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Creativity is a compelling but heterogeneous phenomenon. As

opposed to big-C creativity, which is regarded as limited to the

rare brilliant mind, little-c creativity is indispensable in adaptive

everyday behavior, serving to adjust to changing

circumstances and challenges. Computational approaches

help demystify human creativity by offering insights into the

underlying mechanisms and their characteristics. Recently

proposed computational models to creative cognition often

focus on either divergent or convergent problem-solving, but

some start to integrate these processes into broader cognitive

frameworks. We briefly review the state-of-the-art in the field

and point out theoretical overlap. We extract basic principles

that most existing models agree on and desiderata on the way

towards a comprehensive model.
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Introduction
Creativity is a compelling phenomenon that has produced

admirable ideas and artefacts. A distinction is often made

between big-C creativity, which allows brilliant minds to

create unique and inventive products, and little-c creativity,
the cognitive functioning that helps even the less brilliant

mind adapt to changing circumstances and solve everyday

problems [1,2]. Because of its indispensability in every-

day functioning, little-c creativity (henceforth creativity) is

studied widely to understand how creative cognition

emerges and why it shows so much interindividual

variability.
$ This work was supported by the European Research Council (ERC Ad

innovation program under grant agreement No. 694722 (Metacontrol) to B
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Since Guilford [3] a distinction is made between diver-

gent and convergent thinking in generating creative

ideas. Divergent thinking produces creative ideas by

exploring multiple potential solutions to an often vaguely

defined problem while convergent thinking serves to

identify the single best solution to a well-defined prob-

lem. The cognitive operations needed to support diver-

gent and convergent thinking have been associated with

possibly antagonistic sets of processes or cognitive control

modes, such as flexibility versus persistence [4] or insight

versus analytic processing [5]. Yet, actual performance is

likely to involve some degree of interplay between diver-

gent, convergent, and other cognitive (sub)processes and

process-related neural networks (e.g. [6–8]), suggesting

that creativity is a complex and heterogeneous

phenomenon.

In this short review we consider the most recent (<3

years) computational models of aspects of human creativ-

ity. Computational models allow for a mechanistic

approach to cognitive processes in healthy and maladap-

tive cognition [9–11] and thus have the potential to

demystify creative cognition. We highlight divergent

and convergent processes in these recent computational

approaches to creative cognition (see also Table 1), to the

degree that they can be distinguished and characterized

accordingly. We then briefly consider recent issues with

dual-process accounts in modeling creativity (c.f. [12,13])

and propose a unitary approach that might offer a more

parsimonious account to recognize the tricky division and

adaptivity between antagonistic states underlying

creativity.

Recent computational approaches to
creativity
Models of divergent creativity

Divergent thinking has been related to associative think-

ing [13], and can be modeled as spreading activity in

neural networks. Three recent publications used a net-

work science approach to study how individual differ-

ences in creative associative thinking might arise from

structural differences in semantic networks [14,15,16�].
Findings suggested that the semantic networks of highly

creative individuals showed more small-world properties,

which allows for faster search over a wider network of
vanced Grant) under the European Union’s Horizon 2020 research and
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Table 1

Summary of recent computational models applied to creative cognition

Authors Modeled creativity process Description computational approach

Benedek et al. [14];

Kenett et al. [15];

Kenett et al. [16�]

Divergent Network science approach; Percolation analysis

OlteÛeanu and Falomir [20];

OlteÛeanu [19];

OlteÛeanu [21];

OlteÛeanu, Falomir, and Freksa [18�]

Divergent Prototype system (OROC) in CreaCogs theoretical framework

OlteÛeanu and Falomir [17];

OlteÛeanu, Falomir, and Freksa [18�];
OlteÛeanu, Schultheis, and Dyer [23]

Convergent Prototype system (comRAT) in CreaCogs theoretical framework

Schatz, Jones, and Laird [24] Convergent Semantic memory model in cognitive architecture (Soar)

Kajı́c et al. [25�] Convergent Spiking neuron model

Augello et al. [32�] Divergent and convergent* Cognitive architecture (MicroPsi/Psi)

Wiggins [28];

Wiggins and Bhattacharya [29]

Divergent and convergent Cognitive architecture

(IDyOT)

Note. Asterisks indicate that the authors explicitly modeled these processes in their approach; for the other references we inferred the focus on these

processes from the text.
associations, increasing the probability of returning novel

associations [15]. Kenett et al. [16�] also found that break-

ing associations in a simulated semantic network led to

larger parts of the network breaking apart in low creative

individuals, while networks in high creative individuals

remained fairly intact. This network science computa-

tional approach thus suggests that structural characteris-

tics of semantic networks influence the extent of diver-

gent thinking.

