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Abstract

The pebble tree automaton and the pebble tree transducer are en-
hanced by additionally allowing an unbounded number of “invisible” peb-
bles (as opposed to the usual “visible” ones). The resulting pebble tree
automata recognize the regular tree languages (i.e., can validate all gener-
alized DTD’s) and hence can find all matches of MSO definable patterns.
Moreover, when viewed as a navigational device, they lead to an XPath-
like formalism that has a path expression for every MSO definable binary
pattern. The resulting pebble tree transducers can apply arbitrary MSO
definable tests to (the observable part of) their configurations, they (still)
have a decidable typechecking problem, and they can model the recursion
mechanism of XSLT. The time complexity of the typechecking problem for
conjunctive queries that use MSO definable patterns can often be reduced
through the use of invisible pebbles.
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1 Introduction

Pebble tree transducers, as introduced by Milo, Suciu, and Vianu [42], are a
formal model of XML navigation and transformation for which typechecking is
decidable. The pebble tree transducer is a tree-walking tree transducer with
nested pebbles, i.e., it walks on the input tree, dropping and lifting a bounded
number of pebbles that have nested life times, whereas it produces the output
tree in a parallel top-down fashion. We enhance the power of the pebble tree
transducer by allowing an unbounded number of (coloured) pebbles, still with
nested life times, i.e., organized as a stack. However, apart from a bounded
number, the pebbles are “invisible”, which means that they can be observed by
the transducer only when they are on top of the stack (and thus the number of
observable pebbles is bounded at each moment in time). We will call v-ptt the
pebble tree transducer of [42] (or rather, the one in [20]: an obvious definitional
variant), and vi-ptt the enhanced pebble tree transducer. Moreover, i-ptt
refers to the vi-ptt that does not use visible pebbles, which can be viewed as a
generalization of the indexed tree transducer of [23]. And tt refers to the pebble
tree transducer without pebbles, i.e., to the tree-walking tree transducer, cf. [13]
and [9, Section 8]. Tree-walking transducers were introduced in [2], where they
translate trees into strings.1

The navigational part of the v-ptt, i.e., the behaviour of the transducer
when no output is produced, is the pebble tree automaton (v-pta), introduced
in [15], which is a tree-walking automaton with nested pebbles. It was shown
in [15] that the v-pta recognizes regular tree languages only. In [7] the im-
portant result was proved that not all regular tree languages can be recognized
by the v-pta, and thus [10, 55] the navigational power of the v-ptt is below
Monadic Second Order (mso) logic, which is undesirable for a formal model of
XML transformation (see, e.g., [47]). One of the reasons for introducing in-
visible pebbles is that the vi-pta, and even the i-pta, recognizes exactly the
regular tree languages (Theorem 11). Thus, since the regular tree grammar is
a formal model of DTD (Document Type Definition) in XML, the vi-pta can
validate arbitrary generalized DTD’s. We note that the i-pta is a straightfor-
ward generalization of the two-way backtracking pushdown tree automaton of
Slutzki [52].

Surveys on the use of tree-walking automata and transducers for XML can
be found in [46, 51]. For a survey on tree-walking automata see [6].

It is easy to show that every regular tree language can be recognized by
an i-pta, just simulating a bottom-up finite-state tree automaton. The proof
that all vi-pta tree languages are regular, is based on a decomposition of the
vi-ptt into tt’s (Theorem 5), similar to the one for the v-ptt in [20]. Since
the inverse type inference problem is solvable for tt’s (where a “type” is a reg-
ular tree language), this shows that the domain of a vi-ptt is regular, and so
even the alternating vi-pta tree languages are regular. It also shows that the
typechecking problem is decidable for vi-ptt’s, by the same arguments as used
in [42] for v-ptt’s. More precisely, we prove (Theorem 8, based on [13, Theo-
rem 3]) that a vi-ptt with k visible pebbles can be typechecked in (k + 3)-fold
exponential time. For varying k the complexity is non-elementary (as in [42]),

1In [9, Section 8] the tt is called tree-walking transducer and the transducer of [2] is called
tree-walking tree-to-word transducer.

3



but it is observed in [43] that “non-elementary algorithms on tree automata
have previously been seen to be feasible in practice”.

Generalizing the fact that the i-pta can recognize the regular tree languages,
we prove that the vi-pta and the vi-ptt can perform mso tests on the observ-
able part of their configuration, i.e., they can check whether or not the observ-
able pebbles on the input tree (i.e., the visible ones, plus the top pebble on the
stack) satisfy certain mso requirements with respect to the current position of
the reading head (Theorem 16). If all the observable pebbles are visible this is
obvious (drop an additional visible pebble, simulate an i-pta that recognizes
the regular tree language corresponding to the mso requirements, return to the
pebble and lift it), but if the top pebble is invisible (or if there is no visible peb-
ble left) that does not work and a more complicated technique must be used.
Consequently, the vi-pta can match arbitrary mso definable n-ary patterns,
using n visible pebbles to find all candidate matches as in [42, Example 3.5],
and using invisible pebbles to perform the mso test; the vi-ptt can also output
the matches. In fact, instead of the n visible pebbles the vi-pta can use n− 2
visible pebbles, one invisible pebble (on top of the stack), and the reading head
(Theorem 29).

As the navigational part of the vi-ptt, the vi-pta in fact computes a bi-
nary pattern on trees, i.e., a binary relation between two nodes of a tree: the
position of the reading head of the vi-ptt before and after navigation. We
prove that also as a navigational device the vi-pta and the i-pta have the same
power as mso logic: they compute exactly the mso definable binary patterns
(Theorem 15). This improves the result in [17] (where binary patterns are called
“trips”), because the i-pta is a more natural automaton than the one considered
in [17].

One of the research goals of Marx and ten Cate (see [40, 31, 53, 54] and the
entertaining [41]) has been to combine Core XPath of [32] which models the
navigational part of XPath 1.0, with regular path expressions [1] (or caterpillar
expressions [8]) which naturally correspond to tree-walking automata. An im-
portant feature of XPath is the “predicate”: it allows to test the context node
for the existence of at least one other node that matches a given path expres-
sion. Thus, the path expression α1[β]/α2 takes an α1-walk from the context
node to the new context node v, checks whether there exists a β-walk from v
to some other node, and then takes an α2-walk from v to the match node. For
tree automata this corresponds to the notion of “look-ahead” (cf. [23, Defini-
tion 6.5]). We prove (Theorem 19) that an i-pta A can use another i-pta B as
look-ahead test, i.e., A can test whether or not B has a successful computation
when started in the current configuration of A (and similarly for vi-pta and
vi-ptt). Since XPath expressions can be nested arbitrarily, we even allow B
to use yet another i-pta as look-ahead test, etcetera (Theorem 20). Due to
this “iterated look-ahead” feature, we can use Kleene’s classical construction to
translate the i-pta into an XPath-like algebraic formalism, which we call Pebble
XPath, with the same expressive power as mso logic for defining binary patterns
(Theorem 21). In fact, Pebble XPath is the extension of Regular XPath [40, 53]
with a stack of invisible pebbles. It is proved in [54] that Regular XPath is
not mso complete (see also [41]).2 Other mso complete extensions of Regular

2To be precise, it is proved in [54] that Regular XPath with “subtree relativisation” is not
mso complete and has the same power as first-order logic with monadic transitive closure.
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XPath are considered in [31, 53].
To explain another reason for introducing invisible pebbles we consider

XQuery-like conjunctive queries of the form

for x1, . . . , xn where ϕ1 ∧ · · · ∧ ϕm return r,

where x1, . . . , xn are variables, each ϕℓ (with 1 ≤ ℓ ≤ m) is an mso formula
with two free variables xi and xj , and r is an output tree with variables at the
leaves. As observed above, such pattern matching queries can be evaluated by a
vi-ptt with n−2 visible pebbles, even if the where-clause contains an arbitrary
mso formula. In many cases, however, a much smaller number of visible pebbles
suffices (Theorem 31). This is an enormous advantage when typechecking the
query, as for the time complexity every visible pebble counts (viz. it counts as
an exponential). For instance if j = i+1 for every ϕℓ, then no visible pebbles are
needed, i.e., the query can be evaluated by an i-ptt: we use invisible pebbles
p1, . . . , pn on the stack (in that order), representing the variables, and move
them through the input tree in document order, in a nested fashion; just before
dropping pebble pi+1, each formula ϕℓ(xi, xi+1) can be verified by an MSO test
on the observable part of the configuration (which consists of the top pebble pi
and the reading head position).

The pebble tree transducer transforms ranked trees. However, an XML doc-
ument is not ranked; it is a forest: a sequence of unranked trees. To model XML
transformation by ptt’s, forests are encoded as binary trees in the usual way.
For the input, it does not make much of a difference whether the ptt walks
on a binary tree or a forest. However, as opposed to what is suggested in [42],
for the output it does make a difference, as pointed out in [48] for macro tree
transducers. For that reason we also consider pebble forest transducers (abbre-
viated with pft instead of ptt) that walk on encoded forests, but construct
forests directly, using forest concatenation as basic operation. As in [48], pft
are more powerful than ptt, but the complexity of the typechecking problem is
the same, i.e., vi-pft with k visible pebbles can be typechecked in (k + 3)-fold
exponential time (Theorem 34). In fact, pft have all the properties mentioned
before for ptt.

The document transformation languages dtl and tl were introduced in [39]
and [38], respectively, as a formal model of the recursion mechanism in the
template rules of XSLT, with mso logic rather than XPath to specify match-
ing and selection. Documents are modelled as forests. The language dtl has
no variables or parameters, and its only instruction is apply-templates. The
language tl is the extension of dtl with accumulating parameters, i.e., the
parameters of XSLT 1.0 whose values are “result tree fragments” (and on which
no operations are allowed). We prove that every dtl program can be simu-
lated, with forests encoded as binary trees, by an i-ptt (Theorem 37). More
importantly, we prove that tl and i-pft have the same expressive power (The-
orem 46). Thus, in its forest version, our new model the vi-pft can be viewed
as the natural combination of the pebble tree transducer of [42] (v-ptt) and
the tl program of [38] (i-pft). Note that v-ptt and tl have incomparable
expressive power. As claimed by [38], tl can “describe many real-world XML
transformations”. We show that it contains all deterministic vi-pft transfor-
mations for which the size of the output document is linear in the size of the
input document (Theorem 57). However, the visible pebbles seem to be a requi-
site for the XQuery-like queries discussed above, and we conjecture that not all
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such queries can be programmed in tl (though they can, e.g., in the case that
j = i + 1 for every ℓ). As shown in [4] (for a subset of mso), these queries can
be programmed in XSLT 1.0 using parameters that have input nodes as values;
however, with such parameters even v-ptt with nonnested pebbles can be sim-
ulated, and typechecking is no longer decidable. In XSLT 2.0 all (computable)
queries can be programmed [34]. The main result of [38] is that typechecking
is decidable for tl programs. Assuming that mso formulas are represented by
deterministic bottom-up finite-state tree automata, the above relationship be-
tween tl and i-pft allows us to prove that tl programs can be typechecked in
4-fold exponential time (Theorem 41), which seems to be one exponential better
than the algorithm in [38].

In addition to the time complexity of typechecking a vi-ptt, also the time
complexity of evaluating the queries realized by a vi-pta or a vi-ptt is of im-
portance. The binary pattern (or ‘trip’) computed by a vi-pta, i.e., the binary
relation between two nodes of the input tree, can be evaluated in polynomial
time. The same is true for every (fixed) expression of Pebble XPath (see the
last two paragraphs of Section 9). Deterministic vi-ptt’s have exponential time
data complexity, provided that the output tree can be represented by a DAG
(directed acyclic graph). To be precise, for every deterministic vi-ptt there is
an exponential time algorithm that transforms any input tree of that vi-ptt
into a DAG that represents the corresponding output tree (Theorem 47). For
the vi-ptt’s that match mso definable n-ary patterns (as discussed above) the
algorithm is polynomial time (Theorem 48).

Apart from the above results that are motivated by XML navigation and
transformation, we also prove some more theoretical results. We show that (as
opposed to the v-ptt) the i-ptt can simulate the bottom-up tree transducer
(Theorem 18). We show that the composition of two deterministic tt’s can be
simulated by a deterministic i-ptt (Theorem 17). This even holds when the
tt’s are allowed to perform mso tests on their configuration, and then also vice
versa, every deterministic i-ptt can be decomposed into two such extended tt’s
(Theorem 53).

We show that every deterministic vi-ptt can be decomposed into determin-
istic tt’s (Theorem 55) and that, for the deterministic vi-ptt, k + 1 visible
pebbles are more powerful than k visible pebbles (Theorem 56). Pebbles have
to be lifted from the position where they were dropped; however, in [16] it was
convenient to consider a stronger type of pebbles that can also be retrieved from
a distance. Whereas i-ptt’s with strong invisible pebbles can recognize nonreg-
ular tree languages, we show that vi-ptt’s with strong visible pebbles can still
be decomposed into tt’s (Theorems 60 and 64) and hence their typechecking
is decidable (as already proved for v-ptt’s with strong pebbles in [28]). Simi-
larly, deterministic vi-ptt’s with strong visible pebbles can be decomposed into
deterministic tt’s (Theorems 62 and 65).

Some of these theoretical results can be viewed as (slight) generalizations
of existing results for formal models of compiler construction (in particular at-
tribute grammars), such as attributed tree transducers [25], macro tree trans-
ducers [22], and macro attributed tree transducers [36], see also [26]. As ex-
plained in [20, Section 3.2], attributed tree transducers are tt’s that satisfy an
additional requirement of “noncircularity”. Similarly, as observed in [38], macro
attributed tree transducers (that generalize both attributed tree transducers and
macro tree transducers) are closely related to tl programs, and hence to i-ptt’s
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by Theorem 46. For instance, Theorem 17 slightly generalizes the fact that the
composition of two attributed tree transducers can be simulated by a macro
attributed tree transducer, as shown in [36].

Most of the results of this paper were announced in the PODS’07 confer-
ence [18]. The remaining results are based on technical notes of the authors from
the years 2004–2008. This paper has not been updated with the litterature of
later years (with the exception of [9, 13, 54]).

2 Preliminaries

Sets, strings, and relations. The set of natural numbers is N = {0, 1, 2, . . .}.
For m,n ∈ N, we denote the interval {k ∈ N | m ≤ k ≤ n} by [m,n]. The
cardinality or size of a set A is denoted by #(A), and its powerset, i.e., the set
of all its subsets, by 2A. The set of strings over A is denoted by A∗. It consists
of all sequences w = a1 · · · am with m ∈ N and ai ∈ A for every i ∈ [1,m]. The
length m of w is denoted by |w|. The empty string (of length 0) is denoted
by ε. The concatenation of two strings v and w is denoted by v · w or just vw.
Moreover, w0 = ε and wn+1 = w · wn for n ∈ N. The composition of two
binary relations R ⊆ A × B and S ⊆ B × C is R ◦ S = {(a, c) | ∃ b ∈ B :
(a, b) ∈ R, (b, c) ∈ S}. The inverse of R is R−1 = {(b, a) | (a, b) ∈ R}, and
if A = B then the transitive-reflexive closure of R is R∗ =

⋃
n∈N

Rn where
R0 = {(a, a) | a ∈ A} and Rn+1 = R ◦ Rn. The composition of two classes of
binary relations R and S is R◦S = {R◦S | R ∈ R, S ∈ S}. Moreover, R1 = R
and Rn+1 = R ◦Rn for n ≥ 1.

Trees and forests. An alphabet is a finite set of symbols. Let Σ be an
alphabet, or an arbitrary set. Unranked trees and forests over Σ are recursively
defined to be strings over the set Σ ∪ {(, )} consisting of the elements of Σ, the
left parenthesis, and the right parenthesis, as follows. If σ ∈ Σ and t1, . . . , tm
are unranked trees, with m ∈ N, then their concatenation t1 · · · tm is a forest,
and σ(t1 · · · tm) is an unranked tree. For m = 0, t1 · · · tm is the empty forest ε.
For readability we also write the tree σ(t1 · · · tm) as σ(t1, . . . , tm), and even as σ
when m = 0. Obviously, the concatenation of two forests is again a forest. It
should also be noted that every nonempty forest can be written uniquely as
σ(f1)f2 where σ is in Σ and f1 and f2 are forests. The set of forests over Σ is
denoted FΣ. For an arbitrary set A, disjoint with Σ, we denote by FΣ(A) the
set all forests f over Σ ∪ A such that every node of f that is labelled by an
element of A, is a leaf.

As usual trees and forests are viewed as directed labelled graphs. Here we
distinguish between two types of edges: “vertical” and “horizontal” ones. The
root of the tree t = σ(t1, . . . , tm) is labelled by σ. It has vertical edges to the
roots of subtrees t1, . . . , tm, which are the children of the root of t and have
child number 1 to m. The root of t is their parent. The roots of t1, . . . , tm
are siblings, also in the case of the forest t1 · · · tm. There is a horizontal edge
from each sibling to the next, i.e., from the root of ti to the root of ti+1 for
every i ∈ [1,m − 1]. Thus, the vertical edges represent the usual parent/child
relationship, whereas the horizontal edges represent the linear order between
children (and between the roots in a forest), see Fig. 1.3 For a tree t, its root

3In informal pictures the horizontal edges are usually omitted because they are implicit in
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b a a

a τ
b σ b

σ τ

b a a

a τ b σ b

σ τ

Figure 1: Picture of the forest σ(a, τ(b, a), b) τ(σ(a), b). Formal at the left, with
dotted lines for the horizontal edges and solid lines for the vertical edges, and
informal at the right.

is denoted by roott, which is given child number 0 for technical convenience.
Its set of nodes is denoted by N(t). For a forest f = t1 · · · tm, the set of nodes
N(f) is the disjoint union of the sets N(ti), i ∈ [1,m]. For a node u of a tree t
the subtree of t with root u is denoted t|u, and the i-th child of u is denoted
ui (and similarly for a forest f instead of t). The nodes of a tree t correspond
one-to-one to the positions of the elements of Σ in the string t, i.e., for every
σ ∈ Σ, each occurrence of σ in t corresponds to a node of t with label σ. Since
the positions of string t are naturally ordered from left to right, this induces
an order on the nodes of t, which is called pre-order (or document order, when
viewing t as an XML document). For example, the tree σ(τ(α, β), γ)) has five
nodes which have the labels σ, τ , α, β, and γ in pre-order.

A ranked alphabet (or set) Σ has an associated mapping rankΣ : Σ → N.
The maximal rank of elements of Σ is denoted mxΣ. By Σ(m) we denote the
elements of Σ with rank m. Ranked trees over Σ are recursively defined as
above with the requirement that m = rankΣ(σ). The set of ranked trees over Σ
is denoted TΣ. For an arbitrary set A, disjoint with Σ, we denote by TΣ(A)
the set TΣ∪A where each element of A has rank 0. We will not consider ranked
forests.

Forests over an alphabet Σ can be encoded as binary trees, in the usual
way: each node has a label in Σ, a “vertical” pointer to its first child, and a
“horizontal” pointer to its next sibling; the pointer is nil if there is no such
child or sibling. Such a binary tree can be modelled as a ranked tree over the
ranked alphabet Σ ∪ {e} where every σ ∈ Σ has rank 2 and e is a symbol of
rank 0 that represents the empty forest ε (or nil). Formally, the encoding of the
empty forest equals enc(ε) = e, and recursively, the encoding enc(f) of a forest
f = σ(f1)f2 equals σ(enc(f1), enc(f2)). Obviously, enc is a bijection between
forests over Σ and ranked trees over Σ ∪ {e}. The decoding which is its inverse
will be denoted by dec. For an example of enc(f) see Fig. 2 at the left.

The disadvantage of this encoding is that the tree enc(f) has more nodes than
the forest f , viz. all nodes with label e. That is inconvenient when comparing
the behaviour of tree-walking automata on f and enc(f). Thus, we will also
use an encoding that preserves the number of nodes (and thus cannot encode
the empty forest). For this we use the ranked alphabet Σ′ consisting, for every

the left-to-right orientation of the page. Similarly, the arrows of the vertical edges are omitted
because of the top-down orientation of the page.

8



e e

e a e e e e e e

b b a b

e τ σ e

a τ
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τ11 σ11
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Figure 2: Encoding of the forest of Fig. 1 by enc (at the left) and by enc′ (at
the right).

σ ∈ Σ, of the symbols σ11 of rank 2 (for a binary node without nil-pointers),
σ01 and σ10 of rank 1 (for a binary node with vertical or horizontal nil-pointer,
respectively), and σ00 of rank 0 (for a binary node with two nil-pointers). The
encoding enc′(f) of a nonempty forest f = σ(f1)f2 equals σ

11(enc′(f1), enc
′(f2))

or σ01(enc′(f2)) or σ
10(enc′(f1)) or σ

00, where the first (second) superscript of σ
equals 0 if and only if f1 = e (f2 = e). Now, enc′ is a bijection between nonempty
forests over Σ and ranked trees over Σ′. The decoding which is its inverse will
be denoted by dec′. For an example of enc′(f) see Fig. 2 at the right. From the
point of view of graphs, we assume that enc′(f) has the same nodes as f , i.e.,
N(enc′(f)) = N(f). The label of a node u of f is changed from σ to σij where
i = 1 if and only if u has at least one child, and j = 1 if and only if u has a next
sibling. If u has children, then its first child in enc′(f) is its first child in f , and
its second child in enc′(f) is its next sibling (if it has one). If u has no children,
then its only child in enc′(f) is its next sibling (if it has one). Although this
encoding is intuitively clear, it is technically less attractive. We will use enc′ for
the input forest of automata and transducers, and enc for the output forest of
the transducers.

