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ABSTRACT 

Obesity and dyslipidaemia are features of the metabolic syndrome and risk factors for chronic kidney 

disease. The cellular mechanisms connecting metabolic syndrome with chronic kidney disease onset 

and progression remain largely unclear. We show that proximal tubular epithelium is a target site for 

lipid deposition upon overnutrition with a cholesterol-rich Western-type diet. Affected proximal 

tubule epithelial cells displayed giant vacuoles of lysosomal or autophagosomal origin, harbouring 

oxidized lipoproteins and concentric membrane layer structures (multilamellar bodies), reminiscent 

of lysosomal storage diseases; lipidomic analysis revealed renal deposition of cholesterol and 

phospholipids, including lysosomal phospholipids. Proteomic profiles of renal multilamellar bodies 

were distinct from those of epidermis or lung multilamellar bodies and of cytoplasmic lipid droplets. 

Tubular multilamellar bodies were observed in kidney biopsies of obese hypercholesterolaemic 

patients, and the concentration of the phospholipidosis marker di-docosahexaenoyl (22:6) 

bis(monoacylglycerol) phosphate was doubled in urine from individuals with metabolic syndrome 

and chronic kidney disease. The enrichment of proximal tubule epithelial cells with phospholipids 

and multilamellar bodies was accompanied by enhanced inflammation, fibrosis, tubular damage 

markers and higher urinary electrolyte content. Concomitantly to the intralysosomal lipid storage, a 

renal transcriptional response was initiated to enhance lysosomal degradation and lipid synthesis. In 

cultured proximal tubule epithelial cells, inhibition of cholesterol efflux transport or oxysterol 

treatment induced effects very similar to the in vivo situation, such as multilamellar body and 

phospholipid amassing, and induction of damage, inflammatory, fibrotic and lipogenic molecules. 

Onset of phospholipidosis onset in proximal tubule epithelial cells is a novel pathological trait in 

metabolic syndrome-related chronic kidney disease, and emphasizes the importance of healthy 

lysosomes and nutrition for kidney wellbeing.  
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Introduction 

In the current obesity epidemic, increasing attention has been given to the obesity-related diseases, 

atherosclerosis, diabetes and metabolic syndrome (MetS). Emerging evidence indicates that MetS 

individuals are prone to chronic kidney diseases (CKD) and end-stage renal diseases (ESRD). A 

systematic meta-analysis based on 25 general population cohort studies demonstrates that obesity 

confers a significantly higher risk of kidney disease compared to normal-weight individuals [1]. In 

addition, two large cohort studies in Japan and in the United States linked an increased risk for ESRD 

with high body-mass index (BMI) [2, 3] independently of hypertension and diabetes [2-6]. 

Remarkably, visceral obesity also puts lean subjects at risk of CKD [7, 8]. The association between 

MetS and CKD becomes particularly relevant in renal transplantation, as MetS appearance adversely 

affects allograft survival and long-term function [9]. 

Despite such associations between MetS and CKD, the etiological role of MetS and obesity in CKD 

development and progression remains unclear, due to the complexity and bidirectionality of the 

relationship between the two medical conditions [10]. Nevertheless, the description of ectopic fat 

deposition in kidneys and the strong interrelation between obesity (particularly BMI) and ESRD 

suggest a role for fat accumulation per se in the initiation of renal dysfunction or in the progression 

of existing renal disease [11, 12]. Several studies indeed hint at a causal relationship: (a) weight loss 

ameliorates proteinuria in overweight patients affected by chronic proteinuric nephropathies; (b) the 

rates of allograft dysfunction and acute rejection episodes are higher for obese living kidney donors; 

(c) inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), the rate-limiting 

enzyme in cholesterol biosynthesis, improves proteinuria and reduces renal function loss; (d) low-

carbohydrate and low-fat diets exert beneficial effects on renal function in obese individuals [13-17]. 

Altogether, these reports strongly indicate a lipid-mediated effect in initiating renal dysfunction or 
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injury. In this regard, most of the lipotoxic effect of renal lipid overload linked to obesity and MetS 

and kidney dysfunction has been attributed to renal steatosis through free-fatty acid (FFA) and 

triglyceride (neutral lipids) accumulation within cytoplasmic lipid droplets (LDs) [12, 18, 19]. Here, we 

report the accumulation of free cholesterol (FC) and phospholipids (polar lipids) within multilamellar 

organelles of lysosomal origin (phospholipidosis) inside renal proximal tubular epithelial cells (PTEC) 

following Western-diet (WD) feeding. A similar excessive storage of complex polar lipids has been 

disclosed in PTEC in lysosomal storage diseases, caused by defects in lysosomal lipases or lysosomal 

lipid transport proteins [20]. 
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Material and Methods 

Animal studies  

Male wild-type C57BL/6 mice (Charles River) were subjected to control diet (4021.84, AB Diets), 

Western diet (4021.83, AB Diets) or water enriched with 15% (w/v) fructose (Sigma Aldrich) ad 

libitum for 16 weeks [21]. GFP-LC3 transgenic mice [22, 23] were fed Western diet. Kidneys from 

Npc1nih/nih, Glatm1Kul/Y, ob/ob mice and 88-week-old mice were used for transmission electron 

microscopic (TEM) imaging [24-27]. All procedures were approved by the Animal Care and Use 

Committee of the Academic Medical Center Amsterdam. 

Cell culture and isolation of multilamellar bodies (MLBs) 

HK2 and IMM-PTEC were cultured in DMEM/F12 supplemented with ITSe, triiodothyrionine, 

hydrocortisone and prostaglandin E1 (Sigma-Aldrich), plus interferon-ϒ for IMM-PTEC (PROSPEC) 

[28]. MLBs were isolated by homogenization and sucrose gradient fractionation; MLBs were 

recovered at the interface between 0.4 M and 0.35 M sucrose. Urine MLBs were purified by 

ultracentrifugation [29]  

Lipidomics and proteomics 

Lipids were isolated by chloroform/methanol extraction and quantified by ESI-MS/MS [30-32]. 

Sphingolipids were butanol-extracted and analysed by LC-MS/MS [33-35]. GC-MS Solution Software 

was used for data acquisition and processing [36]. Urine di-docosahexaenoyl (22:6) 

bis(monoacylglycerol) phosphate (di-22:6-BMP) content was determined by HPLC-MS [37, 38].  

For LC-MS proteomics, samples were denatured and digested, following by Nanoscale LC separation 

of tryptic peptides. MS data were acquired in triplicate in ion mobility enabled data independent 

analysis mode [39] using a Synapt G2-Si instrument (Waters Corporation). ISOQuant was applied for 

integrated quantitative analysis of data from multiple LC-MS [40, 41]. Reactome, BLAST2GO, GO 
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terms and KEGG pathway annotation analyses were used for pathway/gene ontology annotation [42-

44]. 

Patient study  

Urine samples belong to the TransplantLines cohort (ClinicalTrials.gov Identifier: NCT02811835, 

University Medical Center Groningen, The Netherlands) [45-48] Control samples were obtained from 

transplant donors and the disease group was selected on basis of CKD clinical diagnosis and presence 

of clinical parameters matching MetS World Health Organization criteria (hypertension, BMI, plasma 

cholesterol and triglycerides). The transmission electron microscopy (TEM) images shown in 

supplementary material, Figure S5 were selected from screening 69 biopsies of nephrotic syndrome 

patients from the University Hospital of Nijmegen, The Netherlands; the images of Figure 5E are 

derived from obese hypercholesterolaemic patient renal biopsies collected at the Academic Medical 

Center of Amsterdam, The Netherlands. 

