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Summary: We consider choosing an estimator or model from a given class by cross validation
consisting of holding a nonneglible fraction of the observations out as a test set. We derive bounds
that show that the risk of the resulting procedure is (up to a constant) smaller than the risk of an or-
acle plus an error which typically grows logarithmically with the number of estimators in the class.
We extend the results to penalized cross validation in order to control unbounded loss functions.
Applications include regression with squared and absolute deviation loss and classification under
Tsybakov’s condition.

1 Introduction
LetX1, . . . , Xn be a sample of observations, independent and identically distributed ran-
dom variables, distributed according to a probability measure P on a measurable space
(X ,A). For a given parameter set Θ and “loss function” L:X ×Θ → [0,∞) we aim at
finding an estimator θ̂ that minimizes the function R: Θ → R defined by

R(θ) =
∫
L(x, θ) dP (x) = EL(X1, θ). (1.1)

Here an “estimator” θ̂ is as usual a measurable function of the observations and x 7→
L(x, θ) is assumed measurable. A proper statistical setting would require to consider
the “(prediction) risk” R also as a function of the unknown distribution P , but we do
not make this explicit in the notation as in the results of this paper only a single “true”
distribution P appears.

For notational convenience we assume that the estimator is defined for each n and
symmetric in the observations, so that it can be written as a function θ̂ = θ(P), for P =
n−1

∑n
i=1δXi

the empirical distribution of the observations and θ a map from the set of
uniform discrete distributions into the parameter set. Given a collection {θk(P): k ∈ K}
of estimators we wish to select the estimator θk̂(P) that minimizes R, where k̂ may
itself depend on the observations. Because R depends on the unknown distribution P ,
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this cannot be achieved exactly. However, we try and approximate our aim by cross
validation, as follows.

We split the the data randomly into two sets, a training and a test (or validation)
sample. To formalize this let S = (S1, . . . , Sn) be a random vector independent of
X1, . . . , Xn and taking values in {0, 1}n. If Si = 0, thenXi belongs to the first (training)
subset; otherwise it belongs to the second (test) subset. Define sub-empirical distributions
P0

S and P1
S by

Pj
S =

1
nj

∑
i:Si=j

δXi
, nj = #(1 ≤ i ≤ n:Si = j), j = 0, 1.

The “randomness” of the split is actually of no importance in the following: the split
may be deterministic. The only assumption is that S is stochastically independent of the
observations. Given a collection {θk: k ∈ K} of estimators we form candidate estimates
θk(P0

S) by applying the estimators to the training sample. The risk of these estimators,
averaged over the splits, as a function of k ∈ K, is equal to

k 7→ ES

∫
L

(
x, θk(P0

S)
)
dP (x) = ESR

(
θk(P0

S)
)
. (1.2)

The value k̃ ∈ K that minimizes this expression depends on the observations as well
as on the unknown distribution P , and hence is unavailable. In view of the latter it is
referred to as an oracle. Cross validation replaces P by P1

S and proposes to use the value
k̂ that minimizes

k 7→ ES

∫
L

(
x, θk(P0

S)
)
dP1

S(x). (1.3)

Next the final estimator is ESθk̂(P0
S) or perhaps θk̂(P).

Example 1.1 (regression). In the regression model the observations are a sequence of
pairs (X1, Y1), . . . , (Xn, Yn) taking values in a space X × R and satisfying a model

Y = θ0(X) + ε,

for ε an unobservable “error”. The purpose is to estimate the function θ0:X → R.
To fit this in the preceding set-up we take the pairs (Xi, Yi) as the observations (rather

than the Xi), and the parameter set Θ as a collection of functions θ:X → R. A popular
loss function in this setting is the squared error loss

L
(
(x, y), θ

)
=

(
y − θ(x)

)2
.

If the conditional mean of the error givenX is zero, then the corresponding risk isR(θ) =
Eε2 + E(θ − θ0)2(X), so that minimizing R is equivalent to estimation of θ0 under L2-
loss.

An alternative is to replace the square by another increasing function of the discrep-
ancy

∣∣y − θ(x)
∣∣. It may not be possible to express the risk then in a simple distance on

the regression functions, but it can always be understood in terms of prediction error.
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Example 1.2 (classification). In the classification model the observations are a se-
quence of pairs (X1, Y1), . . . , (Xn, Yn) taking values in a space X × {0, 1}. The pur-
pose is to predict the value of a future outcome Y ∈ {0, 1} from a given future input X ,
where (X,Y ) is distributed as the observations. A “classifier” is a measurable function
θ:X → {0, 1}, and a natural loss function is

L
(
(x, y), θ

)
= 1y 6=θ(x).

The corresponding risk is the probability R(θ) = P
(
Y 6= θ(X)

)
that the classifier fails

to predict the outcome correctly. Relative to all possible classifiers this is minimized by
the Bayes classifier θ0 = 1η0≥1/2 for η0(x) = P(Y = 1|X = x), and we may view the
problem also as aimed at estimating θ0 under this loss.

Example 1.3 (multivariate mean). Suppose that we observe a sample X1, . . . , Xn

from a D-variate normal distribution with mean θ0 and covariance matrix the identity
matrix, and we wish to estimate the mean vector θ0 ∈ RD relative to the loss function

L(x, θ) = ‖x− θ‖2.

The corresponding risk functionR(θ) = ‖θ−θ0‖2+D is essentially the square Euclidean
distance.

By sufficiency this problem is equivalent to estimatingD univariate means θ1, . . . , θD

each based on a single N(θi, 1/n)-observation. The vector of sample means is an obvi-
ous estimator, but may be unattractive if D is large, when shrinkage estimators perform
a better job, and a-priori information, for instance sparsity of the vector θ, may suggest
many other estimators. Cross validation can be used to choose from these estimators.

For fixed values of the training sample P0
S the expression (1.3) is an unbiased estimate

of its mean, which is the risk R
(
θk(PS

0 )
)

=
∫
L

(
x, θ̂k(P0

S)
)
dP (x) of θk(P0

S). We
may expect that the k which minimizes the estimated risk (1.3) will also approximately
minimize this population risk. The realization of this expectation depends on the quality
(i.e. variability) of the risk estimate, next to its being unbiased. In the next sections we
present inequalities that show that k̂ indeed (nearly) minimizes the risk. More precisely
we show that the risk of the estimator given by k̂ is not much bigger than the risk of the
“oracle estimator”, which uses k̃ defined as the minimizer of (1.2). This is achieved by
comparing the deviation of (1.3) from its mean using inequalities from empirical process
theory.