We assume the reader to be familiar with the notion of a regular tree gram-
mar. It is a context-free grammar G of which every rule is of the form X0 →
σ(X1 · · ·Xm) where Xi is a nonterminal and σ is a terminal symbol of rank m.
Thus, G generates a set L(G) of ranked trees, which is called a regular tree
language. The class of regular tree languages will be denoted REGT. We define
a regular forest grammar to be a context-free grammar G of which every rule is
of the form X0 → σ(X1)X2 or X → ε, where σ is from an unranked alphabet.
It generates a set L(G) of (unranked) forests, which is called a regular forest
language. Obviously, L is a regular forest language if and only if enc(L) is a
regular tree language, and, as one can easily prove, if and only if enc′(L) is a
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regular tree language. The regular tree/forest grammar is a formal model of
DTD (Document Type Definition) in XML.4

Monadic second-order logic (abbreviated as mso logic) is used to describe
properties of forests and trees. It views each forest or tree as a logical structure
that has the set of nodes as domain. As basic properties of a forest over alpha-
bet Σ it uses the atomic formulas labσ(x), down(x, y), and next(x, y), meaning
that node x has label σ ∈ Σ, that y is a child of x, and that y is the next sibling
of x, respectively. Thus, down(x, y) and next(x, y) represent the vertical and
horizontal edges of the graph representation of the forest. For a ranked tree over
ranked alphabet Σ we could use the same atomic formulas, but it is customary
to replace down(x, y) and next(x, y) by the atomic formulas downi(x, y), for
every i ∈ [1,mxΣ], meaning that y is the i-th child of x. Additionally, mso logic
has the atomic formulas x = y and x ∈ X , where X is a set of nodes. The for-
mulas are built with the usual connectives ¬, ∧, ∨, and →; both node variables
x, y, . . . and node-set variables X,Y, . . . can be quantified with ∃ and ∀. For a
forest (or ranked tree) f over Σ and a formula ϕ(x1, . . . , xn) with n free node
variables x1, . . . , xn, we write f |= ϕ(u1, . . . , un) to mean that ϕ holds in f for
the nodes u1, . . . , un of f (as values of the variables x1, . . . , xn respectively).

We will occasionally use the following formulas: root(x) and leaf(x) test
whether node x is a root or a leaf, and first(x) and last(x) test whether x is a
first or a last sibling. Also, childi(x) tests whether x is an i-th child, up(x, y)
expresses that y is the parent of x, and stay(x, y) expresses that y equals x.
Thus, we define stay(x, y) ≡ x = y and

root(x) ≡ ¬∃z(down(z, x)), leaf(x) ≡ ¬∃z(down(x, z)),

first(x) ≡ ¬∃z(next(z, x)), last(x) ≡ ¬∃z(next(x, z)),

childi(x) ≡ ∃z(downi(z, x)), up(x, y) ≡ down(y, x).

Patterns. Let Σ be a ranked alphabet and n ≥ 0. An n-ary pattern (or n-ary
query) over Σ is a set T ⊆ {(t, u1, . . . , un) | t ∈ TΣ, u1, . . . , un ∈ N(t)}. For
n = 0 this is a tree language, for n = 1 it is a site (trees with a distinguished
node), for n = 2 it is a trip [17] (or a binary tree-node relation [5]).

We introduce a new ranked alphabet Σ×{0, 1}n, the rank of (σ, ℓ) equals that
of σ in Σ. For a tree t over Σ and n nodes u1, . . . , un we define mark(t, u1, . . . , un)
to be the tree over Σ × {0, 1}n that is obtained by adding to the label of each
node u in t a vector ℓ ∈ {0, 1}n such that the i-th component of ℓ equals 1 if
and only if u = ui. The n-ary pattern T is regular if its marked representation
is a regular tree language, i.e., mark(T ) ∈ REGT.

An mso formula ϕ(x1, . . . , xn) over Σ, with n free node variables x1, . . . , xn,
defines the n-ary pattern T (ϕ) = {(t, u1, . . . , un) | t |= ϕ(u1, . . . , un)}. Note
that T (ϕ) also depends on the order x1, . . . , xn of the free variables of ϕ. It
easily follows from the result of Doner, Thatcher and Wright [10, 55] that a
pattern is mso definable if and only if it is regular (see [5, Lemma 7]).

We will also consider patterns on forests. For an unranked alphabet Σ, a
(forest) pattern over Σ is a subset of {(f, u1, . . . , un) | f ∈ FΣ, u1, . . . , un ∈
N(f)}. As for ranked trees, an mso formula ϕ(x1, . . . , xn) over Σ, defines the
n-ary (forest) pattern {(f, u1, . . . , un) | f |= ϕ(u1, . . . , un)}.

4In the litterature regular forest languages are usually defined in a different way, after
which it is proved that L is a regular forest language if and only if enc(L) is a regular tree
language, thus showing the equivalence with our definition, see, e.g., [46, Proposition 1].
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3 Automata and Transducers

In this section we define tree-walking automata and transducers with pebbles,
and discuss some of their properties.

Automata. A tree-walking automaton with nested pebbles (pebble tree automa-
ton for short, abbreviated pta) is a finite state device with one reading head
that walks from node to node over its ranked input tree following the vertical
edges in either direction. Additionally it has a supply of pebbles that can be used
to mark the nodes of the tree. The automaton may drop a pebble on the node
currently visited by the reading head, but it may only lift any pebble from the
current node if that pebble was the last one dropped during the computation.
Thus, the life times of the pebbles on the tree are nested. Here we consider two
types of pebbles. First there are a finite number of “classical” pebbles, which
we here call visible pebbles. Each of these has a distinct colour, and at most k
visible pebbles (each with a different colour) can be present on the input tree
during any computation, where k is fixed. Second there are invisible pebbles.
Again, these pebbles have a finite number of colours (distinct from those of
the visible pebbles), but for each colour there is an unlimited supply of pebbles
that can be present on the input tree. Visible pebbles can be observed by the
automaton at any moment when it visits the node where they were dropped.
An invisible pebble can only be observed when it was the last pebble dropped
on the tree during the computation.

The possible actions of the automaton are determined by its state, the label
of the current node, the child number of the node, and the set of observable
pebbles on the current node, that is, visible pebbles and an invisible pebble
when it was the last pebble dropped on the tree. Unlike the pta from [42], our
automata do not branch (i.e., are not alternating).

The pta is specified as a tuple A = (Σ, Q,Q0, F, C, Cv, Ci, R, k), where Σ is
a ranked alphabet of input symbols, Q is a finite set of states, Q0 ⊆ Q is the set
of initial states, F ⊆ Q is the set of final states, Cv and Ci are the finite sets of
visible and invisible colours, C = Cv ∪Ci, Cv ∩Ci = ∅, R is a finite set of rules,
and k ∈ N. Each rule is of the form 〈q, σ, j, b〉 → 〈q′, α〉 such that q, q′ ∈ Q,
σ ∈ Σ, j ∈ [0,mxΣ], b ⊆ C with #(b∩Cv) ≤ k and #(b∩Ci) ≤ 1, and α is one
of the following instructions :

stay,
up provided j 6= 0,
downi with 1 ≤ i ≤ rankΣ(σ),
dropc with c ∈ C, and
liftc with c ∈ b,

where the first three are move instructions and the last two are pebble instruc-
tions. Note that, due to the nested life times of the pebbles, at most one pebble
c in b can actually be lifted; however, the subscript c of liftc often increases the
readability of a pta.

A situation 〈u, π〉 of the pta A on ranked tree t over Σ is given by the
position u of the head of A on t, and the stack π containing the positions and
colours of the pebbles on the tree in the order in which they were dropped.
Formally, u ∈ N(t) and π ∈ (N(t) × C)∗. The last element of π represents
the top of the stack. The set of all situations of A on t is denoted Sit(t), i.e.,
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Sit(t) = N(t) × (N(t) × C)∗; note that it only depends on C. A configuration
〈q, u, π〉 of A on t additionally contains the state q of A, q ∈ Q. It is final when
q ∈ F . An initial configuration is of the form 〈q0, roott, ε〉 where q0 ∈ Q0, roott
is the root of t, and ε is the empty stack. The set of all configurations of A on t
is denoted Con(t), i.e., Con(t) = Q×N(t)× (N(t)× C)∗.

We now define the computation steps of the pta A, which lead from one
configuration to another. For a given input tree t they form a binary relation
on Con(t). A rule 〈q, σ, j, b〉 → 〈q′, α〉 is relevant to every configuration 〈q, u, π〉
with state q and with a situation 〈u, π〉 that satisfies the tests σ, j, and b, i.e.,
σ and j are the label and child number of node u, and b is the set of colours of
the observable pebbles dropped on the node u. More precisely, b consists of all
c ∈ Cv such that (u, c) occurs in π, plus c ∈ Ci if (u, c) is the topmost (i.e., last)
element of π. Application of the rule to such a configuration possibly leads to
a new configuration 〈q′, u′, π′〉, in which case we write 〈q, u, π〉 ⇒t,A 〈q′, u′, π′〉.
The new state is q′ and the new situation 〈u′, π′〉 is obtained from the situation
〈u, π〉 by the instruction α. For the move instructions α = stay, α = up, and
α=downi the pebble stack does not change, i.e., π′ = π, and the new node u′

equals u, is the parent of u, or is the i-th child of u, respectively. For the pebble
instructions the node does not change, i.e., u′ = u. When α=dropc, A drops
a pebble with colour c on the current node, thus the node-colour pair (u, c) is
pushed onto the pebble stack π, i.e., π′ = π(u, c), unless c is a visible colour and
the stack already contains a pebble of that colour or already contains k visible
pebbles, in which case the rule is not applicable.5 When α = liftc, A lifts a
pebble with colour c from the current node, only allowed if the topmost element
of the pebble stack is the pair (u, c), which is subsequently popped from the
stack, i.e., π = π′(u, c); otherwise this rule is not applicable. We will also allow
instructions like liftc ; up with the obvious meaning (first lift the pebble, then
move up). In this way we have defined the binary relation ⇒t,A on Con(t),
which represents the computation steps of M. We will say informally that a
computation step of M halts successfully if it leads to a final configuration.

The tree language L(A) accepted by pta A consists of all ranked trees t
over Σ such that A has a successful computation on t that starts in an initial
configuration. Formally, L(A) = {t ∈ TΣ | ∃ q0 ∈ Q0, q∞ ∈ F, 〈u, π〉 ∈ Sit(t) :
〈q0, roott, ε〉 ⇒∗

t,A 〈q∞, u, π〉}. Note that pebbles may remain in the final con-
figuration and that the head need not return to the root. Two pta’s A and B
are equivalent if L(A) = L(B).

By vki-pta we denote a pta with last component k, i.e., that uses at most
k visible pebbles in its computations, and an unbounded number of invisible
pebbles, and by VkI-PTA we denote the class of tree languages accepted by
vki-pta’s. For k = 0, automata that only use invisible pebbles, we also use
the notation i-pta, and for automata that only use k visible pebbles we use
vk-pta. Moreover, ta is used for tree-walking automata without pebbles, i.e.,
v0-pta. The lower case d or d is added when we only consider deterministic
automata, which have a unique initial state, no final state in the left-hand side
of a rule, and no two rules with the same left-hand side. Thus we have vki-dpta,
VkI-dPTA, and variants.

5To be precise, the rule is not applicable if c ∈ Cv, π = (u1, c1) · · · (un, cn), and there
exists i ∈ [1, n] such that c = ci, or #({i ∈ [1, n] | ci ∈ Cv}) = k.
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Properties of automata. It is natural, and sometimes useful, to extend the
vki-pta with the facility to test whether its pebble stack is nonempty, and if
so, to test the colour of the topmost pebble. Thus, we define a pta with stack
tests in the same way as an ordinary pta except that its rules are of the form
〈q, σ, j, b, γ〉 → 〈q′, α〉 with γ ∈ C∪{ε}. Such a rule is relevant to a configuration
〈q, u, π〉 if, in addition, the pebble stack π is empty if γ = ε, and the topmost
pebble of π has colour γ if γ ∈ C.6 All other definitions are the same. Note
that, obviously, we may require for the above rule that γ = c if α = liftc, which
ensures that relevant rules with a lift-instruction are always applicable.7

It is not difficult to see that these new tests do not extend the expressive
power of the pta. Informally we will say that the vki-pta can perform stack
tests.

Lemma 1 Let k ≥ 0. For every vki-pta with stack tests A an equivalent
(ordinary) vki-pta A′ can be constructed in polynomial time. The construction
preserves determinism and the absence of invisible pebbles.8

Proof. Let A = (Σ, Q,Q0, F, C, Cv, Ci, R, k). The new automaton A′ stepwise
simulates A and, additionally, stores in its finite state whether or not the pebble
stack is nonempty, and if so, what is the colour in C of the topmost pebble. Thus,
Q′ = Q×(C∪{ε}), Q′

0 = Q0×{ε}, and F ′ = F×(C∪{ε}). Moreover, the colour
sets of A′ are C′

v = Cv×(C∪{ε}) and C′
i = Ci×(C∪{ε}). In fact, if the pebble

stack of A is π = (u1, c1)(u2, c2) · · · (un, cn), with (un, cn) being the topmost
pebble, then the stack of A′ is π′ = (u1, (c1, ε))(u2, (c2, c1)) · · · (un, (cn, cn−1)),
where ε is viewed as a bottom symbol. Thus, the new colour of a pebble contains
its old colour together with the old colour of the previously dropped pebble (or ε
if there is none). This allows A′ to update its additional finite state component
when A lifts a pebble. More precisely, when A is in configuration 〈q, u, π〉, the
automaton A′ is in configuration 〈(q, γ), u, π′〉, where γ = cn if n ≥ 1 and γ = ε
otherwise.

The rules of A′ are defined as follows. Let 〈q, σ, j, b, γ〉 → 〈q′, α〉 be a rule
of A, and let b′ be (the graph of) a mapping from b to C ∪ {ε}. If α is a move
instruction, then A′ has the rule 〈(q, γ), σ, j, b′〉 → 〈(q′, γ), α〉. If α = dropc,
then A′ has the rule 〈(q, γ), σ, j, b′〉 → 〈(q′, c), drop(c,γ)〉. If α = liftc, γ = c, and
(c, γ′) ∈ b′, then A′ has the rule 〈(q, γ), σ, j, b′〉 → 〈(q′, γ′), lift(c,γ′)〉.

It should be clear that the construction of A′ takes polynomial time. Note
that k is fixed and #(b) ≤ k + 1 in the left-hand side of the rule 〈q, σ, j, b, γ〉 →
〈q′, α〉 of A. ✷

pta’s with stack tests will only be used in Sections 8 and 15. The next two
properties of pta’s will not be used in later sections, but are meant to clarify
some of the details in the semantics of the pta.

A rule of a vki-pta A is progressive if it is applicable to every reachable
configuration9 to which it is relevant. The vki-pta A is progressive if all its

6To be precise, for π = (u1, c1) · · · (un, cn) the requirements are the following: If γ = ε

then n = 0, i.e., π = ε. If γ ∈ C then n ≥ 1 and cn = γ.
7Additionally, we can require the following: If γ = ε then b = ∅. If b ∩ Ci = {c} then

γ = c.
8In other words, the statement of the lemma also holds for vki-dpta, vk-pta and vk-dpta.
9The configuration 〈q, u, π〉 on the tree t is reachable if 〈q0, roott, ε〉 ⇒∗

t,A 〈q, u, π〉 for some
q0 ∈ Q0.

13



rules are progressive. Intuitively this means that A knows that its instructions
can always be executed. Clearly, according to the syntax of a pta, every rule
with a move instruction is progressive. The same is true for rules with a peb-
ble instruction dropc or liftc with c ∈ Ci: an invisible pebble can always be
dropped and an observable invisible pebble can always be lifted. Thus, only
the dropping and lifting of visible pebbles is problematic. It is easy to see that,
for the vki-pta A′ constructed in the proof of Lemma 1, every rule with a
lift-instruction is progressive.

A vki-pta A is counting if Cv = [1, k] and, in each reachable configuration,
the colours of the visible pebbles on the tree are 1, . . . , ℓ for some ℓ ∈ [0, k], in
the order in which they were dropped.10 Note that in the litterature vk-pta’s
are usually counting. We have chosen to allow arbitrarily many visible colours
in a vki-pta because we want to be able to store information in the pebbles,
as in the proof of Lemma 1. It is straightforward to construct an equivalent
counting vki-pta A′ for a given vki-pta A (preserving determinism and the
absence of invisible pebbles). The automaton A′ stepwise simulates A and,
additionally, stores in its finite state the colours of the visible pebbles that
are dropped on the tree, in the order in which they were dropped. Thus, the
states of A′ are of the form (q, ϕ) where q is a state of A and ϕ is a string
over Cv without repetitions, of length at most k. The state (q, ϕ) is final if
q is final. The initial states are (q, ε) where q is an initial state of A. The
rules of A′ are defined as follows. Let 〈q, σ, j, b〉 → 〈q′, α〉 be a rule of A and
let (q, ϕ) be a state of A′ such that every c ∈ b ∩ Cv occurs in ϕ. Moreover,
let b′ ⊆ [1, k] ∪ Ci be obtained from b by changing every c ∈ Cv into i, if c
is the i-th element of ϕ. If α is a move instruction, or a pebble instruction
dropc or liftc with c ∈ Ci then A′ has the rule 〈(q, ϕ), σ, j, b′〉 → 〈(q′, ϕ), α〉. If
α = dropc with c ∈ Cv, c does not occur in ϕ, and |ϕ| < k, then A′ has the
rule 〈(q, ϕ), σ, j, b′〉 → 〈(q′, ϕc), drop|ϕ|+1〉. Finally, if α = liftc with c ∈ Cv, and
ϕ = ϕ′c for some ϕ′ ∈ C∗

v , then A′ has the rule 〈(q, ϕ), σ, j, b′〉 → 〈(q′, ϕ′), lift|ϕ|〉.
It should be clear that A′ is counting. Note also that all rules of A′ with
a drop-instruction are progressive. Thus, if we first apply the construction
in the proof of Lemma 1 and then the one above, we obtain an equivalent
progressive vki-pta. Obviously, every progressive vki-pta can be turned into
an equivalent vk+1i-pta by simply changing its last component k into k + 1,
and hence VkI-PTA ⊆ Vk+1I-PTA and VkI-dPTA ⊆ Vk+1I-dPTA.

11

Transducers. A tree-walking tree transducer with nested pebbles (abbrevi-
ated ptt) is a pta without final states that additionally produces an out-
put tree over a ranked alphabet ∆. Thus, omitting F , it is specified as a
tuple M = (Σ,∆, Q,Q0, C, Cv, Ci, R, k), where Σ, Q, Q0, C, Cv, Ci, and k
are as for the pta. The rules of M in the finite set R are of the same
form as for the pta, except that M additionally has output rules of the form
〈q, σ, j, b〉 → δ( 〈q1, stay〉, . . . , 〈qm, stay〉 ) with δ ∈ ∆, and q1, . . . , qm ∈ Q,
where m is the rank of δ. Intuitively, the output tree is produced recursively.
In other words, in a configuration to which the above output rule is relevant
(defined as for the pta) the ptt M outputs δ, and for each child 〈qi, stay〉
branches into a new process, a copy of itself started in state qi at the current

10To be precise, for π = (u1, c1) · · · (un, cn) we require that there exists ℓ ∈ [0, k] such that
(ci1 , . . . , cim) = (1, . . . , ℓ) where {i1, . . . , im} = {i ∈ [1, n] | ci ∈ Cv} and i1 < · · · < im.

11In fact, these four classes are equal, as will be shown in Theorem 11.
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node, retaining the same stack of pebbles; thus, the stack is copied m times.
Note that a relevant output rule is always applicable. As a shortcut we may
replace the stay-instruction in any 〈qi, stay〉 by another move instruction or a
pebble instruction, with obvious semantics.

An output form of the ptt M on ranked tree t over Σ is a tree in T∆(Con(t)),
where Con(t) is defined as for the pta. Intuitively, such an output form consists
on the one hand of ∆-labeled nodes that were produced by M previously in the
computation, using output rules, and on the other hand of leaves that repre-
sent the independent copies of M into which the computation has branched
previously, due to those output rules, where each leaf is labeled by the cur-
rent configuration of that copy. Note that Con(t) ⊆ T∆(Con(t)), i.e., every
configuration of M is an output form.

The computation steps of the ptt M lead from one output form to another.
Let s be an output form and let v be a leaf of s with label 〈q, u, π〉 ∈ Con(t). If
〈q, u, π〉 ⇒t,M 〈q′, u′, π′〉, where the binary relation ⇒t,M on Con(t) is defined
as for the pta (disregarding the output rules of M), then we write s ⇒t,M s′

where s′ is obtained from s by changing the label of v into 〈q′, u′, π′〉. Moreover,
for every output rule 〈q, σ, j, b〉 → δ( 〈q1, stay〉, . . . , 〈qm, stay〉 ) that is relevant
to configuration 〈q, u, π〉, we write s ⇒t,M s′ where s′ is obtained from s by
replacing the node v by the subtree δ(〈q1, u, π〉, . . . , 〈qm, u, π〉). In the particular
case that m = 0, s′ is obtained from s by changing the label of v into δ. In that
case we will say informally that M halts successfully, meaning that the copy of
M corresponding to the node u of s disappears. In this way we have extended
⇒t,M to a binary relation on T∆(Con(t)).

The transduction τM realized by M consists of all pairs of trees t over Σ
and s over ∆ such that M has a (successful) computation on t that starts
in an initial configuration and ends with s. Formally, we define τM = {(t, s) ∈
TΣ×T∆ | ∃ q0 ∈ Q0 : 〈q0, roott, ε〉 ⇒∗

t,M s}. Two ptt’s M and N are equivalent
if τM = τN .

The domain of M is defined to be the domain of τM, i.e., the tree language
L(M) = {t ∈ TΣ | ∃ s ∈ T∆ : (t, s) ∈ τM}. When M is viewed as a recognizer of
its domain, it is actually the same as an alternating pta. Existential states in
the alternation correspond to the nondeterminism of the ptt, universal states
correspond to the recursive way in which output trees are generated. More pre-
cisely, an output rule 〈q, σ, j, b〉 → δ( 〈q1, stay〉, . . . , 〈qm, stay〉 ) corresponds to a
universal state q that requires every state qi to have a successful computation
(and the output symbol δ is irrelevant). An ordinary (non-alternating) pta then
corresponds to a ptt for which every output symbol has rank 0; for m = 0 the
above output rule means that the pta halts in a final state. We say that the
ptt M is total if L(M) = TΣ, i.e., τM(t) 6= ∅ for every input tree t.

