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Progress made in peptide-based vaccinations to induce T-cell-dependent immune 
responses against cancer has invigorated the search for optimal vaccine modalities. 
Design of new vaccine strategies intrinsically depends on the knowledge of antigen han-
dling and optimal epitope presentation in both major histocompatibility complex class 
I and -II molecules by professional antigen-presenting cells to induce robust CD8 and 
CD4 T-cell responses. Although there is a steady increase in the understanding of the 
underlying mechanisms that bridges innate and adaptive immunology, many questions 
remain to be answered. Moreover, we are in the early stage of exploiting this knowledge 
to clinical advantage. Several adaptations of peptide-based vaccines like peptide- 
adjuvant conjugates have been explored and showed beneficial outcomes in preclinical 
models; but in the clinical trials conducted so far, mixed results were obtained. A major 
limiting factor to unravel antigen handling mechanistically is the lack of tools to effi-
ciently track peptide vaccines at the molecular and (sub)cellular level. In this mini-review, 
we will discuss options to develop molecular tools for improving, as well as studying,  
peptide-based vaccines.

Keywords: peptide vaccination, click chemistry, antigen presentation, intracellular processing, targeted 
vaccination, tumor immunology, toll-like receptors, bioorthogonal

inTRODUCTiOn

Recent breakthroughs in immunotherapy of cancer have unveiled that clinical responses correlate 
with activation and expansion of tumor-specific T lymphocytes that mostly target mutation-based 
neo-antigens (1–6). Alongside, induction of tumor-specific T-cell responses has been achieved with 
well-defined peptide-based vaccines in preclinical and clinical settings (7–10). This indicates that 
therapeutic vaccination with well-defined synthetically produced neo-antigenic peptides is a viable 
strategy.

Immunogenicity of synthetic peptide-based vaccines can be significantly influenced by the mode 
of delivery (11–17). For example, efficiency of cytotoxic T-cell activation and anti-tumor immune 
responses is improved when peptides are encapsulated in liposomes or covalently conjugated to 
adjuvants (18, 19). Such modifications will allow optimal uptake of antigenic peptides from the 
vaccination site by specialized antigen-presenting cells (APCs) with efficient proteolytic processing 
for major histocompatibility complex (MHC) class I and class II presentation to CD8+ cytotoxic- 
or CD4+ helper-T cells, respectively (20). However, the development of optimal peptide delivery 
modalities is non-trivial and largely remains a process of trial-and-error based on time-intensive 
and indirect read-out systems. Most of what is known about in vivo processing routes of peptides 
is based on murine models and little data are available in humans. Additionally, the sequence 
and amino acid composition may alter the physical properties and immunological behavior of 
individual peptides. Therefore, mechanisms of intracellular routing and processing of administered 
peptides in APC require in depth examination.
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The processing machineries for peptide loading in MHC class 
I or -II for presentation is characterized by distinct protease sys-
tems. While MHC class I processing pathways involves cytosolic 
proteasomes, peptidases and ER-resident trimming aminopepti-
dases, MHC class II peptide production takes place in endoly-
somal compartments involving cathepsin-like proteases (21, 22). 
The cell biology of antigen presentation and cross-presentation, 
a specialized mechanism to process exogenous engulfed protein 
antigen for MHC class I, by dendritic cells (DCs) is not fully 
elucidated in detail but is crucial knowledge for optimal vaccine 
design (20, 22). Improving our knowledge on vaccine behavior 
is therefore essential for rationally designing peptide-based 
vaccines. However, tracking of vaccine components through the 
developing stages of an immune response remains difficult with 
present day techniques. Bulky labeling groups that are used to 
visualize peptides affect their physiochemical properties, which 
likely alters the way a peptide is internalized, processed, and 
presented. It is therefore vital to apply detection strategies that 
minimally impact the processing of peptides.