The quality of the risk estimates is determined by the number and type of procedures
θk. It is also dependent on the number of observations in the test sample. In practice two-
fold, three-fold and ten-fold splits appear popular. The leave-one-out cross-validation
scheme (“n-fold cross validation”, see Stone (1974, 1976)) averages over all validation
sets consisting of one observation. This scheme also leads to unbiased risk estimates,
but the methods of this paper cannot be used to analyze the resulting procedure. Leave-
one-out cross validation is studied theoretically in Li (1987) and Andrews (1991) for
nonparametric regression, and as recently as in Davies et al. (2005) for Kullback-Leibler
divergence in parametric models.
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Choosing a best estimator from a given set is also known as “model selection” and has
recently been studied within the context of aggregation of estimators. For instance, linear
aggregation proposes the best linear combination of the estimators, where the weights
may be dependent on the observations. Aggregation has been studied, among others, in
Nemirovski (2000), Yang (2000), Bunea et al. (2004), and Tsybakov (2004), and appears
to be a powerful technique. Also see George (2000) and the references cited there for
further connections to model selection.

Through its focus on risk estimation, cross validation is connected to penalized con-
trast estimation. For given numbers λ(k, θ) the latter procedure selects the estimator
θk̂(P) for k̂ the minimizer of

k 7→
∫
L

(
x, θk(P)

)
dP(x) +

λ
(
k, θk(P)

)
n

. (1.4)

The penalty λ(k, θ)/n is meant to prevent overfitting the data by making complex es-
timators less favorable. Alternatively, a penalty can be understood (at least partly) as a
correction for the double use of the data in (1.4). The empirical integral in the display is
meant to estimate the population integral

∫
L

(
x, θk(P)

)
dP (x). However, the mean of

the empirical integral is EL
(
X1, θk(P)

)
, in which the variable X1 appears twice, once

as the first argument of L and a second time hidden in P. Typically EL
(
X1, θk(P)

)
is smaller than E

∫
L

(
x, θk(P)

)
dP (x) and hence the empirical integral in (1.4) under-

estimates
∫
L

(
x, θk(P)

)
dP (x). The penalty (called “covariance correction” by Efron

(2004)) is added to remedy this. The link between penalties and risk estimation was
made by Akaike (1973, 1974) and Mallows (1973). Oracle inequalities were obtained by
Li (1987), Barron and Cover (1991), Vapnik (1998), Barron et al. (1999), Lugosi and No-
bel (1999), Massart (2000), Koltchinskii (2001), van de Geer (2001), Wegkamp (2003),
and Birgé (2006), among many others. See Boucheron et al. (2005) for a review in the
context of the classification problem.

The advantage of penalized contrast estimation is that it is computationally more
efficient, and avoids sampling splitting, thus referring directly to the estimator based
on all observations. The disadvantage is that appropriate penalties must be worked out
for each situation at hand. The latter may be complicated and may lead to suboptimal
estimators.

The cross validation procedure uses independent observations to construct the estima-
tors θk(P0

S) and to estimate the risk
∫
L

(
x, θk(PS

0 )
)
dP (x) (using P1

S). Thus it provides
an unbiased estimate of risk, and a penalty seems unnecessary. Nevertheless in Section 3
we consider the combination of cross validation and penalization. The introduction of
penalties does not complicate the situation much, and penalization appears to be poten-
tially useful to control the variance of the risk estimator. In particular, for unbounded loss
functions the risk estimator (1.3), even though unbiased, may become imprecise due to a
large variance. A penalty can help to downweight estimators whose risk is difficult to es-
timate. This is illustrated for regression and the multivariate mean problem in Sections 4
and 7.

Although k-fold cross validation is applied routinely, oracle inequalities of the type
of this paper appear to have been first obtained in Devroye and Lugosi (2001), Györfi
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et al. (2002), and Dudoit and van der Laan (2005). (In an earlier paper Zhang (1993)
studied the distribution of a selector among finitely many models.) The contribution of
the present paper is to refine and extend the results in these papers. The main result
allows unbounded errors (e.g. Gaussian) and loss functions in the regression model and
covers the classification model under Tsybakov’s condition. Furthermore, we introduce
penalties to cover unbounded regression functions.

We use the notation Pf for the integral
∫
f dP of a function relative to a measure P .

Furthermore P is the empirical measure and G =
√
n(P − P ) is the empirical process

of the n observations X1, . . . , Xn, and we write Gf =
√
n(Pf − Pf). Similarly, the

empirical processes corresponding to the subsamples are Gj
S =

√
nj(Pj

S − P ). For no-
tational convenience we let X be a random variable independent of X1, . . . , Xn with the
same distribution. We assume throughout that the size n1 of the test sample is bounded
below by a positive constant times n. We write a . b if a ≤ Cb for a constant C that is
fixed within the context.

Theorem 2.3 in Section 2 is the main oracle inequality, which is extended to include
penalties in Theorem 3.2 in Section 3. Sections 4, 5, 6 and 7 apply these results to
regression and classification, with an application to adaptive estimation in Section 4.
Section 8 contains most of the proofs.

2 Oracle inequalities

Let k̂ and k̃ be the minimizers of (1.3) and (1.2), respectively. The purpose is to show
that k̂ yields a risk that is not much bigger than the risk provided by the oracle k̃.

From the minimizing property of k̂ it is immediate that

ES

∫
L

(
x, θk̂(P0

S)
)
dP1

S(x) ≤ ES

∫
L

(
x, θk̃(P0

S)
)
dP1

S(x). (2.1)

If we replace the empirical measure P1
S by the true distribution P , then we make an error

that can be expressed in the empirical process G1
S . This leads to the following basic

lemma.

Lemma 2.1 For any δ > 0,

ES

∫
L

(
x, θk̂(P0

S)
)
dP (x) ≤ (1 + 2δ) ES

∫
L

(
x, θk̃(P0

S)
)
dP (x)

+
1√
n1

ES max
k∈K

∫
L

(
x, θk(P0

S)
)
d
(
(1 + δ)G1

S − δ
√
n1P )(x)

+
1√
n1

ES max
k∈K

∫
−L

(
x, θk(P0

S)
)
d
(
(1 + δ)G1

S + δ
√
n1P )(x).
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Proof: By simple algebra the minimizing property (2.1) can be written in the form

ES

∫
L

(
x, θk̂(P0

S)
)
dP (x) ≤ (1 + 2δ)ES

∫
L

(
x, θk̃(P0

S)
)
dP (x)

+
1√
n1

ES

∫
L

(
x, θk̃(P0

S)
)
d
(
(1 + δ)G1

S − δ
√
n1P )(x)

− 1√
n1

ES

∫
L

(
x, θk̂(P0

S)
)
d
(
(1 + δ)G1

S + δ
√
n1P )(x).