Similar to the notation VkI-PTA for tree languages, we use the notation
VkI-PTT for the class of transductions defined by tree-walking tree transducers
with k visible nested pebbles and an unbounded number of invisible pebbles, as
well as the obvious variants Vk-PTT, and I-PTT. Additionally TT denotes the
class of transductions realized by tree-walking tree transducers without pebbles,
i.e., V0-PTT. Such a transducer is specified as a tuple M = (Σ,∆, Q,Q0, R),
and the left-hand sides of its rules are written 〈q, σ, j〉, omitting b = ∅. As for
pta’s, lower case d is added for deterministic transducers, which have a unique
initial state and no two rules with the same left-hand side. Moreover, lower case
td is used for total deterministic transducers, i.e., transducers that are both total
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and deterministic. Note that a deterministic ptt realizes a function, and a total
deterministic ptt a total function from TΣ to T∆.

Properties of transducers. Stack tests are defined for the ptt as for the
pta, and Lemma 1 and its proof carry over to ptt’s. If a given ptt M has
the output rule 〈q, σ, j, b, γ〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉), and b′ is (the graph
of) a mapping from b to C ∪ {ε} as in the proof for pta’s, then the constructed
ptt M′ has the rule 〈(q, γ), σ, j, b′〉 → δ(〈(q1, γ), stay〉, . . . , 〈(qm, γ), stay〉).

Progressive ptt’s can be defined as for pta’s, based on the notion of a
reachable configuration, cf. footnote 9. An output form s of the ptt M on the
input tree t is reachable if 〈q0, roott, ε〉 ⇒

∗
t,M s for some q0 ∈ Q0. A configuration

of M on t is reachable if it occurs in some reachable output form of M on t.
Note that every i-ptt is progressive.

Also, counting ptt’s can be defined as for pta’s. For every vki-ptt M
an equivalent counting vki-ptt M′ can be constructed, just as for pta’s.
If 〈q, σ, j, b, γ〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) is an output rule of M, and ϕ
and b′ are as in the proof for pta’s, then M′ has the rule 〈(q, ϕ), σ, j, b′〉 →
δ(〈(q1, ϕ), stay〉, . . . , 〈(qm, ϕ), stay〉). Thus, as for pta’s, every vki-ptt can be
turned into an equivalent progressive vki-ptt, with determinism and the ab-
sence of invisible pebbles preserved. That implies that VkI-PTT ⊆ Vk+1I-PTT

and VkI-dPTT ⊆ Vk+1I-dPTT.

We end this section with an example of an i-ptt.

Example 2 We want to generate itineraries for a trip along the Trans-Siberian
Railway, starting in Moscow and ending in Vladivostok, and optionally visiting
some cities along the way. An XML document lists all the stops:

<stop name="Moscow" large="1" initial="1">

...

<stop name="Birobidzhan" large="0">

...

<stop name="Vladivostok" large="1" final="1" />

...

</stop>

...

</stop>

The initial and final stops are marked, and for every stop the large attribute
indicates whether or not the stop is in a large city. We want to generate a list

<result>it-1

<result>it-2

...

<result>it-n

<endofresults />

</result>

...

</result>

</result>

where it-1,it-2,...,it-n are all itineraries (i.e., lists of stops) that satisfy the
constraint that one does not visit a small city twice in a row. An example
input XML document, with the corresponding output XML document is given
in Tables 1 and 2 (where, e.g., </stop>^3 abbreviates </stop></stop></stop>).
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A deterministic i-ptt Msib is able to perform this XML transformation by
systematically enumerating all possible lists of stops, marking each stop in the
list (except the initial and final stop) by a pebble. Since the pebbles are invisible,
Msib constructs a possible list of stops on the pebble stack in reverse, so that
the stops will appear in the output tree in the correct order.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="transsiberie.xsl"?>

<stop name="Moscow" large="1" initial="1">

<stop name="Stop 2" large="0">

<stop name="Stop 3" large="0">

<stop name="LargeStop 4" large="1">

<stop name="Stop 5" large="0">

<stop name="Vladivostok" large="1" final="1"/>

</stop>^5

Table 1: Input

Since in this example the XML tags are ranked, there is no need for a binary
encoding of the XML documents. The input alphabet Σ of Msib consists of all
<stop at> where at is a possible value of the attributes. The rank of <stop at>

is 0 if final="1" and 1 otherwise. The output alphabet ∆ consists of Σ, the
tag r = <result> of rank 2, and the tag e = <endofresults> of rank 0. The
set of pebble colours is C = Ci = {0, 1}, with Cv = ∅. The transducer Msib

will not use the attribute initial, as it can recognize the root by its child
number 0. Also, it will disregard the attribute large of the initial and the final
stop, and always consider them as large cities. The set of states of Msib is
Q = {qstart, q1, q0, qout, qnext} with Q0 = {qstart}.

In the rules below the variables range over the following values: σ0 ∈ Σ(0),
σ1 ∈ Σ(1), j, c ∈ {0, 1}, and, for i ∈ {0, 1}, λi ∈ {<stop at> ∈ Σ | large="i"}.
The i-ptt Msib first walks from Moscow to Vladivostok in state qstart:

〈qstart, σ1, j,∅〉 → 〈qstart, down1〉
〈qstart, σ0, 1,∅〉 → 〈q1, up〉

State qc remembers whether the most recently marked city is small or large;
when a new city is marked with a pebble, it gets the colour c. In states q0 and
q1 as many cities are marked as possible (in the second rule, c = 1 or i = 1):

〈q0, λ0, 1,∅〉 → 〈q0, up〉
〈qc, λi, 1,∅〉 → 〈qi, dropc; up〉
〈qc, σ1, 0,∅〉 → r(〈qout, stay〉, 〈qnext, down1〉)

In state qout an itinerary is generated as output, while state qnext continues the
search for itineraries by unmarking the most recently marked city:

〈qout, σ1, 0,∅〉 → σ1(〈qout, down1〉)
〈qout, σ1, 1,∅〉 → 〈qout, down1〉
〈qout, σ1, 1, {c}〉 → σ1(〈qout, liftc; down1〉)
〈qout, σ0, 1,∅〉 → σ0
〈qnext, σ1, 1,∅〉 → 〈qnext, down1〉
〈qnext, σ1, 1, {c}〉 → 〈qc, liftc; up〉
〈qnext, σ0, 1,∅〉 → e
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<result>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 3" large="0">
<stop name="LargeStop 4" large="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^4
<result>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">

<stop name="LargeStop 4" large="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^4
<result>
<stop name="Moscow" large="1" initial="1">

<stop name="LargeStop 4" large="1">
<stop name="Stop 5" large="0">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^3

<result>
<stop name="Moscow" large="1" initial="1">

<stop name="Stop 5" large="0">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^2

<result>
<stop name="Moscow" large="1" initial="1">

<stop name="Stop 3" large="0">

<stop name="LargeStop 4" large="1">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^3
<result>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">

<stop name="LargeStop 4" large="1">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^3

<result>
<stop name="Moscow" large="1" initial="1">

<stop name="LargeStop 4" large="1">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^2

<result>
<stop name="Moscow" large="1" initial="1">

<stop name="Stop 3" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^2

<result>
<stop name="Moscow" large="1" initial="1">

<stop name="Stop 2" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^2
<result>

<stop name="Moscow" large="1" initial="1">

<stop name="Vladivostok" large="1" final="1"/>
</stop>

<endofresults/>
</result>

</result>

</result>^8

Table 2: Output
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Note that this XML transformation cannot be realized by a v-ptt, because the
height of the output tree is, in general, exponential in the size of the input tree,
whereas it is polynomial for v-ptt’s (cf. [20, Lemma 7]). ✷

4 Decomposition

In this section we decompose every ptt into a sequence of tt’s, i.e., transducers
without pebbles. This is useful as it will give us information on the domain of
a ptt, see Theorem 11, and on the complexity of typechecking the ptt, see
Theorem 8.

It is possible to reduce the number of visible pebbles used, by preprocessing
the input tree with a total deterministic tt. This was shown in [20, Lemma 9]
for transducers with only visible pebbles. The basic idea of that proof can be
extended to include invisible pebbles.

Lemma 3 Let k ≥ 1. For every vki-ptt M a total deterministic tt N and a
vk−1i-ptt M′ can be constructed in polynomial time such that τN ◦ τM′ = τM.
If M is deterministic, then so is M′. Hence, for every k ≥ 1,

VkI-PTT ⊆ tdTT ◦ Vk−1I-PTT and VkI-dPTT ⊆ tdTT ◦ Vk−1I-dPTT.

Proof. Let M = (Σ,∆, Q,Q0, C, Cv, Ci, R, k) be a ptt with k visible pebbles.
The construction of the tt N and the ptt M′ with k − 1 visible pebbles is a
straightforward extension of the one in [13, Theorem 5], which slightly differs
from the one in the proof of [20, Lemma 9], but uses the same basic idea. For
completeness sake we repeat a large part of the proof of [13, Theorem 5], adapted
to the current formalism. The simple idea of the proof is to preprocess the input
tree t ∈ TΣ in such a way that the dropping and lifting of the first visible pebble
can be simulated by walking into and out of specific areas of the preprocessed
input tree pp(t). This preprocessing is independent of the given pebble tree
transducer M. More precisely, pp(t) is obtained from t by attaching to each
node u of t, as an additional (last) subtree, a fresh copy of t in which (the copy
of) node u is marked; let us denote this subtree by tu. Thus, if t has n nodes,
then pp(t) has n+ n2 nodes. The subtrees tu of pp(t) are the “specific areas”
mentioned above. As long as there are no visible pebbles on t, M′ stepwise
simulates M on the original nodes of t, which form the “top level” of pp(t).
When M drops the first visible pebble c on node u, M′ enters tu and walks
to the marked node, storing c in its finite state. As long as M keeps pebble c
on the tree, M′ stays in tu, stepwise simulating M on tu rather than t. Since
u is marked in tu, M’s pebble c at u is visible to the transducer M′, not as
a pebble but as a marked node. Thus, during this time, M′ only uses k − 1
visible pebbles. When M lifts pebble c from u (and hence all visible pebbles are
lifted), M′ walks from the copy of u out of tu, back to the original node u, and
continues simulating M on the top level of pp(t) until M again drops a visible
pebble. There is one problem: how does M′ know whether or not pebble c is
on top of the stack when M tries to lift it? To solve this problem, M′ uses an
additional special invisible pebble ⊙. It drops pebble ⊙ at the copy of u and
thus knows that pebble c is at the top of the stack (for M) when it observes
pebble ⊙. Thus, at any moment of time, M′ has the same pebble stack as M,
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except that c is replaced by ⊙ and, moreover, the (invisible) pebbles below ⊙
are on the top level of pp(t), whereas ⊙ and the pebbles above it are on tu.

Unfortunately, this preprocessing cannot be realized by a tt (though it can
easily be realized by a v1-ptt). For this reason we “fold” tu at the node u, such
that (the marked copy of) u becomes its root; let us denote the resulting tree
by t̂u. Roughly, t̂u is obtained from tu by inverting the parent-child relation-
ship between the ancestors of u (including u), similarly as in the tree traversal
algorithm sometimes known as “link inversion” [35, p.562]. Appropriate infor-
mation is added to the node labels of those ancestors to reflect this inversion. As
these changes are local (i.e., each node keeps the same neighbours) and clearly
marked in the tree, M′ can easily reconstruct the unfolded tu, and simulate M
as before. Note also that, with this change of pp(t), dropping or lifting of the
first visible pebble can be simulated by M′ in one computation step, because
the marked copy of u is the last child of the original u.

Now a tt N can compute pp(t), as follows12. It copies t to the output
(adding primes to its labels), but when it arrives at node u it additionally
outputs the copy t̂u of t in a side branch of the computation. Copying the
descendants of u “down stream” is an easy recursive task. To invert the parent-
child relationship between the nodes on the path from u to roott, N uses a
single process that walks along the nodes of that path “up stream” to the root,
inverting the relationships in the copy. Copies of other siblings of children on
the path are connected as in t, and their descendants are copied “down stream”.
More precisely, if in t the i-th child v of parent w is on the path, then, in the
output t̂u, v has an additional (last) child that corresponds to w, and w has the
same children (with their descendants) as in t, except that its i-th child is a node
that is labeled by the bottom symbol ⊥ of rank 0. For the sake of uniformity,
roott is also given an additional (last) child, with label ⊥. Note that the nodes
of t correspond one-to-one to the non-bottom nodes of t̂u; in particular, the path
in t from u to roott corresponds to the path in t̂u from its root to the parent of
its rightmost leaf. The bottom nodes of t̂u will not be visited by M′.

A picture of pp(t) is given in Fig. 3, where t̂u is drawn for two nodes only.
Note that in this picture the root of the copy of t (which is also the root of
pp(t)) is the top of the triangle, but the root of t̂u is u (and, of course, similarly
for v). As a concrete example, consider t = σ(δ(a, b), c) where σ, δ have rank 2
and a, b, c rank 0. We will name the nodes of t by their labels. Then

pp(t) = σ′(δ′(a′(t̂a), b
′(t̂b), t̂δ), c

′(t̂c), t̂σ)

where
t̂a = a0,1(δ1,1(⊥, b, σ1,0(⊥, c,⊥))),
t̂b = b0,2(δ2,1(a,⊥, σ1,0(⊥, c,⊥))),
t̂δ = δ0,1(a, b, σ1,0(⊥, c,⊥)),
t̂c = c0,2(σ2,0(δ(a, b),⊥,⊥)), and
t̂σ = σ0,0(δ(a, b), c,⊥).

The subscripted node labels are on the rightmost paths of the t̂u’s; the subscripts
contain “reconstruction” information, to be explained below. As another exam-
ple, if t is the monadic tree a(bm(c(dn(e)))) of height m + n + 3, and u is the

12See also [42, Example 3.7] where t̂u occurs as “a complex rotation of the input tree” t,
albeit for leaves u only.
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Figure 3: Output tree pp(t) of the tt N of Lemma 3 for input tree t.

c-labelled node, then t̂u = c0,1(s1, s2) with s1 = dn(e) and s2 is the binary
tree b1,1(⊥, b1,1(⊥, . . . b1,1(⊥, a1,0(⊥,⊥)) · · · )) of height m+2. This shows more
clearly that t̂u is obtained by “folding”.

We now formally define the deterministic tt N that, for given ranked al-
phabet Σ, realizes the preprocessing pp (called EncPeb in [20]). The definition
is identical to the one in [13, Section 6]. Since N has no pebbles, we abbreviate
the left-hand side 〈q, σ, j,∅〉 of a rule by 〈q, σ, j〉. To simplify the definition of N
we additionally allow output rules of the form 〈q, σ, j〉 → δ(s1, . . . , sm) where δ
is an output symbol of rank m and every si is either the output symbol ⊥ or
it is of the form 〈q′, ϕ〉 where ϕ is stay, up, or downi with i ∈ [1,m]. Such a
rule should be replaced by the rules 〈q, σ, j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) and
〈pj , σ, j〉 → sj for all j ∈ [1,m], where p1, . . . , pm are new states. Obviously this
replacement can be done in quadratic time.

We introduce the states and rules of N one by one; in what follows σ ranges
over Σ, with m = rankΣ(σ), j ranges over [0,mxΣ], and i over [1,m]. First,
N has an “identity” state d that just recursively copies the subtree of the current
node to the output, using the rules 〈d, σ, j〉 → σ(〈d, down1〉, . . . , 〈d, downm〉).
Then, N has initial state g that copies the input tree t to the output (with
primed labels) and at each node u of t “generates” a new copy t̂u of the input
tree by calling the state f that computes t̂u by “folding” tu. The rules for g are

〈g, σ, j〉 → σ′(〈g, down1〉, . . . , 〈g, downm〉, 〈f, stay〉).

Note that σ′ has rank m + 1: the root of t̂u is attached to u as its last child.
The rules for f are

〈f, σ, j〉 → σ0,j(〈d, down1〉, . . . , 〈d, downm〉, ξj)

where ξj = 〈fj, up〉 for j 6= 0, and ξ0 = ⊥. The “reconstruction” subscripts of
σ0,j mean the following: subscript 0 indicates that this node is the root of some
t̂u, and subscript j is the child number of u in t. Note that σ0,j has rank m+1:
its last child corresponds to the parent of u in t (viewing ⊥ as the “parent” of
roott in t). The tt N walks up along the path from u to the root of t using
“folding” states fi, where the i indicates that in the previous step N was at the
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i-th child of the current node. The rules for fi are

〈fi, σ, j〉 → σi,j(
〈d, down1〉, . . . , 〈d, downi−1〉,
⊥,
〈d, downi+1〉, . . . , 〈d, downm〉,
ξj)

where ξj is as above. If a node (in t̂u) with label σi,j corresponds to the node v
in t, then the “reconstruction” subscript i means that its parent corresponds to
the i-th child of v in t (and its own i-th child is ⊥), and, as above, “reconstruc-
tion” subscript j is the child number of v. Just as σ0,j , also σi,j has rank m+1:
its last child corresponds to the parent of v in t. Note that the copy t̂u of the
input tree is computed by the states f , fi (for every i) and d, such that f copies
node u to the output and the other states walk from u to every other node v
of t and copy v to the output. To be precise, N walks from u to v along the
shortest (undirected) path from u to v, from u up to the least common ancestor
of u and v (in the states fi), and then down to v (in the state d). Arriving in
a node v from a neighbour of v, the transducer N branches into a new process
for every other neighbour of v.

This ends the description of the tt N . The output alphabet Γ of N (which
will also be the input alphabet of M′) is the union of Σ, {⊥}, {σ′ | σ ∈ Σ},
and {σi,j | σ ∈ Σ, i ∈ [0, rankΣ(σ)], j ∈ [0,mxΣ]}. Thus, N has O(n2) output
symbols, where n is the size of Σ.13 So, since mxΓ = mxΣ + 1, the size of Γ is
polynomial in n. The set of states of N is {d, g, f} ∪ {fi | i ∈ [1,mxΣ]}, with
initial state g. Thus, it has O(n) states and O(n3) rules; moreover, each of these
rules is of size O(n log n). Hence, the size of N is polynomial in the size of Σ,
and it can be constructed in polynomial time.

We now turn to the description of the vk−1i-ptt M′. It has input alpha-
bet Γ, output alphabet ∆, set of states Q∪ (Q×Cv), and the same initial states
and visible colours as M. Its invisible colour set is C′

i = Ci ∪ {⊙}. It remains
to discuss the set R′ of rules of M′. Let 〈q, σ, j, b〉 → ζ be a rule of M with
rankΣ(σ) = m. We consider four cases, depending on the variant σ′, σ0,j , σi,j
with i 6= 0, or σ in Γ of the input symbol σ ∈ Σ.

In the first case, we consider the behaviour of M′ in state q on σ′, and we
assume that b ∩ Cv = ∅. If ζ = 〈q′, dropc〉 with c ∈ Cv, then R

′ contains the
rule 〈q, σ′, j, b〉 → 〈(q′, c), downm+1; drop⊙〉,

14 and otherwise R′ contains the
rule 〈q, σ′, j, b〉 → ζ. Thus, M′ simulates M on the original (now primed) part
of the input tree t in pp(t), until M drops a visible pebble c on node u. Then
M′ steps to the root of t̂u where it drops the invisible pebble ⊙, and stores c in
its finite state.

Next, we let c ∈ Cv and we consider the behaviour of M′ in state (q, c)
on the remaining variants of σ. Let ζc be the result of changing in ζ every
occurrence of a state q′ into (q′, c).

In the second case we assume that c ∈ b (corresponding to the fact that
σ0,j labels the marked node of some t̂u). If b = {c} and ζ = 〈q′, liftc〉, then

13We assume here that the rank of each symbol of the ranked alphabet Σ is specified in unary
rather than decimal notation, and thus mxΣ ≤ n; cf. the last paragraph of [13, Section 2].

14To be completely formal, this rule should be replaced by the two rules 〈q, σ′, j, b〉 →
〈p,downm+1〉 and 〈p, σ0,j , m+ 1,∅〉 → 〈(q′, c),drop⊙〉, where p is a new state.
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R′ contains the rule 〈(q, c), σ0,j ,m+ 1, {⊙}〉 → 〈q′, lift⊙; up〉.15 Thus, when M
lifts visible pebble c from node u, M′ lifts invisible pebble ⊙ and steps from the
root of t̂u back to node u. Otherwise, R′ contains the rules

〈(q, c), σ0,j ,m+ 1, b \ {c} ∪ {⊙}〉 → ζ′c

(provided b ∩ Ci = ∅) and

〈(q, c), σ0,j ,m+ 1, b \ {c}〉 → ζ′c,

where ζ′c is obtained from ζc by changing up into downm+1. These two rules
correspond to whether or not the invisible pebble ⊙ is observable. Note that
the child number in pp(t) of a node with label σ0,j is always m + 1 (and the
label of its parent is σ′).

In the remaining two cases we assume that c /∈ b in the above rule of M.
In the third case, we consider σi,j with i 6= 0. Then R′ contains the rules
〈(q, c), σi,j , j′, b〉 → ζ′c for every j

′ ∈ [1,mxΓ], where ζ
′
c is now obtained from ζc

by changing up into downm+1, and downi into up. In the fourth and final case,
we consider σ itself (in Γ). Then R′ contains the rule 〈(q, c), σ, j, b〉 → ζc. Thus,
M′ stepwise simulates M on every t̂u.

This ends the description of the vk−1i-ptt M′. It should now be clear that
τM′(pp(t)) = τM(t) for every t ∈ TΣ, and hence τN ◦ τM′ = τM. Each rule of
M is turned into at most 1 + #(Cv) · (2 +mxΣ(mxΣ + 1)) rules of M′, of the
same size as that rule (disregarding the space taken by the occurrences of c and
m+ 1). Thus, M′ can be computed from M in polynomial time. ✷

The tree pp(t) that is used in the previous proof consists of two levels of
copies of the original input tree t; on the first level a straightforward copy of t
(used until the first visible pebble is dropped) and a second level of copies t̂u
(used to “store” the first visible pebble dropped). It is tempting to add another
level, meant as a way to store the next visible pebble dropped. The problem
with this is that it would make the first visible pebble effectively unobservable
when the next one is dropped. The idea can be used for invisible pebbles, for
arbitrarily many levels.

Lemma 4 For every i-ptt M a tt N and a tt M′ can be constructed in
polynomial time such that τN ◦ τM′ = τM. If M is deterministic, then so
is M′. Hence, I-PTT ⊆ TT ◦ TT and I-dPTT ⊆ TT ◦ dTT.

