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ATTACHMENT 

Without doubt, forming attachments, as defined by Bowlby (1982), is a 

genetic characteristic of human beings. The most general definition of attachment is 

one that considers it to be an inborn bias of human infants to seek proximity to a 

protective caregiver in times of stress, distress, illness, and other physical or 

psychological discomfort. Human offspring would not be able to survive without the 

care of a stronger or more experienced conspecific who is able to regulate body 

temperature, food intake, and stress levels, because young infants cannot take care of 

these basic physiological and psychological needs by themselves. The early 

environment of evolutionary adaptedness among humans required the basic ability to 

become emotionally attached in order to survive and enhance inclusive fitness 

(Bowlby, 1982).  

Attachment, however, is also strongly dependent on the environment. 

Although all infants are born with the ability to become attached to a protective 

caregiver, they differ in the way in which this competence is expressed. Infants differ 

rather drastically in the quality of their attachment relationships, and attachment 

theory hypothesizes that this “attachment performance” is largely, albeit not 

exclusively, environmentally determined. Differences in attachment behaviors and 

relationships emerge in the course of the first few years of life as a consequence of 

childrearing experiences with parents and other caregivers. Infants may develop 

secure or insecure attachments in response to a more or less sensitive or predictable 

social environment. The parallel to language development is useful here. Every child 

is born with the capacity to learn a language, but the specific language environment 

determines the kind of language to be learnt.  
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Paradoxically, the search for the genetic foundation of attachment seems to be 

inspired by two contrasting goals. On the one hand, cross-cultural researchers who 

study attachment wish to document the balance between universal and culture-specific 

influences on attachment competence, in order to test the core hypothesis that every 

human infant is born with a bias to become attached (see xx & yy, chapter xx, this 

volume). On the other hand, the behavioral and molecular genetics studies of 

attachment are aimed at elucidating the genetic versus environmental determination of 

attachment performance, with the assumption (on the part of attachment researchers) 

that attachment differences are mainly rooted in variations in the environment in 

which an infant grows up. Here we focus on the genetics of individual differences in 

attachment behavior and relationship quality. 

 

Behavioral Genetics of Attachment  

 Twins have been a great source of information about human development. The 

comparison of monozygotic (MZ, or identical) twins, whose structural DNA is exactly 

the same, with dizygotic (DZ, or fraternal) twins, who share on average half of their 

DNA, is an experiment-by-nature. If children within an MZ twin pair are more similar 

to each other in terms of attachment (or any other trait) than children within a DZ twin 

pair, one might conclude that genetic similarity matters. In the case of strong 

similarity of attachment between MZ twins and much smaller similarity between DZ 

twins, attachment would be considered highly heritable. This conclusion is warranted 

of course only when we assume that parents do not treat MZ and DZ twins differently. 

The equal-environments assumption has been examined and found to be valid for a 

variety of phenotypes (Cronk et al., 2002), but for parenting relevant to attachment 

development this information is not available. 
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Only a few, rather small twin studies of infants’ and preschoolers’ attachments 

have been reported (Bakermans-Kranenburg, Van IJzendoorn, Bokhorst, & 

Schuengel, 2004; Bokhorst et al., 2003; Finkel, Wille, & Matheny, 1998; O’Connor & 

Croft, 2001; Ricciuti, 1992; Roisman & Fraley, 2008), and the majority of these 

studies did not find differences in attachment similarity between MZ and DZ twin 

pairs. In general about 50% of the variance in attachment security could be attributed 

to the shared environment (parenting influences that make children within the same 

family similar), and about 50% of the variation could be explained by unique 

influences (that make children within a family more dissimilar) and measurement 

error. There seemed to be no room for genetic influences. Interestingly, the shared 

environmental variance in attachment security showed  substantial overlap with the 

shared environmental variance in observed maternal sensitivity, suggesting that 

parental sensitivity is indeed an important part of the (shared) environment shaping 

children’s  attachment patterns (Fearon et al., 2006).  

The only exception to the rule that young children’s attachment security is not 

heritable was the study by Finkel et al. (1998) that found considerable heritability for 

attachment, but unfortunately used an attachment measure that was originally meant 

to assess temperament. In the study by Bokhorst et al. (2003), temperamental 

reactivity was estimated to be highly heritable whereas attachment security was 

mainly environmentally based. In a study of infant-father attachment using the 

Attachment Q-Sort (AQS; Vaughn & Waters, 1990), high heritability of temperament 

went together with low heritability of attachment security to the father -- using the 

same measure and the same sample as Bakermans-Kranenburg et al. (2004). It is 

important to note that the developmental roots of attachment and temperament seem 

to be radically different, which underlines their conceptual and functional differences 
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(Van IJzendoorn & Bakermans-Kranenburg, 2012; see Vaughn & Bost, chapter xx, 

this volume).  

Disorganized attachment has rarely been studied with a twin design. 

Disorganized attachment is observed in children who are maltreated or otherwise 

frightened by parental behavior, for example because their parents struggle with 

unresolved loss or other potentially traumatic experiences (Cyr et al., 2010; Schuengel 

et al., 1999; see Lyons-Ruth & Jacobvitz, chapter xx, this volume). Disorganized 

attachment behaviors include, among others, frightened facial expressions, freezing or 

stilling of behavior, or avoidance in distress when a parent returns following a brief 

separation in the Strange Situation (Main & Solomon, 1990). Heritability estimates of 

disorganized attachment approach zero, and in remarkable contrast to attachment 

security, no trace of shared environmental influence can be found (Bokhorst et al., 

2003). Variance in disorganized attachment seems to be almost exclusively explained 

by a unique environment. This suggests that unique experiences with the parents 

trigger children’s disorganized attachment. It may also imply a large error component 

in the assessment of disorganized attachment, which indeed is by far the most difficult 

part of the attachment coding system to master. Of course, low statistical power 

should be taken into account when considering the absence of heritability; the modest 

sample size and skewed distribution of disorganized attachment result in large 

confidence intervals around the estimates.  

In several cases the influence of genetics on traits or characteristics such as 

cognitive development has been shown to increase with age. The influence of the 

environment seems to decrease as children grow older, undergo a variety of influences 

outside the family, and are more able to shape their own environments. Indeed genetic 

studies of individual differences in mental development and temperament confirm this 
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view (e.g., Plomin, 1994; but see Haworth, Dale, and Plomin, 2009, for contrasting 

effects). In the largest twin study on attachment to date, Fearon and colleagues (2014) 

used the semi-structured Child Attachment Interview (CAI; Shmueli-Goetz, Target, 

Fonagy, & Datta, 2008) in a sample of 551 twin pairs aged 15 years. The CAI is 

modeled after the Adult Attachment Interview (see Hesse, Chapter xx, this volume), 

assessing attachment security in terms of coherence of discourse when discussing 

childhood attachment experiences. Surprisingly, the authors found correlations 

between attachment security in MZ twins that were about twice as strong as 

correlations in DZ twins, and they concluded that attachment in this sample of young 

adolescents was about 40% heritable, whereas the influence of the shared 

environment was negligible (Fearon et al., 2014).  

Of course, this finding might point at a genuine developmental phenomenon of 

increasing genetic influence with growing age. It should be noted, however, that 

adolescence is a somewhat difficult age period to measure attachment, because many 

adolescents are in the middle of a potentially confusing struggle for independence 

from their parents. This might be the reason that in this and other studies, dismissing 

attachments seem to be temporarily overrepresented (Bakermans-Kranenburg & Van 

IJzendoorn, 2009). Fearon and colleagues found insecure-preoccupied attachments in 

only 5% of the cases, and unresolved attachments in only 3% of their subjects, so any 

conclusion about heritability of adolescent attachment is limited to the specific 

security-dismissing dimension (see also Van IJzendoorn & Bakermans-Kranenburg, 

2014). Clearly more longitudinal studies going beyond adolescence are needed to test 

whether heritability of attachment indeed increases with age, and well into adulthood. 

One relevant study included adopted sibling pairs from the Iowa Adoption Studies 

who were on average 39 years old when the AAI was administered (Caspers et al., 
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2007). Concordance rates showed substantial similarity of attachment representations 

between the siblings, although they were genetically unrelated – they only grew up in 

the same family. These findings do not support the idea of increased heritability with 

age, but point to an important role for shared environmental influences. Thus, the 

findings reported by Fearon et al. (2014) may be specific to adolescence.  

 

Molecular Genetics of Attachment 

Behavioral genetic studies of the kinds discussed so far involve inferring 

heritability from phenotypic (dis-)similarities between mono- and dizygotic twins, but 

the genetic makeup of the study participants’  itself is not assessed. This indirect 

method of inferring heritability has several drawbacks, including dependence on the 

specific population distribution of relevant environmental and genetic features. In an 

environment with sufficient food for everyone, physical growth would appear to be 

much more heritable than in an environment with large variation in food supply. In 

contrast, in molecular genetic studies structural DNA patterns are assessed directly, 

often with great precision, and variation in the environment does not play a critical 

role in estimating heritability, except when the environment influences the expression 

of genes. (This issue – the study of epigenetics - will be discussed later on in this 

chapter.)    

The first molecular genetic study of attachment was published by the 

Hungarian team of Gervai (Lakatos et al., 2000). It was conducted on a rather small 

low-risk Hungarian sample (N = 95 infants) and is an example of the candidate-gene 

approach (i.e., focusing on a particular gene of interest). It revealed a strong 

association between the dopamine receptor D4 gene (DRD4) and infant disorganized 

attachment. Child carriers of the DRD4 7-repeat allele appeared to run a fourfold 
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elevated risk of disorganized attachment. The T-variant of the -521 C/T single 

nucleotide polymorphism (SNP) in the regulatory region of the DRD4 gene increased 

the risk for disorganization even further (Lakatos et al., 2002).  DRD4 had already 

acquired a bad reputation as a “risk” genotype for impulsivity, addiction, and 

attentional problems, and the neurotransmitter dopamine had been found to be 

involved in motivational and reward mechanisms (Robbins & Everitt, 1999). But did 

this DRD4 genotype also deserve a bad reputation in relation to attachment? 