We can next replace the two random variables k̂ and k̃ by the maximum over k ∈ K. 2

The idea is that the second and third terms on the right in the lemma are very small, as
they are preceded by (n1)−1/2 and concern the empirical process G1

S , which is centered
(and shifted downward or upward if δ > 0). If the two terms are negligible, then the
lemma asserts that the cross-validated estimator, given by k̂, has a risk that is at most
1 + 2δ times the risk of the oracle estimator given by k̃. The choice δ = 0 gives the best
comparison of cross validation and oracle risk, but it will be seen that this choice comes
at the price that the two remainder terms are larger. This is because for δ > 0 these terms
involve the decentered empirical processes (1+δ)G1

S−δ
√
n1P and (1+δ)G1

S +δ
√
n1P

in the remainder term. Pulling the variables in the maximum away from their expectation
can have a dramatic effect on their expected value.

It is relatively easy to make this idea precise. Given the split S and the observations
P0

S in the first set of observations, the empirical process G1
S is an ordinary stochastic

process based on n1 = #(Si = 1) observations. We can therefore apply any maximal
inequality for empirical processes to find a bound on the expectation of the right side of
the lemma given S and P0

S . For instance, in case that δ = 0, we write, with EZ meaning
“expectation relative to the variable Z”,

Emax
k∈K

∫
L

(
x, θk(P0

S)
)
dG1

S(x) = ES,P0
S
EP1

S
max
k∈K

∫
L

(
x, θk(P0

S)
)
dG1

S(x),

and apply maximal inequalities to the inner expectation on the right, for fixed S and
P0

S . This will typically show that the “remainder terms” on the right in the preceding
lemma are of the order n−1/2 times an expression involving the complexity of the set
of estimators. If the distributions of the losses L(X, θ) have exponential tails, then the
cardinality #K of the set of estimators will typically enter at most logarithmically, giving
oracle inequalities of the type, for some p > 0,

E
∫
L

(
x, θk̂(P0

S)
)
dP (x) ≤ E

∫
L

(
x, θk̃(P0

S)
)
dP (x) +O

( (log #K)1/p

√
n

)
. (2.2)

We conclude that the empirical choice k̂ results in a risk that is at most a constant times
(log #K)1/p/

√
n bigger than the risk obtained by the oracle k̃.

If the loss functions are uniformly bounded, then it is particularly easy to make this
precise. For instance, writing the empirical process of an i.i.d. sample of size n as G, we
have for any set F of (bounded) measurable functions (assume #F ≥ 2)

Emax
f∈F

|Gf | . log #F√
n

max
f∈F

‖f‖∞ +
√

log #F max
f∈F

‖f‖2, (2.3)
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(e.g. van der Vaart and Wellner (1996), formula (2.5.5)). Similar bounds are valid for
certain unbounded functions. For instance, assume that the functions f possess exponen-
tially decreasing tails of order p: for some constant M(f) and every t > 0,

P
(
x: |f(x)| > t

)
. e−tp/M(f)p

.

Then for 1 ≤ p ≤ 2 the variables Gf possess tails of the same order (see page 245 in
van der Vaart and Wellner (1996)), and hence (e.g. van der Vaart and Wellner (1996),
Lemmas 2.2.2 and 2.2.1)

Emax
f∈F

|Gf | . (log #F)1/p max
f∈F

M(f). (2.4)

In particular, if the functions f are bounded, then we can take p = 2 andM(f) equal to a
multiple of ‖f‖∞, in view of Hoeffding’s inequality. Alternatively, if

(
M(f), v(f)

)
are

Bernstein pairs for the functions f (see the definition below), then (2.3) holds but with
‖f‖∞ replaced by M(f) and ‖f‖2 replaced by v(f) (van der Vaart and Wellner (1996),
Lemma 3.4.3; or see the appendix for more general results).

Bounds of the type (2.2) are of interest only if the remainder O
(
(log #K)1/p/

√
n
)

is of smaller order than the oracle risk. This is not always the case. For instance, in the
regression situation with square error loss, the oracle risk may well be of order O(1/n)
if one of the estimators corresponds to a finite-dimensional model that contains the true
regression function, and it will also be much smaller than n−1/2 in the situation of not too
large nonparametric models. Such fast rates are also possible in classification problems
where the Bayes classifier does not concentrate too much near 1/2 (see Mammen and
Tsybakov (1999)). We can obtain alternative bounds where the n−1/2 is replaced by n−1

at the price of choosing δ positive.
Given a measurable function f :X → R, call

(
M(f), v(f)

)
a pair of Bernstein num-

bers of f if

M(f)2 P
(
e|f |/M(f) − 1− |f |

M(f)

)
≤ 1

2v(f).

It may be shown (see Section 8.1) that:

(i) If f is uniformly bounded, then
(
‖f‖∞, 1.5Pf2

)
is a pair of Bernstein numbers.

(ii) If |f | ≤ g, then a Bernstein pair for g is also a Bernstein pair for f .

(iii) If
(
M(f), v(f)

)
and

(
M(g), v(g)

)
are Bernstein pairs for f and g, then 2

(
M(f)∨

M(g), v(f) + v(g)
)

is a Bernstein pair for f + g.

(iv) If
(
M(f), v(f)

)
is a Bernstein pair for f and c > 0, then

(
cM(f), c2v(f)

)
is a

Bernstein pair for cf .

In view of (i) the numbersM(f) and v(f) could be intuitively thought of as “supremum”
and “variance” of f . However, the usefulness of Bernstein numbers goes beyond this ex-
ample. The other properties roughly show that Bernstein pairs behave as supremum and
variance under simple operations. Because we use Bernstein pairs to control the variables
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Gf and G(f + c) = Gf for every constant c, throughout Bernstein pairs
(
M(f), v(f)

)
can be replaced by pairs

(
M(f + c), v(f + c)

)
for every constant c.

The following maximal inequality is a consequence of Lemma 8.2 in Section 8 (with
q = 1).

Lemma 2.2 Let G be the empirical process of an i.i.d. sample of size n from the dis-
tribution P and assume that Pf ≥ 0 for every f ∈ F . Then, for any Bernstein pairs(
M(f), v(f)

)
and for any δ > 0 and 1 ≤ p ≤ 2,

Emax
f∈F

(G− δ
√
nP )f ≤ 8

n1/p−1/2
log(1 + #F) max

f∈F

[ M(f)
n1−1/p

+
( v(f)

(δPf)2−p

)1/p]
.

The same upper bound is valid for Emaxf∈F (G + δ
√
nP )(−f).

Application of Lemma 2.2 to the second and third terms on the right in Lemma 2.1
with the collection F equal to the functions x 7→ L(x, θ) with θ ranging over Θ, yields
the following oracle inequality.