Another recent approach implemented a computational

model of a popular task to study divergent creativity, the

Alternative Uses Task (AUT [3]). In the AUT, individu-

als produce as many as possible alternative uses for a

common object (e.g. towel, brick) within limited time. In

the model, performance on this task relies on object

replacement and object composition (OROC). The sys-

tem was modeled within a theoretical framework called

CreaCogs [17,18�,19]). CreaCogs-OROC organizes mem-

ory into three layers: first, a subsymbolic level where

feature spaces (e.g. shape, color, affordance) of objects

are represented in a distributed fashion; second, a level of

concepts grounded in the subsymbolic level; and third, a

problem template level representing known problems

and solutions encoded over concepts and relations

between them (Figure 1). Each level is grounded in

the subordinate level to be able to use, say, features from

related concepts to find objects with features that can

replace a cue object in the AUT, or vice versa. The more

feature spaces are considered, the more divergent the

search for a replacement use can become, making the

divergence of search in the AUT-dependent on the size

and number of feature spaces in the CreaCogs-OROC

knowledge base — a possible source of interindividual

differences. Simulations of the AUT in CreaCogs-OROC
Current Opinion in Behavioral Sciences 2019, 27:47–54 
show that the system can produce answers comparable to

findings in humans [20].

Theoretically, CreaCogs-OROC can be used to construct

insightproblems[19,21] bytaking a simpleproblemwith an

existing solution and replacing or (de)composing objects

used in the solution to change the problem to a creative

problem. The authors suggest an example problem in

which the participant should find how to build a seesaw

from a surfing board and a bucket to decide who of two

people is heavier. Although insight problem construction in

CreaCogs has not yet been simulated, the creative (de)

composition of objects and object replacement to re-repre-

sent a balancing scale is reminiscent of processes in model-

ing the AUT. The more features or objects are considered

in constructing insight problems, the more divergent a

search for the solution might have to become. The creative

problem-solving (or problem-generating) approach in the

CreaCogs framework thus seems to lend itself to model

divergent behavior in multiple creativity paradigms.

Models of convergent creativity

While the abovementioned set of models focused on the

spread of search, or divergent cognition, similar models

are used to study convergent, more targeted search.

Another prototype system within the CreaCogs frame-

work (comRAT) simulates performance on the Remote

Associates Test (RAT [22]), a convergent-creativity task

in which three verbal concepts are presented and a

solution word that can be combined with either one is

sought for (e.g. market, glue, man ! super). ComRAT was

developed as an RAT solver (comRAT-C [17,19]) and a

semantic RAT problem generator (comRAT-G [23]).

ComRAT-C comprises a knowledge base of word pairs

modeled in CreaCogs’ concept level. Activation of an
www.sciencedirect.com
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The knowledge base in Creacogs-OROC comprises three levels over which objects are encoded. Each level is grounded in the level below it. The

distributed nature of the feature space level might offer dual-states modeling as a unitary approach as suggested by Hommel and Wiers [50�].
Reprinted without changes, with permission from Elsevier based on Figure 1 in ‘Object replacement and object composition in a creative cognitive

system. Towards a computational solver of the Alternative Uses Test’ by OlteÛeanu and Falomir [20], Cognitive Systems Research, 39, 15–32.

Copyright 2016 by Elsevier.
RAT problem activates all words related to the queried

word pair, modeling an associative search of the full

knowledge base to enable convergence upon one answer

found in three word pairs [17,19]. It returns an answer

after finding a word that was associated with each of the

cue words. Sometimes, the system was also able to

converge upon (alternative) answers when only two word

pairs in the knowledge base shared a word, indicating that

the learned associations structure provides a robust sys-

tem to solve RAT problems [17].

As shown recently [24], spreading activation starting at

three RAT cue words can also lead to the correct solution

by strongly increasing the activation level of one word of

the knowledge base [24]. Free recall, implemented in this

computational approach, explained success better than a

cued-retrieval approach in which the system was only

allowed to return an answer that matched all three prob-

lem words. This performance increase thus comes despite

the lack of a deliberate query to match the solution word

to word pairs of the three RAT cue words [24]. Appar-

ently, a winner-takes-all approach in (divergently)
www.sciencedirect.com 
spreading activity over an associative network is sufficient

to simulate convergent search process in the RAT.

This was also observed in a biologically plausible spiking

neuron model of RAT performance [25�]: a selection

network of neurons activates one of three RAT cue words

at a time, and randomly switches between cues. Activation

spreads from the cue to all neurons that represent the cue

word ina distributedfashion. Activation of associatedwords

represented in overlapping neural networks is fed back into

a winner-takes-all response network which converges on

the most activated word and responds when auto-inhibitory

response processes have decayed (Figure 2). Performance

of this model matched human performance well [25�] and,

again, the success of this model might indicate that spread-

ing activation and a winner-takes-all approach could

explain RAT performance.