Although the link between DRD4 and attentional and motivational issues 

seemed to make the association with disorganization somewhat plausible, the findings 

were surprising against the background of the behavior genetic study of 

disorganization by the Leiden team (Bokhorst et al., 2003), which did not find any 

evidence for genetic influences on disorganized attachment. DNA was therefore 

collected in the Leiden twin sample to replicate the Hungarian findings but without 

success (Bakermans-Kranenburg & Van IJzendoorn, 2004). Several other replication 

attempts followed, but the picture did not change: Across a series of studies (total N = 

542) the combined effect size of the association between DRD4 and disorganization 

was close to zero (Bakermans-Kranenburg & Van IJzendoorn, 2007). Compared to 

the combined effect size across studies of the association between parental frightening 

or anomalous behavior and disorganized attachment (Cohen’s d = 0.72, total N = 644; 

Madigan et al., 2006) this was a disappointing outcome for advocates of genetic 

influences on attachment.  

More molecular genetic studies involving candidate genes have been 

conducted in recent years. Some of the studies indicated a potential role for candidate 

genes. For example, Spangler et al. (Spangler, Johann, Ronai, & Zimmermann, 2009) 

reported an association between attachment disorganization and the short 
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polymorphism of the serotonin transporter-linked polymorphic region (5-HTTLPR), 

qualified by an interaction with maternal responsiveness (see below). This genotype is 

one of the usual suspects in the study of psychiatric genetics, and is considered to be a 

“risk” factor for depression and anxiety.  Fearon and colleagues (Frigerio et al., 2009) 

studied the associations between several gene polymorphisms implicated in the 

serotonin and dopamine systems (5-HTT, COMT, GABRA6, DRD4, DRD4/-521) and 

attachment security as well as attachment disorganization in an Italian sample of 100 

infants, but no association survived stringent statistical tests.  

The largest candidate-gene study on attachment to date is the combination of 

the Generation R study, a large cohort study in Rotterdam, the Netherlands, and the 

NICHD Study of Early Child Care and Youth Development (SECCYD), the two 

including more than 1,000 infants in all (Luijk et al., 2011a). It was the first study to 

replicate key findings across two relatively large samples. Associations of candidate 

genes involved in the dopamine, serotonin, and oxytocin systems (DRD4, DRD2, 

COMT, 5-HTT, OXTR) with attachment security and disorganization were examined.  

The only replicable significant finding was the association between COMT and 

attachment disorganization. Children with the Val/Met genotype received higher 

disorganization scores (combined effect size d = 0.22). This co-dominant risk model 

for COMT Val158Met was consistent across both samples but difficult to explain. 

Perhaps the broader range of plasticity in heterozygotes (the Val/Met carriers) 

increased susceptibility to environmental influences or, in case of a frightening 

environment, to dysregulation of emotional arousal (Luijk et al., 2011a). 

With increasing age, the heritability of traits might become more pronounced, 

as discussed above. In a German sample of 167 adults the associations of adult 

attachment representations (using the AAI) and two candidate genes, 5-HTTLPR and 
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DRD4, were examined (Reiner & Spangler, 2010). Carriers of DRD4 7-repeat alleles 

were significantly more often securely attached and received higher coherence scores 

compared to carriers of the other alleles. The authors suggested that this main effect 

was qualified by an interaction with recollections of a loving caregiver, but because 

this “loving” scale was part of the AAI coding system for attachment representations, 

the variable cannot be considered an independent assessment of past child rearing 

environments. 5-HTTLPR was not significantly associated with adult attachment, 

with or without taking reported experiences into account. The absence of molecular 

genetic evidence for heritability diverges from the Fearon et al. (2014) behavior 

genetic findings but converges with the Caspers et al. (2007) results in adoptive 

families.   

 

Failure to find replicable main effects of candidate genes is not unique for 

attachment security or disorganization. Publication bias may account for the lack of 

replicable genetic findings, because initially positive results may be selectively 

published whereas numerous negative results may remain unpublished. This is the so-

called winner’s curse (see Bakermans-Kranenburg & Van IJzendoorn, 2013, for an 

example). Candidate genes are the proverbial needles in a haystack, and cannot be 

solely or largely responsible for complex behaviors or traits such as attachment 

security. Candidate genes might serve as important and valid indices for broader 

underlying genetic pathways that modulate the production, transport, and reuptake of 

neurotransmitters involved in attachment–related behaviors and emotions. When 

isolated from the environment, however, it seems overly optimistic to expect them to 

explain more than a small amount of variance in the attachment phenotype.  
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Genome Wide Analysis Study (GWAS) and Genome Wide Complex Trait Analysis 

(GCTA) 

At least two ways to try to solve the complex puzzle of genetic determination of 

variance in attachment security and disorganization remain to be explored. The first is 

to expand the number of genes involved in the hunt for attachment genes using the 

method of Genome Wide Analysis Study (GWAS; Plomin, 2013) and related 

approaches such as genetic pathway analysis (Plomin & Simpson, 2013) and Genome 

Wide Complex Trait Analysis (GCTA; Benjamin et al., 2012). The second approach 

is broadening the focus to include the interaction between genes and environment 

(GxE) instead of limiting the search to main effects. Here we briefly discuss the 

GWAS, genetic pathways, and GCTA approaches; in the next section we will discuss 

GxE studies of attachment. 

  

Genome Wide Analysis Studies (GWAS) differ from the candidate-gene 

approach in associating a large part of the genome with a complex phenotype such as 

attachment, in a hypothesis-free manner. Instead of including the usual genetic 

suspects with known biological functions, the GWAS approach covers the one million 

or so independent single nucleotide polymorphisms (SNPs) that are markers of the 

most common genotypic variation in humans. Using linkage disequilibrium to prune 

the number of markers, one million SNPs efficiently represent the 16 million SNPs of 

the human genome.  In GWAS, associations of these SNPs with the targeted 

phenotype are tested, of course with massive correction for multiple testing by an 

increase of the significance threshold to p < .00000005 to avoid chance results.   

Although GWAS was successfully used in the detection of the genetic basis of 

some diseases (e.g., macular degeneration) and led to new treatments, application to 
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behavioral phenotypes and complex psychological traits has so far been disappointing. 

Plomin (2013) summarized GWAS results on reading, mathematics, and general 

cognitive ability and showed that less than 0.5% of the variance could be explained by 

a small number of GWAS hits. The amazingly large gap between GWAS based 

estimates of heritability and heritability found in twin studies is called the missing 

heritability problem (Manolio et al., 2009; Plomin & Simpson, 2013; Van IJzendoorn 

et al., 2011). The gap made Plomin (2013) sigh: “Gene hunters are still recovering 

from the shock of finding that the largest associations account for so little variance in 

the population” (p. 109).  

In an exploratory effort to apply GWAS to attachment security and 

disorganization in the Generation R sample (N = 641) no significant hit was found, 

and the suggestive hits (p < .00005) did not replicate in an independent sample of 

similar size. Of course, the sample size was way too small for the small effects to be 

expected on the basis of previous GWAS (Plomin & Simpson, 2013). But it is 

difficult to imagine how samples 100 times larger might ever be assembled, given the 

time-consuming gold-standard attachment assessments at our disposal, let alone the 

usefulness of finding genes accounting for less than 1% of the variance in attachment.  

Alternative approaches that may require fewer subjects are genetic pathways 

and GCTA, which might be more powerful in discovering the genetic basis of 

complex traits (Plomin et al., 2014). Genetic pathways are functionally related 

genotypes potentially consisting of hundreds of SNPs that are associated with the 

phenotype as one block, thus requiring less correction for multiple testing. GCTA 

pairs every individual in a sample with every other genetically unrelated individual 

and correlates any similarity in genotype with the phenotypic similarity within each 

pair (Yang, Lee, Goddard, & Visscher, 2011). When genotypic similarities go 
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together with stronger similarity in a trait, the genetic component of the trait can be 

estimated.  Both approaches have been used in Generation R (Jaddoe et al., 2013), the 

largest ethnically homogeneous (Caucasian) attachment sample to date, but these 

efforts have again failed to yield significant effects (Pappa et al., in preparation; 

Szekely et al., in preparation). 

 

 

GxE  

Overall, main-effects studies of the genetics of attachment have not yielded 

impressive effects. Given Bronfenbrenner’s (1979) idea that main effects are in the 

interactions, it seemed sensible to examine gene-by-environment (GxE) effects on 

attachment.  Certain genotypes may act as a “risk factor” that makes it more likely 

that insensitive or frightening and anomalous parenting will result in disorganized 

infant attachment. Alternatively, genes may act as “susceptibility factors” that 

increase the effects of both sensitive and insensitive parenting on children’s positive 

or negative outcomes (Belsky,  Bakermans-Kranenburg, & Van IJzendoorn, 2007; 

Ellis, Boyce, Belsky, Bakermans-Kranenburg, & Van IJzendoorn, 2011).  

