimate of Σ(h)
y has been substituted. It now seems reasonable to choose

A(h) and Σ(h)
ε such that this equation is fulfilled best. This invites the definition of

the following loss criterion for the estimation of the parameter (temporarily refraining
from the substitution of the assumption A(h) = δA(c) as the right-hand side is revisited
in the next section with a different assumption on A(h)):

(δ,Σ(h)
ε ) 7→ ∥Σ̂(h)

y −A(h)Σ̂(h)
y (A(h))⊤ −Σ(h)

ε ∥2
F ,

where ∥.∥F denotes the Frobenius norm. Using the diagonality of Σ(h)
ε and the

element-wise formulation of the Lyapunov equation

[Σ̂(h)
y ]j1,j2 = (A(h))j1,∗Σ̂(h)

y [(A(h))]⊤∗,j2 + [Σ(h)
ε ]j1,j2 ,

the loss criterion can be written as:
p∑

j=1

[
(Σ̂(h)

y )jj − (A(h))j,∗Σ̂(h)
y [(A(h))⊤]∗,j − (Σ(h)

ε )jj

]2

+2
p−1∑
j1=1

p∑
j2=j1+1

[
(Σ̂(h)

y )j1,j2 − (A(h))j1,∗Σ̂(h)
y [(A(h))⊤]∗,j2

]2
.(4.6)

Arrive at the estimating equations through substitution of the assumptions A(h) =
δA(c) and a diagonal Σ(h)

ε and equation of the derivatives w.r.t δ2 and the diagonal
elements of Σ(h)

ε , respectively, to zero:

0 = 4
p−1∑
j1=1

p∑
j2=j1+1

(A(c))j1,∗Σ̂(h)
y [(A(c))⊤]∗,j2

[
(Σ̂(h)

y )j1,j2 − δ2(A(c))j1,∗Σ̂(h)
y [(A(c))⊤]∗,j2

]
,
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+ 2
p∑

j=1
(A(c))j,∗Σ̂(h)

y [(A(c))⊤]∗,j

[
(Σ̂(h)

y )jj − δ2(A(c))j,∗Σ̂(h)
y [(A(c))⊤]∗,j − [Σ(h)

ε ]jj

]
0 = (Σ̂(h)

y )jj − δ2(A(c))j,∗Σ̂(h)
y [(A(c))⊤]∗,j − (Σ(h)

ε )jj for j = 1, · · · , p.

Solve these equations for δ2 and the diagonal elements of Σ(h)
ε and obtain their es-

timates. Hereto isolate Σ(h)
ε from the second equation of the preceeding display and

substitute it in the first, from which δ2 is then easily solveable and can be used to
obtain an estimator of Σ(h)

ε . This gives:

δ̂ = ±

√√√√√∑p−1
j1=1

∑p
j2=j1+1(A(c))j1,∗Σ̂(h)

y [(A(c))⊤]∗,j2(Σ̂(h)
y )j1,j2∑p−1

j1=1
∑p

j2=j1+1

[
(A(c))j1,∗Σ̂(h)

y [(A(c))⊤]∗,j2

]2 ,

(Σ̂(h)
ε )jj = (Σ̂(h)

y )jj − δ̂2(A(c))j,∗Σ̂(h)
y ([A(c)]⊤)∗,j,

There are two estimators of δ. In practice, we suggest to consider the positive one.
Heuristically, that is the only sensible one, as the negative one refers to the case
where all in vivo relationships have a sign opposite of their in vitro counterparts.
Furthermore, the numerator inside the square root of the estimator of δ may not be
positive. A real solution then does not exists. We then suggest to set δ̂ = 0. This
indicates that A(h) cannot be learned from the data. Or, in other words, that A(c)

does not provide (proportional) information on A(h).
The estimator of δ2 can loosely be interpreted as a regression-type estimator.

The analogy starts with the loss criterion which can be rewritten as the following
sum-of-squares criterion:

p∑
j1,j2=1

{
(Σ̂(h)

y − Σ̂(h)
ε ))j1,j2 − δ2[A(c)Σ̂(h)

y (A(c))⊤]j1,j2

}2
.

It resembles the loss criterion of the linear regression model, in the sense that the
elements of the estimates of the marginal variance corrected for the error, Σ̂(h)

y −Σ̂(h)
ε ,

are regressed on the A(c)Σ̂(h)
y (A(c))⊤ – under the proportionality assumption. From

this perspective the estimator of δ2 can then indeed be seen as a ratio of a ‘covariance’
and ‘variance’.