Statistics 

Statistics was performed using One-Way ANOVA and Dunnett’s tests; Mann-Whitney U test and 

Spearman rank correlation. Data are presented as mean and SEM; p < 0.05 was considered 

significant. 
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Results 

Accumulation of polar lipids/phospholipids and free-cholesterol in murine proximal tubular 

epithelial cells upon Western-type diet feeding 

Feeding mice for 16 weeks a Western-type diet (WD) containing 0.15% cholesterol and providing 43% 

energy from fat vs. a control diet (CD), in which 11% of energy comes from fat, leads to a prominent 

cytoplasmic vacuolization of renal tubular epithelial cells (Figure 1A,B). In all kidneys from WD-fed 

mice, the vacuoles were located in the proximal tubules S2/S3 segments (not in S1) and absent in 

distal tubular, endothelial or glomerular cells (Figure 1A, and supplementary material, Figure S1A). By 

staining kidney sections for the lipid droplet marker perilipin-2 [49, 50], we found numerous small 

LDs along the tubular cell basolateral membrane after WD-feeding; however, the large, more apically 

located, vacuoles were all negative for perilipin-2 (Figure 1C). Remarkably, these vacuolized tubules 

were enriched in phospholipids and free-cholesterol, as shown by Nile red and filipin staining, 

respectively (Figure 1D,E). Accordingly, quantitative lipidomics analysis of renal tissues from mice 

subjected to WD revealed an increase in several lipids, including free-cholesterol (FC), fatty acids 

(FA), several phospholipids and sphingolipids (Figure 1F). 

As human studies showed that obesity increases the incidence of a distinct obesity-related 

glomerulopathy (ORG) [51-53], the extent of glomerular lesions (mesangial cell proliferation, 

mesangial matrix expansion and mesangiolysis) after WD feeding was evaluated. However, no 

significant alterations were observed in the glomerular compartment between CD and WD groups 

(supplementary material, Figure S1B). Thus, although kidneys are generally regarded as non-highly 

active metabolic organs, we show that tubular epithelial cells are sites of profound lipid deposition 

within large vacuoles during lipid overnutrition. 

Features of acquired lysosomal storage disease in kidneys exposed to lipid overloading 
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Transmission electron microscopy revealed that these tubular vesicles contained lots of concentric 

thin electron-dense lamellae surrounded by a limiting membrane (Figure 2A). These structures 

reached a maximum diameter of 8-9 µm and ultrastructurally resembled the multilamellar bodies 

(MLBs) that we and others found in kidneys from mice with lysosomal storage diseases such as Fabry 

and Niemann-Pick type C [24, 54] (supplementary material, Figure S2A). In line with studies 

associating aging with lysosomal impairment [55], aged mice also presented MLBs. As after WD 

feeding, subjecting mice to high-fat diet (HFD) resulted in MLB formation in PTEC (supplementary 

material, Figure S2A). In contrast, leptin-deficient (ob/ob) mice on a regular diet and Wt mice given 

ad libitum water enriched with 15% fructose for 16 weeks have hardly any renal MLBs 

(supplementary material, Figure S2B, S2C). This implies that the massive expansion of MLBs in PTEC is 

a specific reaction to excessive dietary lipid intake, and not generally to any kind of overnutrition. 

Next, we discovered that lysosomal and autophagy markers, LIMP-2, CD63, p62 and LC3 [56], were 

present in the vacuole delimiting zone in WD-PTEC (Figure 2A,B). To directly monitor autophagy, 

GFP-LC3 transgenic mice were fed a WD for 16 weeks; we found that both LIMP-2 and GFP-LC3 co-

localized at the vacuole limiting membrane and Western diet dramatically increased renal GFP-LC3 

puncta formation (Figure 2C). This suggests a lysosomal/autophagic origin (autolysosomes) [57] of 

renal diet-induced MLBs, similarly to what is described in lysosomal storage diseases [20]. 

We next used laser-capture microdissection (LCM) technology to obtain a histologically pure cell 

population enriched in vacuolized PTEC for RNA transcript profiling. The expression of lysosome- and 

lipid metabolism-associated genes was enhanced in response to high-fat/cholesterol feeding in 

vacuolized proximal tubules (Figure 2D). Indeed, the transcription of genes encoding LIMP-2 and the 

master regulator of lysosomal function transcription factor EB (TFEB) showed a trend towards 

increased expression upon overnutrition (p = 0.057) and the gene expression of the lysosomal 
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enzymes acid ceramidase Asah1 (N-acylsphingosine amidohydrolase 1) and acid sphingomyelinase 

Spmd1 (sphingomyelin phosphodiesterase 1) was significantly upregulated in WD-vacuolized tubules 

[58, 59]. Furthermore, the lipogenic transcription factors sterol regulatory element-binding protein 2 

and 1c (Srebp2, Srebp1c) and their target genes Ldlr (low-density lipoprotein receptor) and Fas (fatty 

acid synthase), respectively, were strongly induced in lipid-enriched tubules [60, 61] (Figure 2D). 

Altogether, our findings disclose the importance of tubular lysosomes in the renal response to WD 

feeding and the acquisition of a “lysosomal storage disease phenotype” in PTEC upon diet-derived 

lipid overload. 

Finally, we found that renal MLB formation is likely to be driven by lipoprotein uptake, since WD-

induced renal vacuoles harbour lipoproteins, including oxidized lipoproteins, and LDLR (Figure 2E). 

Renal and urinary MLBs have a unique proteomic footprint 

As MLBs from other organs are known to be released into the extracellular space [54], we wondered 

whether MLBs could be secreted by PTEC. MLBs can be detected by TEM in urine of mice fed a WD 

(Figure 3A). In addition, immortalized proximal tubular epithelial cells (IMM-PTEC) secreted 

extracellular vesicles in a lysosomal storage disease-like state, as proven by the detection of the 

flotillin-2 extracellular vesicle marker [62] in the supernatant of IMM-PTEC treated with U18666A, an 

inhibitor of cholesterol trafficking out of lysosomes, largely used to reproduce in vitro the NPC1 

disease [63-65] (Figure 3B). 

To better characterize MLBs, proteomic analysis was performed on MLBs isolated from kidneys and 

urine of WD-fed mice or U18666A-stimulated IMM-PTEC (supplementary material, Figure S3A-C). We 

identified 526 proteins (supplementary material, Excel spreadsheet S1); Figure 3C shows the most 

abundant proteins detected in kidneys, urine and IMM-PTEC upon metabolic overloading. Many of 

these proteins have been identified as located within extracellular exosomes, and some, such as 
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GGT1 (gamma-glutamyltransferase 1), ATPA1 (ATPase, Na+/K+ transporting, alpha 1 polypeptide), 

and ALDOB (aldolase B, fructose-bisphosphate) have high (though not exclusive) renal expression, 

(www.ncbi.nlm.nih.gov/gene). In addition, kidney MLBs express proteins involved in lipid cellular 

uptake and trafficking, such as megalin [66, 67], sterol carrier protein 2 (SCP2) [68, 69], Hsp90 [70], 

legumain (LGMN) [71], Na+/H+ exchange regulatory cofactor 3 (NHRF3) [72], and fatty acid-binding 

proteins (FABPs), albumin and apolipoprotein E [73]. 

Proteomics also revealed the presence of lysosomal proteins and proteins normally located in other 

organelles and cellular compartments, such as cytoskeleton, mitochondria and plasma membrane 

(Figure 3D and supplementary material, Figure S4). Reactome pathway-based analysis show that 

metabolism-related pathways are among the most enriched pathways (supplementary material, 

Figure S3D, highlighted in yellow) associated with the MLB proteome. This is in line with the known 

lysosomal functions in cellular clearance and nutrient/energy sensing [74, 75] and the above 

described data indicating that lysosome-derived MLBs are part of a metabolic cellular adaptation to 

lipid overload. 