Although some have argued that the search for GxE effects is warranted only 

when genetic main effects have been established (Munafò et al., 2009; Risch et al., 

2009), this point of view is not correct, as evident from the following example: 

Imagine that for a specific gene, environmental effects are absent for one gene variant, 

but present for the other gene variant. Imagine further that for this second gene 

variant, good outcomes are observed under favorable conditions and bad outcomes 

under unfavorable conditions. This pattern of effects for better and for worse in a 

specific subgroup, as proposed by the differential susceptibility model, has been 
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documented in many studies (for reviews and meta-analytic evidence see Bakermans-

Kranenburg & Van IJzendoorn, 2011; Belsky and Pluess, 2009; Van IJzendoorn, 

Belsky, & Bakermans-Kranenburg, 2012). In that case GxE effects are found in the 

absence of a genetic main effect (the two directions within one genotype cancel each 

other out; Bakermans-Kranenburg & Van IJzendoorn, 2015).  

Two types of GxE studies of attachment can be distinguished, depending on 

the role of attachment quality as an environmental factor or as an outcome. In both 

types of studies, the genetic factor is the moderator. In the first scenario, attachment 

security is used as an index of a supportive environment, for example with emotion 

regulation or cortisol reactivity to a stressor as outcomes. The pertinent question in 

these studies is whether genotypes moderate the association between attachment 

quality (predictor) and these outcomes. In the second scenario, the moderating role of 

genotype in the association between caregiving quality (predictor) and attachment 

quality (outcome) is examined. We will first review studies with attachment quality as 

the observed environmental predictor, and then studies with attachment as outcome. 

 

Attachment as Environment  

Attachment security was used as an indirect index of a supportive caregiving 

environment in a GxE study of child self-regulation (Kochanska, Philibert, & Barry, 

2009). Infant-mother attachment was assessed at 15 months, and children’s ability to 

self-regulate was assessed at 25, 38, and 52 months. Among children who carried a 

short 5-HTTLPR allele, those who were insecurely attached developed poor 

regulatory capacities, whereas those who were securely attached developed as good 

regulatory capacities as children without the short  allele. For children with two long 

alleles, attachment security did not predict self-regulation. 



16 

 

 In a study of 7-year-old Dutch children, emotion regulation was observed 

during a stressful public speaking task, the Trier Social Stress Test for Children 

(TSST-C). 5-HTTLPR moderated the association between attachment security as 

assessed with the Attachment Story Completion Task  (Bretherton et al., 1990; 

Cassidy, 1988) and electrodermal reactivity during the TSST-C. There was a fan-

shaped interaction pattern: Children with a secure attachment representation as well as 

two long alleles were less stressed during the TSST-C than all other children 

(Gilissen, Bakermans-Kranenburg, Van IJzendoorn, & Linting, 2008). Children who 

had the “double protection” of both the ll genotype and secure attachment were the 

only ones who experienced low levels of stress, perhaps indicating how much support 

is needed for being unconcerned about giving a public speech. 

 In a study with 4- to 6-year old Norwegian children, the COMT gene 

polymorphism moderated the effect of disorganized attachment (assessed at age 4 

with the doll play story completion task) on social development. Children 

homozygous for the COMTval allele who were highly disorganized at age 4 became 

more aggressive over time and showed reduced social competence compared to highly 

disorganized children with one or two met alleles (Hygen et al., 2014).  

 Lastly, Luijk and colleagues (2010) related attachment security to cortisol 

reactivity levels during the SSP, and tested the moderating role of HPA-axis related 

SNPs (BclI, rs41423247; TthIIII, rs10052957; GR-9b, rs6198; N363S, rs6195; 

ER22/23EK, rs6189 and 6190; and FKBP5, rs1360780) in more than 300 14-month-

old infants. FKBP5 rs1360780 was related to cortisol reactivity and a double-risk for 

heightened cortisol reactivity was found in infants with one or two T-alleles of the 

FKBP5 SNP and an insecure-resistant attachment relationship with their mother.  
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Attachment as Outcome  

Based on data from the Minnesota Longitudinal study, Raby et al. (2012) found no 

moderating effect of the 5-HTTLPR genotype on the association between maternal 

sensitivity and attachment security. This study thus failed to replicate the GxE 

findings of Barry, Kochanska, and Philibert ( 2008), who observed mothers’ 

sensitivity at 7 months during lengthy naturalistic interactions combining Ainsworth’s 

(1978) scales with time-sampled, event-triggered ratings of mother’s response to each 

child signal. Infant attachment was assessed at 15 months. Infants with the short 5-

HTTLPR allele and insensitive mothers were more likely to be insecure as compared 

to infants whose mothers were sensitive, but infants with the ll genotype scored high 

on attachment security independent of the variation in maternal responsiveness.  

Surprisingly, similar results emerged in conditions of severe deprivation. 

Institutional care has been shown to lead to insecure and disorganized attachment  

(Van IJzendoorn et al., 2011). This is no wonder, since institutional care has so many 

characteristics of structural neglect (minimal physical resources, unfavorable staffing 

patterns, and socially-emotionally inadequate caregiver-child interactions) that they 

fail to respond to children’s basic need for stable and positive personal relationships 

as well as for adequate care and stimulation. In these conditions environmental effects 

may be expected to overrule any genetic or GxE effect. However, some children 

appear to be surprisingly resilient to the adverse environment, and in a small 

hypothesis-generating study the potentially moderating role of 5-HTTLPR was 

explored (Bakermans-Kranenburg, Dobrova-Krol, & Van IJzendoorn, 2011). The 

study involved Ukrainian preschoolers reared in institutional settings or with their 

biological families. 5-HTTLPR moderated the association between caregiving 

environment and attachment disorganization. Children with a short allele showed 
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more attachment disorganization and less attachment security when they grew up in 

an institution compared to children who lived in a family, but when children had the ll 

genotype they were not more disorganized when they grew up in an institution than 

children growing up in their biological families.  

This seems to suggest that the protective role of the 5-HTTLPR ll genotype is 

not limited to moderately adverse environments (as shown by, e.g., Barry et al., 2008, 

and Gilissen et al., 2008) but also in extremely untoward circumstances. Notably, the 

findings are in line with the outcomes of adoptees in the English and Romanian 

Adoptee Study (Kumsta et al., 2010), where adoptees with the ll genotype showed the 

lowest levels of emotional problems during adolescence even when they experienced 

severe early institutional deprivation, and with results of the Bucharest Early 

Intervention Project, where children with the ll genotype showed low levels of 

indiscriminate social behavior irrespective of their living arrangement 

(institutionalized care or high quality foster care; Drury et al., 2012).  

For disorganized attachment, Spangler and colleagues found an interaction 

between maternal responsiveness and child 5-HTTLPR: Children with the short allele 

were more often disorganized when maternal responsiveness was low. Maternal 

responsiveness was observed during a 30-minute session, in which the mother was 

asked to complete a questionnaire but to respond to the infant as she usually would. 

Responsiveness was indexed with an aggregated score that combined the number and 

promptness of maternal responses to infant signals, irrespective of the (emotional) 

quality of the response. The proportion of disorganized infants increased with the 

number of short alleles, but only in the low responsiveness group (Spangler et al., 

2009). 
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Van IJzendoorn and Bakermans-Kranenburg (2006) examined whether infants 

with the DRD4 7-repeat allele were more susceptible to parental unresolved loss and 

anomalous parenting behavior than infants without this allele. This turned out to be 

the case: Maternal unresolved loss or trauma was associated with infant 

disorganization in the presence of the DRD4 7-repeat allele, whereas children without 

this allele did not have higher scores for disorganized attachment when their mothers 

were unresolved. However, children with the DRD4 7-repeat allele who had mothers 

without unresolved loss showed the lowest levels of attachment disorganization. 

These findings support the notion that the DRD4 7-repeat allele constitutes not a 

genetic risk but a genetic marker of differential susceptibility (Ellis et al., 2011). The 

differential susceptibility model is described more extensively in the section on 

intervention (see below).  

Gervai and colleagues (2007), combining a low-risk Hungarian and a high-risk 

US sample, found that  maternal affective communication was related to disorganized 

attachment in children without the DRD4 7-repeat allele and not in carriers of the 

DRD4 7-repeat allele. In light of the meta-analytic results (Bakermans-Kranenburg & 

Van IJzendoorn, 2011, 2015), the latter outcome is not convergent with the general 

finding of higher susceptibility of carriers of the 7-repeat allele, and this may have to 

do with the ethnically heterogeneous US sample in the Gervai et al. (2007) study. 

The moderating role of DRD4 was also found for the adult equivalent of 

disorganized attachment, unresolved loss or trauma as assessed with the AAI. 

Participants were adopted adults from the Iowa Adoption Studies, interviewed with 

the AAI when they were on average 39 years old (Bakermans-Kranenburg, Van 

IJzendoorn, Caspers, & Philibert, 2011). Participants with the DRD4 7-repeat allele 

with independently reported parental problems in their adoptive families had the 
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highest scores for unresolved loss or trauma, whereas participants with the DRD4 7-

repeat allele who did not experience parental problems showed the lowest ratings. 

Among participants without the DRD4 7-repeat allele, parental problems during 

childhood did not make a difference for unresolved loss or trauma, again pointing to 

heightened susceptibility to environmental influences for carriers of the DRD4 7-

repeat allele. 

In the Generation R study, two genes involved in the regulation of stress 

responses were examined: those for the glucocorticoid receptor (GR) and 

mineralocorticoid receptor (MR) (Luijk et al., 2011b). In more than 500 infant-parent 

dyads, maternal sensitivity was observed during a psychophysiological assessment 

using Ainsworth’s rating scales for sensitivity (Ainsworth et al., 1978). Moreover, 

maternal extreme insensitivity was observed, including withdrawal and neglect, and 

intrusive, negative, aggressive, or otherwise harsh parental behaviors (Out et al., 

2009). There were no main effects of MR or GR on infant attachment.  However, 

infants with the minor MR allele (G) were more securely attached if their mothers 

were more sensitive and less securely attached if their mothers showed more 

extremely insensitive behaviors, whereas these associations were not present in 

children without the G allele. No main or interaction effects were found for 

attachment disorganization. 