4.3.3 Sparse A(h), shared support and a diagonal Σ(h)
ε

Communality of the human and cell line regulatory systems may also be assumed
at the level of their topology. For instance, gene A regulates gene B in the cell line
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in vitro system if and only if it does so in the human in vivo system. Information
on the regulatory relationships (as captured by the autoregression parameter A) can
be learned from the cell line data and not from the human data. Consequently, the
remainder of this section takes the topology inferred from the former as a template
for the latter. This is then used when learning A(h) from the human data.

A common regulatory topology implies a shared support between A(c) and A(h).
The support of A(c) is assumed known. Moreover, its support is assumed to be
sparse, a requirement to ensure identifiability (see end of this subsection) of the
nonzero elements of A(h). The knowledge of A(c)’s support carries over to A(h) and
used as parameter constraint in its estimation via the minimization of loss criterion
(4.6). The problem of the estimation of A(h) and a diagonal Σ(h)

ε under the above
formulated assumption is thus operationalized as:

min
A(h),Σε

(h)
∥Σ̂(h)

y −A(h)Σ̂(h)
y (A(h))⊤ −Σ(h)

ε ∥2
F

s.t. supp(A(h)) = supp(A(c)), Σ(h)
ε diagonal.

Define U := Σ̂(h)
y − A(h)Σ̂(h)

y (A(h))⊤ − Σ(h)
ε and write g(U) = ∥U∥2

F . To avoid
notational clutter in the derivation of the estimator the (h)-superscript is dropped in
the remainder of this subsection. We thus write, e.g., U := Σ̂y −AΣ̂yA⊤ −Σε.

The constrained optimization problem above can be solved by optimization of the
objective with respect to only the nonzeros elements of (A,Σε). In particular, using
the local convexity of the loss function the nonzero parameters of A are optimized one-
at-the-time, while keeping the other (temporarily) fixed. In fact, for any fixed, nonzero
element we have a (at least local) convex optimization problem. The minimizers will,
thus, be all updated at each iteration and this till convergence.

At each step the derivative of g(U) with respect to a nonzero parameter of A or
Σε is equated to zero. The root of the resulting equation is the updated parameter
estimate. The derivative of g(U) with respect to the (i, j)-th element of A can be
found to be:

∂g(U)
∂aij

= tr
[(
∂g(U)
∂U

)⊤ ∂U
∂aij

]
= −4Ui,∗(AΣ̂y)∗,j

where Xi,∗ and X∗,j represents the i-th row (resp. the j-the column) of the matrix
X, respectively. Substitute U by its expression in the derivative above and, after a
little rewritting, obtain:

∂g(U)
∂aij

= 4[(AΣ̂yA⊤)i,∗(AΣ̂y)∗,j − (Σ̂y −Σε)i,∗(AΣ̂)∗,j].
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This derivative simplifies (cf. Appendix I) to:

(4.7) ∂g(U)
∂aij

= K3a
3
ij + K2a

2
ij + K1aij + K0,

where the K0, K1, K2, K3 are known expression in terms of the other (temporarily
fixed) parameters of A and Σε (see Appendix I). Since we are interested in real
roots, we can have one or three real roots by setting (4.7) to zero which respectively
corresponds to one global minimum of g or two local minima of g. In the latter case
we suggest to evaluate the objective function g on the three real roots in order to find
the overall minimum. Similarly, the derivative of g(U) with respect to the elements
of Σε := diag(σ2

11, · · · , σ2
pp) can be found to be:

∂g(U)
∂σ2

ii

= tr
[(
∂g(U)
∂U

)⊤ ∂U
∂σ2

ii

]
= −2Uii = −2(Σ̂y −Σε −AΣ̂yA⊤)ii.

The above is combined into an iterative procedure that runs over the to-be-estimated
parameter and updates one-at-the-time until convergence. The parameter values at
convergence are the estimates Â and Σ̂ε.