It is to be noted that we used a common organelle isolation procedure based on gradient-density 

centrifugation, as employed by others for MLB isolation [76, 77]. Although this method is not 

completely contamination-free, it is the only one suitable for organelle isolation from tissues, in 

contrast to isolation from cell lines, which can be engineered to stably express a tagged organelle-

specific marker. Comparison of the renal MLB proteome with published data from proteomics of 

lysosome-related organelles (LRO), lung/epidermis-derived MLBs and lipid droplets from enterocytes, 

adipocytes or hepatocytes [76-81] revealed that renal MLBs have a unique protein profile, as shown 

by frequency/hierarchical clustering analysis (Figure 4). Indeed, most proteins were identified solely 

in renal MLBs, but not in lung/skin MLBs or LDs (supplementary material, Excel spreadsheet S2 and 

This article is protected by copyright. All rights reserved.



Table S1), indicating that they are distinct organelles. However, comparing GO annotation and 

pathways analyses of all seven sets of proteomes revealed that most of the detected proteins share 

similarities in general function such as catalytic activity and binding and participation in metabolic 

processes (supplementary material, Figure S5). 

Oxysterols and impaired cholesterol trafficking cause MLB formation, disruption of lysosome 

homeostasis and induction of cholesterogenesis genes 

By means of in vitro assays with IMM-PTEC, we demonstrate that the same multilamellar structures 

observed in vivo upon nutrient overload appear in PTECs after exposure to U18666A, oxidized LDL 

(oxLDL) and 7-ketocholesterol (7KC), which is the major oxidation product of cholesterol and among 

the most common oxysterols found in food [82] (Figure 5A). Accordingly, IMM-PTEC treatment with 

U18666A, oxLDL or 7KC elevates the intralysosomal phospholipid content and the expression of 

LIMP-2, as well as their colocalization (Figure 5B). Furthermore, oxysterols increase expression of 

both LIMP-2 and the autophagy adaptor p62 [56, 83] (Fig S2D). Altogether, the in vitro data validate 

the lysosomal origin of the MLB/vacuole organelles seen in vivo and suggest an etiological role of 

cholesterol overload in the disruption of lysosomal homeostasis. 

Since the maintenance of a proper acidic pH is fundamental for the digestion of lysosomal cargo, 

including lipids [84], we studied the lysosomal acidification rate and found that U18666A, oxLDL and 

7KC all increased lysosomal pH. Chloroquine was used as a positive control to inhibit lysosome 

acidification [85] (Figure 5C). 

Lastly, tubular phospholipidosis was accompanied by internalization of cell surface free cholesterol 

and an increase in intracellular bismonoacylglycerophosphate (BMP), an atypical phospholipid 

specific for the (endo)lysosomal compartment involved in intracellular cholesterol transport [86] 

(Figure 5D). Besides, BMP expression overlapped with the sites of phospholipidosis in U18666A-
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treated human PTECs (Figure 5E). Finally, the gene expression of Srebp2, Ldlr and Hmgcr, the rate-

controlling enzyme in cholesterol synthesis [60], were all significantly upregulated by U18666A in 

IMM-PTEC, whereas the gene expression of the lysosomal phospholipase A2 was downregulated 

(Figure 5F). 

Altogether, these data indicate that metabolic overloading of PTECs disrupts lysosomal homeostasis 

and reprograms cells towards the onset of anabolic pathways.  

Diet-mediated lipid overload of tubular cells instigates tubular damage, inflammation and collagen 

deposition in mice, and promotes formation of lipid-rich MLBs in human TECs 

To expand our view of the effects of overfeeding on kidney health and function, changes in damage, 

inflammatory and fibrotic parameters in kidneys were examined. Strikingly, after high-fat/cholesterol 

feeding, the expression of the sodium-glucose co-transporter 2 (SGLT2) at the apical membrane of 

proximal tubules almost vanished and concomitantly the proximal tubule injury marker KIM-1 

(kidney injury molecule-1) [87] was induced in PTECs.  The kidneys of WD-fed mice also show 

macrophage infiltration and collagen deposition (Figure 6A). The gene expression of Sglt2 was 

significantly diminished in WD kidneys, whereas the transcription of genes encoding MCP-1 

(monocyte chemoattractant protein-1), TGF-β (transforming growth factor-β) and CTGF (connective 

tissue growth factor) was augmented (Figure 6B). Accordingly, in vitro stimulation of IMM-PTEC with 

U18666A or 7KC provided similar results, with a reduced gene expression of the transporters Sglt2 

and Atp1a1 (ATPase Na+/K+ transporting subunit α 1) and an increased expression of Mcp1, Kim1, 

Tgfb1, Ctgf (Figure 6C). In addition, WD feeding caused higher urinary concentrations of electrolytes 

that are normally reabsorbed from the tubular lumen after glomerular filtration (Figure 6D). These 

data strongly indicate that lipid-rich diets can provoke kidney disease as tubular injury and 
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malfunction, inflammation and collagen deposition are all key features of renal dysfunction and 

pathology [88]. 

To translate our in vivo and vitro findings to human obesity-related nephropathology, kidney biopsies 

and urine samples from obese and lean individuals were used. In the presence of obesity and 

hypercholesterolaemia, human PTEC display LIMP-2-positive vacuoles, BMP accumulation and MLBs 

(Figure 6E). In addition, patients affected by nephrotic syndrome, characterized by elevated serum 

levels of total cholesterol, LDL cholesterol, and lipoprotein(a) [89], present MLBs in renal tubules 

(supplementary material, Figure S6A), emphasizing the potential role of hyperlipidaemia in kidney 

MLB genesis. MLBs were also present at the brush border of tubular cells (supplementary material, 

Figure S6B) and in the tubular lumen (supplementary material, Figure S6C), which together with the 

detection of MLBs in urine (Figure 3A), strongly suggest that MLBs are excreted by TEC into the 

urinary space. Interestingly, we also found that the urinary concentration of di-22:6-BMP, a reliable 

marker for tissue-phospholipidosis [90], is much higher in the urine of a small cohort of individuals 

affected by CKD and MetS (Figure 6F) and shows a moderate positive correlation with the total 

albumin urinary content (Figure 6G). These findings imply that renal phospholipidosis also takes place 

in humans with metabolic/lipid disorders. 
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Discussion 

Although a number of investigators have outlined the “renal lipotoxicity” hypothesis, the role of 

lipids per se as promoters of renal injury remains largely elusive and hard to prove, particularly in 

humans [91]. Altogether, our data indicate that excessive dietary lipid intake (and not overnutrition 

per se) cause the development of an “acquired lysosomal storage disease” in the kidney epithelium. 

Cholesterol/fat-rich Western diet induces large vacuoles enriched in free cholesterol, fatty acids and 

phospholipids and a robust MLB biogenesis in S2/S3 proximal tubules. Intratubular MLBs display 

lysosomal or autophagolysosomal origin and express the lysosome-bound BMP glycerolipid, 

resembling the features of lysosomal storage disease and oxLDL-loaded macrophages [54, 86]. 

Besides this, we detected MLBs in urine and found a striking excretion of the lysosomal di-22:6-BMP 

in urine of individuals affected by MetS and CKD. The lack of vacuoles, thus MLBs, in PTEC of S1 

segment can be explained by their well-developed endo-lysosomal apparatus [92] and greater 

lysosomal volume and enzymatic activity compared to S2/S3 PTEC [93-96]. 