Based on combining two large cohorts, the Generation R study and the 

NICHD Study of Early Child Care and Youth Development (SECCYD), the 

interactions between candidate genes involved in the dopamine, serotonin, and 

oxytocin systems (DRD4, DRD2, COMT, 5-HTT, OXTR) and maternal sensitivity 

were examined in more than 1,000 Caucasian infants in total. Gene-by-environment 

interaction effects were not replicable across the two samples (Luijk et al., 2011a).  
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Even though in this latter study the combined sample size was substantial, and 

indeed the largest available to examine the interplay between genetics and parenting 

predicting attachment with state-of-the-art observational measures, the power to 

detect GxE effects may have been insufficient. The power of correlational GxE 

studies is inherently limited by several factors (see Bakermans-Kranenburg & Van 

IJzendoorn, 2015; Van IJzendoorn & Bakermans-Kranenburg, 2015): The 

distributions of genotypes and parenting quality tend to be skewed, and genetic and 

environmental factors may not be independent, because through passive or evocative 

gene-environment correlation (rGE) parenting may be related to either the parent’s or 

the child’s genotype. Unmeasured genotypes eliciting specific parental behaviors may 

play a role, and last but not least power is reduced by measurement errors. Selective 

recruitment and attrition, processes that are unavoidable in cohort studies, result in 

low numbers of participants in the eccentric parts of the distribution, with 

consequences for the distribution of the interaction term. Duncan and Keller (2011) 

argued that the primary reason for reduced power to detect interactions in non-

experimental studies is that the variance of the product term tends to be low. Thus, 

replication and meta-analysis to document the replicability of any finding is essential 

(Cumming, 2014). At the same time, experimental designs constitute a powerful 

alternative to examine GxE effects (see the section on Interventions from a GxE 

Perspective). 

 

Epigenetics  

In the past, behavioral and molecular genetics researchers assumed that the genetic 

make-up of every individual was invariable, originating from conception and 
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remaining basically the same across the life-span, except in rare cases of mutations 

through radiation or other toxic influences. This assumption is valid as far as it 

pertains to the structural properties of the double helix of DNA. But even MZ twins 

with identical DNA structures may grow apart in gene expression. They may develop 

radically different disease patterns because of changes in the epigenome that 

influences and regulates the expression of genes. Fraga et al. (2005) found, for 

example, that a 3-year-old MZ twin pair had about 1,000 genes with differential gene 

expression, whereas a 50-year-old MZ twin pair showed more than 5,000 differently 

expressed genes. Differences in the epigenome increase with age and with non-shared 

environmental influences, implying that they are larger when twins have spent more 

time in separate environments. 

One of the most widely studied epigenetic mechanisms is methylation, which 

is, simply put, the blocking of gene expression through the linking of a methyl (CH3) 

molecule to one of the bases, cytosine, at a CpG site located in a gene-promotor 

region. Methylation might be loosely compared to a cork on a bottle of champagne, 

down-regulating the escape of bubbles (messenger RNA) and thus modulating the 

level of protein and enzyme production encoded for by the specific gene (Van 

IJzendoorn, Bakermans-Kranenburg, & Ebstein, 2011).  Epigenetic studies on rodents 

(e.g., Meaney, 2010; Szyf et al., 2005) have made clear that the caregiving 

environment – for example the amount of licking and grooming and arched-back 

nursing that parents provide – may radically alter methylation patterns, and 

consequently gene expression, in the pups, and not only in the pups exposed to 

sensitive parenting (or deprived thereof) but even in these pups’ offspring (Meaney, 

2010). In particular altered methylation of the glucocorticoid receptor gene induces 
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long-term changes in response to stress, affecting the next generation (Weaver et al., 

2004; Zhang & Meaney, 2010). 

One of the first epigenetic studies on human development relevant for 

attachment theory was conducted by Meaney’s team (McGowan et al., 2009). They 

examined the brains of deceased young males stored in the Quebec Suicide Brain 

Bank, matching suicide victims with and without a history of abuse, and comparing 

these two groups with age- and gender-matched victims of fatal accidents. They found 

that, through methylation, glucocorticoid receptor gene expression in the 

hippocampus of the suicide victims was decreased but only when they had 

experienced child abuse. Hippocampal glucocorticoid receptors play a crucial role in 

down-regulating the HPA-axis that is responsible for the level of the stress hormone 

cortisol. In other studies, similar epigenetic alterations have been found as a result of 

child maltreatment (Perroud et al., 2013) or structural neglect in orphanages 

(Naumova, Dozier et al., 2012), and in adolescent children whose mothers were 

exposed to intimate partner violence during pregnancy (Radtke et al., 2011). 

The first epigenetic study of adult attachment was conducted with participants 

in the Iowa Adoption Studies (Van IJzendoorn et al., 2010). The AAI was 

administered, and participants (N = 143) reported on any loss or other potentially 

traumatic event during their childhood years in the adoptive family. The AAI scale for 

Unresolved loss or trauma was not associated with 5-HTTLPR. When the level of 

methylation was taken into account, genotype predicted Unresolved loss or trauma. 

Carriers of the long variant of 5-HTTLPR showed more Unresolved loss or trauma 

but only when more methylation was observed. Thus, the potentially protective effect 

of the long variant seemed to be mitigated by the effects of methylation suppressing 

the activity of this variant. The short variant of 5-HTTLPR appeared to be associated 
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with more Unresolved loss or trauma but only with low levels of methylation. 

Unexpectedly, high levels of methylation of the short variant led to lower Unresolved 

loss or trauma, a finding still in search of an explanation (Van IJzendoorn et al., 

2010). What this study shows however is that genetic effects on attachment might be 

hidden behind interactions with epigenetic changes, which in turn might be critically 

dependent on environmental input such as abusive or neglectful parenting. This first 

study on methylation and attachment is relatively small and should be considered 

exploratory.  

Jones-Mason (2011) administered the AAI to 101 participants of various 

ethnic backgrounds (half of them Asian American, another third European American). 

DNA was genotyped for 5-HTTLPR as well as GR, and methylation analyses were 

conducted in the upstream regions of these genotypes. GR methylation was not 

associated with any of the variables. The author suggested that in the Asian American 

group more methylation in the 5-HTTLPR short allele carriers was associated with 

less Unresolved loss or trauma, and that methylation seemed to have protected them 

from the potentially traumatizing effects of low SES. Similarly, in the Iowa Adoption 

study high methylation in carriers of the short alleles might have blunted their 

susceptibility to the environment, resulting in low Unresolved scores. Because of 

ethnic heterogeneity and the lack of power for multivariate analyses, the Jones-Mason 

(2011) study can only be used as a takeoff point to generate hypotheses to be tested in 

larger and more homogeneous samples.  

At present, the study of the epigenetics of attachment is in an embryonic stage 

and much more work needs to be done to find out whether epigenetics mediate the 

influence of (in-)sensitive and abusive parenting on the development of attachment 

relationships and representations.  
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PARENTING 

The study of intergenerational transmission of attachment involves the assessment of 

adult attachment representations in the parent and relating these representations to 

infant-parent attachment quality (see Hesse, Chapter xx, this volume; Van IJzendoorn, 

1995). For the study of intergenerational transmission of parenting, it would be ideal 

if we could observe parents interacting with their offspring and then come back two or 

three decades later and observe the toddlers of the first wave now interacting with 

their own offspring. This is exactly what has been done by Kovan, Chung, and Sroufe 

(2009). They videotaped interactions of parents and their offspring at 2 years of age, 

and did so again several decades later – when the offspring had children of their own 

who were approximately 2 years of age. Comparing the interactions across the two 

generations, they found substantial similarity in parenting behaviors (r = .43), even 

when various confounds were taken into account.  

Can genetic factors play a role in the explanation of intergenerational 

transmission of parenting? Unfortunately, traditional studies of parents and their 

biological children cannot disentangle the effects of shared genes from those of the 

environment. As with attachment, genetically informative twin or adoption studies are 

needed to examine the etiology of parenting. 

 

Behavioral Genetics of Parenting  

Two types of behavioral genetic studies of parenting can be found. The first is 

that of parent-based twin designs. Such studies involve adult twin siblings parenting 

their offspring, and heritability estimates are computed based on a comparison of the 
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similarity between MZ twins’ parenting and DZ twins’ parenting. Such studies are 

scarce. One of the obvious reasons is that twin siblings – notwithstanding the 

anecdotal and proverbial similarity of their life courses – usually do not have children 

at the same point in time. The comparability of parenting behaviors in case of 

divergent timing, numbers, gender, and ages of children is thus hampered. In terms of 

estimations of variance explained by genetic factors, shared environmental factors, 

and non-shared environment, parent-based twin designs are directly comparable to 

twin studies on infant attachment.  

The second type of study involves parents of twins, and is called a child-based 

twin design. These studies compare the similarity between parents of MZ twins and 

parents of DZ twins. The extent to which parenting behavior towards MZ twin 

siblings is more similar than parenting behavior towards DZ twin siblings indicates 

genetic influence on parenting, because genetically influenced characteristics of the 

children (e.g., temperament) apparently elicit these parenting behaviors. Child-based 

genetic effects on parenting are thus indicative of evocative rGE: The child’s genetic 

makeup evokes certain parenting behaviors, and these are child-driven genetic 

influences on parenting.  