This mini-review encompasses our current knowledge of 
peptide-based vaccine modalities, the possibilities to properly 
target them through defined alterations, novel options for rational 
design, and the development of (bio)chemical visualization tools 
to improve our understanding of peptide-based vaccine behavior 
in vivo.

PePTiDe vACCinATiOn HiSTORY

Peptide vaccination is based on the biological concept that induc-
tion of a T-cell response relies on the specificity of the T-cell 
receptor to recognize a presented oligopeptide-epitope. This epitope 
corresponds to only a fraction of the entire protein (polypeptide)  
antigen. Therefore, to initiate a T-cell response against a spe-
cific protein, a vaccine essentially needs to include only the 
minimal immunogenic peptide sequence which can be produced 
synthetically.

Vaccination with minimal epitopes in form of synthetic pep-
tides was shown to raise antigen-specific T-cell responses (23) 
and represented an exciting step forward in modern vaccination 
biology. Immunogenicity studies in preclinical models showed 
effective induction of T-cell responses and the potential for its 
application in cancer immunotherapy was recognized. However, 
clinical translation of this concept did not lead to the results antici-
pated by the first studies (24–29). As an example, vaccination with 
the immunogenic peptide of the differentiation antigen gp100 for 
the treatment of melanoma, failed to elicit sufficiently effective 
T-cell responses in several clinical trials, even when relatively high 
numbers of antigen-specific cells were detected (30–32).

Comprehensive in vivo studies have revealed that, rather than 
the exact epitope, peptides consisting of a termini-extended 
sequence (long peptides) promotes higher quality T-cell resp-
onses (33). In fact, exact epitopes can directly bind on MHC 
class I molecules present on the surface of any somatic cell, most 
of which are non-professional APCs, which causes suboptimal 
T-cell priming. On the other hand, long peptides are processing-
dependent and can be presented only by professional APC, which 
are specialized and equipped for engulfing, processing, and 

presenting the antigenic peptides coinciding with optimal T-cell 
co-stimulation (34, 35).

The first peptide vaccination studies in humans were carried 
out with long peptides derived from self-antigens mucin and 
HER-2/neu, and mutated K-RAS. These studies reported safety of 
synthetic peptide administration and an observation of tumor- or 
antigen-specific T-cell responses (36–39). These clinical studies 
provided the basis for the use of long peptides as a strategy to 
design more efficacious vaccines for cancer treatment. In a study 
conducted in an HPV-induced preclinical model, vaccination 
with a 35 amino acid long synthetic peptide covering a CTL and 
a T helper epitope of the HPV16 E7 protein, improved T-cell 
responses compared with vaccination with minimal epitopes and 
controlled tumor growth (40). The use of long peptides bolstered 
priming by professional APCs that resulted in higher T-cell 
expansion, memory formation, and markedly improved efficacy. 
This paved the way for clinical testing of a mixture of overlapping 
peptides of 32–35 amino acids covering the sequence of the E6 
and E7 HPV16 proteins for the treatment of HPV-associated 
gynecological tumors (10, 41).

Synthetic peptide vaccination also holds high potential for the 
novel field of cancer vaccination against mutation-derived neo-
antigens. The ambition of raising an immune response against 
tumor-specific mutated proteins by vaccination represents an 
exciting challenge that has animated cancer therapeutic research 
over the last few years. Efforts needed in determining the MHC-
restricted epitopes may be bypassed by designing a peptide that 
spans the amino acid sequence on either side of the mutation. 
Interestingly, this concept has been successfully applied in a 
recent phase I study on melanoma patients (9). In this study, six 
patients were vaccinated with 13–20 different peptides of 15–30 
amino acids designed to target an equal amount of patient-
specific somatic mutations of the sequenced tumor. All patients 
exhibited enhanced neo-antigen-specific T-cell populations after 
peptide vaccination and displayed objective clinical responses, 
even though two patients required a supplemental treatment 
with anti-PD1 immuno-modulatory antibody to reach complete 
tumor regression. In perspective, the use of multiple long peptides 
for vaccination may be complicated, as the behavior of different 
amino acids sequences, in terms of physico-chemical properties, 
solubility, and bio-distribution may differ.