Although we cannot completely exclude MLB leakage from damaged TEC into urine, TEC-mediated 

MLB secretion seems more likely, in light of the known MLB secretion in other organs [54] and of our 

TEM-based observations of intact MLBs within TEC brush border. Accordingly, urine and kidney MLBs 

contain identical proteins, many of which are reported to be present in exosomes, and some of the 

MLB proteins (i.e. GGT1, ATPA1, ALDOB) with the highest relative abundance are also highly 

expressed in kidneys. In addition, the identification of proteins known to participate in lipid uptake 

and lipid intracellular trafficking within kidney-derived MLB strengthen our hypothesis of 

cholesterol/lipid-driven MLB formation, e.g. megalin (receptor for albumin-FA/LDL), SCP2 

(intracellular cholesterol movement), Hsp90 (stabilization of NCP1); LGMN (lysosomal protein 

degradation), NHRF3 (maintenance of expression and function of the HDL receptor SR-BI), 
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apolipoprotein E (major cholesterol carrier), albumin and FABP suggest their uptake and 

incorporation in MLBs [66-73]. Thus, renal MLBs appear to be active organelles involved in storage of 

excessive lipids and secretion as urinary products; in kidneys, MLBs seems to act as a defence 

mechanism against lipid nephrotoxicity by sequestering and excreting surplus lipids.  

Treatment of IMM-PTEC with 7KC hydroxysterol, oxidized-LDL and cholesterol trafficking inhibitor 

U18666A provoked tubular alterations very similar to the in vivo tubular changes, suggesting an 

etiological role of oxLDL/oxysterols in the obesity-related renal disease. Indeed, WD-induced tubular 

vacuoles contained LDLR and oxidized lipoproteins, which are more abundant in obesity [97]. 

Apolipoprotein E, FABP, albumin and megalin were detected in MLBs by proteomics; thus several 

lipotoxic molecules may promote lysosomal lipid storage development in our model, besides 

oxysterols. Besides oxysterols and lipoproteins, other lipotoxic molecules may account for lysosomal 

dysfunction and lipid-rich vacuole generation in PTEC. In agreement, Kuwahara et al. attributed the 

appearance of cytosolic vacuoles in PTEC following HFD-feeding to megalin-mediated FA endocytosis 

[67]. Nevertheless, autophagy is very likely implicated in “renal lysosomal storage disease” as we 

showed with GFP-LC3 WD-fed mice; consistent with this, autophagic flux contributes to the 

physiological production of MLBs in lung type II alveolar cells [98]. Although autophagy is regarded as 

a protective mechanism that contributes to lipid catabolism by delivering LD content to lysosomes 

(lipophagy) [99, 100], the rise in lysosomal pH observed in our in vitro model may block lipophagy 

through inhibition of pH-sensitive lysosomal hydrolases. 

Interestingly and controversially, WD feeding initiated a transcriptional response in lipid-enriched 

vacuolized tubules, characterized by the up-regulation of genes accountable for lysosome biogenesis 

and function and concomitantly of genes responsible for cholesterol and FA synthesis. The enhanced 

gene expression of Tfeb itself together with Asah1 attests to TFEB activation and nuclear relocation, 
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which leads to enhance autophagic and lysosomal lipolytic processes [58, 59]. This regulation is 

probably an adaption of cells to prevent lipotoxicity; indeed, overexpression of TFEB in liver protects 

against diet-induced obesity and MetS [101]. 

The increased expression of SREBP-1/2 by dietary lipid challenge is likely to sustain intratubular lipid 

accumulation during persistent overnutrition, since they upregulate genes for FA and cholesterol 

synthesis, respectively [60]. Upon lipid overload, phospholipids and cholesterol remain engulfed in 

lysosomes; therefore, less cholesterol is likely to be transported to the endoplasmic reticulum, where 

SREBPs reside and are suppressed by the cholesterol content, as cholesterol-induced suppression of 

SREBP activation vanishes and SREBP target genes are upregulated [60, 102]. Accordingly, we showed 

that inhibition of cholesterol transport with U18666A in TEC resulted in increased transcription of 

Srebp2 and of its target genes Hmgcr and Ldlr [60, 61, 102]. 

The increased urinary electrolytes and the appearance of damage, inflammatory and fibrotic markers 

in WD-kidneys and in U18666A/7KC-treated IMM-PTEC provide an important causal link between 

kidney pathology and overnutrition. In fact, even though several epidemiological studies have proven 

a significant association of kidney dysfunction with obesity, dyslipidaemia and high BMI [2, 6, 103, 

104], a direct detrimental impact of overnutrition and excessive metabolic loading of kidney cells on 

kidney health and function has been difficult to prove and is not yet established by scientific 

evidence. 

Bis(monoacylglycerol)phosphate (BMP) is an atypical phospholipid localized mainly at the inner 

membrane of lysosomes, where its negative charge (due to the acidic pH) helps adherence of 

positively charged polycationic enzymes and activator proteins, thereby promoting 

hydrolysis/degradation [105]. Importantly for a translational aspect, the tissue phospholipidosis 

marker di-22:6-BMP [90, 106] was increased in urine specimens of individuals affected by CKD and 
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MetS, and urinary BMP levels positively correlated with albuminuria rates within the group of 

patients with obesity, dyslipidemia and CKD. Furthermore, BMP was shown to colocalize with 

intracellular phospholipidosis and vacuolization sites and lysosomes in murine/human PTEC. Future 

studies with larger cohorts would aid assessment of the potential of urinary di-22:6-BMP as a 

prognostic marker for MetS/obesity-mediated renal disease. 

Inflammation and fibrosis are hallmarks of progressive renal disease [107]. In kidneys, MCP-1 was 

found to be increased as early as one week after initiation of high fat diet feeding [108]. This 

together with our in vitro findings (48h-treatment with U18666A, oxLDL, or 7-KC) suggests that 

proximal TEC can produce this chemokine at a very early stage upon metabolic challenge, possibly 

contributing to the macrophage infiltration observed in WD-fed mice. The induction of fibrotic 

markers in the kidney in the context of hypercaloric diet was previously reported [108-111]. 

Interestingly, the upregulation of SREBPs has a role in kidney fibrosis development, as shown by 

studies with SREBP-1c-deficent mice and SREBP-1a transgenic mice [12, 112]. Importantly, a recent 

report highlights the role of lysosomes and autophagy in renal lipotoxicity [113], while another 

reports enlarged vacuoles and multilamellar inclusions within PTEC following high fat diet [110]. We 

show that a high-cholesterol WD provokes equal pathological alterations in proximal tubules. 

Among the lipids found accumulated in kidneys after WD feeding, the sphingolipid ceramide and its 

metabolites, such as ceramide-1-phosphate (C1P) and sphingosine, warrant particular attention, due 

to their pro-inflammatory properties, which may favour renal inflammation [114, 115]. 

Altogether, our study shows that phospholipidosis in kidneys is a novel pathological pathway in 

obesity-related kidney disease and brings attention to the lysosomal compartment of renal tubules 

as potential target site for intervention/preventive approaches against MetS-induced nephropathy. It 

provides a rationale for screening individuals with obesity or metabolic syndrome, for kidney 
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dysfunction and phospholipidosis, e.g. with proton magnetic resonance spectroscopy [116], to 

identify early-stage CKD patients, who can still profit from changes in diet, lifestyle and lipid-lowering 

therapies. 

 

  

This article is protected by copyright. All rights reserved.



Acknowledgements  

This study was supported by the Netherlands Organization for Scientific Research (NWO Vidi and 

ASPASIA #91712386) and by EU-funded “LipidomicNet” project (#202272). We thank Per W.B. Larsen 

(Electron Microscopy Core, AMC, Amsterdam, The Netherlands) for technical assistance. 

 

Author contributions 

Elena Rampanelli and Peter Ochodnicky contributed to the design of the research, performed 

experiments, analyzed and interpreted data and wrote the paper. Johannes P.C. Vissers and Lee A. 

Gethings performed LC-MS proteomics analysis, Gerhard Liebisch performed MS lipidomics analysis. 

Alessia Calcagni, Lotte Kors and Gwen J. Teske conducted in vivo experiments. Loes M. Butter and 

Nike Claessen conducted laboratory work. Marius A. van den Bergh Weerman and Jan Aten 

conducted sample preparation and TEM imaging. Dave Speijer helped isolating multilamellar bodies. 