Shared environmental influences on parenting are due to parents’ own 

characteristics (personality or parenting attitudes), or due to similar behaviors of 

siblings that result from siblings’ shared experiences, regardless of their degree of 

genetic relatedness. These shared environmental influences include factors such as 

family socioeconomic status and cultural environment – because they increase 

similarity in the parenting that children receive. Somewhat counterintuitively, this 

implies that in child-based twin studies effects of parents’ genes are included in 

estimates of the shared environment. Lastly, parents may treat siblings differently for 
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reasons unrelated to the children’s genetically influenced characteristics, such as the 

specific experiences they have with each of their children, with non-shared 

environmental effects as a result. As always, measurement errors are included in the 

non-shared environmental effect estimates. It is important to note that child-based 

twin designs cannot be informative regarding the impact of the parents’ own genes or 

early experiences on their parenting. Only parent-based twin designs can be used to 

estimate these genetic and (shared and non-shared) environmental effects. 

 

Parent-Based Twin Designs  

A recent meta-analysis of behavioral genetic studies of parenting identified only six 

unique parent-based studies (Klahr & Burt, 2014). Most studies were based on 

questionnaires; in only one study (Neiderhiser et al., 2004) were these combined with 

observations.  Heritability estimates in individual studies varied greatly, ranging from 

0% for maternal overprotection to 48% for parental authoritarianism. Distinguishing 

three dimensions of parenting, namely warmth, control, and negativity, combined 

genetic estimates were moderate for parental warmth and negativity (28%–37%), but 

zero for parental control. Non-shared environmental influences accounted for the 

largest proportion of variance (63%–90%). Heritability estimates were similar for 

father and mothers. The substantial role for non-shared environmental influences 

points to parents’ unique experiences and the specific conditions they find themselves 

in, including the relationship with their spouses and characteristics of their children.  

 

Child-Based Twin Designs  

The same meta-analysis identified 27 studies with child-based twin designs, 

presenting combined estimates for genetic, shared environmental, and non-shared 
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environmental influences on parental warmth, control, and negativity (Klahr & Burt, 

2014). Estimates were largely similar across these three parenting dimensions, with 

genetic influences ranging from 23% to 40%, shared environmental influences from 

27% to 39%, and non-shared environmental influences ranging from 32% to 44%. 

Remember that the genetic influences represent child evocative rGE effects on 

parenting. Evocative genetic influences on parenting were larger for negativity than 

for warmth and control, whereas shared environmental influences were largest for 

warmth, and non-shared environmental influences were largest for control.  

Shared environmental influences in child-based twin studies may, among other 

things, reflect genetic influences in parent-based studies; the results for parental 

warmth may point in that direction, since moderate genetic estimates for warmth were 

found  in parent-based studies. In child-based twin studies maternal control and 

negativity were explained to a greater extent by genetic influences than paternal 

control and negativity. Fathering was more influenced by shared environmental 

factors than mothering. Unfortunately and similar to parent-based twin studies, most 

child-based twin studies used questionnaire measures of parenting. Notably, observer-

rated parenting yielded lower estimates of heritability than child-report or parent-

report; for observed parenting, genetic influences on warmth and negativity were not 

significant.  

 

Evocative Gene-Environment Correlation  

In the meta-analysis of parent-based and child-based twin studies, genetic influences 

on negativity were found in both types of studies. This may indicate a process in 

which, in addition to potential passive rGE (parents give their genes as well as the 

environment to their children), children inherit the genetic tendency to negative 
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behavior from their parents, and then through evocative rGE elicit negative parental 

behavior in their parents (Klahr & Burt, 2014). 

Indeed, in a recent child-based twin study in the UK, Oliver, Trzaskowski, and 

Plomin (2014) found that the negative side of parenting showed significantly more 

genetic influence than the positive side. A weakness of the design was, again, that 

self-reports were used, and that the same parent completed the questionnaire twice, 

once for each twin sibling, creating non-independent scores with similar response 

biases. Importantly, a different UK child-based twin study (Jaffee et al., 2004) showed 

a genetic effect for harsh parenting, but not for physical maltreatment; in other words, 

the child’s behavior may evoke harsh discipline, but risk factors for physical 

maltreatment are more likely to reside in characteristics of the parent and the 

environment.  

  The disadvantages of self-reports were overcome in a multivariate child-based 

twin study of parental sensitivity as related to attachment, a study that was somehow 

left out of Klahr and Burt’s (2014) meta-analyses. Fearon et al. (2006) examined the 

extent to which genetic and environmental aspects of maternal sensitivity accounted 

for the pattern of similarity and dissimilarity of twins’ attachments to their mothers 

(see the section on behavioral genetics of attachment). Bivariate behavior genetic 

modelling is based on the pattern of within-twin and cross-twin correlations to 

estimate genetic, shared environmental and non-shared environmental correlations 

between two measures (Plomin, DeFries, McClearn, & McGuffin, 2001). No genetic 

factor (residing in the infants) explained differences in maternal sensitivity. The 

variance in maternal sensitivity was explained by shared environmental (66%) and 

non-shared environmental (34%) factors. Thus, in line with attachment theory, shared 

environmental effects were found to underlie the association between maternal 
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sensitivity and attachment security.  The shared environmental component of maternal 

sensitivity accounted for approximately a third of the twins’ similarity in attachment 

security. Exploring the non-shared environmental effect, it appeared that sensitivity 

towards twin 2 (that was not shown to twin 1) affected twin 1’s attachment security 

positively. The attachment security of one child thus depends on the relationship the 

parent has with the other child, and not just on his or her parenting behavior. These 

findings underscore the importance of effects of relationships on relationships within 

a family system (Hinde & Stevenson-Hinde, 1988), and point to the need for studies 

including more than one child per family. 

 

Molecular Genetics of Parenting  

The gene systems that have been examined in relation to parenting behavior converge 

with the gene systems that have been central to studies of attachment. These are genes 

related to the neurotransmitters dopamine and serotonin, and to the neuropeptide 

oxytocin. Here we will first review studies on potential main effects of these genes on 

human parenting, and then review GxE studies. 

 

Dopamine   

What makes dopamine-related gene polymorphisms candidate genes for associations 

with parenting? Part of the answer lies in the demonstrated implication of dopamine 

for maternal behavior in rats (Miller & Lonstein, 2005; Stolzenberg et al., 2007). 

Individual differences in their licking and grooming behavior have been found related 

to variations in dopamine levels in the nucleus accumbens (Champagne et al., 2004). 

Another part of the answer can be found in studies of humans. Dopamine is related to 

motivational and reward mechanisms (Robbins & Everitt, 1999), and infants are 
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expected to be rewarding to parents, motivating them to respond to their infants and 

initiate and maintain interaction with them. Variation in dopaminergic system genes 

may thus be related to variation in parenting. 

In a sample of more than 200 mother-child dyads, Lee and colleagues (2010) 

tested the association between the dopamine transporter (DAT1) gene and three 

dimensions of observed maternal parenting behavior (positive parenting, negative 

parenting and total maternal commands). The sample consisted of a group of children 

with ADHD and demographically matched comparison children without ADHD. The 

observed interaction included free play as well as tasks that were frustrating for the 

child (e.g., clean-up, sit and count geometric shapes, play while the mother reads a 

magazine and takes a telephone call). Maternal DAT1 was significantly associated 

with negative parenting and commands, also when child disruptive behavior and 

various other confounders were taken into account. Mothers with the 9/9 genotype 

showed the least negative parenting: Mothers with the 9/9 and 10/10 genotypes 

showed less negative parenting than mothers with the 9/10 genotype, and mothers 

with the 9/9 genotype used fewer commands than mothers with the 9/10 and 10/10 

genotypes. DAT1 genotype was not related to positive parenting. 

In the Maternal Adversity, Vulnerability, and Neurodevelopment (MAVAN) 

study, Mileva-Seitz et al. (2012) found an association between genetic variation in 

several SNPs in the DRD1 and DRD2 genes and maternal orienting away and infant-

directed vocalizing during 20 min of free play at 6 months. In three out of five DRD1 

SNPs (rs 265981, rs4532, and rs686) the heterozygote group oriented away from the 

infant less frequently than the two homozygous genotypes, which may be associated 

with dopamine-related distractibility. Two of the three DRD2 SNPs were associated 

with infant-directed vocalizing: rs6277 and rs1799732. Although the observations 
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were also rated with Ainsworth’s sensitivity rating scales (Ainsworth et al., 1978), the 

associations with DRD1 and DRD2 polymorphisms were not found with these more 

global sensitivity ratings, but only with the frequencies of the discrete maternal 

behaviors. The absence of an association with global ratings for maternal sensitivity 

replicated findings of Mills-Koonce et al. (2007), who in a mixed sample of African-

American and European-American families found no relation between DRD2 and 

maternal sensitivity or negativity during free play. The authors suggest that discrete 

behavioral tendencies may show stronger molecular genetic associations than 

complex phenotypes such as overall sensitivity (Mileva-Seitz et al., 2012).  

 

Serotonin  

The serotonin transporter gene 5-HTTLPR has been studied extensively in relation to 

depression (e.g., Caspi et al., 2003; Lesch et al., 1996), biased attention for emotional 

information (Pergamin-Hight, Bakermans-Kranenburg, Van IJzendoorn, & Bar-Haim, 

2012), and increased amygdala activation in response to emotional stimuli (Hariri et 

al., 2002). Usually short and long alleles are distinguished, but strictly speaking, 

taking into account an adjacent upstream polymorphism, three allelic variants exist: s, 

lG (functionally similar to s), and lA. Short alleles (including lG) are associated with 

lower transcription of 5-HTT mRNA, which encodes for a protein involved in 

serotonin reuptake. Some but not all studies on 5-HTTLPR and parenting take this 

additional allelic variant into account. Given the increased attention to emotional 

stimuli found in carriers of the short allele, the expected direction of the association 

between 5-HTTLPR and parenting quality is not unequivocal: Carriers of the short 

allele may be more attentive to children’s emotional signals, and thus respond more 

promptly and sensitively than carriers of the long alleles, but they may also be more 



33 

 

easily overwhelmed by negative child signals and prone to depression, with 

compromised parenting as a result. 