Proof. The computation of a ptt M with invisible pebbles on tree t is simu-
lated by a tt M′ (without pebbles) on tree t′. The input tree t is preprocessed
in a nondeterministic way by a tt N to obtain t′. The top level of t′ is a copy
of t, as before. On the next level, since the simulating transducer M′ cannot
store the colours of all the pebbles in its finite state (as we did for one colour in
the proof of Lemma 3), N does not attach one copy t̂u of t to each node u of t
but #(Ci) such copies, one for each pebble colour. In this way, the child number
in t′ of the root of t̂u represents the pebble colour. In fact, in each node u of t
the transducer N nondeterministically decides for each pebble colour c whether

15Again, to be completely formal, this rule should be replaced by the two rules
〈(q, c), σ0,j ,m + 1, {⊙}〉 → 〈p, lift⊙〉 and 〈p, σ0,j ,m + 1,∅〉 → 〈q′,up〉, where p is a new
state.
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t

Figure 4: An output tree t′ of the tt N of Lemma 4 for input tree t.

or not to spawn a process that copies t into t̂u, and this is a recursive process:
in each node in each copy of t it can be decided to spawn such processes that
generate new copies.

In this way a “tree of trees” is constructed. For an “artist impression” of
such an output tree t′, see Fig. 4. The child number in t′ of the root of each
copy t̂u indicates an invisible pebble of colour c placed at node u in the original
tree t. In each copy only one pebble is observable, the one represented by the
child number of its root, exactly as the last pebble dropped in the original
computation. In the simulation, moving down or up along the tree of trees
corresponds to dropping and lifting invisible pebbles.

In general there is no bound on the depth of the stack of pebbles during a
computation of M. The preprocessor N nondeterministically constructs t′. If t′

is not sufficiently deep, the simulating transducer M′ aborts the computation.
Conversely, for every computation of M a tree t′ of sufficient depth can be
constructed nonderministically from t.

We now turn to the formal definitions. LetM = (Σ,∆, Q,Q0, C, Cv, Ci, R, 0)
be an i-ptt. Without loss of generality we assume that C = Ci and that
C = [1, γ] for some γ ∈ N. This choice of C simplifies the representation of
colours by child numbers.

First, we define the nondeterministic tt N that preprocesses the trees
over Σ. It is a straightforward variant of the one in the proof of Lemma 3.
The output alphabet Γ of N is now the union of {⊥}, {σ′ | σ ∈ Σ}, and
{σ′

i,j | σ ∈ Σ, i ∈ [0, rankΣ(σ)], j ∈ [0,mxΣ]} where, for every σ ∈ Σ of rank m,
σ′ has rank m+γ and σ′

i,j has rank m+γ+1, because γ processes are spawned
at each node, and each of these processes generates, nondeterministically, either
a copy t̂u of t or the bottom symbol ⊥. The set of states of N is as before,
except that the state d is removed (with its rules). In the rules of N we will use
〈f, stay〉γ as an abbreviation of the sequence 〈f, stay〉, . . . , 〈f, stay〉 of length γ.
The rules for the initial state g are

〈g, σ, j〉 → σ′(〈g, down1〉, . . . , 〈g, downm〉, 〈f, stay〉γ).
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The rules for f are

〈f, σ, j〉 → ⊥

〈f, σ, j〉 → σ′
0,j(〈g, down1〉, . . . , 〈g, downm〉, 〈f, stay〉γ , ξj)

where, as before, ξj = 〈fj , up〉 for j 6= 0, and ξ0 = ⊥. Finally, the rules for fi
are

〈fi, σ, j〉 → σ′
i,j(

〈g, down1〉, . . . , 〈g, downi−1〉,
⊥,
〈g, downi+1〉, . . . , 〈g, downm〉,
〈f, stay〉γ ,
ξj)

where ξj is as above. This ends the definition of N .
Next, we define the simulating tt M′. It has input alphabet Γ (the output

alphabet of N ), output alphabet ∆, and the same set of states and initial states
as M. The set R′ of rules of M′ is defined as follows. Let 〈q, σ, j, b〉 → ζ be a
rule of M with rankΣ(σ) = m. Note that b is either empty or a singleton. We
consider three cases, that describe the behaviour of M′ on the symbols σ′, σ′

0,j ,
and σ′

i,j with i 6= 0.
In the first case we assume that b = ∅ (and hence ζ does not contain a

lift-instruction). Then R′ contains the rule 〈q, σ′, j〉 → ζ′ where ζ′ is obtained
from ζ by changing dropc into downm+c for every c ∈ C.

In the second case we assume that b = {c} for some c ∈ C. Then R′ contains
the rule 〈q, σ′

0,j ,m + c〉 → ζ′ where ζ′ is now obtained from ζ by changing up
into downm+γ+1, liftc into up, and dropd into downm+d for every d ∈ C. Note
that the child number in t′ of a node with label σ′

0,j is always m + c for some
c ∈ C (and the label of its parent is σ′ or σ′

i,j for some i ∈ [0,m]).
In the third case we assume (as in the first case) that b = ∅. Then R′

contains the rule 〈q, σ′
i,j , j

′〉 → ζ′ for every j′ ∈ [1,mxΓ], where ζ′ is now
obtained from ζ by changing up into downm+γ+1, downi into up, and dropc
into downm+c for every c ∈ C.

This ends the definition of M′. It should, again, be clear that for every
t ∈ TΣ and s ∈ T∆, s ∈ τM(t) if and only if there exists t′ ∈ τN (t) such that
s ∈ τM′(t′). Hence τN ◦τM′ = τM. It is straightforward to show, as in the proof
of Lemma 3, that N and M′ can be constructed in polynomial time from M.
Note that mxΓ = mxΣ + #(Ci) + 1 and so the size of Γ is polynomial in the
size of M. ✷

Combining the previous two results we can inductively decompose tree tran-
ducers with (visible and invisible) pebbles into tree transducers without pebbles.

Theorem 5 For every k ≥ 0, VkI-PTT ⊆ TT
k+2. For fixed k, the involved

construction takes polynomial time.

Observe that Vk-PTT ⊆ Vk−1I-PTT as the topmost pebble can be replaced
by an invisible one, thus Vk-PTT ⊆ TT

k+1, which was proved in [20, Theo-
rem 10], also for the deterministic case.

We do not know whether Theorem 5 is optimal, i.e., whether or not VkI-PTT
is included in TT

k+1. The deterministic version of Theorem 5 (for k 6= 0) will
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be proved in Section 15 (Theorem 55), and we will show that it is optimal (after
Theorem 56).

The nondeterminism of the “preprocessing” transducer N in the proof of
Lemma 4 is rather limited. The general form of the constructed tree is com-
pletely determined by the input tree, only the depth of the construction is nonde-
terministically chosen. At the same time it remains nondeterministic even when
we start with a deterministic ptt with invisible pebbles: I-dPTT ⊆ TT ◦ dTT.
However, we can obtain a deterministic transduction if the number of invisi-
ble pebbles used by the transducer is bounded (over all input trees), cf. the
M. Sc. Thesis of the third author [50] (where visible and invisible pebbles are
called global and local pebbles, respectively). In Section 7 we will show that if
we start with a deterministic tree transduction, then the inclusions of Lemma 4
also hold in the other direction (Theorem 17). In Section 15 we will show that
I-dPTT ⊆ dTT

3 (Corollary 54).

5 Typechecking

The inverse type inference problem is to construct, for a tree transducer M and
a regular tree grammar Gout, a regular tree grammar Gin such that L(Gin) =
τ−1
M (L(Gout)). The typechecking problem asks, for a tree transducer M and two
regular tree grammars Gin and Gout, whether or not τM(L(Gin)) ⊆ L(Gout).
The inverse type inference problem can be used to solve the typechecking prob-
lem, because τM(L(Gin)) ⊆ L(Gout) if and only if L(Gin) ∩ τ−1

M (L′
out) = ∅,

where L′
out is the complement of L(Gout).

It was shown in [42] (see also [20, Section 7]) that both problems are solvable
for tree-walking tree transducers with visible pebbles, i.e., for v-ptt’s, and hence
in particular for tree-walking tree transducers without pebbles, i.e., for tt’s.16

This was extended in [13] to compositions of such transducers and, moreover,
the time complexity of the involved algorithms was improved, using a result
of [3] for attributed tree transducers.

We define a k-fold exponential function to be a function of the form 2g(n)

where g is a (k−1)-fold exponential function; a 0-fold exponential function is a
polynomial.

Proposition 6 For fixed k ≥ 0, the inverse type inference problem is solvable
(1) for compositions of k tt’s in k-fold exponential time, and
(2) for vk-ptt’s in (k+1)-fold exponential time.

Proposition 7 For fixed k ≥ 0, the typechecking problem is solvable
(1) for compositions of k tt’s in (k+1)-fold exponential time, and
(2) for vk-ptt’s in (k+2)-fold exponential time.

As also observed in [13], one exponential can be taken off the results of
Proposition 7 if we assume that Gout is a total deterministic bottom-up finite-
state tree automaton, because that exponential is due to the complementation
of L(Gout).

16Note however that our definition of inverse type inference differs from the one in [42],
where it is required that L(Gin) = { s | τM(s) ⊆ L(Gout) }. The reason is that our definition
is more convenient when considering compositions of tree transducers.
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It is immediate from Theorem 5 and Propositions 6(1) and 7(1) that both
problems are also solvable for tree-walking tree transducers with invisible peb-
bles.

Theorem 8 For fixed k ≥ 0, the inverse type inference problem and the type-
checking problem are solvable for vki-ptt’s in (k+2)-fold and (k+3)-fold expo-
nential time, respectively.

The main conclusion from Proposition 7(2) and Theorem 8 is that the com-
plexity of typechecking ptt’s basically depends on the number of visible pebbles
used. Thus we can improve the complexity of the problem by changing visible
pebbles into invisible ones as much as possible, see Section 10.

Note that the solvability of the inverse type inference problem for a tree
transducer M means in particular that its domain is a regular tree language,
taking L(Gout) = T∆ where ∆ is the output alphabet of M. Thus, it follows
from Theorem 8 that the domains of ptt’s are regular, or in other words, that
every alternating pta accepts a regular tree language.

Corollary 9 For every ptt M, its domain L(M) is regular.

6 Trees, Tests and Trips

In this section we show that vi-pta’s recognize the regular tree languages, that
they compute the mso definable binary patterns (or trips), and that they can
perform mso tests on the observable part of their configuration (which consists
of the position of the head and the positions of the observable pebbles).

For “classical” tree-walking automata with a bounded number of visible
pebbles, i.e., for v-pta’s, it was shown in [15, Section 5] that these automata
accept regular tree languages only. However, as proved in [7], they cannot
accept all regular tree languages. One of the main reasons for introducing an
unbounded number of invisible pebbles is that they can be used to recognize
every regular tree language. Recall that REGT denotes the class of regular tree
languages.

Lemma 10 REGT ⊆ I-dPTA.

Proof. As the regular tree languages are recognized by deterministic bottom-up
finite-state tree automata, it suffices to explain how the computation of such an
automaton A can be simulated by a deterministic pta A′ with invisible pebbles.
The computation of A on the input tree can be reconstructed by a post-order
evaluation of the tree. At the current node u, A′ uses an invisible pebble to
store the states in which A arrives at the first m children of u, for some m. The
colour of the pebble represents the sequence of states. For each ancestor v of u
the pebble stack contains a similar pebble for the first i− 1 children of v, where
vi is the unique child of v that is also an ancestor of u (or u itself). If u has
more than m children, then A′ moves to its (m+1)-th child and drops a pebble
that represents the empty sequence of states of A. Otherwise, A′ computes the
state assumed by A in u based on the states of the children, lifts the pebble
at u, and moves to the parent of u to update its pebble with that state. The
post-order evaluation ensures that pebbles are used in a nested fashion.
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Formally, let A = (Σ, P, F, δ) where Σ is a ranked alphabet, P is a finite
set of states, F ⊆ P is the set of final states, and δ is the transition function
that assigns a state δ(σ, p1, . . . , pm) ∈ P to every σ ∈ Σ and p1, . . . , pm ∈ P
with m = rankΣ(σ). As pebble colours the i-pta A′ has all strings in P ∗ of
length at most mxΣ. Its states and rules are introduced one by one as follows,
where σ ranges over Σ, j and m range over [0, rank(σ)], and p, p1, . . . , pm range
over P . The initial state q0 does not occur in the right-hand side of any rule.
In the initial state, the automaton A′ drops a pebble at the root representing
the empty sequence of states of A, and goes into the main state q◦. The rule is

ρ1 : 〈q0, σ, 0,∅〉 → 〈q◦, dropε〉.

In state q◦, A′ consults the pebble to see whether or not all children have been
evaluated, and acts accordingly. For m < rank(σ) it has the rule

ρ2 : 〈q◦, σ, j, {p1 · · · pm}〉 → 〈q◦, downm+1; dropε〉,

which handles the case that the state of A is not yet known for all children of
node u. For m = rank(σ) and p = δ(σ, p1, . . . , pm) it has the rules

ρ3 : 〈q◦, σ, j, {p1 · · · pm}〉 → 〈q̄p, liftp1···pm ; up〉 if j 6= 0,

ρ4 : 〈q◦, σ, 0, {p1 · · · pm}〉 → 〈qyes, stay〉 if p ∈ F,

ρ5 : 〈q◦, σ, 0, {p1 · · · pm}〉 → 〈qno, stay〉 if p /∈ F,

and for m < rank(σ) it has the rule

ρ6 : 〈q̄p, σ, j, {p1 · · · pm}〉 → 〈q◦, liftp1···pm ; dropp1···pmp〉.

Thus, if the states p1, . . . , pm of A at all the children of node u are known,
A′ computes the state p = δ(σ, p1, . . . , pm) of A at u. If u is not the root of the
input tree, then A′ stores p in its own state q̄p, lifts the pebble p1 · · · pm, and
moves up to the parent of u. Since the pebble at the parent is now observable,
it can be updated. If u is the root of the input tree, then A′ knows whether or
not A accepts that tree, and correspondingly goes into state qyes or state qno,
where qyes is the unique final state of A′. Note that there is one pebble left on
the root of the tree. ✷

Adding an infinite supply of invisible pebbles on the other hand does not
lead out of the regular tree languages. It is possible to give a proof of this fact
by reducing vki-pta’s to the backtracking pushdown tree automata of [52], but
here we deduce it from the results of the previous section.

Theorem 11 For each k ≥ 0, VkI-PTA = VkI-dPTA = REGT.

Proof. By Lemma 10, REGT ⊆ VkI-dPTA. Conversely, as observed before,
a pta A is easily turned into a ptt M that outputs single node tree δ (with
rank(δ) = 0) for trees accepted by A: for every final state q of A add all rules
〈q, σ, j, b〉 → δ. Then L(A) = L(M), the domain of M, which is regular by
Corollary 9. ✷
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Note that an infinite supply of visible pebbles could be used to mark a’s
and b’s alternatingly and thus accept the nonregular language {anbn | n ∈ N}
(and similarly {anbncn | n ∈ N}). Note also that the stack of pebbles cannot
be replaced by two independent stacks, one for visible and one for invisible
pebbles. Then we could accept {anbn | n ∈ N} with just one visible pebble:
drop an invisible pebble on each a, and then use the visible pebble on the b’s
to count the number of a’s, by lifting one invisible pebble (in fact, the unique
observable one) for each b.

Recall from Section 2 that an n-ary pattern over a ranked alphabet Σ is a set
T ⊆ {(t, u1, . . . , un) | t ∈ TΣ, u1, . . . , un ∈ N(t)}. Recall also that the pattern T
is said to be regular if its marked representation mark(T ) ⊆ TΣ×{0,1}n is a
regular tree language. In fact, T is regular if and only if it ismso definable, which
means that there is an mso formula ϕ(x1, . . . , xn) over Σ such that T = T (ϕ),
where T (ϕ) = {(t, u1, . . . , un) | t |= ϕ(u1, . . . , un)}. Recall finally that a unary
pattern (n = 1) is called a site, and a binary pattern (n = 2) is called a trip.

With the help of an unbounded supply of invisible pebbles tree-walking au-
tomata can recognize regular tree languages, Lemma 10. Likewise vni-pta’s can
match arbitrary mso definable n-ary patterns ϕ. When n visible pebbles are
dropped on a sequence of n nodes, the invisible pebbles can be used to evaluate
the tree, and test whether it belongs to the regular tree language mark(T (ϕ)).
In Section 10 we will consider pattern matching in detail.

Ignoring the visible pebbles, it is also possible to consider just the position
of the head, and test whether the input tree together with that position belongs
to a given regular “marked” tree language. We say that a family F of pta’s (or
ptt’s) can perform mso head tests if, for a regular site T over Σ, an automaton
(or transducer) in F can test whether or not (t, h) ∈ T , where t is the input
tree and h the position of the head at the moment of the test. Admittedly, this
is a very informal definition. To formalize it we have to define a ptamso (or a
pttmso), i.e., a pta (or ptt) with mso head tests, that has rules of the form
〈q, σ, j, b, T 〉 → ζ where T is a regular site over Σ (specified in some effective
way). Such a rule is relevant to a configuration 〈q, h, π〉 on a tree t if, in addition,
(t, h) ∈ T . Since the regular tree languages are closed under complement, the
complement T c of T can be tested in a rule with left-hand side 〈q, σ, j, b, T c〉.
Such an automaton (or transducer) is deterministic if for every two distinct rules
〈q, σ, j, b, T 〉 → ζ and 〈q, σ, j, b, T ′〉 → ζ′, the site T ′ is the complement of the
site T . For a family F of pta’s (or ptt’s), such as the vki-pta or vki-dptt or
vk-pta, we denote by Fmso the corresponding family of ptamso’s (or pttmso’s).
With this definition of ptamso we can formally define that a family F of pta’s
can perform mso head tests if for every ptamso in Fmso an equivalent pta in F
can be constructed, and similarly for ptt’s.

Obviously, as v-pta’s cannot recognize all regular tree languages, they can-
not perform mso head tests either: for any regular tree language T the set
{(t, roott) | t ∈ T } is a regular site.

The next result shows that any vi-pta that uses mso head tests as a built-in
feature (i.e., any vi-ptamso) can be replaced by an equivalent vi-pta without
such tests. The result holds for vi-pta’s with any fixed number of visible peb-
bles, either deterministic or nondeterministic, and it also holds for the corre-
sponding vi-ptt’s.
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Lemma 12 For each k ≥ 0, the vki-pta can perform mso head tests. The
same holds for the vki-dpta, vki-ptt, and vki-dptt.

Proof. Let AT be a deterministic bottom-up finite-state tree automaton rec-
ognizing the regular tree language mark(T ) over Σ × {0, 1}, representing the
site T , trees with a single marked node. We show how a deterministic i-pta A′

T

can test whether or not the input tree with current head position h is accepted
by AT , in a computation starting in configuration 〈q0, h, ε〉 and ending in con-
figuration 〈qyes, h, ε〉 or 〈qno, h, ε〉, where q0 is the initial state and {qyes, qno}
the set of final states of A′

T . Moreover, it starts the computation by drop-
ping a pebble on h, and it keeps a pebble on h until the final computation
step. It should be obvious that this i-pta A′

T can be used as a subroutine by
any vki-pta or vki-ptt A, starting in configuration 〈(q̃, q0), h, π〉 and ending
in configuration 〈(q̃, qyes), h, π〉 or 〈(q̃, qno), h, π〉, for every state q̃ and pebble
stack π of A. Just replace each rule 〈q, σ, j, b〉 → 〈q′, α〉 of A′

T by all possible
rules 〈(q̃, q), σ, j, b ∪ b′〉 → 〈(q̃, q′), α〉 where b′ is a set of visible pebble colours
of A (except that in the first rule of A′

T , which drops a pebble on h, the set b′

possibly contains an invisible pebble colour of A).
The post-order evaluation of Lemma 10 does not work here without precau-

tions. If we mark node h with an invisible pebble the pebble becomes unobserv-
able during the evaluation. In this way we cannot take the special “marked”
position of h into account.17 Instead, we first evaluate the subtree rooted at h,
and subsequently the subtrees rooted at the ancestors of h, moving along the
path from h to the root of the input tree. At the start of the evaluation of a
subtree, we “paint” its root u by adding a special colour to the pebble on u,
and preserving that information when the pebble is updated. In this way it is
always clear when the painted node is visited. We paint node h with the special
additional colour ⊙ and use the evaluation process of Lemma 10 to compute the
state of AT at h, viewing the label σ of each node as (σ, 0) except for the label σ
of h which is treated as (σ, 1). We paint each ancestor u of h with an additional
colour (j, p) which indicates the child number j of the previous ancestor of h and
the state p at which AT arrives at that child of u (with h as a marked node).
Then we use, again, the evaluation process of Lemma 10 to compute the state
of AT at u (with every σ viewed as (σ, 0)), except that the information in the
pebble (j, p) is used for the state p of the j-th child of u, which is the unique
child that has h as a descendant. Repeating this process for each ancestor, we
eventually reach the root of the tree, and know the outcome of the test. Then
we return to the original position h picking up the pebbles left on the path from
that position to the root.

Formally, let AT = (Σ×{0, 1}, P, F, δ). For convenience we will identify the
symbols (σ, 0) and σ. The i-pta A′

T is an extension of the i-pta A′ in the proof
of Lemma 10. It has the additional states q↓yes and q↓no, and in addition to
the pebble colours p1 · · · pm of A′ it has the pebble colours (µ, p1 · · · pm) where
either µ = ⊙ or µ = (i, r) for some i ∈ [1,mxΣ] and r ∈ P . The additional
pebbles are used to “paint” h (with µ = ⊙) and the ancestors of h (with some
µ = (i, r)). The automaton A′

T has all the rules of A′, except that rules ρ4

17Marking h with a visible pebble would easily work, showing that vi-pta can perform mso
head tests.
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and ρ5 will become superfluous, and rule ρ1 is replaced by the rule

ρ′1 : 〈q0, σ, j,∅〉 → 〈q◦, drop(⊙,ε)〉.

Thus, A′
T starts by evaluating the subtree rooted at h, with h as marked node.