Theorem 2.3 For θ ∈ Θ let
(
M(θ), v(θ)

)
be a Bernstein pair for the function x 7→

L(x, θ) and assume that R(θ) =
∫
L(x, θ) dP (x) ≥ 0 for every θ ∈ Θ. Then for any

δ > 0 and 1 ≤ p ≤ 2,

ER
(
θk̂(P0

S)
)
≤ (1 + 2δ) ER

(
θk̃(P0

S)
)

+ (1 + δ)E
( 16

(n1)1/p

)
× log(1 + #K) sup

θ∈Θ

[ M(θ)
(n1)1−1/p

+
( v(θ)
R(θ)2−p

)1/p(1 + δ

δ

)2/p−1]
.

In the examples we discuss below the maximum over Θ on the right is finite and
hence the remainder term is of the order O(n−1/p) times the logarithm of the number of
estimators, if the size n1 of the test sample is a positive fraction of n. For p = 2 we can
choose δ = 0 and regain the bound of order O(n−1/2) obtained in (2.2), albeit that the
factor log(1 + #K) may not be optimal (cf. (2.4)). For p = 1 the bound is of the order
O(n−1) for every fixed δ > 0.

Because the bound is valid for every δ > 0, in asymptotic applications we can
choose δ = δn tending to zero. Then the oracle inequality can be written in the form
ER

(
θk̂(P0

S)
)
≤ infk ER

(
θk(P0

S)
)
+ remn, and an optimal choice of δn would make the

remainder as small as possible.
The condition that R(θ) ≥ 0 can be arranged by defining the loss function L to be

centered at its minimum over θ ∈ Θ: L(x, θ) = L0(x, θ) − L0(x, θ0) for θ0 the point
of minimum of θ 7→

∫
L0(x, θ) dP (x). The cross-validated estimator relative to this

centered loss is the same as the cross-validated estimator relative to the original loss (and
hence can be implemented without knowledge of θ0).

The maximum over θ ∈ Θ of the right side of the theorem is bounded only if v(θ) ≤
DR(θ)2−p for every θ and some positive constant D. If v(θ) is the variance of the
function x 7→ L(x, θ), then this is true with p = 1 if

R(θ) = E
(
L0(X, θ)− L0(X, θ0)

)
≥ d2(θ, θ0),

E
(
L0(X, θ)− L0(X, θ0)

)2 ≤ Dd2(θ, θ0), (2.5)
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for some distance d on Θ and positive constant D. In regular cases the first inequality
should be true because θ0 is a point of minimum, while the second would follow if the
loss is Lipschitz in the parameter. The inequality v(θ) ≤ DR(θ)2−p for some p ∈ (1, 2]
corresponds to less regular situations. For instance, in Section 6 it will be seen to be
satisfied in the classification problem under Tsybakov’s condition.

Lemma 2.2 is based on Bernstein’s inequality applied to the variables Gf , an expo-
nential tail bound. Alternatively, maximal inequalities for empirical processes may be
based on (weaker) moment inequalities on the variables Gf , but then the logarithmic
factor log(1 + #K) will change in a polynomial factor.

The lemma does not exploit relations that may exist between the functions f . If
we can control covering numbers (cf. van der Vaart and Wellner (1996)), then we may
use more complicated bounds in terms of entropy integrals, which are valid for infinite
collections F . In principle an expression such as Emaxf∈F |Gf | need not grow with
the size of F at all, not even logarithmically. On the other hand, if the estimators θk are
very different, then not much may be gained from such more involved inequalities.

3 Oracle inequalities with penalties
In this section we combine cross validation with penalization. Given a function λ:K ×
Θ → [0,∞) the penalized cross-validated estimator is defined as θk̂(P0

S) for k̂ the ran-
dom element that minimizes, for given observations,

k 7→ ES

∫
L

(
x, θk(P0

S)
)
dP1

S(x) +
λ
(
k, θk(P0

S)
)

n
. (3.1)

The penalized oracle estimator corresponds to the random element k̃ ofK that minimizes

k 7→ ES

∫
L

(
x, θk(P0

S)
)
dP (x) +

λ
(
k, θk(P0

S)
)

n
.

The introduction of penalties is only notationally more involved. We can view it as
considering the loss L(x, θ)+λ(k, θ)/n rather than L(x, θ), and next apply the results of
the preceding section. We restrict ourselves to a particular case: controlling the Bernstein
numbers M(θ) in Theorem 2.3.

The penalties are another source of decentering the variables in the maximum and the
minimum, and hence are potentially helpful to control the error term. The decentering
takes the form δ

√
n
(
Pf + λ(f)/n

)
for numbers λ(f) rather than δ

√
nPf , and can

be positive even if Pf = 0. The following maximal inequality is a consequence of
Lemma 8.2 in Section 8.

Lemma 3.1 Let G be the empirical process of an i.i.d. sample of size n from the distri-
bution P , and assume that Pf + λ(f)/n ≥ 0 for every f ∈ F . Then, for any δ > 0, and
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Bernstein pairs
(
M(f), v(f)

)
, and any 0 < p ≤ 1 and 0 < q ≤ 1,

Emax
f∈F

(
G− δ

√
nP

)(
f +

λ(f)
n

)
≤ 1√

n

[
log(1 + #F +Dq)

]1/q max
f∈F

( 8M(f)
Cqδ1−qλ(f)1−q

)1/q

+
1√
n

[
log(1 + #F +Dp)

]1/p max
f∈F

( 8v(f)
Cpδ2−pPfλ(f)1−p

)1/p

.

Here Cp > 0 and Dp ≥ 0 are constants, equal to 1 and 0 for p = 1. The same bound is
valid for Emaxf∈F −

(
G + δ

√
nP

)(
f + λ(f)/n

)
.

The first maximum on the right is finite if λ(f)1−q is proportional to M(f). For the
choices p = q = 1/2 the right side of the lemma is bounded by a multiple of

1√
n

[
log(1 + #F)

]2[1
δ

max
f∈F

( M(f)√
λ(f)

)2

+
1
δ3

max
f∈F

( v(f)
Pf

√
λ(f)

)2]
.

This yields the following theorem.

Theorem 3.2 For θ ∈ Θ let
(
M(θ), v(θ)

)
be a Bernstein pair for the function x 7→

L(x, θ) and assume that R(θ) =
∫
L(x, θ) dP (x) ≥ 0 for every θ ∈ Θ. Assume that

λ(k, θ) = λ(θ) does not depend on k. Then, for any δ ∈ (0, 1), the minimizer k̂ of (3.1)
satisfies, for a universal constant C,

ER
(
θk̂(P0

S)
)
≤ (1 + 2δ) E

[
R

(
θk̃(P0

S)
)

+
λ
(
θk̃(P0

S)
)

n

]
+C E

1
n1

1
δ

[
log(1 + #K)

]2[sup
θ∈Θ

( M(θ)√
λ(θ)

)2

+ sup
θ∈Θ

( v(θ)
δR(θ)

√
λ(θ)

)2]
.