Bettina Jung helped in sample collection. Stephan J.L. Bakker, Martin H. de Borst, and Gerjan J. Navis 

collected and provided human urine samples and clinical data. Eric Steenbergen provided renal 

biopsies for TEM imaging and the corresponding patient clinical diagnosis. Gerd Schmitz contributed 

with background knowledge on lysosomal storage disease, phospholipidosis and lipid droplets. 

Johannes M.F.G. Aerts, Andrea Ballabio, Sandrine Florquin, Jan Aten, Stephan JL Bakker, Martin H de 

Borst, and Gerjan J Navis helped in interpreting and discussing data and reviewed the manuscript. 

Jaklien C. Leemans led the research project and contributed to the conception and design of the 

work. All authors discussed the results and participated in drafting or revising the article. 

 

 

  

This article is protected by copyright. All rights reserved.



References 

1. Wang Y, Chen X, Song Y, Caballero B, et al. Association between obesity and kidney disease: A 
systematic review and meta-analysis. Kidney Int 2008; 73: 19-33. 

2. Iseki K, Ikemiya Y, Kinjo K, et al. Body mass index and the risk of development of end-stage 
renal disease in a screened cohort. Kidney Int 2004; 65: 1870-6. 

3. Hsu CY, McCulloch CE, Iribarren C, et al. Body mass index and risk for end-stage renal disease. 
Ann Intern Med 2006; 144: 21-8. 

4. Ejerblad E, Fored CM, Lindblad P, et al. Obesity and risk for chronic renal failure. J Am Soc 
Nephrol 2006; 17: 1695-702.  

5. Speckman RA, McClellan WM, Volkova NV, et al. Obesity is associated with family history of 
ESRD in incident dialysis patients. Am J Kidney Di 2006; 48: 50-8. 

6. Chen J, Muntner P, Hamm LL, et al. The metabolic syndrome and chronic kidney disease in 
U.S. adults. Ann Intern Med 2004; 140: 167-74. 

7. Pinto-Sietsma SJ, Navis G, Janssen WM, et al. A central body fat distribution is related to renal 
function impairment, even in lean subjects. Am J Kidney Dis 2003; 41: 733-41. 

8. Kwakernaak AJ, Zelle DM, Bakker SJ, et al. Central body fat distribution associates with 
unfavorable renal hemodynamics independent of body mass index. J Am Soc Nephrol 2013; 
24: 987-94.  

9. Hricik DE. Metabolic syndrome in kidney transplantation: management of risk factors. Clin J 
Am Soc Nephrol 2011; 6: 1781-5. 

10. Pandya V, Rao A1, Chaudhary K1. Lipid abnormalities in kidney disease and management 
strategies. World J Nephrol 2015; 4: 83-91.  

11. Kuwahara S, Hosojima M, Kaneko R, et al. Megalin-Mediated Tubuloglomerular Alterations in 
High-Fat Diet-Induced Kidney Disease. J Am Soc Nephrol 2016; 27: 1996-2008.  

12. Jiang T, Wang Z, Proctor G, et al. Diet-induced obesity in C57BL/6J mice causes increased renal 
lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-
dependent pathway. J Biol Chem 2005; 280: 32317-25. 

13. Tonelli M, Moyé L, Sacks FM, et al. Cholesterol and Recurrent Events Trial Investigators. Effect 
of pravastatin on loss of renal function in people with moderate chronic renal insufficiency 
and cardiovascular disease. J Am Soc Nephrol 2003; 14: 1605-13. 

14. Bianchi S, Bigazzi R, Caiazza A, et al. A controlled, prospective study of the effects of 
atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis 2003; 41: 565-
70. 

15. Lee TM, Lin MS, Tsai CH, et al. Add-on and withdrawal effect of pravastatin on proteinuria in 
hypertensive patients treated with AT receptor blockers. Kidney Int 2005; 68: 779-87. 

16. Oyabu C, Hashimoto Y, Fukuda T, et al. Impact of low-carbohydrate diet on renal function: a 
meta-analysis of over 1000 individuals from nine randomised controlled trials. Br J Nutr 2016; 
116: 632-8. 

17. Tirosh A, Golan R, Harman-Boehm I, et al. Renal function following three distinct weight loss 
dietary strategies during 2 years of a randomized controlled trial. Diabetes Care 2013; 36: 
2225-32. 

18. Wahba IM, Mak RH. Obesity and obesity-initiated metabolic syndrome: mechanistic links to 
chronic kidney disease. Clin J Am Soc Nephrol 2007; 2: 550-62.  

This article is protected by copyright. All rights reserved.



19. de Vries AP, Ruggenenti P, Ruan XZ, et al. Fatty kidney: emerging role of ectopic lipid in 
obesity-related renal disease. Lancet Diabetes Endocrinol 2014; 2: 417-26. 

20. Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: 
the cellular impact of lysosomal dysfunction. J Cell Biol 2012; 199: 723-34.  

21. Bakker PJ, Butter LM, Kors L, et al. Nlrp3 is a key modulator of diet-induced nephropathy and 
renal cholesterol accumulation. Kidney Int 2014; 85: 1112-22. 

22. Mizushima N. Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods 
Enzymol 2009; 452: 13-23. 

23. Settembre C, di Malta C, Polito VA, et al. TFEB Links Autophagy to Lysosomal Biogenesis. 
Science 2011; 332: 1429–1433. 

24. Ohshima T, Murray GJ, Swaim WD, et al. alpha-Galactosidase A deficient mice: a model of 
Fabry disease. Proc Natl Acad Sci U S A. 1997; 94: 2540-4. 

25. Ferraz MJ, Marques AR, Gaspar P, et al. Lyso-glycosphingolipid abnormalities in different 
murine models of lysosomal storage disorders. Mol Genet Metab 2016; 117: 186-93. 

26. van Eijk M, Aten J, Bijl N, et al. Reducing glycosphingolipid content in adipose tissue of obese 
mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS One 2009; 4: 
e4723. 

27. Marques AR, Aten J, Ottenhoff R, et al. Reducing GBA2 Activity Ameliorates Neuropathology in 
Niemann-Pick Type C Mice. PLoS One 2015; 10: e0135889. 

28. Rampanelli E, Orsó E, Ochodnicky P, et al. Metabolic injury-induced NLRP3 inflammasome 
activation dampens phospholipid degradation. Sci Rep 2017; 7: 2861. 

29. McCluer RH, Williams MA, Gross SK, et al. Testosterone effects on the induction and urinary 
excretion of mouse kidney glycosphingolipids associated with lysosomes. J Biol Chem 1981; 
256: 13112-20. 

30. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem 
Physiol 1959; 37: 911-7. 

31. Liebisch G, Lieser B, Rathenberg J, et al. High-throughput quantification of 
phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry 
coupled with isotope correction algorithm. Biochim Biophys Acta 2004; 1686: 108-17. 

32. Liebisch G, Drobnik W, Reil M, et al. Quantitative measurement of different ceramide species 
from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI-
MS/MS). J Lipid Res 1999; 40: 1539–1546. 

33. Baker DL, Desiderio DM, Miller DD, et al. Direct quantitative analysis of lysophosphatidic acid 
molecular species by stable isotope dilution electrospray ionization liquid chromatography-
mass spectrometry. Anal Biochem 2001; 292: 287-95. 

34. Scherer M, Schmitz G, Liebisch G. High-throughput analysis of sphingosine 1-phosphate, 
sphinganine 1-phosphate, and lysophosphatidic acid in plasma samples by liquid 
chromatography-tandem mass spectrometry. Clin Chem 2009; 55: 1218-22. 

35. Scherer M, Schmitz G, Liebisch G. Simultaneous quantification of cardiolipin, 
bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC-MS/MS 
including correction of isotopic overlap. Anal Chem 2010; 82: 8794-9. 