For m < rank(σ) and every µ as above, except when µ = (m + 1, r) for some
r ∈ P , A′

T has the rules

ρµ2 : 〈q◦, σ, j, {(µ, p1 · · · pm)}〉 → 〈q◦, downm+1; dropε〉

ρµ6 : 〈q̄p, σ, j, {(µ, p1 · · · pm)}〉 → 〈q◦, lift(µ,p1···pm); drop(µ,p1···pmp)〉

which intuitively means that the pebble (µ, p1 · · · pm) is treated in the same
way as p1 · · · pm when not all children of the current node have been evaluated:
A′
T moves to the (m + 1)-th child and calls A′, and when A′ returns with the

state p, A′
T adds p to the sequence of states in the pebble. However, in the

exceptional case where m < rank(σ) and µ = (m+ 1, r), A′
T has the rule

ρµ2,6 : 〈q◦, σ, j, {(µ, p1 · · · pm)}〉 → 〈q◦, lift(µ,p1···pm); drop(µ,p1···pmr)〉

which means that for the (m + 1)-th child A′
T does not call A′ but uses the

state r that was previously computed and stored in µ.
The remaining rules of A′

T handle the situations that A′
T has just evaluated

the subtrees rooted at the children of h or of one of the ancestors u of h, in
state q◦. The automaton A′

T computes the state p of AT at the marked node h
or the unmarked node u, and drops the pebble ((j, p), ε) at its parent v, where
j is the child number of h or u, thus indicating that the subtree rooted at the
j-th child of v (with h as a marked node) evaluates to p. Then A′

T evaluates
the subtree rooted at v.

For m = rank(σ) and every µ as above, A′
T has the rules

ρµ3 : 〈q◦, σ, j, {(µ, p1 · · · pm)}〉 → 〈q◦, up; drop((j,p),ε)〉 if j 6= 0,

ρµ4 : 〈q◦, σ, 0, {(µ, p1 · · · pm)}〉 → 〈q↓yes, stay〉 if p ∈ F,

ρµ5 : 〈q◦, σ, 0, {(µ, p1 · · · pm)}〉 → 〈q↓no, stay〉 if p /∈ F.

where p = δ((σ, 1), p1, . . . , pm) if µ = ⊙ and p = δ(σ, p1, . . . , pm) otherwise.
When A′

T arrives at the root of the input tree, it knows whether or not AT

accepts that tree (with h as a marked node), and moves down to h. For the
outcome x ∈ {yes, no} the rules are

〈q↓x, σ, j, {((i, r), p1 · · · pm)}〉 → 〈q↓x, lift((i,r),p1···pm); downi〉

〈q↓x, σ, j, {(⊙, p1 · · · pm)}〉 → 〈qx, lift(⊙,p1···pm)〉.

This ends the description of A′
T . ✷

This result can easily be extended, using the same proof technique: pta’s
and ptt’s can test their visible configuration, the position of the head together
with the positions and colours of the visible pebbles. Later we will show the
more complicated result that pta’s and ptt’s can even test their observable con-
figuration, i.e., the visible configuration plus the topmost pebble (Theorem 16).

Let C be the set of colours of a pta or ptt. To represent the visible and
observable configurations, we introduce a new ranked alphabet Σ × 2C , such
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that the rank of (σ, b) equals that of σ in Σ. A tree over Σ× 2C is a “coloured
tree”. For each pebble stack π on a tree t over Σ we define two coloured trees.
The visible configuration tree vis(t, π) is obtained by adding to the label of each
node u of t the set b ⊆ C such that b contains c if and only if (u, c) occurs
in π and c ∈ Cv. Similarly for obs(t, π), the observable configuration tree,
b contains c if and only if (u, c) occurs in π and c is observable (i.e., c ∈ Cv or
(u, c) is the top element of π). Note that as long as a pta does not change its
pebble stack by a drop- or lift-instruction, it behaves just as a ta on obs(t, π).

We say that a family F of pta’s (or ptt’s) can perform mso tests on the
visible configuration if, for a regular site T over Σ × 2C , an automaton (or
transducer) in F can test whether or not (vis(t, π), h) ∈ T , where t is the input
tree, π the current pebble stack and h the current position of the head. A
similar definition can be given for mso tests on the observable configuration.
These informal definitions could be formalized in a way explained for mso head
tests before Lemma 12.

We now show that the vi-pta and vi-ptt can perform mso tests on the
visible configuration. Note that for a regular site T over Σ × 2C , mark(T ) is a
regular tree language over Σ× 2C × {0, 1}.

Lemma 13 For each k ≥ 0, the vki-pta and vki-dpta can perform mso tests
on the visible configuration. The same holds for the vki-ptt and vki-dptt.

Proof. As in the proof of Lemma 12, let AT be a deterministic bottom-up
finite-state tree automaton recognizing the regular tree language mark(T ) over
Σ×2C×{0, 1}, representing the site T , coloured trees with a single marked node.
As observed in the first paragraph of that proof the i-ptt A′

T (of that proof) can
be turned into a subroutine for any vki-pta or vki-ptt A with visible colour
set Cv by replacing each rule 〈q, σ, j, b〉 → 〈q′, α〉 ofA′

T (except ρ′1) by all possible
rules 〈(q̃, q), σ, j, b∪b′〉 → 〈(q̃, q′), α〉 with b′ ⊆ Cv. This subroutine can easily be
turned into one that tests whether or not (vis(t, π), h) ∈ T as follows. For the
rules corresponding in this way to ρ3, ρ4, ρ5 (in the proof of Lemma 10), change
p = δ(σ, p1, . . . , pm) into p = δ((σ, b′, 0), p1, . . . , pm). Similarly, for ρµ3 , ρ

µ
4 , ρ

µ
5

change p = δ((σ, 1), p1, . . . , pm) into p = δ((σ, b′, 1), p1, . . . , pm) and, again, p =
δ(σ, p1, . . . , pm) into p = δ((σ, b′, 0), p1, . . . , pm). ✷

We now turn to the pta as a navigational device: the trip T (A) computed
by a pta A consists of all triples (t, u, v) such that A, on input tree t, started
at node u in an initial state without pebbles on the tree, walks to node v,
and halts in a final state (possibly leaving pebbles on the tree). Formally,
T (A) = {(t, u, v) ∈ TΣ × N(t) × N(t) | ∃ q0 ∈ Q0, q∞ ∈ F, π ∈ (N(t) × C)∗ :
〈q0, u, ε〉 ⇒∗

A 〈q∞, v, π〉}. Two pta’s A and B are trip-equivalent if T (A) =
T (B). Since clearly L(A) = {t ∈ TΣ | ∃u ∈ N(t) : (t, roott, u) ∈ T (A)},
trip-equivalence implies (language-)equivalence. A trip T is functional if, for
every t, {(u, v) | (t, u, v) ∈ T } is a function. Note that the trip computed by a
deterministic pta is functional.

It is straightforward to check that Lemma 1 also holds for the pta as navi-
gational device, replacing equivalence by trip-equivalence. Thus, vki-pta’s can
perform stack tests also when computing a trip. Similarly, they can perform the
mso tests discussed in Lemmas 12 and 13, and to be discussed in Theorem 16.

In [5, Theorem 8] it is shown that every mso definable trip (tree-node rela-
tion) can be computed by a tamso, i.e., a tree-walking automaton with mso head
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tests (and vice versa). Moreover, by (the corrected version of) [5, Theorem 9],
if the trip is functional, then the automaton is deterministic. We will also use
the fact that, according to the proof of [5, Theorem 8], the mso definable trips
can be computed in a special way.

Proposition 14 Every mso definable trip can be computed by a tree-walking
automaton with mso head tests that has the following two properties:

(1) it never walks along the same edge twice (in either direction), and
(2) it visits each node at most twice.

If the trip is functional, then the automaton is deterministic.

The first property means that, when walking from a node u to a node v,
the automaton always takes the shortest (undirected) path from u to v, i.e.,
the path that leads from u up to the least ancestor of u and v, and then down
to v. The second property means that the automaton does not execute two
consecutive stay-instructions.

The next result provides a characterization of the mso definable trips by
pebble automata that is more elegant than the one in [17], which uses so-called
marble/pebble automata, a restricted kind of v1i-pta (marbles are invisible
pebbles only dropped on the path from the root to the current position of the
head; a single visible pebble may only be dropped and picked up on a tree
without marbles).

Theorem 15 For each k ≥ 0, the trips computed by vki-pta’s are exactly the
mso definable trips. Similarly for vki-dpta’s and functional trips.

Proof. Consider a trip T computed by vki-pta A. Thus, for any (t, u, v)
in T , starting at node u of input tree t, A walks to node v and halts. Then
mark(T ) can be recognized by another vki-pta as follows. First it searches
(deterministically) for the marked starting node u, then it simulates A, and
when A halts in a final state, verifies that the marked node v is reached. By
Theorem 11 this tree language is regular and hence T is mso definable.

By Proposition 14 every mso definable trip can be computed by a tree-
walking automaton B with mso head tests. Since (as observed above) Lemma 12
also holds for the pta as a navigational device, it can therefore be computed
by an i-pta B′. Moreover, if the trip is functional, then the automata B and B′

are deterministic. ✷

Note that the automaton B′ in the above proof always removes all its pebbles
before halting. Thus, that requirement could be added to the definition of the
trip computed by a vki-pta (implying that not every vki-pta computes a trip).
This conforms to the idea that one should not leave garbage after a picknick.

Using the above result, or rather Proposition 14, we are now able to show
that the pta and ptt can perform mso tests on the observable configuration,
i.e., they can evaluate mso formulas ϕ(x) on the observable configuration tree
obs(t, π) with the variable x assigned to the position of the reading head.

Theorem 16 For each k ≥ 0, the vki-pta and vki-dpta can perform mso tests
on the observable configuration. The same holds for the vki-ptt and vki-dptt.
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Proof. Let T be a regular site over Σ× 2C , and let A be a vki-pta that uses T
as a test to find out whether or not (obs(t, π), h) ∈ T . Our aim is to construct
a trip-equivalent vki-pta A′ that does not use mso tests on the observable
configuration. The proof is exactly the same for the case where A and A′ are
vki-ptt (with equivalence instead of trip-equivalence).

Essentially, A′ simulates A. When A uses the test T , there are two cases. In
the first case, either the pebble stack of A is empty or the colour of the topmost
pebble of A is visible. Then the observable configuration equals the visible
configuration, and so A′ can use the test T too, by Lemma 13. The remaining,
difficult case is that the colour d of the topmost pebble of A is invisible. To
implement the test T in this case it seems that A′ cannot use any additional
invisible pebbles (as in the proof of Lemma 13), because they make pebble d
unobservable. However, this is not a problem as long as the additional pebbles
carry sufficient information about the position u of pebble d. The solution is to
view T as a trip from u to h (the position of the head), and to keep track of an
automaton Bd that computes that trip. Although Bd is nondeterministic, it is
straightforward for A′ to employ the usual subset construction for finite-state
automata.

For every d ∈ Ci, let Td be the trip over Σ× 2C defined by Td = {(s, u, h) |
(s′, h) ∈ T }, where s′ is obtained from s by changing the label (σ, b) of u into
(σ, b ∪ {d}). Then (obs(t, π), h) ∈ T if and only if (vis(t, π), u, h) ∈ Td, if (d, u)
is the topmost element of π. It should be clear from the regularity of T that
Td is a regular trip. Hence, by Proposition 14, there is a ta with mso head
tests Bd that computes Td and that has the special properties mentioned there.
Therefore (see the paragraph after Proposition 14), to keep track of the possible
computations of Bd, the automaton A′ uses additional invisible pebbles to cover
the shortest (undirected) path from u to h. These pebbles will be called beads to
distinguish them from A’s original pebbles. Each bead carries state information
on computations of Bd that start at position u (in an initial state) and end at
position h. More precisely, each bead is a triple (S, δ, d) where S is a set of
states of Bd and δ ∈ {up, stay}∪{downi | i ∈ [1,mxΣ]}. There is one such bead
(S, δ, d) on every node v on the path from u to h (including u and h) where S
is the set of states p of Bd such that Bd has a computation on vis(t, π) starting
at u in an initial state and ending at v in state p. Moreover, δ indicates the
node w just before v on the path, which is the parent or i-th child of v if δ is up
or downi, respectively, and which is nonexistent when v = u, if δ = stay. The
bead at v is on top of the bead at w in the pebble stack of A′. Thus, the bead
at h is always on the top of the stack of A′ and hence is always observable.

The automaton A′ can still simulate A because if the bead (S, δ, d) is at
head position h, then the invisible pebble d is observable at h by A if and only
if δ = stay. If A lifts d, then A′ lifts both (S, stay, d) and d. If A drops another
pebble d′ at h, then so does A′ (and starts a new chain of beads on top of that
pebble if d′ is invisible). When pebble d′ is lifted again, the beads for pebble d
are still available and can be used as before.

Now, suppose that A uses the test T at position h. If A′ does not see a bead
at position h, then it uses T as a test on the visible configuration. If A′ sees a
bead (S, δ, d) at h, then A′ just checks whether or not S contains a final state
of Bd, i.e., whether or not (vis(t, π), u, h) ∈ Td.

It remains to show how A′ computes the beads. The path of beads is ini-
tialized by A′ when A drops invisible pebble d. Then A′ also drops pebble d,
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computes the relevant set S of states of Bd, and drops bead (S, stay, d). The
set S contains all initial states of Bd, plus all states that Bd can reach from
an initial state by applying one relevant rule with a stay-instruction (cf. the
second property in Proposition 14). To find the latter states, A′ just simulates
all those rules. Note that the mso head tests of Bd on vis(t, π) are mso tests
on the visible configuration of A′. That is because during the simulation of A
by A′ the visible configuration vis(t, π′) of A′ equals the visible configuration
vis(t, π) of A: the pebble stack π of A is obtained from the corresponding pebble
stack π′ of A′ by removing all (invisible) beads.

The path of beads is updated as follows. If we backtrack on the path from u
to h, i.e., the current bead is (S, δ, d) with δ 6= stay and we move in the direc-
tion δ, we just lift the current bead before moving. If we move away from u, we
must compute new bead information. Suppose the current bead on h is (S, up, d)
and we move down to the i-th child hi of h. Then the bead at hi is (S′, up, d)
where S′ can be computed in a similar way as the set S above: A′ simulates all
computations of Bd that start at h in a state of S and end at hi (and note that
such a computation consists of one step, possibly followed by another step with
a stay-instruction). Now suppose that the current bead is (S, downi, d), which
means that u is a descendant of h. If we move up to the parent v of h, then the
new bead is (S′, downj , d) where j is the child number of h. If we move down to
a child v of h with child number 6= i, then the new bead is (S′, up, d). In each
of these cases S′ can be computed as before, by simulating the computations
of Bd from h to v.

In general, A can of course use several regular sites T1, . . . , Tn as tests on
the observable configuration. It should be obvious how to extend the proof to
handle that. The beads are then of the form (S1, . . . , Sn, δ, d) where Si is a set
of states of a ta with mso head tests Bid that computes the trip Tid. To test Ti
in the presence of such a bead, A′ just checks whether or not Si contains a final
state of Bid. ✷

7 The Power of the I-PTT

In this section we discuss some applications of the fact that the i-ptt can per-
form mso head tests (Lemma 12). We prove that it can simulate the composition
of two tt’s of which the first is deterministic (cf. Lemma 4), and that it can
simulate the bottom-up tree transducer.

Composition of TT’s. We now prove that the inclusions of Lemma 4 also
hold in the other direction, provided that we start with a deterministic tt.

Theorem 17 dTT ◦ dTT ⊆ I-dPTT and dTT ◦ TT ⊆ I-PTT.

Proof. Consider two deterministic tt’s M1 and M2. Assume that input tree t
is translated into tree s by transducer M1. We will simulate the computation
ofM2 on s directly on t using a ptt M with invisible pebbles. Any action taken
by M2 on node v of tree s will be simulated by M on the node u of t that was
the position of M1 when it generated v. This means that if M2 moves down
in the tree s to one of the children of v, the computation of M1 is simulated
until it generates that child. On the other hand, if M2 moves up in the tree s
to the parent of v, it is necessary to backtrack on the computation of M1, back
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to the moment that that parent was generated. In this way, tree s is never fully
reconstructed as a whole, but at every moment M has access to a single node
of s. The necessary node, the current node of M2, is continuously updated by
moving back and forth along the computation of M1 on t.

Moving forward on the computation of M1 is straightforward. To be able
to retrace, M uses its pebbles to record the output-generating steps of the
computation of M1 on t. Each output rule of M1 is represented by a pebble
colour, and is put on the node u of t where it was applied. The pebble colour
also codes the child number of the generated node v in s. Thus the pebble stack
represents a (shortest) path in s from the root to v. For each node on that path
the stack contains a pebble with the rule of M1 used to generate that node and
with its child number, from bottom to top.

Note that the determinism of M1 is an essential ingredient for this construc-
tion. Simulating M2, walking along the virtual tree s, one has to ensure that
each time a node v is revisited, the same rule of M1 is applied to u.

The above intuitive description assumes that the input tree t is in the domain
L(M1) of M1. In fact, it suffices to construct an i-ptt M such that τM(t) =
τM2

(τM1
(t)) for every such t, because M can then easily be adapted to start

with an mso head test verifying that the input tree is in L(M1), which is regular
by Corollary 9.

Let us now give the formal definitions. Let M1 = (Σ,∆, P, {p0}, R1) be a
deterministic tt and let M2 = (∆,Γ, Q,Q0, R2) be an arbitrary tt. To define
the i-ptt M it is convenient to extend the definition of an i-ptt with a new type
of instruction: we allow the right-hand side of a rule to be of the form 〈q′, to-top〉,
which when applied to a configuration 〈q, u, π〉 leads to the next configuration
〈q′, v, π〉 where v is the node in the topmost element of π. Obviously this does
not extend the expressive power of the i-ptt: it is straightforward to write a
subroutine that searches for the (unique observable) pebble on the tree, by first
walking to the root and then executing a depth-first search of the tree until a
pebble is observed.

The i-ptt M has input alphabet Σ and output alphabet Γ. Its set Ci of
pebble colours consists of all pairs (ρ, i) where ρ is an output rule of M1, i.e., a
rule of the form 〈p, σ, j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) with p, p1, . . . , pm ∈ P ,
and i is a child number of ∆, i.e., i ∈ [0,mx∆]. The set of states of M is defined
to be Q ∪ (P × [0,mx∆] × Q) and the set of initial states is {p0} × {0} × Q0.
A state q ∈ Q is used by M when simulating a computation step of M2, and
a state (p, i, q) is used by M when simulating the computation of M1 that
generates the i-th child of the current node of M2 (keeping the state q of M2 in
memory). Initially, M simulates M1 in order to generate the root of its output
tree. The rules of M are defined as follows.

First we define the rules that simulate M1. Let ρ : 〈p, σ, j〉 → ζ be a
rule in R1. If ζ = 〈p′, α〉 and α is a move instruction, then M has the rules
〈(p, i, q), σ, j, b〉 → 〈(p′, i, q), α〉 for every i ∈ [0,mx∆], q ∈ Q, and b ⊆ Ci with
#(b) ≤ 1. If ρ is an output rule with ζ = δ(〈p1, stay〉, . . . , 〈pm, stay〉), then M
has the rules 〈(p, i, q), σ, j, b〉 → 〈q, drop(ρ,i)〉 for every i, q, b as above. Thus,
M simulates M1 until M1 generates an output node, drops the corresponding
pebble, and continues simulating M2.

Second we define the rules that simulateM2. Let 〈q, δ, i〉 → ζ be a rule in R2

and let ρ : 〈p, σ, j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) be an output rule in R1 (with
the same δ). Then M has the rule 〈q, σ, j, {(ρ, i)}〉 → ζ′ where ζ′ is defined
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as follows. If ζ = 〈q′, downℓ〉, then ζ′ = 〈(pℓ, ℓ, q′), stay〉. If ζ = 〈q′, up〉, then
ζ′ = 〈q′, lift(ρ,i); to-top〉. Otherwise, ζ′ = ζ. Thus, M simulates every output
rule or stay rule of M2 without changing its current node and current pebble
stack, because the current node of M2 stays the same. To simulate a downℓ-
instruction of M2, M starts simulating M1 in state pℓ with the child number ℓ
of the next node ofM2. Finally, M simulates an up-instruction ofM2 by lifting
its topmost pebble and walking to the new topmost pebble, where it continues
the simulation of M2. ✷

Taking Theorem 17 and Lemma 4 together, we obtain that dTT ◦ dTT ⊆
I-dPTT ⊆ I-PTT ⊆ TT ◦ TT. It is open whether or not the first and last
inclusions are proper. A way to express I-dPTT and I-PTT in terms of tree-
walking tree transducers (without pebbles) would be to allow those transducers
to have infinite input and output trees. Let us denote by dTT

∞ the class of
transductions realized by deterministic tt’s that have finite input trees but
can output infinite trees. As a particular example, the tt N in the proof of
Lemma 4 can be turned into such a deterministic tt N∞ by removing all rules
〈f, σ, j〉 → ⊥. This N∞ preprocesses every input tree t into a unique “tree of
trees” t∞ consisting of top level t and infinitely many levels of copies t̂u of t.
Moreover, let us denote by ∞TT the class of transductions realized by tt’s that
output finite trees but can walk on infinite input trees, and similarly for ∞dTT.
It should be clear that the tt M′ in the proof of Lemma 4 can also be viewed as
working on input tree t∞ rather than a nondeterministically generated t′ (and
thus never aborts its simulation of M). It should also be clear that the proof of
Theorem 17 still works when M1 produces an infinite output tree as input tree
forM2.

18 Taking these results together, we obtain that I-dPTT = dTT
∞◦∞dTT

and I-PTT = dTT
∞ ◦∞TT. The formal definitions are left to the reader. Other

characterizations of I-dPTT will be shown in Section 15 (Theorem 53), where
we also show that I-dPTT ⊆ dTT

3 (Corollary 54).

Bottom-up tree transducers. The classical top-down and bottom-up tree
transducers are compared to the v-ptt at the end of [42, Section 3.1]. Obviously,
tt’s generalize top-down tree transducers. In fact, the latter correspond to tt’s
that do not use the move instructions up and stay. Moreover, the classical top-
down tree transducers with regular look-ahead can be simulated by tt’s with
mso head tests, and hence by i-ptt’s. In general, bottom-up tree transducers
cannot be simulated by v-ptt’s, because otherwise every regular tree language
could be accepted by a v-pta (see below for the details), which is false as proved
in [7]. We will show that every bottom-up tree transducer can be simulated by
an i-ptt. This will not be used in the following sections.