More integrative computational creativity accounts

While the models described above claim to focus on

divergent or convergent creativity specifically, both kinds

of models rely on associative search processes or
Current Opinion in Behavioral Sciences 2019, 27:47–54
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RAT architecture of a spiking neuron model. One of the three cue words is chosen as a primary cue for which all of its associate words are

activated with help of association matrix Ã. The winner-takes-all network (WTA) in the response network keeps the most activated word active

until a final word is select when response inhibition has decayed. Reprinted without changes, with permission according to CC BY 4.0 from

Figure 2 in ‘A spiking neuron model of word associations for the remote associates test’ by Kaji�c, Gosmann, Stewart, Wennekers and Eliasmith

[25�], Frontiers in Psychology, FEB.
spreading of activation. This raises the question whether

more integrative models accounting for both divergent

and convergent thinking are feasible, an idea that is

already apparent in CreaCogs. Some computational

approaches have indeed tried to model creativity in the

broader scope of cognition.

One approach to study creative thinking in a broader cogni-

tive architecture is Information Dynamics of Thinking

(IDyOT [26–29]. This model is based on the idea of predic-

tive coding, according to which the brain is constantly

occupied with the efficient processing of sensory informa-

tion by minimizing entropy and unexpectedness. Predic-

tions are produced by generators that compete for attention

in a global workspace, implementing Baars’ Global Work-

space Theory [26,28–30]. Predictions are made from mem-

ory, a multiple layer hierarchy including distributed and

conceptual representations as well as an intermediate layer

of conceptual spaces representing concepts and relations

between concepts geometrically, as described by Gärden-

fors [31]. According to Wiggins [28], spontaneous creativity

arises as a by-product, from the brain ‘freewheeling’ as it

continues prediction  in absence of relevant sensory input. A

novel idea might be predicted from finding an unvisited

point in one of the conceptual spaces [28,29]. So far, no

explicit account how this ‘freewheeling’ leads to more or less

divergent ideas was suggested, but the detailed and broad

approach might offer a rich simulation  of creative cognition.

Interestingly, one recent model by Augello et al. [32�]
does explicitly model divergent and convergent processes
Current Opinion in Behavioral Sciences 2019, 27:47–54 
together. Their computational painter is designed within

the MicroPsi cognitive architecture [33], and the painter

replaces image features with a creative alternative (e.g. a

face area with a flower, similar to the human painter

Arcimboldo). Augello et al. refer to the Four Quadrants

Model, which models the interaction between convergent

and divergent processes and recognizes that both of these

processes can be implicit or explicit (Figure 3 [34]). Long-

term memory consists of distributed representations in

which each neuron represents the centroid of a pattern

cluster representing an image or image detail [35]. The

working memory module clusters more abstract repre-

sentations of image details, enabling feature substitution

in one domain (e.g. faces) with features of another domain

(e.g. flowers). Cognitive control over these processes

allows for more or less divergent search and comes from

a resolution network. This network controls for example

the permitted distances between centroids in the working

memory to allow for broader or narrower search, and the

interaction between convergent analytic and tacit pro-

cesses in deciding whether a replacement is successful or

not (Figure 3).

Dual-process modeling
Neurocognitive results have been taken as evidence for

distinct neural mechanisms underlying divergent, flexi-

ble, or unfocused thinking on the one hand and conver-

gent, persistent, or focused thinking on the other, be with

reference to frontal and striatal dopaminergic pathways

[36,37], dopamine receptors families [38], or brain net-

works (e.g. [39–41]). However, dual-process accounts are
www.sciencedirect.com
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Figure 3
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The Four Quadrants Model, implementing four (exploratory, analytic,

reflective, tacit) strategies, recognizes the crosstalk between implicit

and explicit processes on the one hand and divergent and convergent

processes on the other. Augello et al. [32�] map the four resulting

processes onto their creative painter to indicate the importance of

interactions between the processes in creative cognition. Highlighted

are only the interactions involved in the creative process proposed in

the system by Augello et al. [32�].
Reprinted without changes, with permission from Elsevier based on

Figure 1 in ‘Artwork creation by a cognitive architecture integrating

computational creativity and dual process approaches’ by Augello,

Infantino, Lieto, Pilato, Rizzo, Vella [32�], Biologically Inspired Cognitive

Architectures. This model is based on Figure 1 proposed in ‘A four

strategy model of creative parameter space interaction’ by Tubb and

Dixon [34], Proceedings of the Fifth International Conference on

Computational Creativity ICCC. Copyright 2016 by Elsevier.
increasingly criticized, often because the processes and/or

the outcomes of the two hypothetical pathways are diffi-

cult to distinguish or because both types of processes or

outcomes rely on some sort of interaction between the

two pathways [5,12,13,42–45]. The model by Augello

et al. [32�] is rather exceptional in trying to integrate

divergent and convergent processes in creative cognition

(but see CLARION [46–49]). However, the issues men-

tioned above have led to a call for an even more integra-

tive perspective of creative cognition [12,13,50�].