A penalty such that λ(θ) ≥ M(θ)2 makes the first maximum on the right finite.
Relative to Theorem 2.3 we have then achieved to move the numbers M(θ) inside the
oracle part of the inequality, at the cost of squaring log #K. Many variations of this
result are possible, also with #K = ∞ and/or using other penalities (replace Lemma 3.1
by Lemma 8.2). The special choices of the preceding theorem are motivated by the
regression model in the next section.

4 Least squares regression
Consider the regression model Y = θ0(X) + ε of Example 1.1, with error with zero
conditional mean E(ε|X) = 0. The least squares criterion, centered at its minimum, can
be written

L
(
(X,Y ), θ

)
=

(
Y − θ(X)

)2 −
(
Y − θ0(X)

)2 = 2ε(θ0 − θ)(X) + (θ − θ0)2(X).
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The first term on the right has mean zero, whence the risk is given by

R(θ) = EL
(
(X,Y ), θ

)
= ‖θ − θ0‖2,

where ‖ · ‖ denotes the L2-norm relative to the marginal distribution of X . We assume
that the error ε has exponential tails, conditionally on X: setting rt(X) = E(et|ε||X),
we assume that the function rt is finite and bounded for some t > 0.

Lemma 4.1 If the regression functions θ ∈ Θ are bounded and the error distribution
has conditionally exponential tails, then

(
M(θ), v(θ)

)
for

M(θ) = 4(t−1 ∨ 1)
(
‖θ − θ0‖2∞ ∨ 1

)
,

v(θ) = 2‖θ − θ0‖2
(
e‖θ − θ0‖2∞ + 8t−2‖rt‖∞

)
,

is a Bernstein pair for the function x 7→ L(x, θ). This pair satisfies v(θ) . M(θ)R(θ).

Proof: The function ψ(x) = (ex − 1 − x)/x2 is increasing on [0,∞). Hence if θ is
bounded by M , then

M2E
(
e|tεθ(X)|/M − 1− |tεθ(X)|

M

)
= Eψ

( t|εθ(X)|
M

)
t2ε2θ2(X)

≤ Eψ
(
t|ε|

)
t2ε2θ2(X) ≤ Eet|ε|θ2(X) ≤ ‖rt‖∞Eθ2(X),

since x2ψ(x) ≤ ex on [0,∞). It follows that
(
M, 2‖θ‖2‖rt‖∞

)
is a pair of Bern-

stein numbers for the variable tεθ(X), and hence
(
2M/t, 8‖θ‖2‖rt‖∞/t2

)
is a pair

of Bernstein numbers for the variable 2εθ(X). Because
(
M, e‖θ‖2

)
is a Bernstein

pair for the variable θ(X) and θ2 ≤ M |θ| we have that
(
M2, e‖θ‖2M2) is a Bern-

stein pair for the variable θ2(X). Then the assertion follows from (iii) in Section 2 as
L

(
(X,Y ), θ

)
= 2ε(θ0 − θ)(X) + (θ− θ0)2(X) is the sum of two variables of this type.

The second assertion of the lemma is immediate. 2

Corollary 4.2 If the regression functions θ ∈ Θ are bounded by a constant M ≥ 1 and
the error distribution has exponential tails, then, for any δ ∈ (0, 1),

E
∥∥θk̂(P0

S)− θ0
∥∥2 ≤ (1 + 2δ) inf

k∈K
E

∥∥θk(P0
S)− θ0

∥∥2 +O
( 1
n

)
log(1 + #K)

M2

δ
.

Proof: This is immediate from Theorem 2.3 (with p = 1) and the preceding lemma. 2

Example 4.3 (adaptation to smoothness). To illustrate the strength of the method of
cross validation we shall now use Theorem 3.2 to construct estimators that are adaptive
to the full scale of Hölder spaces. Suppose that X = [0, 1] and for each (α,M) ∈
(0,∞) × N let Cα

M [0, 1] be the set of functions θ: [0, 1] → R that possess derivatives to
the order the smallest integer α strictly smaller than α which are bounded byM and with
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the αth derivative satisfying |θ(α)(x)− θ(α)(y)| ≤M |x− y|α−α for every x, y ∈ [0, 1].
Assume that X possesses a density that is bounded away from zero and infinity. It is
well known that, for each (α,M) (see e.g. Tsybakov (2004)), as n → ∞, and certain
constants Cα,

inf
θ̂

sup
θ0∈Cα

M [0,1]

Eθ0‖θ̂ − θ0‖2 � CαM
2/(2α+1)n−2α/(2α+1).

The left side is the minimax risk for estimating θ0 when θ0 is known to belong to
Cα

M [0, 1], the infimum being over all estimators θ̂ based on a sample of n observations in
the regression model Y = θ0(X)+ε. For each pair (α,M) let θα,M (P0

S) be an estimator
that is minimax up to a constant depending on α only and satisfies ‖θα,M (PS

0 )‖∞ ≤M .
We aim at choosing a pair (α̂, M̂) that yields an estimator that is minimax (up to con-
stants) for any (α,M).

Set ln = log n and let K = {(i/ln, j): i, j = 1, . . . , n}. Then #K ≤ n2 and we may
choose k̂ = (α̂, M̂) from K by minimizing the penalized cross validated risk

(α,M) 7→ ES

∫ (
y − θα,k(P0

S)(x)
)2
dP1

S(x, y) +
‖θα,k(P0

S)‖4∞ ∨ 1
n

.

By Lemma 4.1, M(θ) . ‖θ − θ0‖2∞ ∨ 1 and v(θ) ≤ R(θ)
(
‖θ − θ0‖2∞ ∨ 1

)
. In view of

Theorem 3.2 with δ = 1/4 and λ(θ) = ‖θ‖4∞ ∨ 1 there exists a constant C such that

Eθ0‖θα̂,M̂ (PS
0 )− θ0‖2 ≤ 2 inf

(α,j)∈K

[
Eθ0‖θα,j(PS

0 )− θ0‖2 +
j4

n

]
+C(log #K)2

1
n

sup
θ

(‖θ − θ0‖2∞ ∨ 1
‖θ‖2∞ ∨ 1

)2

.

Fix some (α,M) ∈ (0,∞)2. As soon as n is sufficiently large that α < n/ log n and
M < n, we have that there exists (αn, j) ∈ K with |αn − α| ≤ l−1

n and |M − j| < 1,
and Cα

M [0, 1] ⊂ Cαn
j [0, 1]. For any such (αn, j), and every θ0 ∈ Cα

M [0, 1],

Eθ0‖θα̂,M̂ (PS
0 )− θ0‖2

≤ 2
[
Eθ0‖θαn,j(PS

0 )− θ0‖2 +
j4

n

]
+ C(log #K)2

1
n

(
1 + ‖θ0‖∞

)4

. j2/(2α+1)n−2αn/(2αn+1) +M4/n+M4(log n)2/n.