A bottom-up tree transducer is a tuple M = (Σ,∆, P, F,R) where Σ and ∆
are ranked alphabets, P is a finite set of states with a subset F of final states,
and R is a finite set of rules of the form σ(p1(x1), . . . , pm(xm)) → p(ζ) such that
m ∈ N, σ ∈ Σ(m), p1, . . . , pm, p ∈ P and ζ ∈ T∆({x1, . . . , xm}). For p ∈ P , the
sets τp ⊆ TΣ×T∆ are defined inductively as follows: the pair (σ(t1, . . . , tm), s) is
in τp if there is a rule as above and there are pairs (ti, si) ∈ τpi for all i ∈ [1,m]

18To see that L(M1) is regular, construct an ordinary nondeterministic tt N by adding
to M1 all rules 〈q, σ, j〉 → ⊥ such that M1 has no rule with left-hand side 〈q, σ, j〉, and all
rules 〈q, σ, j〉 → ⊤ such that M1 has a rule with that left-hand side (where ⊥ and ⊤ are new
output symbols of rank 0). Then L(M1) is the complement of τ−1

N (R) where R is the set of
output trees of N with an occurrence of ⊥. Now use Proposition 6(1).
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such that s = ζ[s1, . . . , sm], which is the result of substituting si for every
occurrence of xi in ζ. The transduction τM realized by M is the union of all τp
with p ∈ F . The transducer M is deterministic if it does not have two rules
with the same left-hand side. For more information see, e.g., [30, Chapter IV].

For every regular tree language L there is a deterministic bottom-up finite-
state tree automaton A = (Σ, P, F, δ) (see the proof of Lemma 10) that recog-
nizes L and hence there is a deterministic bottom-up tree transducer M that
realizes the transduction τL = {(t, 1) | t ∈ L} ∪ {(t, 0) | t /∈ L}. In fact,
M = (Σ, {0, 1}, P, F,R) where 0 and 1 have rank 0 and R is the set of all rules
σ(p1(x1), . . . , pm(xm)) → p(i) such that δ(σ, p1, . . . , pm) = p and i = 1 if p ∈ F ,
i = 0 otherwise. A v-ptt that computes τL can be turned into a v-pta that
accepts L by removing every output rule 〈q, σ, j, b〉 → 0 and changing every
output rule 〈q, σ, j, b〉 → 1 into 〈q, σ, j, b〉 → 〈qfin, stay〉 where qfin is the final
state.

Let B (dB) denote the class of transductions realized by (deterministic)
bottom-up tree transducers.

Theorem 18 B ⊆ I-PTT and dB ⊆ I-dPTT.

Proof. Let M = (Σ,∆, P, F,R) be a bottom-up tree transducer. Intuitively,
for a given input tree t, the transducer M visits each node u of t exactly once.
It arrives at the children of u in certain states p1, . . . , pm with certain output
trees s1, . . . , sm, and applies a rule σ(p1(x1), . . . , pm(xm)) → p(ζ) where σ is
the label of u. Thus, it arrives at u in state p with output ζ[s1, . . . , sm].

We construct an i-ptt M′ with mso head tests such that τM′ = τM (see
Lemma 12). The transducer M′ uses the rules of M as pebble colours. The
behaviour of M′ on a given input tree t is divided into two phases. In the first
phaseM′ walks through t and (nondeterministically) drops one pebble c on each
node u of t, in post-order. The input symbol σ in the left-hand side of rule c
must be the label of u. Intuitively, c is the rule σ(p1(x1), . . . , pm(xm)) → p(ζ)
applied by M at u during a possible computation. When M drops c on u
it uses mso head tests to check that M has a computation on t that arrives
at the i-th child ui of u in state pi, for every i ∈ [1,m]. This can be done
because the state behaviour of M on t is that of a bottom-up finite-state tree
automaton. Thus, the tree language Lp = {t ∈ TΣ | ∃ s : (t, s) ∈ τp} is
regular for every p ∈ P and hence the site Ti = {(t, u) | t|ui ∈ Lpi} is also
regular, as can easily be seen. Note that if M is deterministic, then this first
phase of M′ is deterministic too, because M arrives at each node in a unique
state (during a successful computation). In the second, deterministic phase
M′ moves top-down through t, checks that the states in the guessed rules are
consistent, and computes the corresponding output. First M′ checks for the
pebble c = σ(p1(x1), . . . , pm(xm)) → p(ζ) at the root u, that the state p is
in F . If so, it starts a process that is the same for every node u of t. It lifts
pebble c and goes into state [c, ζ], in which it will output the ∆-labeled nodes
of ζ, without leaving u. In state q = [c, δ(ζ1, . . . , ζn)], it uses the output rules
〈q, σ, j,∅〉 → δ(〈[c, ζ1], stay〉, . . . , 〈[c, ζn], stay〉). When M′ is in a state [c, xi], it
calls a subroutine Si. Subroutine Si walks through the subtrees t|um, . . . , t|u(i+1)

of t, depth-first right-to-left, lifts the pebbles at all the nodes of those trees in
reverse post-order (which is possible because the pebbles were dropped in post-
order), and returns control to M′, which continues by moving in state c to
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child ui where it observes the pebble at ui (again, because of the post-order
dropping). Then M checks that the state in the right-hand side of that pebble
is pi, and repeats the above process for node ui instead of u. It should be clear
that in this way M′ simulates the computations of M, and so τM′ = τM. Note
that the bottom-up transducer M can disregard computed output, because in
a rule as above it may be that xi does not occur in ζ. In such a case M′

clearly does not compute that output either, in the second phase, whereas it
has checked in the first phase that M indeed has a computation that arrives
in state pi at the i-th child. Note also that if xi occurs twice in ζ, then M′

simulates in the second phase twice the same computation of M on the i-th
subtree (which was guessed in the first phase). ✷

8 Look-Ahead Tests

The results on look-ahead in this section are only needed in the next section
(and in a minor way in Section 11). They also hold for the pta as navigational
device, computing a trip.

We say that a family F of pta’s (or ptt’s) can perform look-ahead tests if
an automaton (or transducer) A in F can test whether or not a ptt B (not
necessarily in F) has a successful computation when started in the current
situation of A (i.e., position of the head and stack of pebbles). We require that
ΣA = ΣB, CA

v ⊆ CB
v , C

A
i ⊆ CB

i , and k
A ≤ kB (where ΣA is the input alphabet

of A, and similarly for the other notation). Since we are only interested in the
existence of a successful computation, and not in its output tree, we are actually
using alternating pta’s as look-ahead device (cf. Section 3). In particular, we
also allow a pta to be used as look-ahead B, viewing it as a ptt as in the proof
of Theorem 11.

In the formal definition of a pta or ptt with look-ahead tests (cf. the for-
mal definition of mso head tests before Lemma 12), the rules are of the form
〈q, σ, j, b,B〉 → ζ or 〈q, σ, j, b,¬B〉 → ζ which are relevant to a given configura-
tion 〈q, h, π〉 of A on tree t if the transducer B does or does not have a successful
computation on t that starts in the situation 〈h, π〉, i.e., if there do or do not
exist p0 ∈ QB

0 and s ∈ T∆B such that 〈p0, h, π〉 ⇒∗
t,B s (where ∆B is the output

alphabet of B), or in the case of a pta B, if there do or do not exist p0 ∈ QB
0 ,

pf ∈ FB, and 〈u, π〉 ∈ SitB(t) such that 〈p0, roott, ε〉 ⇒∗
t,B 〈pf , u, π〉 (where FB

is the set of final states of B).

Theorem 19 For each k ≥ 0, the vki-pta and vki-dpta can perform look-
ahead tests. The same holds for the vki-ptt and vki-dptt.

Proof. Let A be a vki-pta that performs a look-ahead test by calling some
vmi-ptt B (with k ≤ m). We wish to construct a trip-equivalent vki-pta A′

that does not perform such look-ahead tests. By Lemma 1 we may construct
A′ as a pta with stack tests, i.e., a pta that can test whether its pebble stack
is empty and if so, what the colour of the topmost pebble is.

As usual, A′ simulates A. Suppose that A uses the look-ahead test B in
situation 〈h, π〉. When no pebbles are dropped, i.e., π = ε, the test whether B,
started in that situation, has a successful computation, is an mso head test.
Indeed, the site T = {(t, h) | ∃ p0 ∈ QB

0 , s ∈ T∆B : 〈p0, h, ε〉 ⇒
∗
t,B s} is regular,
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as mark(T ) is the domain of the vmi-ptt B′ that starts in the root, looks for
the marked node h, and then simulates B. Domains are regular by Corollary 9,
and A′ can perform mso head tests by Lemma 12.

In general, one may imagine that A′ implements the look-ahead test by
simulating B. However, when A′ is ready with the simulation of B, that started
with the stack π of A, A′ must be able to recover π to continue the simulation
of A. Note that B can inspect π, thereby possibly destroying part of π and
adding something else. For this reason the computations of B starting at the
position of the topmost pebble of π will be precomputed. With each pebble
dropped by A, the automaton A′ stores the set S of states p of B for which B has
a successful computation when started in state p at the position u of the topmost
stack element (and with the current stack of A). Now a successful computation
of B can be safely simulated, consisting of a part where the pebbles of B are on
top of the stack π inherited from A, possibly followed by a precomputed part
where B inspects π, starting with a visit to u. We discuss how these state sets
are determined, and how they are used (by A′) to perform the look-ahead test.
Rather then simulating B, A′ will use mso tests on the observable configuration,

which is possible by Theorem 16. The colour sets of A′ are C′
v = Cv × 2Q

B

and

C′
i = Ci × 2Q

B

.
If A drops the first pebble c (i.e., π = (h, c)), then A′ drops the pebble

(c, S) where it determines for every state p of B whether or not p ∈ S using an
mso head test: construct B′ as above except that it now drops c at the marked
node h before simulating B in state p. Thus, this time, the domain of B′ is
mark(T ) with T = {(t, h) | ∃ s ∈ T∆B : 〈p, h, c〉 ⇒∗

t,B s}.
Suppose now that A uses the look-ahead test B when it is in situation 〈h, π〉

with π 6= ε, and suppose that the topmost pebble of π has colour d and that the
set of visible pebble colours that occur in π is Cv(π) = {c1, . . . , cℓ} ⊆ Cv, with
ℓ ∈ [0, k]. Then the colour of the topmost pebble of the stack π′ ofA′ is (d, S) for
some set S of states of B, and the set of visible pebble colours that occur in π′ is
Cv(π

′) = {(c1, S1), . . . , (cℓ, Sℓ)} for some S1, . . . , Sℓ. Since A
′ can perform stack

tests, it can determine (d, S). Moreover, it should be clear thatA′ can determine
Cv(π

′), and hence Cv(π), by an mso test on the visible configuration. With this
topmost colour d, this state information S, and this set Cv(π) of visible pebbles,
the look-ahead test can be performed by A′ as an mso test on the observable
configuration, as follows. Consider the observable configuration tree obs(t, π′)
with the current node h marked, see Theorem 16. We want to show that there
is a regular site T over Σ× 2C

′

such that (obs(t, π′), h) ∈ T if and only if there
exist p0 ∈ QB

0 and s ∈ T∆B such that 〈p0, h, π〉 ⇒∗
t,B s. Indeed, mark(T ) is the

domain of a vm′ i-ptt B′, with m′ = m− ℓ. It first searches for the position u
of the topmost pebble, which is the unique node of obs(t, π′) of which the label
contains the colour (d, S). It drops the special invisible pebble ⊙ on u, and
then proceeds to the marked node h, starts simulating B and halts successfully
when it observes pebble ⊙ at position u with B in a state of S, or when it never
has observed ⊙ and B halts successfully (meaning that pebbles are still on top
of ⊙ when visiting u). Note that B′ can simulate B, which walks on t with
pebbles rather than on obs(t, π′), because the colours in the labels of the nodes
of obs(t, π′) contain the observable pebbles on t in the stack π. Also, B′ does not
apply rules of B that contain a dropci-instruction with ci ∈ Cv(π). The domain
mark(T ) of B′ is regular and A′ can perform the mso test T on its observable

40



configuration.
The same reasoning shows that the state set for the next pebble c dropped

by A can be computed by mso tests on the observable configuration: again B′

first drops the pebble c on h before starting the simulation of B in any state p.
Finally it should be clear that if A uses the look-ahead tests B1, . . . ,Bn, then

state information for every Bi should be stored in the pebbles, i.e., they are of
the form (c, S1, . . . , Sn) where Si is a set of states of Bi. ✷

A natural question is now whether Theorem 19 also holds for pta’s and
ptt’s that are allowed to perform stack tests, mso head tests, and mso tests on
the visible and observable configuration. The answer is yes.

Let us first consider the case of stack tests. Roughly speaking, if A uses
look-ahead tests B1, . . . ,Bn, then we just apply the construction of Lemma 1
to both A and all Bi, i ∈ [1, n], and then apply Theorem 19 to the resulting
equivalent (ordinary) pta A′ that calls the (ordinary) ptt’s B′

1, . . . ,B
′
n. It

should be noted that even if A does not use stack tests but some Bi does, the
construction of Lemma 1 must be applied to A too, because the stack that Bi
inherits from A must contain the necessary additional information concerning
the colours of previously dropped pebbles. Vice versa, if A (or another Bj) uses
stack tests but Bi does not, then Bi can just ignore the additional information
in the stack of A, but it is also correct to apply the construction of Lemma 1
to Bi. However, not only the additional information in the stack should be
passed from A′ to B′

1, . . . ,B
′
n, but also the additional information in the finite

state of A′. Thus, to be more precise, if A is in state q and uses the look-ahead
test Bi, then whenever A′ is in state (q, γ), it should use the look-ahead test
B′
i(γ) that is obtained from B′

i by changing its set QBi

0 × {ε} of initial states
into QBi

0 × {γ}.
For the case of mso head tests and mso tests on the visible configuration

the proof is easier. The constructions of Lemmas 12 and 13 can be applied to
A and B1, . . . ,Bn independently, depending on whether they use such tests or
not. The reason is that these tests are implemented by subroutines for which
the pebble stack need not be changed. Finally, for the case of mso tests on
the observable configuration the construction of Theorem 16 is again applied
simultaneously to all of A and B1, . . . ,Bn, with beads that take care of all the
regular sites T that are used by both A and B1, . . . ,Bn as tests. That ensures
that the beads of A′ also contain the information needed by B′

1, . . . ,B
′
n. Note

that in this case (as opposed to the case of stack tests above) A′ does not carry
any additional information in its finite state and thus, whenever A uses Bi as
look-ahead test, A′ can use B′

i as look-ahead test.
A similar natural question is whether Theorem 19 also holds for pta’s and

ptt’s that use look-ahead, in particular whether we can allow the look-ahead
transducer to use another transducer as look-ahead test. The answer is again
yes, with a similar solution. In fact it can be shown that the vki-pta (and
vki-ptt) even can perform iterated look-ahead tests, that is, they can use look-
ahead tests that use look-ahead tests that use . . . look-ahead tests.

Formally, we define for n ≥ 0 the notion of a pta or ptt A of (look-ahead)
depth n, by induction on n. Simultaneously we define the finite sets test(A) and
test∗(A) of ptt’s, where test(A) contains the look-ahead tests ofA, and test∗(A)
contains its iterated look-ahead tests plus A itself. For n = 0, a pta or ptt A of
depth 0 is just a pta or ptt (without look-ahead tests). Moreover, test(A) = ∅
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and test∗(A) = {A}. For n ≥ 0, a pta or ptt A of depth n + 1 uses as look-
ahead tests arbitrary ptt’s of lower depth, i.e., it has rules 〈q, σ, j, b,B〉 → ζ
or 〈q, σ, j, b,¬B〉 → ζ where B is a ptt of depth m ≤ n. Furthermore, test(A)
is the set of all ptt’s of depth m ≤ n that A uses as look-ahead tests, and
test∗(A) = {A} ∪

⋃
B∈test(A) test

∗(B). A pta or ptt with iterated look-ahead

tests is one of depth n, for some n ∈ N. Note that a pta (or ptt) of depth 1
is the same as a pta (or ptt) with look-ahead tests. The definition of the
semantics of a pta or ptt with iterated look-ahead tests is by induction on the
depth n, and is entirely analogous to the one for the case n = 1 as given in the
beginning of this section.

Theorem 20 For each k ≥ 0, the vki-pta and vki-dpta can perform iterated
look-ahead tests. The same holds for the vki-ptt and vki-dptt.

Proof. We will show that for every vki-ptt C of depth n ≥ 1 we can construct
an equivalent vki-ptt C′ of depth n− 1. The result then follows by induction.
Since the construction generalizes the one of Theorem 19 (which is the case
n = 1), we will need all ptt’s in test∗(C′) to use stack tests and mso tests on
the observable configuration. Thus, for the induction to work, we first have
to prove that every vℓi-ptt of depth m ≥ 1 can perform such tests. For the
case m = 1 we have already argued this after Theorem 19, and the general case
can be proved in a similar way. Let D be a vℓi-ptt of depth m such that all
A ∈ test∗(D) perform stack tests. We just apply the construction of Lemma 1
simultaneously to every ptt A ∈ test∗(D), resulting in the ptt A′. Moreover,
for all A,B ∈ test∗(D), if A is in state q and uses look-ahead test B, then
whenever A′ is in state (q, γ), it uses look-ahead test B′(γ). Obviously, every
B′(γ) is of the same depth as B, and hence the resulting vℓi-ptt D′ is of the same
depth m as D. For the mso tests the argument is completely analogous to the
argument for m = 1 after Theorem 19, applying the appropriate constructions
simultaneously to all ptt A ∈ test∗(D).

Now let C be a vki-ptt of depth n ≥ 1 and let us construct an equivalent
vki-ptt C′ of smaller depth. The argument is similar to those above. Let P0 be
the set of all B ∈ test∗(C) of depth 0, i.e., all ptt without look-ahead tests, and
let P1 contain all A ∈ test∗(C) of depth ≥ 1. We now apply the construction
of Theorem 19 simultaneously to every ptt A ∈ P1, resulting in a ptt A′ that
stores state information of every B ∈ P0 in the pebbles. If A1 ∈ P1 uses look-
ahead test A2 ∈ P1, then A′

1 uses look-ahead test A′
2. Note that if A ∈ P1

uses look-ahead test B ∈ P0, then A′ uses an mso test instead. Thus, clearly,
the depth of every A′ is one less than the depth of A, and so the depth of the
resulting vki-ptt C′ is n− 1. Finally, we remove the stack tests and mso tests
from C′ and its iterated look-ahead tests as explained above for D. ✷

Although this result does not seem practically useful, it will become impor-
tant when we propose the query language Pebble XPath in the next section,
as an extension of Regular XPath. Intuitively, Pebble XPath expressions are
similar to i-pta with iterated look-ahead tests. We note that ta with iter-
ated look-ahead tests are used in [54] to prove that Regular XPath is not mso
complete.
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9 Document Navigation

We define Pebble XPath, an extension of Regular XPath [40] with pebbles.
Due to its potential application to navigation in XML documents, it works on
(nonempty) forests rather than trees. We prove that the trips defined by the
path expressions of Pebble XPath are exactly the mso definable trips on forests.

Pebble XPath has path expressions (denoted α, β) and node expressions (de-
noted ϕ, ψ). These expressions concern forests over an (unranked) alphabet Σ
of node labels, or tags, that can be chosen arbitrarily. Since we are mainly in-
terested in path expressions, we view the node expressions as auxiliary. A path
expression describes a walk through a given nonempty forest f over Σ during
which invisible coloured pebbles can be dropped on and lifted from the nodes
of f , in a nested (stack-like) manner. Such a walk steps through f from node to
node following both the vertical and horizontal edges in either direction. The
context in which a path expression is evaluated (i.e., the situation at the start
of the walk) is a pair 〈u, π〉 consisting of a node u of f and a stack π of pebbles
that lie on the nodes of f . Formally, a context, or situation, on a forest f is
an element of the set Sit(f) = N(f) × (N(f) × C)∗, where N(f) is the set of
nodes of f and C is the finite set of colours of the pebbles (that can be chosen
arbitrarily). The walk ends in another context. Thus, the semantics of a path
expression is a binary relation on Sit(f). Similarly, the semantics of a node
expression is a subset of Sit(f), i.e., a test on a given context. Note that the
notion of a context on a forest is entirely similar to that of a situation on a
ranked tree for an i-pta with (invisible) colour set C.

For the syntax of Pebble XPath, we start with the basic path expressions,
with c ∈ C:

α0 ::= child | parent | right | left | dropc | liftc

The first four expressions operate on the context node only (in the usual way,
moving to a child, the parent, the next sibling, and the previous sibling, respec-
tively), whereas the last two also operate on the pebble stack (dropping/lifting
a pebble of colour c on/from the context node u, which is modeled by push-
ing/popping the pair (u, c) on/off the stack). The syntax of path expressions
is

α ::= α0 | ?ϕ | α ∪ β | α/β | α∗

where β is an alias of α. The three last expressions show the usual regular oper-
ations on binary relations: union, composition, and transitive-reflexive closure.
The expression ?ϕ denotes the identity relation on the set of contexts defined
by the node expression ϕ, i.e., it filters the current context by requiring that ϕ
is true.