In MAVAN study mentioned before, Mileva-Seitz et al. (2011) found support 

for the former hypothesis: At 6 months postpartum, mothers with the short allele were 

more sensitive during their interactions with their infants, and they less often oriented 

away from their infants. 

Pener-Tessler et al. (2013) found that in families with twins, maternal positive 

parenting was related to 5-HTTLPR in different ways for mothers of boys and 

mothers of girls: In mothers of boys positive parenting significantly decreased with 

the number of maternal short alleles, whereas in mothers of girls positive parenting 

non-significantly increased with the number of short alleles. Three-way interactions, 

however, are notoriously difficult to replicate. 

 In a Dutch study, maternal sensitivity was observed in a community sample of 

159 Caucasian, middle-class mothers with their 2-year-old toddlers at risk for 

externalizing behavior problems. The dyads were asked to solve puzzles that were too 

difficult for the child, and mothers were instructed to help their child in the way they 

usually did. Mothers’ supportive presence, intrusiveness and clarity of instruction 

were rated on 7-point scales drawn from Egeland et al. (1990). These observation 

scales extend Ainsworth et al. ’s (1978) original scales with an age-appropriate 

concept of sensitivity that includes the developmental domain of coping with 

cognitive challenges. The short allele was related to lower levels of maternal sensitive 

responsiveness (Van IJzendoorn, Bakermans-Kranenburg & Mesman, 2008). 

  

Oxytocin  
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Given the important role of oxytocin in parturition, breastfeeding, and parenting (for a 

review see Galbally, Lewis, Van IJzendoorn, & Permezel, 2011), it is only natural that 

research on parenting has examined associations between various aspects of maternal 

behavior and oxytocin-related genes. Moreover, oxytocin receptor levels were found 

to be related to maternal behavior in various types of mammals (Carter, 2014; Dwyer, 

2008; Insel & Shapiro, 1992). With regard to studies of human mothers, a few have 

focused on single nucleotide polymorphisms (SNPs) in the OXT peptide gene, and 

somewhat more studies have included SNPs in the OXTR receptor gene.  

 Although the functionality of these polymorphisms have not yet been 

demonstrated, two SNPs in the third intron of OXTR have been suggested as 

particularly promising candidates to explain differences in oxytocinergic functioning: 

rs53576 and rs2254298 (Meyer-Lindenberg et al., 2011). For both SNPs, the A alleles 

are hypothesized to confer risk in comparison to the G alleles. It should be noted, 

however, that a meta-analysis covering 82 studies, 48 (N= 17,559) for OXTR rs53576 

and 34 (N= 13,547) for OXTR rs2254298, with five domains of outcomes (biology, 

personality, social behavior, psychopathology, and autism), did not yield significant 

combined effect sizes for any of the domains, nor for all domains combined 

(Bakermans-Kranenburg & Van IJzendoorn, 2013).  

Notably, only one study on parenting was included in the meta-analysis 

(Bakermans-Kranenburg & Van IJzendoorn, 2008). That specific study tested the 

association between OXTR rs53576 and sensitive parenting of mothers in interaction 

with their 2-year-old toddlers at risk for externalizing behavior problems. Controlling 

for differences in maternal education, depression, and marital discord, parents with 

the A allele showed lower levels of sensitive responsiveness to their toddlers.  
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Since then, a number of additional studies on oxytocin-related genes and 

parenting have been conducted. Replication of the effect found in the first study was 

provided by the Twin Study of Behavioral and Emotional Development in Children 

(TBED-C), including 500 families with twins aged 6-10 years old (Klahr, Klump, & 

Burt, in press). Three dimensions of parenting were observed, warmth, negativity, and 

control, for both fathers and mothers. Parents as well as children were genotyped for 

OXTR rs53576. Child OXTR genotype did not predict the type of parenting received, 

and father’s genotype was also not associated with his parenting behavior. But 

mothers’ genotype was related to maternal warmth; mothers with the AA genotype 

showed less warmth in interaction with their children than mothers with the GG or 

AG genotypes. Importantly, the association between maternal OXTR genotype and 

warmth was unchanged when controlling for child OXTR genotype, age, and gender – 

that is, controlling for child-driven evocative effects.  

 In a longitudinal study of children with ADHD and matched controls, 40 

mothers were selected based on their extreme scores on positive or negative parenting 

of their 4–6 year old children to maximize variation in parenting (Michalska et al., 

2014). Parenting was observed during free play and a series of tasks, for about twenty 

minutes in total, and 15 years later mothers were exposed to pictures of their own and 

other children in an fMRI session. OXTR rs53576 and rs1042778 were both 

associated with quality of parenting, although only rs53576 survived correction for 

multiple testing. In contrast with studies reviewed above, not the G allele but the A 

allele was associated with higher levels of positive parenting. Note, however, that an 

interaction with ethnicity suggested that the association with parenting might be 

different for African-American mothers (almost half of the sample) and European-

American mothers. Looking at pictures of their own child vs. an unknown child, A-
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allele carriers showed greater activation in the orbitofrontal cortex (OFC, involved in 

orienting toward, monitoring, and evaluating infant cues and emotional stimuli in 

general) and the anterior cingulate cortex (ACC, involved in regulating emotional 

responses). Finally, when exposed to pictures of their own child’s inappropriate vs. 

appropriate behavior, A-allele carriers showed more right hippocampus activation. As 

the activation of OT receptors in the hippocampus is related to inhibited behavioral 

reaction to stress in rats (Cohen et al., 2010), this may suggest that increased 

hippocampal activation helps to inhibit a strong negative behavioral reaction to child 

transgressing behavior. 

 In another small study, adult females without children of their own were 

exposed to bouts of infant crying.  Cries produce autonomic arousal in adults, which 

in turn facilitates a quick response to the infant in order to terminate the cry (Del 

Vecchio et al., 2009). Almost half of the variance in adults’ cardiac reactivity to an 

experimental paradigm with bouts of infant crying of varying pitch (Crowe & 

Zeskind, 1992) was shown to be explained by genetic factors in a behavioral genetic 

study with adult twins (Out et al., 2010), and this cry paradigm was thus used to test 

whether OXTR rs53576 would be related to variation in reactivity to cry sounds. 

Women with the GG genotype had greater heart rate responses to infant cries, but 

only among women with low depression scores (Riem et al., 2011). The participants 

were female twins and the results were replicated in their twin sisters. 

 In an Israeli study, three SNPs were investigated: OXTRrs2254298 and 

rs1042778, and CD38 rs3796863 (Feldman et al., 2012). CD38 is a regulator of OT 

release and has been found related to autism spectrum disorders (Munusue et al., 

2010). In mice without CD38, reduced oxytocin levels and marked deficits in social 

and maternal behavior were observed (Jin et al., 2007). During the observation, 
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infants sat on an infant seat, parents sat next to them, and parents were asked to play 

with their infants as they would typically do. Gaze synchrony and parental touch were 

coded. Parents with the CD38 CC genotype touched their infants less frequently than 

those carrying the A allele, and parents with the OXTR rs1042778 TT genotype 

touched their infant less than parents carrying the G allele. For gaze synchrony no 

genetic effects were found.  

  In the MAVAN study mentioned above, two polymorphisms in the oxytocin 

peptide gene (OXT rs2740210, rs4813627) and one polymorphism in the oxytocin 

receptor gene (OXTR rs237885) were genotyped and related to mother-infant 

interaction (Mileva-Seitz et al., 2013). At 6 months, the two OXT SNPs were related 

to infant-directed vocalizing, though not to maternal sensitivity as assessed with 

Ainsworth’s maternal sensitivity scales (Ainsworth et al., 1978). A allele carriers 

showed less infant-directed vocalizing. Because the two SNPs were in high linkage 

disequilibrium (that is, specific allelic combinations were found more often than 

would be expected based on the allele frequencies in the sample), they cannot be 

considered independent effects, and the effect may also be due to some other SNP in 

linkage disequilibrium with these two SNPs. OXT rs2740210 was also related to 

breastfeeding duration, with replication in an independent sample (Jonas et al., 2013). 

The OXTR (rs237885) genotype was not related to either vocalizing or maternal 

sensitivity or breastfeeding. 

 

Although the role of oxytocin in parenting is undisputed, variations in the 

OXT peptide gene and in the OXTR receptor gene have not yet produced a 

convincing picture of associations between particular polymorphisms and sensitive 

parenting. The link between particularly OXTR genotypes and parenting has been 
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suggested as an important direction for research into parenting (Taylor, 2008), but so 

far the results are at best promising and not as consistent as might be expected on the 

basis of animal research. The possibility to have much more control over 

environmental variation in animal studies may allow for stronger genetic effects in 

studies of parenting in rats compared to studies on human parenting. 

In a similar vein, findings regarding associations between maternal dopamine- 

and serotonin-related genotypes and observed parenting are inconclusive. All studies 

published so far have been based on relatively small samples. The lack of 

convergence in the results points to the risk of chance results, and replication in larger 

samples is badly needed. Unfortunately, in the two large studies with child genotype 

and attachment data reviewed above (Generation R and NICHD SECCYD), measures 

of parenting quality are available but maternal DNA has not (yet) been genotyped. 