Concurrently, a similar approach has been developed by 
encoding selected patient-specific epitopes in RNA molecules 
(8), as the window of physico-chemical properties is smaller 
for these oligomers than for peptides. Also this RNA-based 
vaccination was able to induce a personalized tumor-specific 
T-cell response with clinical benefits. Both studies represent an 
important proof of concept for the field of neo-antigen vaccina-
tion and stimulate research to progress toward the most effective 
vaccination approach.

SYnTHeTiC PePTiDeS: veRSATiLe 
vACCine AnTiGenS

One advantage in the use of synthetic peptides as vaccines from 
both an immunological and a chemical point of view is their 
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versatility. Immunologically, peptide vaccines induce better T-cell  
responses compared with full protein vaccines (42, 43). In fact, 
peptides are more efficiently endocytosed, processed, and pre-
sented on MHC molecules compared with full proteins. Other, 
less understood, aspects of antigen handling by APC, indicate 
that antigen cross-presentation—on a mole-for-mole ratio—is 
more optimal for peptides than protein. This is perhaps due 
to efficient translocation of peptides into the cytoplasm from 
endosomes (44).

On the other hand, peptides are chemically easier to produce 
than protein antigens as they do not necessitate folding into a 
tertiary structure. The high throughput and parallel production 
set-ups for synthetic peptides allows that several variations in 
the linear sequence can be made to refine vaccine formulation. 
Collateral problems such as induction of tolerance or suboptimal 
priming (45, 46) can potentially be circumvented by conjugation 
to “adjuvant” molecules that allow targeting of APCs and contrib-
ute to adequate immune-stimulation.

A feasible strategy to improve APC targeting of synthetic pept-
ides and at the same time deliver the right signals is to integrate 
ligands of pattern-recognition receptors (PRRs), such as C-type 
lectin- (CLR), toll-like- (TLR), and NOD-like-receptors. These 
receptors are highly expressed by professional APCs and are 
essential for pathogen sensing and immune-stimulation. Different 
ligands have been identified for these receptors which can be 
employed for targeting and immune-stimulation. This approach 
can also modulate the internalization routing of endocytosed 
antigen (47). For example, the CLR-specific mannosylation of 
long peptides canalized intracellular trafficking toward early 
endosomal low-degradative compartments rather than lysosomes 
for degradation, compared with non-mannosylated peptide. This, 
favored antigen presentation and enhanced T-cell activation both 
in vitro and in vivo (15).

A second approach that has resulted in improved T-cell acti-
vation has been the direct conjugation of long peptides to TLR 
ligands. TLR-mediated trafficking was described to impact anti-
gen presentation. A study shows that the presence of antigen and 
TLR ligand in the same endosomes determines entrance to the 
presentation pathways, suggesting that TLRs or other PRRs might 
have an important role in determining efficient presentation after 
antigen uptake (48). Conjugation of antigenic peptides to TLR 
ligands like the TLR9-ligand CpG or the TLR1/2 heterodimer 
agonist Pam3CSK4 have been shown to strongly improve T-cell 
priming in vivo thanks to the combined effect of increased uptake 
of long peptides and co-delivery with the immune-stimulatory 
signal (49, 50). Furthermore, the Pam3CSK4-conjugates were able 
to establish potent anti-tumor immune responses in multiple 
preclinical models and are now being tested in a phase I/II clini-
cal trial evaluating synthetic peptide vaccination for treatment 
of HPV-induced cancers (19, 50) (ClinicalTrials.gov Identifier: 
NCT02821494). This represents a promising platform for poten-
tiating neo-epitope-based personalized peptide vaccines.