36. Ecker J, Scherer M, Schmitz G, et al. A rapid GC-MS method for quantification of positional and 
geometric isomers of fatty acid methyl esters. J Chromatogr B Analyt Technol Biomed Life Sci 
2012; 897: 98-104. 

37. Baronas ET, Lee JW, Alden C, et al. Biomarkers to monitor drug-induced phospholipidosis. 

This article is protected by copyright. All rights reserved.



Toxicol Appl Pharmacol 2007; 218: 72-8. 
38. Herzog K, Pras-Raves ML, Vervaart MA, et al. Lipidomic analysis of fibroblasts from Zellweger 

spectrum disorder patients identifies disease-specific phospholipid ratios. J Lipid Res 2016; 57: 
1447-54. 

39. Rodriguez-Suarez E, Hughes C, Gethings L, et al. An Ion Mobility Assisted Data Independent 
LC-MS Strategy for the Analysis of Complex Biological Samples. Curr Anal Chem 2013; 9:  199-
211. 

40. Distler U, Kuharev J, Navarro P, et al. Drift time-specific collision energies enable deep-
coverage data-independent acquisition proteomics. Nat Methods 2014; 11: 167-70. 

41. Markmann S, Krambeck S, Hughes CJ, et al. Quantitative Proteome Analysis of Mouse Liver 
Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms 
of Acid Hydrolases in Mucolipidosis II. Mol Cell Proteomics 2017; 16: 438-450. 

42. Fabregat A, Sidiropoulos K, Garapati P, et al. The Reactome pathway Knowledgebase. Nucleic 
Acids Res 2016; 44: D481-7. 

43. Conesa A, Götz S, García-Gómez JM, et al. Blast2GO: a universal tool for annotation, 
visualization and analysis in functional genomics research. Bioinformatics 2005; 21: 3674-6. 

44. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The 
Gene Ontology Consortium. Nat Genet 2000; 25: 25-9. 

45. van den Berg E, Pasch A, Westendorp WH, et al. Urinary sulfur metabolites associate with a 
favorable cardiovascular risk profile and survival benefit in renal transplant recipients. J Am 
Soc Nephrol 2014; 25: 1303-12. 

46. Eisenga MF, Kieneker LM, Soedamah-Muthu SS, et al. Urinary potassium excretion, renal 
ammoniagenesis, and risk of graft failure and mortality in renal transplant recipients. Am J Clin 
Nutr 2016; 104: 1703-1711. 

47. Gomes Neto AW, Sotomayor CG, Pranger IG, et al. Intake of Marine-Derived Omega-3 
Polyunsaturated Fatty Acids and Mortality in Renal Transplant Recipients. Nutrients 2017; 9: 
E363. 

48. van den Berg E, Engberink MF, Brink EJ, et al. Dietary acid load and metabolic acidosis in renal 
transplant recipients. Clin J Am Soc Nephrol 2012; 7: 1811-8. 

49. Greenberg AS, Egan JJ, Wek SA, et al.  Garty NB, Blanchette-Mackie EJ, Londos C. Perilipin, a 
major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery 
of lipid storage droplets. J Biol Chem 1991; 266: 11341-6. 

50. Straub BK, Gyoengyoesi B, Koenig M, et al. Adipophilin/perilipin-2 as a lipid droplet-specific 
marker for metabolically active cells and diseases associated with metabolic dysregulation. 
Histopathology 2013; 62: 617-31. 

51. Praga M, Hernández E, Morales E, et al. Clinical features and long-term outcome of obesity-
associated focal segmental glomerulosclerosis. Nephrol Dial Transplant 2001; 16: 1790-8. 

52. Kambham N, Markowitz GS, Valeri AM, et al. Obesity-related glomerulopathy: an emerging 
epidemic. Kidney Int 2001; 59: 1498-509. 

53. Chen HM, Li SJ, Chen HP, et al. Obesity-related glomerulopathy in China: a case series of 90 
patients. Am J Kidney Dis 2008; 52: 58-65. 

54. Schmitz G, Müller G. Structure and function of lamellar bodies, lipid-protein complexes 
involved in storage and secretion of cellular lipids. J Lipid Res 1991; 32: 1539-70. 

55. Carmona-Gutierrez D, Hughes AL, Madeo F, et al. The crucial impact of lysosomes in aging and 
longevity. Ageing Res Rev 2016; 32: 2-12. 

This article is protected by copyright. All rights reserved.



56. Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate 
degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24131-
45. 

57. Liu K, Czaja MJ. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 2013; 
20: 3-11. 

58. Sardiello M, Palmieri M, di Ronza A, et al. A gene network regulating lysosomal biogenesis and 
function. Science 2009; 325: 473-7.  

59. Palmieri M, Impey S, Kang H, et al. di Ronza A, Pelz C, Sardiello M, Ballabio A. Characterization 
of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol 
Genet 2011; 20: 3852-66. 

60. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol 
and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125-31. 

61. Horton JD, Shah NA, Warrington JA, et al. Combined analysis of oligonucleotide microarray 
data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad 
Sci U S A 2003; 100: 12027-32. 

62. Ma X, Chen Z, Hua D, et al. Essential role for TrpC5-containing extracellular vesicles in breast 
cancer with chemotherapeutic resistance. Proc Natl Acad Sci U S A 2014; 111: 6389-94  

63. Lu F, Liang Q, Abi-Mosleh L, et al. Identification of NPC1 as the target of U18666A, an inhibitor 
of lysosomal cholesterol export and Ebola infection. Elife 2015; 4: e12177. 

64. Tang Y, Leao IC, Coleman EM, et al. Deficiency of niemann-pick type C-1 protein impairs 
release of human immunodeficiency virus type 1 and results in Gag accumulation in late 
endosomal/lysosomal compartments. J Virol 2009; 83: 7982-95.  

65. Peake KB, Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS 
Lett 2010; 584: 2731-9.  

66. Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol 
Cell Biol 2002; 3: 256-66. 

67. Kuwahara S, Hosojima M, Kaneko R, et al. Megalin-Mediated Tubuloglomerular Alterations in 
High-Fat Diet-Induced Kidney Disease. J Am Soc Nephrol 2016; 27: 1996-2008. 

68. Pfeifer SM, Furth EE, Ohba T, et al. Sterol carrier protein 2: a role in steroid hormone 
synthesis? J Steroid Biochem Mol Biol 1993; 47: 167-72.  

69. Puglielli L, Rigotti A, Greco AV, et al. Sterol carrier protein-2 is involved in cholesterol transfer 
from the endoplasmic reticulum to the plasma membrane in human fibroblasts. J Biol Chem 
1995; 270: 18723-6. 

70. Nakasone N, Nakamura YS, Higaki K, et al. Endoplasmic reticulum-associated degradation of 
Niemann-Pick C1: evidence for the role of heat shock proteins and identification of lysine 
residues that accept ubiquitin. J Biol Chem 2014; 289: 19714-25. 

71. Dall E, Brandstetter H. Structure and function of legumain in health and disease. Biochimie 
2016; 122: 126-50.  

72. Kocher O, Krieger M. Role of the adaptor protein PDZK1 in controlling the HDL receptor SR-BI. 
Curr Opin Lipidol 2009; 20: 236-41.  

73. Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev 
Genomics Hum Genet 2000; 1: 507-37. 

74. Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for 
cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14: 283-96.  

This article is protected by copyright. All rights reserved.



75. Appelqvist H, Wäster P, Kågedal K, et al. The lysosome: from waste bag to potential 
therapeutic target. J Mol Cell Biol 2013; 5: 214-26. 

76. Ridsdale R, Na CL, Xu Y, et al. Comparative proteomic analysis of lung lamellar bodies and 
lysosome-related organelles. PLoS One 2011; 6: e16482. 