Of course, genes may play additive or interactive roles that so far have not 

been taken into account. Dopamine and oxytocin work together to regulate behavioral 

responses to social stimuli. In rats, there is a direct effect of oxytocin on dopamine 

release within the mesocorticolimbic dopamine system (Shahrokh et al., 2010). In a 

similar way, genetic variants in dopamine- and oxytocin-related genes may interact to 

affect parenting in humans. This may be an important future step for studies on 

parenting, along with the examination of genetic pathways and genome-wide 

association studies (see above, section on GWAS and GCTA).  

 

GxE  

Gene-by-environment interactions may explain why some parents are more and others 

less affected by disadvantageous childhoods or concurrent daily stresses in responding 

sensitively to their offspring’s signals. For example, in the MAVAN study mentioned 
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before, OXT rs2740210 moderated the effect of early life experiences on 

breastfeeding through depression. In women with the CC genotype, childhood abuse 

experiences were related to lower maternal mood at 6 months postpartum, which in 

turn was associated with reduced breastfeeding duration across the first year (Jonas et 

al., 2013). Parents may also be differentially susceptible to environmental influences 

for better and for worse. In an Israeli study with mothers of twins, mothers with the 

DRD4 7-repeat allele who experienced more stress around child birth (e.g., low 

gestational age, low birth weight, and prolonged stay at the neonatal intensive care 

unit) were less sensitive when interacting with their children at age 3.5 than other 

mothers, whereas mothers with the DRD4 7-repeat allele whose children had few 

complications around birth showed the highest levels of sensitivity (Fortuna et al., 

2011).  

Including not only DRD4, but also COMT gene polymorphisms, mothers and 

toddlers were observed in a series of problem-solving tasks, and parents reported on 

their daily hassles (Van IJzendoorn, Bakermans-Kranenburg, & Mesman, 2008). The 

two dopamine-related genes moderated the negative influence of daily hassles on 

sensitive parenting behavior to their offspring. In parents with the combination of 

genes leading to the least efficient dopaminergic system functioning (COMTval allele, 

DRD4 7-repeat allele), more daily hassles were associated with less sensitive 

parenting, but in this group lower levels of daily hassles were associated with more 

sensitive parenting. The other combinations of COMT and DRD4 polymorphisms did 

not show significant associations between daily hassles and maternal sensitivity.  

The latter two studies (Fortuna et al., 2011; Van IJzendoorn et al., 2008) 

yielded interaction effects that are reminiscent of the GxE effect found for infant 

disorganization (Van IJzendoorn and Bakermans-Kranenburg, 2006). Remember that 
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in that study, infants with the DRD4 7-repeat allele were more susceptible to parental 

unresolved loss than infants without this allele. Infants with the DRD4 7-repeat allele 

and mothers with unresolved loss had relatively high levels of infant disorganization, 

but infants with the DRD4 7-repeat allele and mothers without unresolved loss 

showed the lowest levels of attachment disorganization. In children without this allele 

maternal unresolved loss was not related to disorganized attachment.  

Here similar patterns of results emerge: Parents with the DRD4 7-repeat allele 

(and, in one study, an additional COMTval allele) were more affected by stress than 

parents without this specific genotype.  Under conditions of stress, they were among 

the least sensitive parents, but lower levels of stress were accompanied by an increase 

in caregiving sensitivity, much stronger so than for parents without this genotype. The 

role of DRD4 as a susceptibility marker may thus not be limited to children, but 

extend to adults. Support for this idea is also provided by the Iowa Adoption Studies, 

showing that adults with the DRD4 7-repeat allele were most susceptible to the 

absence or presence of parental problems in their adoptive families (Bakermans-

Kranenburg et al., 2011). Differential susceptibility has important implications for 

interventions. Susceptible individuals, whether parents or children, may profit more 

from interventions that systematically improve the environment.  

 

GENETICALLY MODERATED INTERVENTION EFFICACY 

Interventions with the aim of enhancing parenting sensitivity or reducing attachment 

insecurity are manifold (see Berlin, Lieberman, & Zeanah, Chapter xx, this volume). 

They vary in scope and intensity from brief and focused to covering a broad range of 

topics and approaches over a period of several years. What the vast majority of these 
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interventions have in common is that their impact is only modest, with intervention 

effects that are disappointing in relation to the large investments in terms of time and 

money. In this section we will delineate the role of genetics in explaining differences 

in susceptibility to intervention that may mask the efficacy of interventions in specific 

groups (Bakermans-Kranenburg & Van IJzendoorn, 2015). 

Differential susceptibility  

The differential susceptibility model is of particular importance to intervention 

research. If environmental effects are more pronounced for specific groups compared 

to others, the effect of interventions will also be stronger for some than for others. As 

a consequence, the average intervention effect would be an underestimate of the 

effectiveness/efficacy in the most susceptible groups. This is a completely different 

perspective on intervention, and for that reason we will dig somewhat deeper into 

differential susceptibility in general and genetic differential susceptibility in 

particular. 

The first three decades of GxE research were characterized by approaches 

such as the transactional/dual-risk (Sameroff, 1983), cumulative risk (Rutter, 2010), 

and diathesis-stress model (Monroe & Simons, 1991). These approaches share a focus 

on psychopathology: Children with a vulnerable constitution (“risk” genes) and poor 

developmental experiences (e.g., insensitive parenting, low quality child care, 

stressful life experiences) are expected to be at increased risk for bad outcomes. A 

typical example would be that children with the 5-HTTLPR short allele were more 

often disorganized when maternal responsiveness was low (Spangler et al., 2009), or 

that infants with the minor MR allele (G) were less securely attached if their mothers 

showed extremely insensitive behaviors, whereas these associations were not present 

in children without the G allele (Luijk et al., 2011b). The G-allele might easily be 
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indicated as the “risk allele”. In the latter study, however, infants with the G allele 

were more securely attached if their mothers were more sensitive. Genetic variation in 

MR thus modulated infants’ sensitivity to care, for better (increased susceptibility to 

maternal sensitive behavior) and for worse (increased vulnerability to maternal 

extreme insensitivity), and it would be mistaken to consider the G allele a risk allele 

when it also enhances the chance of developing secure attachments with sensitive 

caregivers.  

In short, the same genotype that makes individuals vulnerable to adversity 

may also make them disproportionately likely to benefit from contextual support 

(Belsky, Bakermans-Kranenburg & Van IJzendoorn, 2007). The differential 

susceptibility hypothesis proposes that in positive environments “vulnerable” children 

may flourish even more than their peers who are less susceptible to both supportive 

and unsupportive environments (Bakermans-Kranenburg & Van IJzendoorn, 2007; 

Belsky et al., 2007; Ellis et al., 2011). The differential susceptibility model is not so 

much complementary to the diathesis-stress model; it is fundamentally different from 

it. Its evolutionary foundation implies that certain genotypes must be called 

“susceptibility” genes instead of “risk” genes (Bakermans-Kranenburg & Van 

IJzendoorn, 2015). 

Evidence for genetic moderation of environmental effects according to the 

differential susceptibility model has been specifically tested for serotonin and 

dopamine-related gene polymorphisms, although other genotypes have been identified 

as potential markers of susceptibility as well (e.g., MAOA, BDNF, MR). The first 

GxE differential susceptibility study showed that children with the DRD4 7-repeat 

allele displayed the most externalizing behavior at 39 months when their mothers 

were observed to be insensitive during home observations at 10 months of age but the 
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least externalizing behavior when their mothers were highly sensitive (Bakermans-

Kranenburg & Van IJzendoorn, 2006). The findings of this pioneering small study 

were confirmed in a meta-analysis on dopamine-system related genotypes (15 studies, 

N= 1,232). The combined effect sizes for the association between adverse rearing 

influences and behavioral disturbance amounted to r = .37 for carriers of the “risk 

alleles”, and only r = .10 for the comparisons without the risk alleles. But the 

combined effect sizes for association between support and better adaptation were r = 

.31 for carriers of the putatively risk alleles, and r = -.03 for those without the risk 

alleles (Bakermans-Kranenburg & Van IJzendoorn, 2011). Thus, genotypes that in 

adverse contexts put children at risk for behavior problems allowed them to benefit 

more from support. 

For 5-HTTLPR as a genetic susceptibility marker, quite similar meta-analytic 

results were found, but with a difference depending on the inclusion of samples with 

mostly non-Caucasian and mixed ethnicities (Van IJzendoorn, Belsky, & Bakermans-

Kranenburg, 2012). In the total set of studies (77 studies, N = 9,361) children with 

short alleles were more negatively affected by adverse contexts than carriers of two 

long alleles with regard to negative outcomes, but they did not benefit significantly 

more from positive environments. The pattern of results was thus convergent with the 

diathesis-stress model; with short alleles as “risk alleles” rendering individuals more 

vulnerable to environmental adversity but not more open to supportive contexts. In 

studies with predominantly (>80%) Caucasian participants (52 studies, N = 6,626), 

carriers of short alleles were more sensitive to negative (r = .18) as well as positive (r 

= .17) environmental influences than individuals with two long alleles (r = .04 for 

negative environments and  r = .05 for positive environments), in accordance with the 
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differential susceptibility model. These differences point to ethnicity as an important 

moderator in GxE studies, including genetic differential susceptibility studies.  

 Most of these first studies that formed the basis for the two meta-analyses 

were correlational. More often than not the studies did not specifically aim at testing 

the “bright side” of better outcomes in carriers of “risk alleles” in positive 

environments. In a way this is an advantage, because it implies that those results that 

were derived as part of the meta-analytical process were not the focus of the specific 

study, which counters the risk of publication bias. The crucial test of the differential 

susceptibility model is, however, whether in randomized controlled trials (RCT) 

individuals with the susceptible genotypes profit more from interventions – that is, 

from  experimental improvement of the environment. 