It follows that, for every (α,M),

lim sup
n→∞

M−2/(2α+1)n2α/(2α+1) sup
θ0∈Cα

M [0,1]

Eθ0‖θα̂,M̂ (PS
0 )− θ0‖2 . Dα <∞.

Thus the estimator θα̂,M̂ (P0
S) is asymptotically minimax on every Hölder ball up a to

constant depending only on α.
As a purely asymptotic result the existence of estimators with this property could also

be derived without using penalties, but by allowing at “time” n only estimators that are
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bounded by a constant Mn, with Mn increasing slowly (logarithmically) to infinity. The
remainder term in Theorem 2.3 would then be O(M2

n/n). However, this approach seems
to be of “asymptopia” character (a mathematically correct limit result, but practically
useless), because one would have to “wait” a long time before a large θ0 (larger than Mn

for reasonable n) would even be within the scope of the estimators.

5 Least absolute deviation regression
Consider the regression model Y = θ0(X) + ε of Example 1.1, with error ε with zero
conditional median: P(ε ≤ 0|X) = P(ε ≥ 0|X) = 1/2.

The mean absolute deviation criterion, centered at its minimum, satisfies∣∣L(
(X,Y ), θ

)∣∣ =
∣∣∣∣∣Y − θ(X)

∣∣− ∣∣Y − θ0(X)
∣∣∣∣∣ ≤ |θ − θ0|(X).

This shows that the loss function is bounded as soon as the regression functions are
bounded, irrespective of the error distribution.

Assume that the error distribution has finite absolute moment and is smooth enough
at its median 0 in order that, for µ ∈ R,

µ2 ∧ |µ| . E|ε− µ| − E|ε| . µ2 ∧ |µ|, (5.1)

where the constants in the inequalities may depend on the error distribution. The absolute
value |µ| is not necessary if µ is restricted to a compact interval around the origin, but
cannot be missed in general, as |ε − µ| grows sub-linearly as µ → ∞. Under this
condition the risk is equivalent to a mixed L1-L2 distance

R(θ) = E
∣∣ε− (θ − θ0)(X)

∣∣− E|ε| � P
(
(θ − θ0)2 ∧ |θ − θ0|

)
. (5.2)

Lemma 5.1 If the regression functions θ ∈ Θ are bounded and the error distribution
satisfies (5.1), then

(
M(θ), v(θ)

)
=

(
‖θ−θ0‖∞, 1.5P (θ−θ0)2

)
are Bernstein pairs for

the functions x 7→ L(x, θ). Furthermore v(θ) .
(
‖θ − θ0‖∞ ∨ 1

)
R(θ).

Proof: If
(
M(θ), v(θ)

)
is a Bernstein pair for the variable (θ − θ0)(X), then so it is for

the variable L
(
(X,Y ), θ

)
−L

(
(X,Y ), θ0

)
. In particular, we may use the Bernstein pair(

‖θ − θ0‖∞, 1.5P (θ − θ0)2
)
.

The second assertion follows with the help of (5.1) in view of the identity x2 =
(x ∨ 1)(x2 ∧ x) for every x ≥ 0 applied to x = |θ − θ0|(X). 2

Corollary 5.2 If the regression functions θ ∈ Θ are bounded by a constant M ≥ 1 and
the error distribution satisfies (5.1), then, for any δ ∈ (0, 1),

ER
(
θk̂(P0

S)
)
≤ (1 + 2δ) inf

k∈K
ER

(
θk(P0

S)
)

+O
( 1
n

)
log(1 + #K)

M

δ
.
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Proof: We apply Theorem 2.3 with p = 1. 2

The risk R(θ) is the prediction error relative to the absolute deviation. Under the
assumption of boundedness of the regression functions, it is up to constants the square
L2-distance ‖θ − θ0‖2 as in Section 4, in view of (5.2).

6 Classification
Consider the classification problem of Example 1.2 with loss function

L
(
(x, y), θ

)
= 1y 6=θ(x) − 1y 6=θ0(x),

for θ0 the Bayes classifier θ0 = 1η0≥1/2. The corresponding risk function is the proba-
bility of misclassification, centered at its minimum value:

R(θ) = P
(
Y 6= θ(X)

)
− P

(
Y 6= θ0(X)

)
.

A natural distance in this problem is the L1-distance

d(θ1, θ2) = E
∣∣1Y 6=θ1(X) − 1Y 6=θ2(X)

∣∣ = P
(
θ1(X) 6= θ2(X)

)
.

Tsybakov’s condition (Mammen and Tsybakov (1999), Tsybakov (2004)) relates this
distance to the risk. It requires that, for some γ ≥ 1 and positive constant D,

R(θ)−R(θ0) ≥ Dd(θ, θ0)γ . (6.1)

The condition can be viewed as measuring the probability that an input X gives rise to
a Bayes classifier η0(X) that is close to the decision boundary 1/2. Proposition 1 in
Tsybakov (2004) shows that the condition is satisfied with γ = 1 + α−1 if P

(
|η0(X)−

1/2| ≤ t
)

. tα for t > 0.
If η0 is bounded away from 1/2, then (6.1) is satisfied with γ = 1 (limiting case

α = ∞), which is the most favorable situation for estimating θ. In this case also the
remainder in the following oracle inequality is smallest: order O(1/n) times the loga-
rithmic complexity of the set of estimators. For γ > 1 both the typical rate of “learning”,
the decrease of ER

(
θ(P)

)
− R(θ0) for an appropriate estimator, and the remainder in

the oracle inequality are bigger. For the situation considered in Theorem 1 of Tsybakov
(2004) such a typical rate of learning is n−γ/(2γ−1+ρ) for ρ ∈ (0, 1) a parameter mea-
suring the complexity of the set of classification functions. The remainder in the oracle
inequality in the following theorem is smaller for any such ρ.

It may be noted that condition (6.1) is satisfied for any γ > γ0 if it is satisfied for
γ = γ0. Therefore we can alway apply the oracle inequality with γ = ∞, in which case
the remainder is O(n−1/2) and the choice δ = 0 is eligible.