A third targeting strategy includes the conjugation of peptide 
to a DC-targeting antibody, as reported in a study evaluating the 
DC-specific receptor DEC205 antibody (51). Targeting viral-
specific long peptides to DEC205 promotes peptide uptake by 
DEC205+ cells and leads to enhanced presentation on MHC 

class I, which resulted in improved protection to viral challenge. 
Interestingly, no effect was observed in the efficiency of MHC 
class II presentation. This highlights the fact that peptide target-
ing does not only influence which cells will engulf the antigen, 
but also impacts intracellular trafficking and fate of the antigen 
for presentation on either MHC class I or II. This becomes more 
evident in a comparative study on antibody-mediated targeting 
to either mannose receptor, DEC205, or CD40 in human DCs 
(52). Targeting of different receptors leads to differential uptake 
efficiency and endosomal antigen localization. While targeting of 
the co-stimulatory molecule CD40 was associated to the lowest 
uptake, it was also associated to the most efficient MHC class II 
and cross-presentation. In this setting, DEC205-targeting was 
associated to routing to degradative compartments and low-
MHC class I presentation, which could be rescued by inhibiting 
degradation. These observations expose the complex relations 
between APC subsets, endosomal routing, and antigen presenta-
tion efficiency.

Lastly, an efficient approach is the encapsulation of long 
peptides in structures such as nanoparticles, liposomes, or nano/
hydrogel-systems to enhance T-cell priming by DCs (53–56). 
Particulate vaccines have been shown to be well internalized 
by various professional APCs. Properties of these particles, e.g., 
charge, size, composition, can be modulated to influence uptake 
by different cells, and vaccine dispersion after injection (57). In the 
case of liposomes, smaller particles are better internalized by DCs 
than larger, and positively charged cationic liposomes increase 
ROS production and cross-presentation (58, 59). The added 
benefit of nano/hydrogels is the possible incorporation of envi-
ronmental ques which are slowly released during the induction 
of DC maturation while peptide can be processed and presented 
(14). A shared advantage of these delivery systems is the ability to 
prevent the rapid release of high quantities of free peptide.

MODULATinG THe vACCine ReSPOnSe

Recent reports has highlighted that initiation of an adaptive 
immune response is more than an APC meeting a T cell. Complex 
interactions of several APC subsets and their crosstalk with other 
cell types within the vaccination-draining lymph node will deter-
mine the outcome of the immune reaction (60–63). Additionally, 
different APCs can induce different types of immune reactions 
due to their intrinsic characteristics (61–63). By the application 
of alternative formulations or conjugations with PRR ligands of 
peptides-based vaccines, modulation of the immune reaction 
may be possible by delivering the antigen toward the proper APC 
to initiate the proper immune response. To optimally design 
peptide-based vaccines in the future; it is thus necessary to 
understand the consequences of modifications in APC targeting.

Recently, the importance of cross-presenting DCs in the initia-
tion of an effective anti-tumor immune response was exemplified 
in several studies (64–66). Tissue originating cross-presenting 
DCs were shown to be required to migrate from the tumor 
microenvironment (TME), loaded with antigens from the tumor, 
toward the draining lymph node, to induce CD8 T cell-dependent 
delay of tumor outgrowth. This special DC type was characterized 
by the expression of CD103 and is a DC subtype closely related 
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to the cross-presenting CD8α-expressing DCs that reside in the 
secondary lymphoid organs (67). These DC subtypes are indi-
cated as part of the type 1 conventional DC (cDC1) group, have 
a common expression of the previously mentioned C-type lectin 
receptor DEC205 that was exploited successfully for improved 
cross-presentation, as well as the “dead cell-receptor” CLEC9A, 
and has an homolog in the human DC family (68–70). Closely 
related is the macrophage lineage originating Langerhans cell, 
which shows similar cross-priming capabilities as cDC1s and is a 
shared population between mice and humans. Their characteris-
tic expression of c-type lectin receptor Langerin-1 has been used 
in antibody-mediated targeting to improve cross-presentation 
and CTL activation (17).