 

Interventions from a GxE perspective 

 GxE experiments (or GxeE, G x experimental E) are randomized controlled 

trials (RCTs) with random assignment of participants to intervention and control 

groups. GxE experiments have at least three advantages compared to correlational 

GxE studies (see Van IJzendoorn & Bakermans-Kranenburg, 2015).  

First, G and E are uncorrelated. Correlational GxE studies may test for gene-

environment correlation (rGE) and set it aside when the genetic marker is not 

correlated with the environmental factor, but this provides no definite proof of the 

absence of gene-environment correlation, because unmeasured genes may be related 

to the environmental factor under study. In RCTs, the environment is manipulated in 

standard ways, and randomization breaks any possible gene-environment correlation. 

Only random assignment to experimental and control conditions can disentangle 

genetic and environmental factors (Van IJzendoorn et al., 2011).  
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Second, GxE experiments decrease the risk of unequal measurement errors in 

the GxE equation. If genetic assessments are done in a careful way but broad or 

“quick-and-dirty” measures are used for the environment (e.g., self-reported 

retrospective childhood experiences), the error components are smaller for G than for 

E, creating risks for Type 1 and Type 2 errors. Experiments with well-defined, 

standardized manipulations of specific dimensions of the environment reduce 

measurement error in E. Of course, ineffective interventions do not contribute to a 

reduction of measurement error in E. Assessing the change in the environment is 

important to check the impact of the manipulation and to examine dose-response 

relations between environmental change and outcome in the experimental condition. 

As an example, in a study on the efficacy of the VIPP-SD parenting intervention in 

the reduction of child externalizing behavior, the way in which parental discipline 

strategies were affected by the intervention was measured, and the change in parental 

strategies was related to decreased externalizing behavior in children with the DRD4 

7-repeat allele (Bakermans-Kranenburg et al., 2008).  

Third, GxE experiments have more statistical power compared to correlational 

GxE studies. Experimental studies make participants in the experimental condition 

maximally different from participants in the control condition, and this creates more 

variance in the product term. Correlational studies tend to contain few observations at 

the extremes of the distribution and many observations close to the center of the 

distribution. Selective recruitment and attrition, especially in the tails of the 

distribution, are responsible for this effect, and they can hardly be avoided. 

Experimental GxE studies lead to better distributed variables, and as a result the 

power can be more than ten times larger compared to correlational studies (McLelland 
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& Judd, 1993). This is not a trivial issue, because lack of power has been identified as 

one of the major problems in GxE research. 

Randomized controlled intervention studies thus offer great opportunities to 

examine gene-environment interaction effects. Randomized controlled intervention 

studies can also provide insight in variation in intervention effectiveness among 

different groups. This is an important step in uncovering which intervention works 

best for whom. Lastly, they enable testing whether the dopamine-related and 

serotonin-related genotypes that emerged as “susceptibility” factors from correlational 

GxE studies are indeed related to larger intervention effects. 

 

 

Meta-analysis of Genetic Differential Susceptibility Experiments 

In the past decades, a number of genetic differential susceptibility experiments 

have been conducted. These are RCTs addressing the question whether intervention 

effects are moderated by a genetic susceptibility marker. In a meta-analysis of these 

experiments, we tested whether genotypes that were once considered risk factors and 

that were later suggested to be susceptibility (or “plasticity”) factors were related to 

larger intervention effects.  

Twenty-two RCTs could be identified (Van IJzendoorn & Bakermans-

Kranenburg, 2015), some of which had attachment as the outcome –  for example the 

intervention study of maltreating families conducted by Cicchetti, Rogosch, and Toth  

(2011), and the Bucharest Early Intervention Project (Brett et al. 2014, Nelson, Fox, 

& Zeanah, 2014). The 22 RCTs included 3,257 participants in total, 38% of whom 

were carriers of susceptibility genes. The combined effect size of the interventions for 

carriers of the susceptible genotypes amounted to r = .33, which is a large effect even 
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in terms of Cohen’s (1988) conventional criteria.  In contrast, the hypothesized non-

susceptible group was less affected by the interventions; the combined size of the 

intervention effects in this group was not significant, r = .08. Intervention effects were 

much stronger in the a priori hypothesized susceptible group.  

In the 14 studies with predominantly (>80%) Caucasian participants (N = 

2,060), the findings were replicated, with significantly larger intervention effects for 

the susceptible genotypes (r = .26) than for the non-susceptible genotypes (r = .12). 

Considering the genetic marker of susceptibility, dopamine-related genes were indeed 

markers of susceptibility. The eleven studies with dopamine-related genotypes as 

moderators showed larger intervention effects in susceptible genotype groups (r = .35) 

than in non-susceptible genotypes (r = -.00). Seven studies with 5-HTTLPR as 

moderator showed significant combined effects in the susceptible genotype group (r = 

.30) but also in the non-susceptible genotype group (r = .16); the difference between 

these two effect sizes is in the expected direction but not statistically significant (p = 

.15).  

As an important final step, the difference between the effect sizes for the 

susceptible and non-susceptible groups within each study was computed. The 

combined effect size for the difference between susceptible and non-susceptible 

genotypes within studies was significant, with a medium effect size. We tested this 

combined effect size for publication bias, and did not find any, which indicates that 

the combined effect size was not based on selective publication of studies that 

reported significant moderation of intervention effects by genotype at the expense of 

studies that did not find such moderation. 

 



48 

 

CONCLUSION 

The study of the role of genetics in explaining differences in attachment 

security began only around the year 2000, so it is a relatively young branch of the 

growing attachment tree. On the one hand this is remarkable because attachment 

theory might be considered the first application of evolutionary theory to human 

development – after Charles Darwin but before so-called evolutionary psychology 

emerged. From evolutionary theory John Bowlby (1982) derived one of the core 

hypotheses of current attachment theory, the idea that every human infant is born with 

an innate bias to become attached to a protective conspecific. The genetic basis of this 

species-wide bias and related behavior in the various stages of attachment 

development has not yet received any attention.   

On the other hand, attachment theory has always emphasized environmental 

influences, more specifically effects of parenting, on the development of individual 

differences in attachment relationships and representations. Central to attachment 

theory is the idea that attachment starts as a dyadic construct, shaped mostly by 

parents, to be gradually internalized by the child and to become a defining feature of 

the growing individual.  Behavior genetic studies seem to confirm this idea because 

most twin and adoption studies document the large role of the environment in 

explaining variance of attachment security and disorganization at a young age.  

For three reasons one should be careful deriving strong conclusions from 

behavior genetics. First, twin studies partition variation in attachment within a specific 

population and environment, and results are therefore sample-specific and dependent 

on variation in the environment. In more homogeneous environments higher 

estimations for heritability are found. Second, results pertain to the group level, and 

should not be taken to indicate individual genetics. Third, the influence of genetics 
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might grow with age, and twin studies on attachment beyond adolescence are lacking. 

As a relatively new development, GCTA extends behavior genetics in that it is not 

dependent on twin studies. Similar to behavioral genetics, GCTA leads to estimates of 

heritability without pointing at specific genes or gene pathways that play a role in the 

phenotype. 

Molecular genetics has been used as a tool in search for specific genotypes 

related to parenting and to attachment security and disorganization. However, few if 

any clues for finding “attachment genes” have emerged. Considering the complex 

phenotypic signature of attachment and the necessarily limited sample sizes involved 

in studies of infant or adult attachment this should not come as a surprise. In fact, the 

search for main effects in genetics of human behaviors and disorders has been 

generally disappointing even to the most influential and optimistic gene hunters 

(Plomin, 2013). Ever larger samples account for ever smaller variance in traits on the 

level of singular genotypes. Gene pathways, mirroring more closely complex 

neurobiological endophenotypes of attachment such as the dopamine system, may 

characterize the next generation of molecular genetic studies.  

 It seems safe to conclude that the intergenerational transmission gap between 

parental and child attachments (Van IJzendoorn, 1995) cannot be bridged by genes 

alone or by separate accounts of genetic and environmental input. Gene-by-

environment interactions may be better suited for this challenge. Correlational studies 

have documented the important role of GxE in explaining human development, and 

experimental studies showed even more conclusive evidence of the importance of the 

interplay between genes and environments. In particular the concept of genetic 

differential susceptibility generates evidence for the hypothesis derived from Belsky’s  

(1997) notion that children might differ in their openness to parenting influences in a 
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for better and for worse manner. Although conclusive evidence is still missing, 

particularly in the area of attachment, genetic make-up might make some children 

vulnerable to develop insecure attachments in less supportive environments, whereas 

the same genetic endowment enables children to profit more from supportive 

environments, i.e. sensitive parenting. This is a new perspective on the old issue of the 

transmission gap, to be explored more carefully in the next decade of attachment 

studies. In a clinical and practical sense the implication is that the efficacy of 

attachment-based interventions may have been over- and underestimated depending 

on the proportions of susceptible parents or children. 

In his revised edition of the trilogy Attachment, Bowlby (1982) already argued 

that the antithesis of innate versus acquired behavioral traits is unreal and 

unproductive: “Just as area is a product of length multiplied by width so every 

biological character …. is a product of the interaction of genetic endowment with 

environment” (p. 38). Meaney (2001) attributes this wonderful rectangle metaphor to 

Donald Hebb and dates it back to the sixties of the last century. Meaney adds that it is 

impossible to explain to the general public that one ever could make sense of a 

rectangle by studying only length isolated from width, or the other way around.  

Nevertheless, this is exactly what has happened in the study of human development, 

including attachment. Genetic differential susceptibility, incorporating epigenetics, 

may offer a viable window to study the interplay between genes and environment in 

attachment. 
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