The sparsity assumption is again born out of the need for identifiability of the
problem. Too few zeros in the autoregression parameter require the estimation of
too many parameters while there are only 1

2p(p + 1) degrees of freedom (inherited
from the estimate of Σy). In particular, as p degrees of freedom are to be reserved
for the estimation of diagonal elements of Σε, the cardinality of the support of A(c)

(resp. A(h)) needs to satisfy |supp(A(h))| ≤ 1
2p(p− 1). This, however, is a necessary

and not necessarily a sufficient condition. The latter is provided by the Implicit
Function Theorem [117]. This theorem states (translated to the current context)
that the map from the parameter space to that of a ‘parameter × observations’ space
is one-to-one if its Jacobian is non-singular. This aligns with identifiability: each
choice of the parameters yields a unique value in its range. The translation of this
non-singularity condition on the Jacobian into tangible and general constraints is not
deemed to provide extra insight at this point, as it depends much on the numerics at
hand. But intuition suggests, though with a lot of handwaving, that a sparse A is
more likely to induce a non-singular Jacobian (as it is less likely that two elements
from the lower dimensional parameter domain may then map to the same point in
the outcome space). Pragmatically, the non-singularity could be considered as being
violated when the iterative estimation procedure does not converge.
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4.3.4 Evaluation of the diagonal Σε assumption

The strategies presented here hinge upon the assumption of a diagonal error covari-
ance matrix of the vector autoregressive model. It is investigated whether there is
any empirical ground for this assumption. This comprises the estimation of (the error
covariance matrix of) the VAR(1) model from data of twenty signalling pathways (as
those tend to be best defined) from two in vitro time-course studies. The twenty
pathways and their dimensions have been defined on the basis of the KEGG repos-
itory and the presence of their genes in the data sets. The data sets consist of the
previously described cervical cancer study and a novel colon cancer data. The latter
consists of n = 7 cell lines interrogated at T = 3 time points and available from GEO,
accession number GSE13059.

The VAR(1) model is estimated from each pathway’s time-course data in penal-
ized fashion as the dimension of most pathway exceeds that of the number of cell
lines and time points involved. For reasons explained in Section 4.3, we use ridge
penalized maximum likelihood to fit the VAR(1) model (see [99]). The ridge penalty
parameters are chosen by (LOOCV) to optimize the cross-validated log-likelihood.
The thus estimated error covariance matrices are inverted and standardized to obtain
the partial correlations. For comparison, the VAR(2) model is fitted in similar fashion
to the twenty signalling pathways’ data from both time-course studies. Ridge-type
estimates are non-sparse (although the partial correlations are all close to zero (Fig-
ures 4.1 & 4.2)), thus a sparsification step is needed. This is done by the local false
discovery rate (lfdr) procedure [36, 129].

Figures 4.1 and 4.2 show the densities of the estimated partial correlations of
the twenty pathways, for both data sets, and for the VAR(1) and VAR(2) models.
All pathways have a partial correlation density with most mass tightly concentrated
around zero. Only a few densities have some mass a little away from zero. This
suggests that there are only relatively few off-diagonal elements in the estimated Σ−1

ε

that are possibly nonzero. Inclusion of a second order autoregressive term does not
change the overall conclusion. However, for some pathways it may reduce a few
nonzero partial correlations. In all, the plots suggest that a diagonal Σε could be
considered a reasonable working assumption when assumming a VAR(1) model.
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(a) VAR(1) (b) VAR(2)

Figure 4.1: Cervical cancer cell line data: densities of the partial correlations derived
from the ridge penalized estimate of Σε of the VAR(1) and VAR(2) model (left and
right panel, respectively). Each panel contains twenty densities, one per signalling
pathway and represented by different colors and line styles.

(a) VAR(1) (b) VAR(2)

Figure 4.2: Colon cancer cell line data: densities of the partial correlations derived
from the ridge penalized estimate of Σε of the VAR(1) and VAR(2) model (left and
right panel, respectively). Each panel contains twenty densities, one per signalling
pathway and represented by different colors and line styles.

4.3.5 Illustration

Here the approaches outlined in Sections 4.3.2 and 4.3.3 are illustrated on the data
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from the observational and time-course cervical cancer study, described and used in
the first illustration in Section 4.2.3. We first apply the approach of Section 4.3.2. It
assumes the in vivo autogression parameter to be proportional to its in vitro coun-
terpart, while considering the human error covariance matrix to be diagonal. Knowl-
edge, e.g. an estimate, of A(c) is required for this approach. This is obtained from the
time-course cell line data by fitting the VAR(1) model using the ridge penalized max-
imimum likelihood approach of [99] and implemented in the ragt2ridges-package,
thereby accommodating the high-dimensionality of the data. The resulting Â(c) is
then used to estimate the in vivo autoregression parameter under the proportional-
ity assumption A(h) = δA(c). This yields δ̂ = 0.223. This is different from zero,
which suggests that the cell lines harbour information on the in vivo dynamics. The
strength of this information, as reflected in the exact value of this estimate, is hard to
interpret. Finally, it should be kept in mind that we have selected the positive root
of the estimate of δ2, and the negative one (δ̂ = −0.223) cannot be ruled out on the
basis of the approach of Section 4.3.2.