77. Raymond AA, Gonzalez de Peredo A, Stella A, et al. Lamellar bodies of human epidermis: 
proteomics characterization by high throughput mass spectrometry and possible involvement 
of CLIP-170 in their trafficking/secretion. Mol Cell Proteomics 2008; 7: 2151-75. 

78. Hu ZZ, Valencia JC, Huang H, et al. Comparative Bioinformatics Analyses and Profiling of 
Lysosome-Related Organelle Proteomes. Int J Mass Spectrom 2007; 259: 147-160. 

79. D'Aquila T, Sirohi D, Grabowski JM, et al. Characterization of the proteome of cytoplasmic lipid 
droplets in mouse enterocytes after a dietary fat challenge.  PLoS One 2015; 10: e0126823. 

80. Brasaemle DL, Dolios G, Shapiro L, et al. Proteomic analysis of proteins associated with lipid 
droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004; 279: 46835-
42. 

81. Fujimoto Y, Itabe H, Sakai J, et al. Identification of major proteins in the lipid droplet-enriched 
fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 2004; 1644: 
47-59. 

82. Ehnholm C. Cellular Lipid Metabolism. Springer: Verlag Berlin Heidelberg, 2009: 27-71. 
83. Bjørkøy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by 

autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005; 171: 
603-14.  

84. Schmitz G, Grandl M. Endolysosomal phospholipidosis and cytosolic lipid droplet storage and 
release in macrophages. Biochim Biophys Acta 2009; 1791: 524-39.  

85. Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective 
and safe cancer therapies. Eur J Pharmacol 2009; 625: 220-33. 

86. Orsó E, Grandl M, Schmitz G. Oxidized LDL-induced endolysosomal phospholipidosis and 
enzymatically modified LDL-induced foam cell formation determine specific lipid species 
modulation in human macrophages. Chem Phys Lipids 2011; 164: 479-87.  

87. Han WK, Bailly V, Abichandani R, et al. Kidney Injury Molecule-1 (KIM-1): a novel biomarker 
for human renal proximal tubule injury. Kidney Int 2002; 62: 237-44. 

88. Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res 
2015; 165: 512-30. 

89. Nosratola DV. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and 
consequences. Kid Int 2016; 90: 41-52. 

90. Liu N, Tengstrand EA, Chourb L, et al. Di-22:6-bis(monoacylglycerol)phosphate: A clinical 
biomarker of drug-induced phospholipidosis for drug development and safety assessment. 
Toxicol Appl Pharmacol 2014; 279: 467-76.  

91. Prasad GV. Metabolic syndrome and chronic kidney disease: Current status and future 
directions. World J Nephrol 2014; 3: 210-9.  

92. Zhou XJJ, Laszik ZG, Nadasdy T, D'Agati VD. Silva's Diagnostic Renal Pathology (2nd edn). 
Cambridge University Press: Cambridge, 2017; 1-56. 

93. Christoph JO, Mathias F, Elisabeth G. Alterations in lysosomal enzymes of the proximal tubule 
in gentamicin nephrotoxicity. Kidney Int 1991; 39: 639-646. 

94. Olbricht CJ, Cannon JK, Garg LC, et al.  Tisher CC. Activities of cathepsins B and L in isolated 
nephron segments from proteinuric and nonproteinuric rats. Am J Physiol 1986; 250: F1055-

This article is protected by copyright. All rights reserved.



62. 
95. Olbricht CJ, Cannon JK, Tisher CC. Cathepsin B and L in nephron segments of rats with 

puromycin aminonucleoside nephrosis. Kidney Int 1987; 32: 354-61. 
96. Madsen KM1, Park CH. Lysosome distribution and cathepsin B and L activity along the rabbit 

proximal tubule. Am J Physiol 1987; 253: F1290-301.Skeldon AM, Faraj M, Saleh M. Caspases 
and inflammasomes in metabolic inflammation. Immunol Cell Biol 2014; 92: 304-13. 

97. Muntner P, Coresh J, Smith JC, et al. Plasma lipids and risk of developing renal dysfunction: 
the atherosclerosis risk in communities study. Kidney Int 2000; 58: 293-301. 

98. Hariri M, Milane G, Guimond MP, et al. Biogenesis of multilamellar bodies via autophagy. Mol 
Biol Cell 2000; 11: 255–268. 

99. Rajat S, Susmita K, Yongjun W, et al. Autophagy regulates lipid metabolism. Nature 2009; 458: 
1131–1135. 

100. Satriano J and Sharma K. Autophagy and metabolic changes in obesity-related chronic kidney 
disease. Nephrol Dial Transplant 2013; 28: iv29–iv36. 

101. Settembre C, De Cegli R, Mansueto G, et al. TFEB controls cellular lipid metabolism through a 
starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15: 647-58.  

102. Strable MS, Ntambi JM. Genetic control of de novo lipogenesis: role in diet-induced obesity. 
Crit Rev Biochem Mol Biol 2010; 45: 199-214. 

103. Chagnac A, Weinstein T, Herman M, et al. The effects of weight loss on renal function in 
patients with severe obesity. J Am Soc Nephrol 2003; 14: 1480-6. 

104. Declèves AE, Sharma K. Obesity and kidney disease: differential effects of obesity on adipose 
tissue and kidney inflammation and fibrosis. Curr Opin Nephrol Hypertens 2015; 24: 28-36.  

105. Gallala HD, Sandhoff K. Biological function of the cellular lipid BMP-BMP as a key activator for 
cholesterol sorting and membrane digestion. Neurochem Res 2011; 36: 1594-1600. 

106. Thompson KL, Zhang J, Stewart S, et al. Comparison of urinary and serum levels of di-22:6-
bis(monoacylglycerol)phosphate as noninvasive biomarkers of phospholipidosis in rats. Toxicol 
Lett 2012; 213: 285-91.  

107. Declèves AE, Sharma K. Novel targets of antifibrotic and anti-inflammatory treatment in CKD. 
Nat Rev Nephrol 2014; 10: 257-67.  

108. Declèves AE, Mathew AV, Cunard R, et al. AMPK mediates the initiation of kidney disease 
induced by a high-fat diet. J Am Soc Nephrol 2011; 22: 1846-55. 

109. Deji N, Kume S, Araki S, et al. Structural and functional changes in the kidneys of high-fat diet-
induced obese mice. Am J Physiol Renal Physiol 2009; 296: F118-26.  

110. Declèves AE, Zolkipli Z, Satriano J, et al. Regulation of lipid accumulation by AMK-activated 
kinase in high fat diet-induced kidney injury. Kidney Int 2014; 85: 611-623. 

111. Wang XX, Jiang T, Shen Y, et al. The farnesoid X receptor modulates renal lipid metabolism 
and diet-induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Renal Physiol 
2009; 297: F1587-96. 

112. Sun L, Halaihel N, Zhang W, et al. Role of sterol regulatory element-binding protein 1 in 
regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J Biol Chem 
2002; 277: 18919-27.  

113. Yamamoto T, Takabatake Y, Takahashi A, et al. High-fat diet-induced lysosomal dysfunction 
and impaired autophagic flux contribute to lipotoxicity in the kidney. J Am Soc Nephrol 2017; 
28: 1534-1551. 

114. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature 2014; 510: 

This article is protected by copyright. All rights reserved.



58-67.  
115. Arana L, Gangoiti P, Ouro A, et al. Trueba M, Gómez-Muñoz A. Ceramide and ceramide 1-

phosphate in health and disease. Lipids Health Dis. 2010; 9:15.  
116. Hammer S, de Vries AP, de Heer P, et al. Metabolic imaging of human kidney triglyceride 

content: reproducibility of proton magnetic resonance spectroscopy. PLoS One 2013; 8: 
e62209. 