Lemma 6.1 The pairs
(
M(θ), v(θ)

)
=

(
1, 1.5d(θ, θ0)

)
are Bernstein pairs for the func-

tions x 7→ L(x, θ). Furthermore, if (6.1) is satisfied, then v(θ) ≤ 1.5D−1/γR(θ)1/γ .
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Proof: The loss function has range {−1, 0, 1} and hence is bounded by 1, so that 1 to-
gether with e times the variance of the loss function forms a Bernstein pair. The variance
is bounded by the second moment, which is d(θ, θ0). The second assertion of the lemma
is immediate. 2

Corollary 6.2 If (6.1) is satisfied for some γ ≥ 1, then for any δ ∈ (0, 1),

ER
(
θk̂(P0

S)
)
≤ (1 + 2δ) inf

k∈K
ER

(
θk(P0

S)
)

+(1 + δ)E
( 16

(n1)γ/(2γ−1)

)
log(1 + #K)

[
1 +

(1 + δ

δD

)1/(2γ−1)

e
]
.

Proof: We apply Theorem 2.3 with 2− p = 1/γ, so that 1/p = γ/(2γ − 1). 2

7 Multivariate mean
Consider the problem of estimating the mean vector θ0 ∈ RD of a sample from the distri-
bution of X = θ0 + ε, for ε a D-dimensional standard normal vector (see Example 1.3),
relative to the (centered) loss function

L(X, θ) = ‖X − θ‖2 − ‖X − θ0‖2 = 2(θ0 − θ)T ε+ ‖θ − θ0‖2.

The corresponding risk function is the square Euclidean distance R(θ) = ‖θ − θ0‖2.
If θ ranges freely over RD, then the loss function is unbounded, and the risk estimator

obtained from cross validation, even though unbiased, suffers from a large variance. This
motivates the introduction of a penalty. Consider the criterion

k 7→ ES

∫ ∥∥x− θk(P0
S)

∥∥2
dP1

S(x) +

∥∥θk(P0
S)

∥∥2 + 1
n

. (7.1)

Lemma 7.1 The pairs
(
M(θ), v(θ)

)
=

(
‖θ − θ0‖, 4e2‖θ − θ0‖2

)
are Bernstein pairs

for the functions x 7→ L(x, θ)− ‖θ − θ0‖2.

Proof: The variable L(X, θ) − ‖θ − θ0‖2 = 2(θ − θ0)T ε is distributed as 2‖θ − θ0‖Z
for a univariate standard normal variable Z, and

M2E
(
e2|Z|‖θ−θ0‖/M − 1− 2|Z|‖θ − θ0‖

M

)
=

∑
k≥2

E|2Z|2

k!

(‖θ − θ0‖
M

)k−2

‖θ − θ0‖2

is bounded above by ‖θ − θ0‖2Ee2|Z| ≤ ‖θ − θ0‖22e2, for M ≥ ‖θ − θ0‖. The result
follows. 2
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Corollary 7.2 For any δ ∈ (0, 1), the minimizer k̂ of (7.1) satisfies, for a universal
constant C,

E
∥∥θk̂(P0

S)− θ0
∥∥2 ≤ (1 + 2δ) inf

k∈K

[
E

∥∥θk(P0
S)− θ0

∥∥2 +

∥∥θk(P0
S)

∥∥2

n

]
+C E

1
n1

1
δ3

[
log(1 + #K)

]2(‖θ0‖2 + 1
)
.

Proof: We apply Theorem 3.2 with the penalty λ(k, θ) = ‖θ‖2 + 1. Because L(x, θ) =
2(θ−θ0)T ε+‖θ−θ0‖2 is up to a constant equal to 2(θ−θ0)T ε and the empirical process
maps constants into 0, we may take the Bernstein pairs

(
M(θ), v(θ)

)
in the application

of Theorem 3.2 as in the preceding lemma. Then

sup
θ

( M(θ)√
λ(θ)

)2

≤ sup
θ

‖θ − θ0‖2

‖θ‖2 + 1
≤ 2 + 2‖θ0‖2,

sup
θ

v(θ)
R(θ)

√
λ(θ)

≤ sup
θ

4e2‖θ − θ0‖2

‖θ − θ0‖2(‖θ‖2 + 1)1/2
≤ 4e2.

Therefore the assertion of Theorem 3.2 simplifies to the present inequality. 2

Under the assumption that at least one of the estimators θk(P0
S) is consistent for θ0,

the penalty
∥∥θk(P0

S)
∥∥2
/n inside the infimum over k ∈ K in the corollary will contribute

of the order OP (1/n), which is smaller than the remainder. Somewhat remarkably, the
bound of the corollary is dimensionless: the dimension D, which may be very large,
enters only through the risks of the estimators θk(P0

S) and the norm ‖θ0‖2, not through
the cross validation.

The estimators θk(P0
S) could be constructed in many ways. For instance, each θk(P0

S)
could be a penalized least squares estimator

θk(P0
S) = argmin

θ∈RD

∫
‖x− θ‖2 dP0

S(x) + µk
‖θ‖r

r

n
,

with the smoothing parameter µk, which controls the influence of the penalty, ranging
over a grid in an interval (0, µ). The values r = 1 and r = 2 correspond to the LASSO
and ridge regression estimator, respectively. Alternatively, we could hypothesize that the
mean vector θ is sparse and construct an estimator under the assumption that at most k
coordinates θi are nonzero. We can cross-validate over a set of estimators containing
an estimator appropriate for each subset I ⊂ {1, . . . , D} of nonzero coordinates with
#I ≤ K for a given constant K, as this gives a set of #K ≤ DK estimators. However,
the preceding theorem does not allow a useful conclusion for cross validation over all
subsets I ⊂ {1, . . . , D}, as #K would be 2D in that case, yielding a remainder term of
the order D2/n. This shows the limitation of the theorem: because it applies to arbitrary
estimators θk(P0

S) without regard of relationships between the estimators, the remainder
can be pessimistic, even if it is logarithmic. Minimum penalized contrast estimators
can adapt to all subsets, as shown in Birgé and Massart (2001). Such a result is also
obtainable by a double cross validation, along the lines of van der Laan et al. (2006).
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8 Proofs
In this section we gather technical proofs.

Lemma 8.1 Let X1, . . . , Xm be arbitrary random variables such that P(Xi > x) ≤
Kie

−Cix
p

for every x > 0 and for given positive constants Ki and Ci and p. Then, with
C = min1≤i≤m Ci and Dp a constant depending only on p (with Dp = 0 if p ≥ 1),

E max
1≤i≤m

Xi ≤
( 2
C

log
(
1 +

m∑
i=1

CKi

Ci
+Dp

))1/p

.

Proof: We may assume that the variablesXi are nonnegative; otherwise we replace them
by the variables X+

i .
For p ≥ 1 the function x 7→ ψ(x) = exp − 1 is nonnegative, convex and nondecreas-

ing on [0,∞). Therefore, by Jensen’s inequality,

ψ
(
d1/pEmax

i
Xi

)
≤ Eψ

(
d1/p max

i
Xi

)
= E max

i
ψ

(
d1/pXi

)
≤

m∑
i=1

Eψ
(
d1/pXi

)
.