Additionally, the induction of effective CD4 helper responses 
are crucial for improved CD8 T-cell priming and memory forma-
tion, increased tumor infiltration, and local effectiveness (58–60). 
The DC family has, likewise the conventional DC type 1, a type 
2 conventional DC with the characteristic expression of CD11b, 
which is considered specialized in their capacity to induce 
T-cell help while lacking CD8 priming capacity (67). However, 
exploration of specific targeting of this DC subtype for improved 
helper T-cell priming had negligible attention, due to the intrinsic 
capacity of most DCs to present in MHC class II. Therefore, it 
appears more effective to incorporate vaccine modalities which 
harbor both CD4 and CD8 epitopes and target a wide range of 
DC subsets, including cross-presenting DCs.

Furthermore, potent peptide-based vaccines can modulate the 
TME as shown by shifts in the myeloid subpopulations in the 
tumor (19, 71). Most likely, polarization of CD4 T-cell subsets 
will regulate the TME to a more proinflammatory state. This is 
supported by TLR2 ligand-conjugated HPV long peptides which 
can strongly activate CD4 and CD8 T cells from tumor-draining 
lymph nodes of cervical cancer patients (50). Other options to 
modulate the suppressive TME can be achieved by combining 
cancer vaccines with classical chemotherapy (72) or widely used 
checkpoint blocking antibodies like anti-PD-1 or anti-PD-L1 
(65, 73–78).

The application of TLR-ligand Pam3CSK4 as targeting moiety 
was highly promising due to a broad expression of its receptor 
in dermal DCs (79, 80). The added benefit of a TLR ligand is the 
combination of a maturation signal with an antigen. Maturation of 
the DC is known to strongly influence the intracellular machinery 
and processing of exogenous antigens (81–83). By conjugation of 
a maturation signal with the antigen, the survival of internalized 
antigen is increased by the formation of antigen storage depots 
for prolonged presentation and priming (84). The application of 
ligands for other PRRs is of interest as well (85). However, care 
should be taken in using combinations of different PRR ligands in 
the same modality. Different PRR pathways may affect each other 
upon simultaneous activation and reduce DC proinflammatory 
responses, which is exploited by some pathogens (86, 87).

In conclusion, these findings shows that the field is steadily 
progressing to unravel the relevant cell types involved in opti-
mal (cross-)presentation of antigens. Peptide-based vaccination 
stu dies using antigen-bound fluorophores show co-localization 
with endosomal markers in DC, which correlated with a robust 
antigen-specific T-cell immune response. However, the strong 

influence of the relatively large fluorophore on the physico-
chemical properties of the antigenic peptide to gain trustworthy 
physiological information and the limitations to detect peptide 
intermediates makes interpretations of this complex process dif-
ficult. To unravel how activation of APCs orchestrate molecular 
and cellular mechanisms of antigen processing and presentation 
operate in vivo, and how we can incorporate this knowledge in 
peptide-based vaccination modalities requires better tracking 
and visualization tools of vaccine moieties.

nOveL CHeMiCAL viSUALiZATiOn 
TOOLS

Several technologies to visualize antigens in APCs, other than 
using T-cell readouts, have been developed in the last decades. 
Most of these have relied on tracking the activity of an enzyme 
through a cell. Examples of enzymes used for this are ß-lactamase, 
luciferase, and horseradish peroxidase. Using these approaches, 
the endocytic compartments involved in (cross-)presentation 
could be observed, as well as the cytosolic location of proteins 
during this event (88–90). Fluorophore-labeled antigens have 
also been used to study the intracellular movement of antigen in 
an APC. Using this approach, the presence of intracellular antigen 
depots was, for example, identified (84).