 
 
 
 
 
 
 
  

This article is protected by copyright. All rights reserved.



Figure legends 
 
Figure 1. Accumulation of polar lipids (phospholipids) and free cholesterol in murine proximal tubular 

epithelial cells upon Western-type diet feeding. (A) PAS-D-stained renal sections of mice fed a control 

diet (CD) or Western-type diet (WD), 20 × magnification. (B) Quantification of tubular vacuolization in 

PAS-D-stained kidney sections of CD- and WD-fed mice: number of vacuolized tubules per high-

power field (HPF, 20 ×). (C) Perilipin-2 staining in CD and WD kidneys sections (20 × magnification, 

100 × magnification far-right image). (D) Nile red and (E) Filipin staining of renal sections for 

detection of phospholipids and free cholesterol, respectively, in kidneys of CD- and WD-fed mice (D 

and E: 20 × and 40 × magnification, respectively). (F) Lipidomics analysis (ESI-MS/MS) of renal lipid 

content: free-cholesterol (FC), cholesterol-esters (CE), fatty acids (FA), bismonoacylglycerophosphate 

(BMP), phosphatidylglycerol (PG), lysophosphatidylglycerol (LPG), phosphatidic acid (PA), cardiolipin 

(CL), sphingomyelin (SPM), ceramide, ceramide-1-phosphate (Cer-1-P), lactosylceramide (LacCer), 

glucosylceramide (GluCer), sphingosine, sphinganine, phosphatidylcholine (PC), 

lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), 

phosphatidylserine (PS), plasmogens. (B, F) Data shown as mean ± s.e.m.; *P<0.05, ***P<0.001. 

 

Figure 2. Features of acquired lysosomal storage disease in kidneys exposed to metabolic 

overloading. (A) Transmission electron microscopy (TEM) images of control diet (CD) and Western-

type diet (WD) murine kidneys (upper panel): L, luminal space, MLB, multilamellar bodies, N, nucleus, 

scale bar 10/2 µm. Staining for LIMP-2 and CD63 in CD and WD kidneys sections (20 × magnification, 

40 × magnification far-right column). (B) Images of renal sections of WD-fed mice stained for p62 (40 

× magnification; asterisk= positive vacuolar membrane) and of GFP-LC3/LIMP-2 double-stained 

kidney sections from GFP-LC3 transgenic mice upon WD feeding (100 × magnification; LIMP-2 = red; 
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GFP = blue, asterisk = co-localization, purple). (C) Counts of GFP-LC3 puncta per proximal tubule in CD 

and WD kidneys. (D) mRNA expression of genes related to lysosome function (left graph) and 

lipogenic pathways (right graph) in laser-dissected vacuolar tubules and respective controls from 

mice fed a WD and CD, respectively. Values normalized to control. (E) Positive staining for LDLR, 

oxidized lipoproteins (oxLP) and lipoproteins (LP) in kidneys of WD-fed mice (20 × magnification). 

Data shown as mean ± s.e.m.; *P<0.05, **P<0.01, ***P<0.001. 

 

Figure 3. Proteomics analysis of MLBs isolated from murine kidneys and urine upon metabolic 

overloading. (A) TEM analysis of urine of mice on Western-type diet (WD); scale bars 10/2 µm. (B) 

Western blot for detection of exosome marker Flotillin-2 in total cell lysates and cell-derived 

supernatant in control and U18666A-treated immortalized murine tubular epithelial cells (IMM-

PTEC). (C) Most abundant proteins found in MLBs isolated from both kidney tissue and urine of WD-

fed mice and U18666A-treated IMM-PTEC. Proteins shown after selecting the 50 proteins with the 

highest ppm (relative LC-MS abundance) independently in the protein list derived from proteomic 

analysis of kidney, urine and IMMP-TEC MLBs. (D) Graph showing the frequency of protein origin 

among all intracellular organelles and extracellular exosomes. The proteins considered for analysis 

are the most abundant proteins shown in (C). 

 

Figure 4. Hierarchical cluster and frequency analysis to compare the proteomic profiles of murine 

kidney MLBs (our data), lysosome-related organelles (LROs) [78], lung MLBs [76], epidermis MLBs 

[77], lipid droplets (Lds) from enterocytes [79], adipocytes [80], and hepatocytes [81]. 
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Figure 5. Interference with cholesterol trafficking and oxysterol treatment are responsible for MLB 

formation, disruption of lysosome homeostasis and induction of genes regulating cholesterogenesis. 

(A) TEM images showing the formation of MLBs after in vitro incubation of immortalized murine 

tubular epithelial cells (IMM-PTEC) with U18666A, oxidized low density lipoproteins (oxLDL), and 

oxysterol 7-ketocholesterol (7-KC). Asterisks indicate cellular MLBs localization. (B) Fluorescence 

microscopy (FM) images, in which phospholipidosis and LIMP-2 are detected in control and IMM-

PTEC cells stimulated with U18666A/oxLDL/7KC; nuclei = blue, phospholipidosis = red, LIMP-2 = 

green, co-localization = yellow; 100 × magnification. (C) Increase of lysosomal pH after incubation of 

IMM-PTEC with U18666A, oxLDL, 7KC, and chloroquine (CQ, positive controls). (D) FM images of 

control and U18666A-stimulated human PTEC HK2 cells, showing cellular accumulation of 

phospholipids, cholesterol (filipin staining) and BMP; nuclei = blue, phospholipidosis = red, 

cholesterol = blue, BMP = green; 10 × magnification. (E) FM images of U18666A-stimulated HK2 cells, 

showing phospholipidosis and BMP distribution; nuclei = blue, phospholipidosis = red, BMP = green, 

co-localization = yellow; 100 × magnification. (F) Gene expression of the transcription factor Srebp2, 

its target genes Ldlr and Hmgcr, and lysosomal phospholipase A2 (Lpla2) in control and U18666A-

stimulated IMM-PTEC. Values normalized to control. Data shown as mean ± s.e.m.; *P<0.05, 

**P<0.01, ***P<0.001. 

 

Figure 6. Diet-mediated lipid overload of tubular cells associates with an inflammatory milieu, 

collagen deposition, and reduced specialized transporter expression. (A) Immunostaining of renal 

sections from control diet (CD)- and Western-type diet (WD)-fed mice for visualization of the apical 

SGLT2 transporter, tubular damage marker KIM-1, macrophage infiltration, and collagen type III 

deposition; 20 × magnification. (B, C) Quantitative gene expression analysis for membrane 
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transporters (SGLT2, ATP1A1), chemokine MCP-1, damage marker KIM-1, fibrogenic markers TGF-β 

and CTGF in (B) murine renal tissues and (C) IMM-PTEC. Values normalized to control. (D) Electrolyte 

concentration (sodium, potassium and chloride) in urine of mice fed CD or WD; values normalized for 

urinary creatinine (nmol/mmol). (E) Representative images of renal biopsy from obese 

hypercholesterolaemic patients. Conventional staining with acidophilic dye toluidine blue (left upper 

image) and immunostaining for LIMP-2 revealing the presence of vacuoles within proximal tubular 

cells and the expression of LIMP-2 at the vacuolar membrane, respectively; 20 × magnification. 

Immunofluorescence for visualization of the lysosomal glycerophospholipid BMP within TEC; 100 × 

magnification. TEM images of human tubular cells harbouring MLBs (indicated by asterisks), scale bar 

5 and 1 µm. (F) Quantitative lipidomics analysis: di-docosahexaenoyl (22:6) bis(monoacylglycerol) 

phosphate (di-22:6-BMP) content in human urine specimens; n = 21. (G) Spearman correlation 

between total albumin and di-22:6-BMP urinary concentrations; human urine specimens; n = 21. 

Data shown as mean ± s.e.m.; *P<0.05, **P<0.01, ***P<0.001. 
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