We can compute the expectations in the right side as

Eψ
(
d1/pXi

)
= E

∫ d1/pXi

0

exp

pxp−1 dx =
∫ ∞

0

P(d1/pXi > x)exp

pxp−1 dx,

by Fubini’s theorem. We can now insert the upper tail bound, and calculate the resulting
integral as dKi/(Ci − d), provided that d < Ci. For d = 1

2 mini Ci we have that
Ci − d ≥ 1

2Ci and hence dKi/(Ci − d) ≤ CKi/Ci. We substitute this bound in the

preceding display, and next apply the function ψ−1(m) =
(
log(1+m)

)1/p
left and right

to the inequality.
For 0 < p ≤ 1 the function x 7→ ψ(x) = exp − 1 is convex only on the interval

[ep,∞), for ep = (p−1− 1)1/p, and the preceding argument must be adapted. We define
a function ψ̃ by ψ̃(x) = ψ(x) for x > ep and ψ̃ constant and continuous on the interval
[0, ep]. Then ψ̃ is convex, satisfies ψ̃ ≤ ψ+Ep for Ep = ψ

(
ep

)
on [0,∞), and is strictly

increasing on [ep,∞) with the same inverse as ψ. Applying the preceding argument with
ψ̃ instead of ψ gives that ψ̃

(
d1/pEmaxXi

)
is bounded by

∑m
i=1 Eψ(d1/pXi) + Ep,

where Eψ(d1/pXi) is bounded by dKi/(Ci − d), as before. Hence d1/pEmaxXi is
bounded by ep or is bounded by ψ−1

(∑
i(CKi/Ci) + Ep

)
. This implies the result, for

a sufficiently large constant Dp. 2

Lemma 8.2 Let G be the empirical process of an i.i.d. sample of size n from the distribu-
tion P and let λ:F → (0,∞) be arbitrary. Then, for any Bernstein pairs

(
M(f), v(f)

)
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and for any δ > 0, 0 < p ≤ 2 and 0 < q ≤ 1,

Emax
f∈F

(
Gf − λ(f)

)
≤ 1
n1/(2q)

[
log

(
1 +

∑
f∈F

e−Cq
√

nλ(f)/(4M(f)) +Dq

)]1/q (
max
f∈F

8M(f)
Cqλ(f)1−q

)1/q

+
[
log

(
1 +

∑
f∈F

e−Cpλ(f)2/(4v(f)) +Dp

)]1/p

max
f∈F

( 8v(f)
Cpλ(f)2−p

)1/p

.

Here Cp > 0 and Dp ≥ 0 are constants with Cp = 1 and Dp = 0 for p ≥ 1. The same
upper bound is valid for Emaxf∈F

(
G(−f)− λ(f)

)
.

Proof: By Bernstein’s inequality (e.g. van der Vaart and Wellner (1996), Lemma 2.2.11),
for every x > 0,

P
(
Gf − λ(f) > x

)
≤ e

− 1
2

(x+λ(f))2

v(f)+(x+λ(f))M(f)/
√

n .

The quotient in the exponent can be bounded further by using the inequalities, with b =
M/

√
n and r = v/b− λ,

(x+ λ)2

v + (x+ λ)b
≥

{
(x+λ)2

2v ≥ (x+λ)pλ2−p

2v ≥ Cp
xpλ2−p+λ2

2v , if x ≤ r,
x+λ
2b ≥ (x+λ)qλ1−q

2b ≥ Cq
xqλ1−q+λ

2b , if x ≥ r.

Here Cp is the constant in the inequality (x + λ)p ≥ Cp(xp + λp), which can be taken
equal to 1 for p ≥ 1 and equal to 2p−1 for 0 < p ≤ 1. It follows that, for all x > 0,

P
(
(Gf − λ(f))1(Gf−λ(f))≤r > x

)
≤ e−Cp

xpλ2−p+λ2
4v ,

P
(
(Gf − λ(f))1(Gf−λ(f))≥r > x

)
≤ e−Cq

xqλ1−q+λ
4b .

Two applications of Lemma 8.1, with the constants taken equal to Kf = e−Cpλ2/(4v)

and C = Cf = Cpλ
2−p/(4v), and Kf = e−Cqλ/(4b) and C = Cf = Cqλ

1−q/(4b),
respectively, yield that, with Y≤r = Y 1Y≤r and Y>r = Y 1Y >r,

Emax
f

(Gf − λ(f))≤r ≤ max
f

( 8v(f)
Cpλ(f)2−p

)1/p[
log

(
1 +

∑
f

e−Cpλ2/(4v) +Dp

)]1/p

,

Emax
f

(Gf − λ(f))>r ≤ max
f

( 8b(f)
Cqλ(f)1−q

)1/q[
log

(
1 +

∑
f

e−Cqλ/(4b) +Dq

)]1/q

.

Adding these equations, substituting b(f) = M(f)/
√
n and rearranging gives the result.

2

Proof:of Lemma 3.1. We apply the preceding lemma with the numbers λ(f) replaced by
the numbers δ

√
n(Pf +λ(f)/n). We can bound the resulting denominator

(
δ
√
n(Pf +
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λ(f)/n)
)1−q

in the first term maximum on the right below by
(
δλ(f)/

√
n
)1−q

, and the
denominator

(
δ
√
n(Pf + λ(f)/n)

)2−p
in the second maximum on the right below by

(δ
√
n)2−p(Pf)(2−p)(1−s)(λ(f)/n)(2−p)s, for s = (1 − p)/(2 − p), so that (2 − p)s =

1− p and (2− p)(1− s) = 1. 2

8.1 Bernstein numbers
In this subsection we prove properties (i)-(iv) of Bernstein numbers as given in Section 2.
For (i) we note that

M2P
(
e|f |/M − 1− |f |

M

)
= M2

∑
k≥2

P
|f |k

k!Mk
≤ Pf2

∑
k≥2

‖f‖k−2
∞

k!Mk−2
≤ Pf2

∑
k≥2

1
k!
,

if ‖f‖∞ ≤M . The series is equal to e− 2. Property (ii) is clear from the definition. For
(iii) we note that, because the function ψ(x) = ex − 1 − x is convex and increasing on
[0,∞),

M2Pψ
( |f + g|

M

)
≤ 1

2M
2Pψ

(2|f |
M

)
+ 1

2M
2Pψ

(2|g|
M

)
.

This is bounded by v(f) + v(g) if M ≥ 2M(f) and M ≥ 2M(g), as the function
M 7→ ψ(x/M) is decreasing for every x ≥ 0. Property (iv) is proved similarly.
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Lucien Birgé and Pascal Massart. Gaussian model selection. J. Eur. Math. Soc. (JEMS),
3(3):203–268, 2001. ISSN 1435-9855.



20 van der Vaart—Dudoit—van der Laan
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