We now turn to the node expressions and start with the basic ones, with
σ ∈ Σ:

ϕ0 ::= haslabelσ | isleaf | isroot | isfirst | islast | haspebblec

The first five expressions test whether the context node has label σ, whether
it is a leaf, a root, the first among its siblings, or the last among its siblings.
The last expression (which is the only one that also uses the pebble stack) tests
whether the topmost pebble, i.e., the most recently dropped pebble, lies on the
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JchildKf = {(〈u, π〉, 〈u′, π〉) | u′ is a child of u}
JparentKf = {(〈u, π〉, 〈u′, π〉) | u′ is the parent of u}
JrightKf = {(〈u, π〉, 〈u′, π〉) | u′ is the next sibling of u}
JleftKf = {(〈u, π〉, 〈u′, π〉) | u′ is the previous sibling of u}
JdropcKf = {(〈u, π〉, 〈u, πp〉) | p = (u, c)}
JliftcKf = {(〈u, πp〉, 〈u, π〉) | p = (u, c)}

J?ϕKf = {(〈u, π〉, 〈u, π〉) | 〈u, π〉 ∈ JϕKf}
Jα ∪ βKf = JαKf ∪ JβKf
Jα/βKf = JαKf ◦ JβKf
Jα∗Kf = JαK∗f

Table 3: Semantics of Pebble XPath path expressions

JhaslabelσKf = {〈u, π〉 | u has label σ}
JisleafKf = {〈u, π〉 | u is a leaf}
JisrootKf = {〈u, π〉 | u is a root}
JisfirstKf = {〈u, π〉 | u is a first sibling}
JislastKf = {〈u, π〉 | u is a last sibling}
JhaspebblecKf = {〈u, πp〉 | p = (u, c)}

J〈α〉Kf = {〈u, π〉 | ∃〈u′, π′〉 : (〈u, π〉, 〈u′, π′〉) ∈ JαKf}
J¬ϕKf = Sit(f) \ JϕKf
Jϕ ∧ ψKf = JϕKf ∩ JψKf
Jϕ ∨ ψKf = JϕKf ∪ JψKf

Table 4: Semantics of Pebble XPath node expressions

context node and has colour c. The syntax of node expressions is

ϕ ::= ϕ0 | 〈α〉 | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where ψ is an alias of ϕ. The last three expressions show the usual boolean
operations. The expression 〈α〉 is like a predicate [α] in XPath 1.0, which filters
the context by requiring the existence of at least one successful α-walk starting
from this context. In terms of tree-walking automata it is a look-ahead test.
We will also consider the language Pebble CAT, which is obtained from Pebble
XPath by dropping the filter tests ϕ ::= 〈α〉. The expressions of Pebble CAT
are caterpillar expressions extended with pebbles.

The formal semantics of Pebble XPath expressions is given in Tables 3 and 4.
For every nonempty forest f over Σ, the semantics JαKf ⊆ Sit(f)× Sit(f) and
JϕKf ⊆ Sit(f) of path and node expressions are defined, where u, u′ vary over
N(f), π, π′ vary over (N(f) × C)∗, and p varies over N(f) × C. Note that
JparentKf = JchildK−1

f , JleftKf = JrightK−1
f , and JliftcKf = JdropcK

−1
f .

Note also that the set J〈α〉Kf is the domain of the binary relation JαKf .
The filtering XPath expression α[β] of XPath 1.0 can here be defined as

α[β] = α/?〈β〉. Also, the node expression loop(α) from [31, 53] can be defined
as loop(α) = 〈dropc/α/liftc〉 where c is a colour not occurring in α. Then
Jloop(α)Kf = {〈u, π〉 | (〈u, π〉, 〈u, π〉) ∈ JαKf } = {〈u, π〉 | (〈u, ε〉, 〈u, ε〉) ∈ JαKf },
because α cannot inspect the stack π and it must return to u in order to lift
pebble c.
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Two path expressions α and β are equivalent, denoted by α ≡ β, if JαKf =
JβKf for every nonempty forest f over Σ, and similarly for node expressions.
Note that ?(ϕ∧ψ) ≡ ?ϕ/?ψ and ?(ϕ∨ψ) ≡ ?ϕ ∪ ?ψ. Hence, using De Morgan’s
laws, the syntax for node expressions can be replaced by ϕ ::= ϕ0 | ¬ϕ0 | 〈α〉 |
¬〈α〉 for Pebble XPath, and ϕ ::= ϕ0 | ¬ϕ0 for Pebble CAT. Thus, keeping
only the basic node expressions, we can always assume that the syntax for path
expressions is

α ::= α0 | ?ϕ0 | ?¬ϕ0 | ?〈β〉 | ?¬〈β〉 | α ∪ β | α/β | α∗

for Pebble XPath, and hence

α ::= α0 | ?ϕ0 | ?¬ϕ0 | α ∪ β | α/β | α∗

for Pebble CAT. In that case we will say that we assume the syntax to be in
normal form.

Note also that all basic node expressions except haslabelσ are redundant,
because isleaf ≡ ¬〈child〉 (a node is a leaf if and only if it has no chil-
dren), isroot ≡ ¬〈parent〉, isfirst ≡ ¬〈left〉, islast ≡ ¬〈right〉, and
haspebblec ≡ 〈liftc〉. However, these basic node expressions were kept in the
syntax, because we also wish to consider the subset Pebble CAT in which there
are no filter tests 〈α〉. Note finally that when dropc, liftc, and haspebblec are
removed from Pebble XPath, the resulting formalism is exactly Regular XPath
[40] (and in the semantics the stack can, of course, be disregarded).

The purpose of Pebble XPath is the same as that of XPath: to define trips,
i.e., binary patterns. Recall from Section 2 that a trip T over an unranked
alphabet Σ is a set T ⊆ {(f, u, v) | f ∈ FΣ, u, v ∈ N(f)} where FΣ is the
set of forests over Σ. Note that f is always a nonempty forest. For a path
expression α (based on Σ and some C) we say that α defines the trip T (α) =
{(f, u, v) | ∃π ∈ (N(f) × C)∗ : (〈u, ε〉, 〈v, π〉) ∈ JαKf}. We now define a trip T
over Σ to be definable in Pebble XPath if there exists a Pebble XPath path
expression α such that T = T (α). And similarly for Pebble CAT. The next
theorem states that Pebble XPath and Pebble CAT have the same expressive
power as mso logic on forests.

Theorem 21 A trip is definable in Pebble XPath if and only if it is definable
in Pebble CAT if and only if it is mso definable.

As such our expressions have the desirable property of being a Core (and even
Regular) XPath extension that is complete for mso definable binary patterns.
Other such extensions were considered in [31] (TMNF caterpillar expressions)
and [53] (µRegular XPath). Pebble CAT is similar to PCAT of [31] which has
the same expressive power as the v-pta (and thus less than mso by [7]). In
PCAT the nesting of pebbles is defined syntactically rather than semantically.

The proof of Theorem 21 is given in the remainder of this section. It should
be clear that Pebble CAT is closely related to the i-pta. In fact, we will show
later that their relationship can be viewed as the classical equivalence of regular
expressions and finite automata. The remainder of the proof is then directly
based on the fact that the i-pta has the same expressive power as mso logic
for defining trips on trees (Theorem 15), and on the fact that the i-pta can
perform iterated look-ahead tests (Theorem 20). One technical problem is that
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Jdown1Kt = {(〈u, π〉, 〈u′, π〉) | u′ is the first child of u}
Jdown2Kt = {(〈u, π〉, 〈u′, π〉) | u′ is the second child of u}
JupKt = {(〈u, π〉, 〈u′, π〉) | u′ is the parent of u}
JdropcKt = {(〈u, π〉, 〈u, πp〉) | p = (u, c)}
JliftcKt = {(〈u, πp〉, 〈u, π〉) | p = (u, c)}

Table 5: Basic path expressions α0 for a ranked tree t

JhaslabelσKt = {〈u, π〉 | u has label σ}
Jischild0Kt = {〈u, π〉 | u is the root}
Jischild1Kt = {〈u, π〉 | u is a first child}
Jischild2Kt = {〈u, π〉 | u is a second child}
JhaspebblecKt = {〈u, πp〉 | p = (u, c)}

Table 6: Basic node expressions ϕ0 for a ranked tree t

these theorems are formulated for ranked trees rather than unranked forests.
Thus we start by adapting Pebble XPath to ranked trees and showing that it
suffices to prove Theorem 21 for ranked trees instead of forests.

Pebble XPath on ranked trees. Since ranked trees are a special case of
unranked forests, we need not change Pebble XPath for its use on ranked trees.
However, for its comparison to the i-pta it is more convenient to change its
basic path expressions α0 and basic node expressions ϕ0 as follows:

α0 ::= down1 | down2 | up | dropc | liftc

ϕ0 ::= haslabelσ | ischild0 | ischild1 | ischild2 | haspebblec

The semantics of these basic expressions for a tree t over Σ is given in Tables 5
and 6. Since we will only be interested in ranked trees that encode forests, we
assume that Σ is a ranked alphabet and that the rank of each element of Σ is at
most 2. Note that up has the same semantics as parent, and that the semantics
of dropc, liftc, haslabelσ, and haspebblec is unchanged. The remaining
expressions of Pebble XPath, and their semantics (for t instead of f), are the
same as for forests, cf. the last four lines of Tables 3 and 4.

We first show that for every path expression α on forests there is a path
expression α′ that computes the same trip as α on the binary encoding of the
forests as ranked trees. We use the encoding enc′ defined in Section 2, which
encodes forests over the alphabet Σ as ranked trees over the associated ranked
alphabet Σ′. Note that for every forest f , enc′(f) has the same nodes as f .
For a trip T on forests, we define the encoded trip enc′(T ) on ranked trees by
enc′(T ) = {(enc′(f), u, v) | (f, u, v) ∈ T }.

Lemma 22 For every Pebble XPath path expression α on forests over Σ, a
Pebble XPath path expression α′ on ranked trees over Σ′ can be constructed in
polynomial time such that T (α′) = enc′(T (α)). If α is a Pebble CAT expression,
then so is α′.
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Proof. The proof is an elementary coding exercise. Let us start with Pebble
XPath. We will, in fact, define α′ such that Jα′Kenc′(f) = JαKf for every f ∈ FΣ,
which implies the result. It clearly suffices to do this for basic path expres-
sions α0, and similarly for basic node expressions ϕ0. As observed before, all
basic node expressions except haslabelσ are redundant, so it suffices to define
haslabel′σ ≡ haslabelσ11∨haslabelσ10∨haslabelσ01∨haslabelσ00 . We now
turn to the basic path expressions. We will use the auxiliary basic path expres-
sions child1 and parent1 with the semantics Jchild1Kf = {(〈u, π〉, 〈u′, π〉) |
u′ is the first child of u} and Jparent1Kf = Jchild1K

−1
f . Since clearly child ≡

child1/right
∗ and parent ≡ left∗/parent1, it suffices to define child′1 and

parent′1 instead of child′ and parent′, as follows: child′1 ≡ ?ϕ1/down1 where
ϕ1 is the disjunction of haslabelσ11 and haslabelσ10 for all σ ∈ Σ, and
parent′1 ≡ ?ischild1/up/?ϕ1. Then we define right′ ≡ down2 ∪ ?ϕ2/down1
where ϕ2 is the disjunction of all haslabelσ01 for σ ∈ Σ. Since JleftKf is
the inverse of JrightKf , we define left′ ≡ ?ischild2/up∪ ?ischild1/up/?ϕ2.
Finally, drop′c ≡ dropc and lift′c ≡ liftc.

To prove the result for Pebble CAT, we also have to consider the other basic
node expressions ϕ0. Obviously, we define haspebble′c ≡ haspebblec. We de-
fine isleaf′ to be the disjunction of haslabelσ01 and haslabelσ00 for all σ ∈ Σ,
and similarly, islast′ to be the disjunction of haslabelσ10 and haslabelσ00 for
all σ ∈ Σ. It remains to consider isfirst and isroot. Since we may assume the
syntax of α to be in normal form, it suffices to define (?ϕ0)

′ and (?¬ϕ0)
′. We

define (?isfirst)′ ≡ ?ischild0 ∪ ischild1/up/child
′
1 and (?¬isfirst)′ ≡

up/right′ where child′1 and right′ are defined above. For isroot, we first
note that ?isroot ≡ dropc/left

∗/?isroot/?isfirst/right∗/liftc where c
is any element of C. Intuitively, we walk from the current node to the left
until we arrive at the first root, and then walk back. Thus, since the first
root of a forest f is encoded as the root of enc′(f), we define (?isroot)′ ≡
dropc/(left

′)∗/?ischild0/(right
′)∗/liftc. Finally, we define (?¬isroot)′ ≡

dropc/parent
′/child′/liftc. ✷

Next we prove the reverse direction of Lemma 22, for Pebble CAT.

Lemma 23 For every Pebble CAT path expression α on ranked trees over Σ′

there is a Pebble CAT path expression α′ on forests over Σ such that

enc′(T (α′)) = T (α).

Proof. This is also an elementary coding exercise. We assume the syn-
tax of α to be in normal form, whereas for α′ we keep the full syntax. As
in the previous lemma, we will define α′ such that Jα′Kf = JαKenc′(f). It
suffices to do this for path expressions α0, ?ϕ0, and ?¬ϕ0. We start with
α0 and we define down′1 ≡ child/?isfirst ∪ ?isleaf/right and down′2 ≡
?¬isleaf/right. Moreover, up′ ≡ ?isfirst/parent∪ left. Finally, drop′c ≡
dropc and lift′c ≡ liftc. We now turn to the basic node expressions. For
ϕ0 ≡ haslabelσ10 we define (?ϕ0)

′ ≡ ?ϕ′
0 and (?¬ϕ0)

′ ≡ ?¬ϕ′
0, where ϕ

′
0 ≡

haslabelσ∧¬isleaf∧islast, and similarly for haslabelσ11 , haslabelσ01 , and
haslabelσ00 . We do this also for ϕ0 ≡ ischild0 with ϕ′

0 ≡ isroot∧ isfirst,
and for ϕ0 ≡ haspebblec with ϕ′

0 ≡ haspebblec. It remains to consider
ischild1 and ischild2. We define (?ischild2)

′ ≡ left/?¬isleaf/right
and hence (?¬ischild2)′ ≡ ?isfirst ∪ left/?isleaf/right. For ischild1
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the definitions of (?ischild1)
′ and (?¬ischild1)′ now follow from the fact

that ?ischild1 ≡ ?¬ischild0/?¬ischild2 and ?¬ischild1 ≡ ?ischild0 ∪
?ischild2. ✷

Lemmas 22 and 23 together show that if the first equivalence of Theorem 21
holds for ranked trees, then it also holds for forests. To show this also for the
second equivalence, we need the next elementary lemma.

Lemma 24 For every trip T on forests, T is mso definable if and only if
enc′(T ) is mso definable.

Proof. (Only if) Since f and enc′(f) have the same nodes, for every forest f
over Σ, it suffices to show that the atomic formulas labσ(x), down(x, y), and
next(x, y) for forests can be expressed by an mso formula for the ranked trees
that encode the forests. Clearly, labσ(x) can be expressed by the disjunction of
all labσkℓ(x) for k, ℓ ∈ {0, 1}, as in the proof of Lemma 22. For down(x, y) we
show that the trip T = {(enc′(f), u, v) | f |= down(u, v)} is mso definable. This
follows from Proposition 14 because T = T (B) for the ta B that has the rules
(for all k, ℓ ∈ {0, 1}, j ∈ {0, 1, 2}, and σ ∈ Σ):

〈p0, σ1ℓ, j〉 → 〈p, down1〉,
〈p, σ11, j〉 → 〈p, down2〉,
〈p, σ01, j〉 → 〈p, down1〉,
〈p, σkℓ, j〉 → 〈p∞, stay〉,

where p0 is the initial and p∞ the final state of B. Thus, there is a formula
ϕ(x, y) such that enc′(f) |= ϕ(u, v) if and only if f |= down(u, v), for every
forest f , which means that ϕ(x, y) expresses down(x, y) on the encoding of f .19

The formula next(x, y) can be treated in the same way, where B now has the
rules 〈p0, σ11, j〉 → 〈p∞, down2〉 and 〈p0, σ01, j〉 → 〈p∞, down1〉, and hence
T (B) = {(enc′(f), u, v) | f |= next(u, v)}.

(If) For the same reason as above, it suffices to show that the atomic formulas
downi(x, y) and labσkℓ(x) for ranked trees over Σ′ can be expressed by an mso
formula for the forests they encode. For this we consider the path expressions
down′i and haslabel′σ10 in the proof of Lemma 23, and we define

ϕ1(x, y) ≡ (down(x, y) ∧ first(y)) ∨ (leaf(x) ∧ next(x, y)),

ϕ2(x, y) ≡ ¬ leaf(x) ∧ next(x, y),

ϕ10(x) ≡ labσ(x) ∧ ¬ leaf(x) ∧ last(x),

and similarly for the other ϕkℓ(x, y). Then enc′(f) |= downi(u, v) if and only if
f |= ϕi(u, v), and enc′(f) |= labσkℓ(u) if and only if f |= ϕkℓ(u). ✷

From now on, when we refer to Pebble XPath or Pebble CAT we always
mean their version on ranked trees.

Directive I-PTA’s. For the purpose of the proof of Theorem 21 on ranked
trees, we formulate the i-pta in an alternative way and, for lack of a better
name, call it the directive i-pta. For an alphabet Σ (of which every element

19For the reader familiar with mso logic we note that it is also easy to write down the formula
ϕ(x, y) using the equivalences in the proof of Lemma 22 and the fact that the transitive-
reflexive closure of an mso definable relation is mso definable.
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has rank at most 2) and a finite set C of colours, we define a directive over Σ
and C to be a path expression τ with the syntax τ ::= α0 | ?ϕ0 | ?¬ϕ0 for the
same Σ and C (where α0 and ϕ0 are as in Tables 5 and 6). The finite set of
directives over Σ and C is denoted DΣ,C .

A directive i-pta is a tuple A = (Σ, Q,Q0, F, C,R), where Σ, Q, Q0, F ,
and C are as for an ordinary i-pta (with C = Ci), and R is a finite set of rules
of the form 〈q, τ, q′〉 where q, q′ ∈ Q and τ ∈ DΣ,C . Thus, syntactically, A can
be viewed as a finite automaton of which each state transition is labeled by a
directive, i.e., either by a basic path expression of Pebble XPath, or by a basic
node expression of Pebble XPath, or its negation, where the node expressions
are turned into path expressions by the ?-operator. Intuitively, ?ϕ0 and ?¬ϕ0

represent a basic test on the current situation, whereas α0 is a basic instruction
to be executed on the current situation. Just as for an ordinary i-pta, a situation
on a tree t ∈ TΣ is a pair 〈u, π〉 ∈ Sit(t) and a configuration is a triple 〈q, u, π〉
with q ∈ Q and 〈u, π〉 ∈ Sit(t). We write 〈q, u, π〉 ⇒t,A 〈q′, u′, π′〉 if there is
a rule 〈q, τ, q′〉 such that (〈u, π〉, 〈u′, π′〉) ∈ JτKt, where JτKt is the semantics
of path expression τ on t (cf. Tables 5 and 6 for α0 and ϕ0, and Table 3
for the ?-operator). To indicate the directive τ that is executed by A in this
computation step we also write 〈q, u, π〉 ⇒τ

t,A 〈q′, u′, π′〉. Moreover, we define
the semantics JAKt of A on tree t as JAKt = {(〈u, π〉, 〈u′, π′〉) ∈ Sit(t)× Sit(t) |
∃ q0 ∈ Q0, q∞ ∈ F : 〈q0, u, π〉 ⇒∗

t,A 〈q∞, u′, π′〉}. Finally, the trip computed
by A on TΣ is T (A) = {(t, u, v) | ∃π ∈ (N(t)× C)∗ : (〈u, ε〉, 〈v, π〉) ∈ JAKt}.

For the sake of the proofs below we also define JAKt for an ordinary i-pta A
on a tree t, in entirely the same way as above for a directive i-pta.

A directive i-pta A with look-ahead tests is defined similarly to the ordinary
case in Section 8 (restricted to automata), by additionally allowing rules of the
form 〈q, ?〈B〉, q′〉 and 〈q, ?¬ 〈B〉, q′〉 where B is another directive i-pta. The
above semantics stays the same, with (as expected)

J?〈B〉Kt = {(〈u, π〉, 〈u, π〉) | ∃〈u′, π′〉 : (〈u, π〉, 〈u′, π′〉) ∈ JBKt}

and similarly for J?¬ 〈B〉Kt (with ¬∃). A directive i-pta with iterated look-ahead
tests is defined as in Section 8. We will use i-ptala as an abbreviation of ‘i-pta
with iterated look-ahead tests’.

We now show that the directive i-pta has the same expressive power as the
i-pta (and similarly with iterated look-ahead tests). Hence Theorems 15 and 20
also hold for the directive i-pta, i.e., it computes the mso definable trips, and it
can perform iterated look-ahead tests. In what follows, we only consider i-pta’s
of which every input symbol has at most rank 2.

Lemma 25 For every directive i-ptala A there is an i-ptala A′ such that
T (A′) = T (A).

Proof. Let A = (Σ, Q,Q0, F, C,R) be a directive i-pta. We will, in fact, define
the i-pta A′ such that JA′Kt = JAKt for every t ∈ TΣ, which implies the result.

We let A′ = (Σ, Q,Q0, F, C,∅, Ci, R
′, 0) where Ci = C and R′ is defined as

follows. If 〈q, α0, q
′〉 is a rule of A, where α0 is a basic path expression, then A′

has all rules 〈q, σ, j, b〉 → 〈q′, α0〉. We now turn to the basic node expressions.
A rule 〈q, ?haslabelσ, q′〉 is simulated by all rules 〈q, σ, j, b〉 → 〈q′, stay〉, and a
rule 〈q, ?¬ haslabelσ, q

′〉 by all rules 〈q, τ, j, b〉 → 〈q′, stay〉 with τ ∈ Σ \ {σ}.
A rule 〈q, ?ischildj , q′〉 is simulated by all rules 〈q, σ, j, b〉 → 〈q′, stay〉, and
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a rule 〈q, ?¬ ischildj , q
′〉 by the two rules 〈q, σ, j′, b〉 → 〈q′, stay〉 with j′ ∈

{0, 1, 2}\{j}. A rule 〈q, ?haspebblec, q
′〉 is simulated by all rules 〈q, σ, j, {c}〉 →

〈q′, stay〉, and a rule 〈q, ?¬ haspebblec, q
′〉 by all rules 〈q, σ, j,∅〉 → 〈q′, stay〉

and all rules 〈q, σ, j, {c′}〉 → 〈q′, stay〉 with c′ ∈ C \ {c}.
Finally we consider look-ahead. If 〈q, ?〈B〉, q′〉 is a rule of A, and B′ is

an i-ptala such that JB′Kt = JBKt for every t ∈ TΣ, then A′ has all rules
〈q, σ, j, b,B′〉 → 〈q′, stay〉 that use B′ as a look-ahead test. Similarly, the rule
〈q, ?¬ 〈B〉, q′〉 is simulated by all rules 〈q, σ, j, b,¬B′〉 → 〈q′, stay〉. ✷

Lemma 26 For every i-pta A there is a directive i-pta A′ such that T (A′) =
T (A).