The approach of Section 4.3.3 requires knowledge of support of the in vitro autore-
gression parameter. This is obtained from the ridge penalized maximum likelihood
estimate of Â(c), from which the largest (in an absolute sense) nonzero elements form
the support. This support is now used to recover A(h) with the same support using
the approach Section 4.3.3. We only consider the top ten (resp. top fifteen) nonzero
elements, as from around twenty nonzero elements onwards the proposed iterative
algorithm did not converge. The actual values of thus obtained Â(h) are not of in-
terest here. But they may be compared to the corresponding values of its in vitro
counterpart Â(c), which is re-estimated obeying the same support. This aims to yield
numeric values of the nonzero elements of Â(c) and Â(h) that are on a comparable scale
(which was hampered by the penalized estimation of the orginal estimate of Â(c)).
Figure 4.3 shows the scatter plots of the nonzero elements of both estimates. Both
panels of this figure show a (weak) positive correlation between the two estimates.
As only the support information is borrowed between the environments, the positive
correlation indicates that information on the transcriptional dynamics is preserved
between the in vitro and in vivo environments. Moreover, it corroborates with the
analysis using approach of Section 4.3.2, which also pointed in the same direction of
the dynamics of the in vitro environment being informative for the other. Finally, the
positive correlation depicted in Figure 4.3 may be used to settle the sign issue of the
analysis result from the approach of Section 4.3.2 discussed above: the positive sign
is indeed more likely.
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Figure 4.3: Plots of A(c) (in vitro) estimate values against A(h) (in vivo) estimates
using the method in Section 4.3.3. The number of nonzero elements was fixed to 10
(left subfigure) and 15 (right subfigure). The red line has slope δ̂ (Section 4.3.2).

4.4 Recovering the precision matrix from the hu-
man VAR(1) model parameters

In this section we explore how the CIG can be efficiently computed given the human
VAR(1) model parameters estimated from previous sections. Indeed, would the sup-
port of the VAR(1) model parameters A and Σϵ be known, then that of the precision
matrix Ωy is implied. This is illustrated by a few examples.

Ex. 1) Let A be symmetric (cf. [148], for examples of this assumption) and Σε = Ip.
Then:

Ω−1
y =

∞∑
t=0

At(At)⊤ =
∞∑

t=0
A2t = (Ipp −A2)−1 or Ωy = Ipp −A2.(4.8)

This identity reveals that A2 and Ωy share the same off-diagonal elements. In
particular, they have the same support.

Ex. 2) Let A be a block diagonal square matrix with blocks A1, . . . ,Ak and Σε =
Ip. Then, At, A⊤, A−1 are also block diagonal matrices. Hence, Ω−1

y =∑∞
t=0 At(At)⊤ and Ωy are block diagonal with blocks of the same size as those

of A. In particular, A and Ωy share their support.

For a more general treatment on the relation between the VAR(1) model parameters
and conditional (in)dependence (as implied by the support of the process precision
matrix) the reader is referred to [28, 29].
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4.5 Conclusion

This chapter explores several approaches to reconstruct gene regulatory networks from
combinations of observational and time-course cell line gene expression data. The
dynamics of the human cell are assumed to obey a first-order vector autoregression
model and it is investigated how the underlying model parameters can be efficiently
learned using the two types of data. Both existing and novel proposed strategies
have been used to this end. The proposed strategies here hinge upon the assumption
of a diagonal error covariance matrix. This assumption has been investigated in a
large-scale simulation, results of which supported the diagonality assumption.

We observed in an application to real data that reconstruction of the conditional
independence graph by borrowing information from the cell line data improves sig-
nificantly. Moreover, our newly proposed strategies appear to be consistent in our
data-driven analysis and indicate preserved transcriptional dynamics between the in
vitro and in vivo environments.
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4.6 Appendix I

Here the details of the derivation of the derivative of ∂g(U) = ∥U∥2
2 with U =

Σ̂(h) −A(h)Σ̂(h)(A(h))⊤ −Σ(h)
ε are provided. Note that below, for notational clarity,

when subsetting a matrix the row and columns indices are separated by a comma,
e.g. Ai,j instead of Aij. Substitution of U in the derivative of g(U) yields:

∂g(U)
∂aij

= −4(Σ̂−Σε −AΣ̂A⊤)i,∗(AΣ̂)∗,j

= −4[(Σ̂−Σε)i,∗(AΣ̂)∗,j − (AΣ̂A⊤)i,∗(AΣ̂)∗,j]
= 4[(AΣ̂A⊤)i,∗(AΣ̂)∗,j − (Σ̂−Σε)i,∗(AΣ̂)∗,j]
:= 4(I− II)

Next, this expression (notably the terms I and II) are simplified to separate terms
involving the to-be-updated element of A from the others. In the following, Xi,−k

and X−k,j represents the i-th row and the j-th column, respectively, of the matrix X
but with the k-element excluded.

II = (Σ̂−Σε)i,∗(AΣ̂)∗,j

= (Σ̂−Σε)i,iAi,∗Σ̂∗,j + (Σ̂−Σε)i,−iA−i,∗Σ̂∗,j

= (Σ̂−Σε)i,i(Ai,jΣ̂j,j + Ai,−jΣ̂−j,j) + (Σ̂−Σε)i,−iA−i,∗Σ̂∗,j

= (Σ̂−Σε)i,iΣ̂j,jaij + (Σ̂−Σε)i,iAi,−jΣ̂−j,j + (Σ̂−Σε)i,−iA−i,∗Σ̂∗,j

I =
∑
k ̸=i

(Ai,∗Σ̂(A⊤)∗,k)(Ak,∗Σ̂∗,j) + (Ai,∗Σ̂(A⊤)∗,i)(Ai,∗Σ̂∗,j)

= A + B

A =
∑
k ̸=i

(Ai,∗Σ̂(A⊤)∗,k)(Ak,∗Σ̂∗,j)

=
∑
k ̸=i

[
(Ai,jΣ̂j,∗(A⊤)∗,k)(Ak,∗Σ̂∗,j) + (Ai,−jΣ̂−j,∗(A⊤)∗,k)(Ak,∗Σ̂∗,j)

]
= aij

(
Σ̂j,∗(A⊤)∗,−i

)
(A−i,∗Σ̂∗,j) +

(
Ai,−jΣ̂−j,∗(A⊤)∗,−i

)
(A−i,∗Σ̂∗,j)

B = (Ai,∗Σ̂(A⊤)∗,i)(Ai,∗Σ̂∗,j)
=

[
Ai,j(Σ̂j,∗(A⊤)∗,i) + Ai,−j(Σ̂−j,∗(A⊤)∗,i)

][
Ai,jΣ̂j,j + Ai,−jΣ̂−j,j

]
=

[
Ai,j

(
Σ̂j,j(A⊤)j,i + Σ̂j,−j(A⊤)−j,i

)
+ Ai,−j

(
Σ̂−j,j(A⊤)j,i + Σ̂−j,−j(A⊤)−j,i

)]
[
aijΣ̂j,j + Ai,−jΣ̂−j,j

]
=

[
Ai,jΣ̂j,j(A⊤)j,i + Ai,jΣ̂j,−j(A⊤)−j,i + Ai,−jΣ̂−j,j(A⊤)j,i + Ai,−jΣ̂−j,−j(A⊤)−j,i

]
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[
aijΣ̂j,j + Ai,−jΣ̂−j,j

]
=

[
Σ̂j,ja

2
ij + 2Ai,−jΣ̂−j,jaij + Ai,−jΣ̂−j,−j(A⊤)−j,i

][
aijΣ̂j,j + Ai,−jΣ̂−j,j

]
=

(
Σ̂2

j,ja
3
ij + 2Σ̂j,jAi,−jΣ̂−j,ja

2
ij + Ai,−jΣ̂−j,−j(A⊤)−j,iΣ̂j,jaij

)
+(

Ai,−jΣ̂−j,jΣ̂j,ja
2
ij + 2(Ai,−jΣ̂−j,j)2aij + (Ai,−jΣ̂−j,−j(A⊤)−j,i)(Ai,−jΣ̂−j,j)

)
= Σ̂2

j,ja
3
ij + 3Ai,−jΣ̂−j,jΣ̂j,ja

2
ij +

(
Ai,−jΣ̂−j,−j(A⊤)−j,iΣ̂j,j + 2(Ai,−jΣ̂−j,j)2

)
aij

+(Ai,−jΣ̂−j,−j(A⊤)−j,i)(Ai,−jΣ̂−j,j)

Aggregate the above to arrive at:

I = Σ̂2
j,ja

3
ij

+3Ai,−jΣ̂−j,jΣ̂j,ja
2
ij

+
[
Ai,−jΣ̂−j,−j(A⊤)−j,iΣ̂j,j + 2(Ai,−jΣ̂−j,j)2 +

(
Σ̂j,∗(A⊤)∗,−i

)
(A−i,∗Σ̂∗,j)

]
aij

+(Ai,−jΣ̂−j,−j(A⊤)−j,i)(Ai,−jΣ̂−j,j) +
(
Ai,−jΣ̂−j,∗(A⊤)∗,−i

)
(A−i,∗Σ̂∗,j)

Hence,

∂g(U)
∂aij

= 4
{

Σ̂2
j,ja

3
ij

+3Ai,−jΣ̂−j,jΣ̂j,ja
2
ij

+
[
Ai,−jΣ̂−j,−j(A⊤)−j,iΣ̂j,j + 2(Ai,−jΣ̂−j,j)2 +

(
Σ̂j,∗(A⊤)∗,−i

)
(A−i,∗Σ̂∗,j)

−(Σ̂−Σε)i,iΣ̂j,j

]
aij

+(Ai,−jΣ̂−j,−j(A⊤)−j,i)(Ai,−jΣ̂−j,j) +
(
Ai,−jΣ̂−j,∗(A⊤)∗,−i

)
(A−i,∗Σ̂∗,j)

−(Σ̂−Σε)i,iAi,−jΣ̂−j,j − (Σ̂−Σε)i,−iA−i,∗Σ̂∗,j

}
= K3a

3
ij + K2a

2
ij + K1aij + K0,

where

K0 = 4
{

(Ai,−jΣ̂−j,−j(A⊤)−j,i)(Ai,−jΣ̂−j,j) +
(
Ai,−jΣ̂−j,∗(A⊤)∗,−i

)
(A−i,∗Σ̂∗,j)

−(Σ̂−Σε)i,iAi,−jΣ̂−j,j − (Σ̂−Σε)i,−iA−i,∗Σ̂∗,j

}
,

K1 = 4
[
Ai,−jΣ̂−j,−j(A⊤)−j,iΣ̂j,j + 2(Ai,−jΣ̂−j,j)2 +

(
Σ̂j,∗(A⊤)∗,−i

)
(A−i,∗Σ̂∗,j)

−(Σ̂−Σε)i,iΣ̂j,j

]
,

K2 = 12Ai,−jΣ̂−j,jΣ̂j,j,

K3 = 4Σ̂2
j,j.
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[74] Krämer, N., Schafer, J., and Boulesteix, A.-L. (2009). Regularized estimation
of large-scale gene association networks using graphical gaussian models. BMC
Bioinformatics, 10(1):384.

[75] Krammer, P. H., Galle, P. R., Moller, P., and Debatin, K. M. (1998). Cd95(apo-
1/fas)-mediated apoptosis in normal and malignant liver, colon, and hematopoietic
cells. Adv. Cancer Res., 75:251–273.

[76] Landi, M. T., Dracheva, T., Rotunno, M., Figueroa, J., H. Liu, A. D., Mann, F.,
Fukuoka, J., Hames, M., Bergen, A., Murphy, S., Yang, P., Pesatori, A., Consonni,
D., Bertazzi, P., Wacholder, S., Shih, J., Caporaso, N., and Jen, J. J. (2008).
Gene expression signature of cigarette smoking and its role in lung adenocarcinoma
development and survival. PLoS ONE, 3:e1651. https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE10072.

[77] Lappalainen, T. and et al. (2013). Transcriptome and genome sequencing un-
covers functional variation in humans. Nature, 501(7468):506–511.

[78] Lauritzen, S. (1996). Graphical models. The Clarendon Press, Oxford University
Press, New York.

[79] Lauritzen, S., Dawid, A., Larsen, B., and Leimer, H.-G. (1990). Independence
properties of directed markov fields. Networks, 20:491 – 505.

[80] Leday, G., de Gunst, M., Kpogbezan, G., van der Vaart, A., van Wieringen,
W., and van de Wiel, M. (2017). Gene network reconstruction using global-local
shrinkage priors. Ann. Appl. Stat., 11(1):41 – 68.

[81] Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-
dimensional covariance matrices. J. Multivariate Anal., 88(2):365–411.

[82] Lee, J. and et al. (1994). A protein kinase involved in the regulation of inflam-
matory cytokine biosynthesis. Nature, 372:739–746.