However, these approaches also have their constraints. For 
reporter proteins, the main constraint is that degradation is 
the hallmark of antigen (cross-)presentation: during antigen 
presentation any protein must be degraded into peptides to allow 
for its MHC-loading. As enzyme activities are reliant on largely 
intact proteins, this means that later stages of the pathway will be 
invisible using this approach. The use of fluorophore-modified 
antigens partially solves this by making the detectable signal 
independent of the intactness of the protein. However, the phys-
icochemical properties of fluorophores must also be considered. 
Due to their bulky and hydrophobic structure compared with 
relatively small peptides, fluorophores could strongly influence 
the behavior of the antigenic peptide and mask epitope residues as 
well as proteolytic cleavage sites. Moreover, the size of conjugated 
fluorophores may hamper these peptides to pass through the 
proteasomal α-annulus of several ångström wide (91). Similarly, 
peptide translocation by TAP (transporter associated with anti-
gen presentation) to the ER lumen for presentation in MHC class 
I molecules may be strongly influenced (92). Furthermore, it is 
difficult, if not impossible, to rule out that constructs lose their 
fluorophores during processing. As a consequence, not much 
data exists of later processing stages that could directly visualize 
antigen. And even in rare cases in which it has been possible [e.g., 
the H-2Kb-SIINFEKL pMHC complex antibody 25-D1.16 (93)], 
translation to other antigens is not obvious. Therefore, a method 
to thoroughly and accurately apply tracking across a manifold 
of peptide-based vaccine modalities and the complex cellular 
interactions involved is highly wanted (see Figure 1).

One field of chemistry of which we are currently exploring 
the potential is click chemistry (94). This type of chemistry 
involves a defined ligation reaction between a small bioorthogo-
nal chemical group—a chemical group which can be selectively 
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ligated within the context of the living cell or organism—to form 
a covalent linkage to a detectable group after the biological time 
course has been completed. It is relatively easy (in Escherichia 
coli) to produce bioorthogonally labeled recombinant proteins 
(95–97) using methionine auxotrophic producer strains in 
combination with bioorthogonal methionine analogs (98, 99). 
This chemistry has been applied widely, but its application to 
immunology is still in its infancy. We ourselves have applied 
this chemistry to label surface loaded minimal epitopes on the 
surface of APCs (100) to allow their quantification without using 
T-cell reagents. However, the reaction is still limited by poor 
signal-to-noise ratios that cannot compare with the sensitivity 
of T cells. Detection of the handles in antigens after routing and 
processing is therefore not yet possible using this approach, 
despite the groups surviving the antigen presentation pathway 
(101–103). Once the sensitivity issues can be solved this tech-
nique could prove valuable in the imaging of the entire antigen 
routing pathway with minimal bias. Additionally, this approach 
may be suited to analyze the in vivo fate of chemically defined 
peptide vaccines. By ex vivo secondary staining of relevant cell 
types or tissues using fluorescent microscopy or histological 
analysis, the presence and location of the peptide vaccine can 
be determined. This could be valuable information to improve 
peptide vaccine design.

COnCLUDinG ReMARKS

Our current knowledge on innate and adaptive immune system 
allows us to design molecularly well-defined vaccine moieties. 
Adjuvant molecules that bind PRR can be synthetically coupled 

to antigenic peptide sequences. Even though these defined pep-
tide vaccines have strong vaccination capacity, the mechanisms 
underlying these improvements are only understood to a basal 
level. To improve the design of peptide-based vaccines, we need 
to better our understanding of chemically altered vaccines on the 
events unfolding during vaccination in vivo. A major limitation to 
this understanding is the lack of techniques that allow the study 
of late stages of antigen processing, and presentation on a cel-
lular and molecular level. Fundamental questions about transfer 
of peptides within and between cells are currently troublesome 
since tags or fluorophores are lost and prone to altering essential 
physicochemical properties due to their bulkiness. The intro-
duction of novel types of chemistry may in future circumvent 
these problems, which in turn may lead to novel insight in the 
complex cellular and molecular interactions in immune response 
induction.
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