Towards a unitary account
What basic ingredients should such an even more inte-

grative perspective of creative cognition have? We con-

sider three ingredients essential. First, most of the models

that we have discussed agree on the importance of dis-

tributed representations of objects or concepts to facili-

tate replacement or composition, as for instance sug-

gested explicitly in CreaCogs. Such representations
www.sciencedirect.com 
also facilitate aspects of creativity that go beyond diver-

gent and convergent thinking, such as the creation of

metaphors (creating a connection between two seemingly

unrelated concepts that however share some features) or

replacement by second-best solutions (‘plan b’) if best

solutions are impossible or not feasible. Second, the

degree of flexibility that most aspects of creative behavior

require call for the contextualization of representations.

Even distributed representations of objects or concepts

are relatively static without a means to weigh the possible

features according to situational requirements or present

goals. It is this contextualization that facilitates the crea-

tion of metaphors and the breaking of overlearned asso-

ciations between concepts. Third, models need to take

into account individual differences more. Most models

certainly allow for the consideration of such differences

but making them an explicit goal of model development

would drastically increase our insight into the mecha-

nisms underlying the substantial individual differences in

creativity that can be observed in real life. It is important

to distinguish between trait-like differences between

individuals (resulting from genetic predisposition and/

or over learning) that are difficult or impossible to elimi-

nate through interventions, and state-like differences that

even the same individual can show in different situations

or under different goals.

All three basic ingredients are available from a recent

attempt to provide a unitary alternative to conventional

dual-route theorizing in action control. As suggested by

Hommel and Wiers [50�], both possible and actual events,

including concepts and ideas, are represented by distrib-

uted networks of the features that characterize these

events (so-called event files) — an assumption adopted

from the theory of event coding (TEC [51]). While all

features of a given event are maintained in the system,

the current contribution of features to representing this

event in context of the present situation is weighted by its

relevance for the present intention and task goal [52].

This implies, among other things, that event files with

more task-relevant features compete more strongly for

selection for further processing. The feature-based repre-

sentation principle of event files allows for feature-based

selection, competition, and spread of activation, as well as

for task-specific selectivity of representation — which

covers our first two requirements for a unitary approach.

However, to account for individual differences and to

allow for modeling both divergent and convergent ways of

concept-selection, another principle is required. As Hom-

mel and Wiers [50�] have suggested, the degree of com-

petition between multiple event files can be regulated to

make it either weak, as required for divergent thinking

and other associative reasoning patterns, or strong, as

required for focused in-depth convergent thinking.

The idea is that competition and selection is regulated

by the present metacontrol state, which reflects a partic-

ular balance between extreme persistence, characterized
Current Opinion in Behavioral Sciences 2019, 27:47–54
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Figure 4
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According to the metacontrol state model (MSM) there are interindividual (trait) biases as well as intraindividual (state) biases in metacontrol state.

Each individual is characterized by a certain cognitive control state, dependent on influences due to culture, religion, and genes [50�,53,54].
However, to be able to adapt to changing circumstances individuals should be able to adapt their cognitive control state to situational demands

(based on Mekern, Sjoerds & Hommel, in revision).
by strong competition and top–down focus, and extreme

flexibility, characterized by weak competition and top–

down focus [53]. The particular metacontrol bias on this

persistence-flexibility dimension has been claimed to

show systematic inter-individual and intra-individual var-

iability; some people tend to be more persistent where

others tend to be more flexible, but the same person may

also sometimes tend to be more persistent and sometimes

more flexible, depending on situational demands (Fig-

ure 4, left versus right panel). Moreover, we have recently

suggested that people may differ in their adaptivity, which

refers to the ease with which they keep and readjust their

balance between persistence and flexibility in the case of

changing environmental demands (Figure 4, top versus

bottom panel).

Adopting these three key principles holds promise for

developing a unitary computational approach of human

creativity that avoids previous problems with dual-pro-

cess models (as discussed in Refs. [12,13]). A successful

unitary approach is likely to help further demystifying

creative cognition by coming to grips with the underlying

mechanisms.
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