[83] Lee, S., Pe’er, D., Dudley, A., Church, G., and Koller, D. (2006). Identifying
regulatory mechanisms using individual variation reveals key role for chromatin
modification. Proc. Natl. Acad. Sci. USA, 103:14062 – 14067.

[84] Lehne, B., Lewis, C., and Schlitt, T. (2011). From snps to genes: Disease asso-
ciation at the gene level. PLos ONE, 6(6):e20133.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10072
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10072


Bibliography 127

[85] Lewis, C., Brault, C., Peck, B., Bensaad, K., Griffiths, B., Mitter, R.,
Chakravarty, P., East, P., Dankworth, B., Alibhai, D., et al. (2015). Srebp main-
tains lipid biosynthesis and viability of cancer cells under lipid-and oxygen-deprived
conditions and defines a gene signature associated with poor survival in glioblas-
toma multiforme. Oncogene.

[86] Li, G., Shabalin, A., Rusyn, I., Wright, F., and Nobel, A. (2018). An empirical
bayes approach for multiple tissue eqtl analysis. Biostatistics, 19(3):391–406.

[87] Li, S., Wu, L., and Zhang, Z. (2006). Constructing biological networks through
combined literature mining and microarray analysis: a LMMA approach. Bioin-
formatics, 22:2143 – 2150.

[88] Li, Y., Jiang, B., Ensign, W., Vogt, P., and Han, J. (2000). Myogenic differenti-
ation requires signalling through both phosphatidylinositol 3-kinase and p38 map
kinase. Cell. Signal., 12:751–757.

[89] Lian, H. (2011). Shrinkage tuning parameter selection in precision matrices
estimation. J. Statist. Plann. Inference, 141(8):2839–2848.

[90] Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). Mix-
tures of g-priors for bayesian variable selection. Journal of the American Statistical
Association, 103(481):410–423.

[91] Lim, K., Lim, K., Price, A., Orr, B., Eberhart, C., and Bar, E. (2013). Inhibition
of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits
hif transcriptional response in a lactate-independent manner. Oncogene.

[92] Luetkepohl, H. (2005). The New Introduction to Multiple Time Series Analysis.
Springer, Berlin.

[93] Luo, S., Song, R., and Witten, D. (2014). Sure Screening for Gaussian Graphical
Models. arXiv:1407.7819.

[94] MacKay, D. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, New York, NY, USA.

[95] Madhankumar, A., Slagle-Webb, B., Mintz, A., Sheehan, J. M., and Connor,
J. R. (2006). Interleukin-13 receptor–targeted nanovesicles are a potential therapy
for glioblastoma multiforme. Molecular Cancer Therapeutics, 5(12):3162–3169.

[96] McGrory, C. and Titterington, D. (2007). Variational approximations in bayesian
model selection for finite mixture distributions. Computational Statistics and Data
Analysis, 51:5352 – 5367.
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Samenvatting

In dit proefschrift hebben we statistische methoden voor de analyse van hoog-dimensionele
data ontwikkeld. In het bijzonder besteden we aandacht aan reconstructie van hoog-
dimensionele netwerken. In de genetica is de identificatie van gen-regulerende netwerken
cruciaal voor het begrijpen van genfunctie, en derhalve belangrijk zowel in behandel-
ing als voorspelling van ziekten. Hoog-dimensionele netwerkreconstructie is een zeer
uitdagende taak aangezien het aantal mogelijke grafen exponentieel groeit met het
aantal variabelen (e.g. genen). Echter, een aantal van de verbanden tussen deze vari-
abelen zijn mogelijk bekend vanuit de literatuur. Zo zijn de huidige overtuigingen op
het gebied van interacties tussen genen bijvoorbeeld geconcentreerd in kennisbanken
als KEGG en Reactome. We introduceren een raamwerk waarin het opnemen van
dergelijke a-priori informatie in de reconstructie mogelijk wordt op een zachte manier:
het informeert de analyse wanneer correct, maar kan gecompenseerd worden indien
volledig incompatibel met de data. We behandelen ook de onderwerpen genetische
associatie studies (eQTL mapping) en data integratie.

In hoofdstuk 1 introduceren we een nieuwe global-local shrinkage prior van het type
ridge voor niet-gerichte netwerk reconstructie gebaseerd op SEMs met a-posteriori
selectie van zijden. De voorgestelde aanpak is computationeel snel en doet het beter
dan bekende concurrenten zoals de graphical lasso.

In hoofdstuk 2 breiden we hoofdstuk 1 uit door prior informatie toe te voegen
in de reconstructie van niet-gerichte netwerken. Er wordt rekening gehouden met
deze prior kennis op een zachte manier die de beschikbare data toelaat om de prior
informatie te compenseren indien deze niet relevant is. Bovendien is de voorgestelde
methode in staat om de overeenstemming tussen de beschikbare data en de prior
informatie expliciet te schatten, hetgeen een noviteit is bij het toevoegen van prior
informatie in netwerk inferentie.

In hoofdstuk 3 introduceren we een raamwerk voor het simultaan analyseren van
meerdere gerelateerde hoog-dimensionele en complexe datasets. Zulke analyses om-
vatten onder andere gen-regulerende netwerk reconstructies, genetische associatie
studies (e.g. eQTL mapping) en data integratie in genomica. Om de analyse van
kleine n relatief tot grote p mogelijk te maken introduceren we de hoefijzer prior
die sparsity toelaat; een gewenste eigenschap voor de analyse van zulke data. We
illustreren de procedure met twee toepassingen, namelijk: de reconstructie van gen-
regulerende netwerken en eQTL mapping.

In hoofdstuk 4 verkennen we diverse methoden die gen-regulerende netwerken
reconstrueren door combinatie van observationele (in vivo) en temporele cellijn gen-
expressie (in vitro) data. De dynamiek van de humane cel wordt aangenomen een
eerste-orde vector autoregressie VAR(1) model te volgen en er wordt onderzocht hoe
de onderliggende model parameters efficient geleerd kunnen worden door gebruik van
de twee soorten datasets. We zien in een toepassing op echte data dat de reconstructie
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van de conditionele onafhankelijkheidsgraaf significant verbetert door informatie van
de cellijn te lenen. Bovendien lijken onze voorgestelde strategieën om de VAR(1)
model parameters te leren consistent in onze data-gedreven analyse en tonen behoud
van transcriptionele dynamiek tussen de in vivo en in vitro omgevingen.



Summary

In this thesis we developed statistical methods for the analysis of high dimensional
data. We particularly focussed on high dimensional networks reconstruction. In ge-
nomics, the identification of gene regulatory networks is crucial for understanding
gene function, and hence important for both treatment and prediction of diseases.
High dimensional networks reconstruction is a very challenging task since the num-
ber of possible graphs grows exponentially with the number of variables (e.g. genes).
However, some of the relationships between these variables may be known from the
literature. For instance, the current beliefs on interactions among genes is condensed
in repositories like KEGG and Reactome. We introduce a framework which allows
the incorporation of such prior information in the reconstruction in a soft manner
such that it informs the analysis if correct, but can be overruled if completely incom-
patible with the data. We also treat the subjects of genetic association studies (eQTL
mapping) and data integration.

In chapter 1 we introduce a new global-local shrinkage ridge-type prior for undi-
rected networks reconstruction based on SEMs with posterior edge selection. The
proposed approach is computationally fast and outperforms known competitors such
as the graphical lasso.

In chapter 2 we extend chapter 1 to include prior information in reconstructing
undirected networks. The incorporation of the prior knowledge is done in a soft
manner allowing the data at hand to overrule the prior information if not relevant.
Furthermore, the proposed method is able to explicitly estimate the agreement of
the prior knowledge with the data at hand which is a novelty in incorporating prior
information in network inference.

In chapter 3 we introduce a framework for simultaneously analysing multiple re-
lated high dimensional and complex datasets. Such analyses include gene regulatory
network reconstruction, genetic association studies (e.g. eQTL mapping) and data
integration in genomics, to name but a few. To enable the analysis for small n relative
to large p, we introduce the horseshoe prior which allows for sparsity; a desired prop-
erty for the analysis of such data. We illustrate the approach by two applications,
namely: to the reconstruction of gene regulatory networks and to eQTL mapping.

In chapter 4 we explore several approaches to reconstruct gene regulatory net-
works from combining observational (in vivo) and time-course cell line (in vitro) gene
expression data. The dynamics of the human cell are assumed to obey a first-order
vector autoregression VAR(1) model and it is investigated how the underlying model
parameters can be efficiently learned using the two types of datasets. We see in an
application to real data that reconstruction of the conditional independence graph by
borrowing information from the cell line data improves significantly. Moreover, our
newly proposed strategies to learn the VAR(1) model parameters are able to indicate
preserved transcriptional dynamics between the in vitro and in vivo environments.
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