Proof. Let A = (Σ, Q,Q0, F, C,∅, Ci, R, 0) be an i-pta with Ci = C. To
simplify the proof we extend the syntax of the directive i-pta by allowing rules
〈q, τ, q′〉 with τ ::= α0 | ?ϕ0 | ?¬ϕ0 | τ/τ ′, where τ ′ is an alias of τ . This clearly
does not extend their power, because a rule 〈q, τ/τ ′, q′〉 can be replaced by the
two rules 〈q, τ, p〉 and 〈p, τ ′, q′〉 where p is a new state. We now construct A′ =
(Σ, Q,Q0, F, C,R

′) where R′ is defined as follows. If A has a rule 〈q, σ, j, b〉 →
〈q′, α〉 then A′ has the rule 〈q, τ, q′〉 such that τ = τσ/τj/τb/α if α 6= stay,
and τ = τσ/τj/τb if α = stay, where τσ = ?haslabelσ, τj = ?ischildj ,
τ{c} = ?haspebblec, and τ∅ = ?¬ haspebblec1/ · · · /?¬ haspebblecn , where
C = {c1, . . . , cn}. ✷

As observed before, a directive i-pta A can be viewed as a finite automaton
of which each state transition is labeled by a directive. Thus, viewing the
set DΣ,C as an alphabet, A accepts a string language Lstr(A) ⊆ D∗

Σ,C . We
now show the (rather obvious) fact that the semantics JAKt of A (for every
tree t over Σ) depends only on the language Lstr(A), cf. [11, Theorem 3.11]
and [5, Lemma 3]. We do this (as in [11, Definition 2.7] and [5, Section 4])
by associating a semantics JLKt with every language L ⊆ D∗

Σ,C . Intuitively, a
string w = τ1 · · · τn of directives can be viewed as the path expression τ1/ · · · /τn
and a language L = {w1, w2, . . . } of such strings can be viewed as the (possibly
infinite) path expression w1 ∪ w2 ∪ · · · . Thus, for a tree t over Σ we formally
define JεKt to be the identity on Sit(t), Jτ1 · · · τnKt = Jτ1Kt ◦ · · · ◦ JτnKt, and
JLKt =

⋃
w∈LJwKt. The next lemma is a special case of [11, Theorem 3.11]. Its

proof is entirely similar to the one of [5, Lemma 3].

Lemma 27 JAKt = JLstr(A)Kt.

Proof. A string w of directives induces a state transition relation RA(w) ⊆
Q×Q as follows. For τ ∈ DΣ,C , RA(τ) = {(q, q′) | 〈q, τ, q′〉 ∈ R}. For the empty
string, RA(ε) is the identity on Q, and RA(τ1 · · · τn) = RA(τ1) ◦ · · · ◦ RA(τn).
Then Lstr(A) = {w ∈ D∗

Σ,C | RA(w) ∩ (Q0 × F ) 6= ∅}.
It is straightforward to show by induction that, for all configurations 〈q, u, π〉

and 〈q′, u′, π′〉 and for every w = τ1 · · · τn over DΣ,C , there is a computation

〈q1, u1, π1〉 ⇒
τ1
t,A 〈q2, u2, π2〉 ⇒

τ2
t,A · · · ⇒τn

t,A 〈qn+1, un+1, πn+1〉

with 〈q1, u1, π1〉 = 〈q, u, π〉 and 〈qn+1, un+1, πn+1〉 = 〈q′, u′, π′〉 if and only if
(〈u, π〉, 〈u′, π′〉) ∈ JwKt and (q, q′) ∈ RA(w). From this equivalence it follows
that JAKt consists of all (〈u, π〉, 〈u′, π′〉) such that

∃ q0 ∈ Q0, q∞ ∈ F,w ∈ D∗
Σ,C : (〈u, π〉, 〈u′, π′〉) ∈ JwKt, (q, q

′) ∈ RA(w)
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i.e., such that ∃w ∈ Lstr(A) : (〈u, π〉, 〈u′, π′〉) ∈ JwKt, which means that it
equals JLstr(A)Kt. ✷

Proof of Theorem 21. We assume the syntax for path expressions α of
Pebble XPath and Pebble CAT to be in normal form. We also add α ::= ∅

to the syntax, with J∅Kt = ∅ for every tree t. That is possible because, e.g.,
J?ischild0/?¬ischild0Kt = ∅.

We first show that Pebble CAT has the same power as mso. Let us recall
that the set DΣ,C of directives τ of the directive i-pta was defined by the syntax
τ ::= α0 | ?ϕ0 | ?¬ϕ0. Thus, the path expressions of Pebble CAT are, in fact,
exactly the usual regular expressions over the “alphabet” DΣ,C . Accordingly,
we define for such a path expression α the string language Lstr(α) ⊆ D∗

Σ,C in the
obvious way, interpreting the operators ∪, /, and ∗ as union, concatenation, and
Kleene star of string languages, respectively. The next lemma is the analogue
of Lemma 27, with a straightforward proof.

Lemma 28 JαKt = JLstr(α)Kt.

Proof. It is easy to see, for string languages L1, L2 ⊆ D∗
Σ,C , that JL1 ∪L2Kt =

JL1Kt ∪ JL2Kt, JL1L2Kt = JL1Kt ◦ JL2Kt, and JL∗
1Kt = JL1K

∗
t , cf. [11, Lemma 2.9].

Then the proof is by induction on the structure of α. ✷

By Kleene’s classical theorem, a string language can be accepted by a finite
automaton if and only if it can be defined by a regular expression. Thus, by
Lemmas 27 and 28, a trip is definable in Pebble CAT if and only if it can be
computed by a directive i-pta, and hence, by Theorem 15 (for k = 0) and
Lemmas 25 and 26, if and only if it is mso definable.

It remains to show that if a trip is definable in Pebble XPath, then it can
be computed by a directive i-pta. We will prove below that for every Pebble
XPath path expression α there is a directive i-ptala A, i.e., a directive i-pta
with iterated look-ahead tests, such that JAKt = JαKt for every t. This implies
that α and A define the same trip, and then we obtain from Theorem 20 (and
Lemmas 25 and 26) a directive i-pta (without look-ahead) computing that same
trip.

Let nα be the nesting depth of subexpressions of α of the form 〈β〉. The
proof is by induction on nα, and A will be of look-ahead depth nα. If nα = 0,
i.e., there are no such subexpressions at all, then α is a Pebble CAT expression,
and we are done by the first part of the proof. Now suppose that the result
holds for nesting depth n, and let nα = n + 1. For every subexpression 〈β〉
of α that is not nested within another such subexpression, let Aβ be a directive
i-ptala of look-ahead depth n (or less) such that JAβKt = JβKt for all t. We
now define the extended “alphabet” Dn

Σ,C to consist of all path expressions τ
with the syntax τ ::= α0 | ?ϕ0 | ?¬ϕ0 | ?〈β〉 | ?¬〈β〉 where 〈β〉 ranges over
the above subexpressions of α. Then α can be viewed as a regular expression
over the alphabet Dn

Σ,C , and it should be clear that Lemma 28 is also valid in
this case. Also, using Dn

Σ,C instead of DΣ,C in the rules of the directive i-pta,
and identifying each “symbol” ?〈β〉 with the “symbol” ?〈Aβ〉 (and similarly for
the negated tests), we obtain a subclass of the directive i-ptala of look-ahead
depth n + 1, because the semantics of the path expression ?〈β〉 is exactly the
same as the meaning of the look-ahead test ?〈Aβ〉. Again, it should be clear
that Lemma 27 is also valid for these directive i-pta’s, which are finite automata
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overDn
Σ,C . Hence, by the same Kleene argument as in the first part of the proof,

there is a directive i-ptala A of look-ahead depth n+ 1 such that JAKt = JαKt
for every tree t.

This ends the proof of Theorem 21, both for ranked trees and (by Lemmas 22,
23, and 24) for unranked forests.

Two remarks. (1) Although the MSO definable trips are, of course, closed
under complement and intersection, we do not know whether the XPath 2.0 op-
erations intersect and except can be added to the syntax of path expressions
of Pebble XPath (α ::= α ∩ β | α \ β). That is because it is not clear whether
for every i-pta A there is an i-pta B such that JBKt = Sit(t) − JAKt for every
tree t.

(2) The language Pebble XPath meets the requirements as listed in [31]. It
is simple, defined in an algebraic language using simple operators: in particular
we believe that pebbles form a user friendly concept. It is understandable, as
its expressive power can be characterized in terms of automata. It is useful
in the sense that the query evaluation problem ‘given path expression α and
two nodes u, v in forest f , is (f, u, v) ∈ T (α)?’ is tractable. At least, the
latter property holds for Pebble CAT, as α can be transformed into an i-pta
in polynomial time, and the problem ‘(f, u, v) ∈ T (α)?’ can then be translated
into the emptiness problem for push-down automata. For Pebble XPath the
query evaluation problem is tractable for every fixed path expression α. This is
explained in more detail in the next two paragraphs.

Query evaluation. For a directive i-pta A = (Σ, Q,Q0, C,R), the binary node
relation T computed by A on an input tree t can be evaluated in polynomial time
as follows. It is straightforward to construct fromA and t an ordinary pushdown
automaton P with state set Q×N(t) and pushdown alphabet N(t)×C in such
a way that P (with the empty string as input) has the same computation steps
as A on t. Note that the configurations of P are exactly the configurations
〈q, u, π〉 of A on t. Dropping and lifting a pebble corresponds to pushing and
popping a pushdown symbol. Moving around in t corresponds to a change of
state. To decide whether (t, u, v) ∈ T , with u, v ∈ N(t), decide whether P has
a computation from configuration 〈q0, u, ε〉 (for some q0 ∈ Q0) to some final
configuration 〈q, v, π〉. Clearly, P can be constructed in polynomial time from
A and t, and the existence of such a computation can be verified in polynomial
time.

By Lemma 22, path expressions on forests can be translated into path ex-
pressions on ranked trees in polynomial time. Since for a Pebble CAT path ex-
pression on ranked trees the corresponding directive i-pta can be constructed in
polynomial time, using Kleene’s construction, Pebble CAT path expressions can
be evaluated in polynomial time. This does not seem to hold for Pebble XPath,
as the construction in the proof of Theorem 19 (which implements a look-ahead
test by calling an i-pta B) is at least 2-fold exponential (because determining
the domain of the related i-pta B′ takes 2-fold exponential time by Theorem 8).
However, the data complexity of the problem is of course polynomial, i.e., for a
fixed path expression α we obtain a fixed directive i-pta A for which the binary
node relation can be evaluated in polynomial time.
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10 Pattern Matching

One of the basic tree transformations in the context of XML is pattern matching.
The transducer must find all sequences of nodes satisfying a certain description
and generate the subtrees rooted at these nodes, for each match. More precisely,
we consider queries of the form

for X where ϕ return r

in which X is a finite set of node variables, ϕ is an mso formula with its free vari-
ables in X , and r is a tree of which the leaves may be labeled with the variables
in X . In what follows we assume that X and r are fixed. Let X = {x1, . . . , xn},
where x1, . . . , xn is an arbitrary order of the elements of X . The transducer must
find all sequences of nodes u1, . . . , un of the input tree t that match the pattern
defined by ϕ(x1, . . . , xn), i.e., such that t |= ϕ(u1, . . . , un), and for each match
it must generate the output tree r in which each occurrence of the variable xi is
replaced by the subtree of t with root ui. Usually the variables in X are indeed
specified in a specific order λ = (x1, . . . , xn), and it is required that the trans-
ducer finds (and generates) the matches in the lexicographic document order
induced by λ. We will, however, also consider the case where this requirement
is dropped, and the most efficient order λ can be selected.

For convenience we assume that r is of the form µ(x1, . . . , xn) for some
symbol µ of rank n, and so the output for each match is µ(t|u1

, . . . , t|un
) where

t|u is the subtree of t with root u. For convenience we also assume that the
input tree t is ranked. Moreover, we assume that the output alphabet is also
ranked and contains the binary symbol @ that allows us to list the various
output trees µ(t|u1

, . . . , t|un
), and the nullary symbol e to indicate the end of

the list of output trees (similar to the binary tag <result> and the nullary
tag <endofresults> of Example 2). In Section 11 we will consider pattern
matching in forests.

We now describe a total deterministic ptt A that executes the above query.
In order to find all n-tuples of nodes matching the n-ary pattern defined by
the mso formula ϕ(x1, . . . , xn), and generate the corresponding output, the
ptt A systematically enumerates all n-tuples of nodes of the input tree t. To
do this, A uses visible pebbles c1, . . . , cn on the stack, representing the vari-
ables x1, . . . , xn, respectively.

20 It drops them in this order and moves each of
them through the input tree t in document order (i.e., in pre-order), in a nested
fashion. Inductively speaking, A moves pebble c1 in pre-order through t (alter-
nately dropping and lifting c1), and for each position u1 of c1 it uses pebbles
c2, . . . , cn to enumerate all possible (n−1)-tuples u2, . . . , un of nodes of t. For
each enumerated n-tuple u1, . . . , un, with pebble ci at position ui, A performs
the test ϕ, using an mso test on the visible configuration (Lemma 13), and,
in case of success, spawns a process that outputs the corresponding n-tuple of
subtrees.

More precisely, if the ranked input alphabet is Σ, then ϕ is an mso formula
over Σ, and A has the ranked output alphabet ∆ = Σ ∪ {µ,@, e} where µ
has rank n, and @ and e have rank 2 and 0 respectively. For input tree t,
the output tree s is of the form s = @(r1,@(r2, . . .@(rk, e) · · · )) where each ri

20It is not necessary that all pebbles are visible, as we will discuss below, but it simplifies
the description of A.
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corresponds to a match, i.e., there is a sequence of nodes u1, . . . , un of t such that
t |= ϕ(u1, . . . , un) and ri = µ(t|u1

, . . . , t|un
). Moreover, the sequence r1, . . . , rk

corresponds to the sequence of all matches, in lexicographic document order.
As explained above, the visible colour set of the ptt A is Cv = {c1, . . . , cn},
and A generates s by enumerating all sequences u1, . . . , un of nodes of t using
pebbles c1, . . . , cn. To find out whether this sequence is a match, A performs
the mso test ψ(x) on the visible configuration, defined by

ψ(x) ≡ ∀x1, . . . , xn((pebc1(x1) ∧ · · · ∧ pebcn(xn)) → ϕ′(x1, . . . , xn))

where pebc(x) is the disjunction of all lab(σ,b)(x) such that c ∈ b, and where
ϕ′ is obtained from ϕ by changing every atomic subformula labσ(y) into the
disjunction of all lab(σ,b)(y). Note that ψ(x) is an mso formula over Σ × 2C ,
where C is the colour set of A. Note also that the variable x (for the head
position) does not, and need not, occur in ψ(x). If the sequence u1, . . . , un is
not a match, then A continues the enumeration of n-tuples. If the sequence
is a match, then A outputs the symbol @ and branches into two subprocesses
(as in the 5-th rule of Example 2). In the second (main) branch it continues
the enumeration of n-tuples. In the first branch it outputs the symbol µ and
branches into n subprocesses, where the i-th process searches for visible pebble ci
and then outputs t|ui

. Note that, in this first branch, A could easily output an
arbitrary tree r in which every occurrence of the variable xi is replaced by t|ui

.
This ends the description of A.

As the complexity of typechecking the transducer A depends critically on
the number of visible pebbles used (see Theorem 8), we wish to minimize that
number and use as few visible pebbles as possible for matching. It should
be clear that, instead of using n visible pebbles, A can also use n−2 visible
pebbles c1, . . . , cn−2, one invisible pebble cn−1 on top (which is therefore always
observable), and the head instead of the last pebble cn. Then A can perform
the mso test χ(x) on the observable configuration, defined by χ(x) ≡

∀x1, . . . , xn−1((pebc1(x1) ∧ · · · ∧ pebcn−1
(xn−1)) → ϕ′(x1, . . . , xn−1, x))

where xn is renamed into x in ϕ′. Thus, from Theorem 16 we obtain the
following result on the matching of arbitrary mso definable patterns.

Theorem 29 For n ≥ 2, every mso definable n-ary pattern can be matched
by a total deterministic vn−2i-ptt. Moreover, and in particular, every mso
definable unary or binary pattern can be matched by a total deterministic i-ptt.

To further reduce the number of visible pebbles, we consider the more specific
case of queries of the form

for X where β(ϕ1, . . . , ϕm) return r

in which β(ϕ1, . . . , ϕm) is a boolean combination (using ∧,∨,¬) of the mso
formulas ϕ1, . . . , ϕm, m ≥ 2, and each ϕℓ, ℓ ∈ [1,m], has its free variables in X .
We will make use of the fact that not all variables in X need actually occur in
each formula ϕℓ. As discussed in the Introduction, the for · · · where construct
in XQuery often induces patterns ϕ1 ∧ · · · ∧ϕm such that each ϕℓ contains just
two free variables, cf. [33].
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Consider an arbitrary query as displayed above. Let Gϕ = (Vϕ, Eϕ) be the
undirected graph induced by the pattern ϕ ≡ β(ϕ1, . . . , ϕm), by which we mean
that the set Vϕ of vertices of Gϕ consists of the free variables of ϕ, i.e., Vϕ = X ,
and that the set Eϕ of edges of Gϕ consists of the unordered pairs {x, y} (with
x, y ∈ Vϕ, x 6= y) for which there exists ℓ ∈ [1,m] such that both x and y occur
(free) in ϕℓ. Note that Gϕ does not depend on any order of the variables in X .
Note also that for every finite undirected graph G there exists ϕ ≡ ϕ1∧· · ·∧ϕm
such that G is isomorphic to Gϕ.

Pattern matching ϕ, and executing the above query, can be done by a total
deterministic ptt A as follows, similarly to the general ptt A above (as dis-
cussed before Theorem 29). Again, let λ = (x1, . . . , xn) be an arbitrary order
of the variables in X . Pebbles with distinct colours c1, . . . , cn−1 are used to
represent x1, . . . , xn−1, dropping them in that order. For every j ∈ [1, n], when
pebbles c1, . . . , cj−1 are dropped on the tree and the head is at a candidate
position uj for the variable xj , all mso tests ϕℓ are performed of which the free
variables are in {x1, . . . , xj} (and that have not been tested before). Thus, when
A has enumerated a sequence u1, . . . , un, it can compute the boolean value of
ϕ(u1, . . . , un). For each match u1, . . . , un the tree r is generated, such that for
every occurrence of the variable xi in r the subtree rooted at ui is generated, by
a separate process; that is straightforward, even when ci is invisible: lift pebbles
cn−1, . . . , ci+1 one by one (in that order), and then access ci and output t|ui

.
Note that, as before, the matches are generated in the lexicographic document
order induced by the order λ.

It remains to determine which are the visible and invisible pebbles, keeping
in mind that we wish to use as many invisible pebbles as possible for matching.
To do the mso tests at position uj all pebbles ci for which {xi, xj} ∈ Eϕ and
i < j should be observable. Hence all such pebbles under the topmost pebble
cj−1 must be visible. These are the pebbles corresponding to the set

vis(λ) = {xi | there exists {xi, xj} ∈ Eϕ such that i+ 1 < j}.

Thus, for A we define Cv = {ci | xi ∈ vis(λ)} and Ci = {ci | xi /∈ vis(λ)}. Note
that cn−1 ∈ Ci.

In the case where the order λ = (x1, . . . , xn) of the variables is irrelevant, we
may want to determine an optimal order. A finite undirected graph G = (V,E)
will be called a union of paths if it is acyclic and has only vertices of degree at
most 2. Intuitively this means that each connected component of G is a path.
Thus, clearly, there is an order v1, . . . , vp of the vertices of G such that for all
i, j ∈ [1, p] with i < j, if {vi, vj} ∈ E then i + 1 = j (repeatedly pick a vertex
of degree 0 or 1, and remove it from the graph together with all its incident
edges). We will call this an invisible order of the vertices of G. Note that a
graph is a union of paths if and only if it has an invisible order. Note also that
every subgraph of G is also a union of paths.

For an arbitrary finite undirected graph G = (V,E), let us now say that a
set W ⊆ V of vertices of G is a visible set of G if the subgraph of G induced by
V \W , denoted by G[V \W ], is a union of paths. By the last sentence of the
previous paragraph, every superset of a visible set is also a visible set.

Lemma 30 A set of variables W ⊆ Vϕ is a visible set of Gϕ if and only if there
is an order λ of Vϕ such that vis(λ) ⊆W .
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Proof. (If) It is easy to verify that every vis(λ) is a visible set of Gϕ. In fact,
for all i < j, if xi, xj /∈ vis(λ) and {xi, xj} ∈ Eϕ, then i+ 1 = j.

(Only if) Define the order λ on Vϕ as follows. First list the vertices of W
in any order. Then list the remaining vertices according to an invisible order of
the vertices of Gϕ[Vϕ \W ]. Obviously vis(λ) ⊆W . ✷

Theorem 31 Pattern ϕ ≡ β(ϕ1, . . . , ϕm) can be matched by a total determin-
istic vki-ptt where k = #(W ) for a visible set W of Gϕ. In particular, if Gϕ
is a union of paths, then ϕ can be matched by a total deterministic i-ptt.

Proof. By Lemma 30 there is an order λ of Vϕ such that vis(λ) ⊆ W . Hence
at most #(W ) visible pebbles suffice. If Gϕ is a union of paths, then W = ∅ is
a visible set. ✷

Lemma 30 shows that finding an order λ for which vis(λ) is of minimal size, is
the same as finding a visible setW of minimal size. Unfortunately, this is an NP-
complete problem. More precisely, the problem whether for a given graph G =
(V,E) and a given number k there is a set of vertices V ′ ⊆ V with #(V ′) ≥ k
such that G[V ′] is a union of paths, is NP-complete (see Problem GT21 of [29]).

We now give some examples of visible sets of a graph G. It suffices to take
as visible vertices those of degree ≥ 3 in G (plus one vertex in each connected
component that is a cycle). But often one can choose a smaller set.

Example 32 If G is a cycle or a star, then it has a visible setW with #(W ) = 1
(for a cycle any singleton is a visible set, and for a star the visible setW consists
of the centre vertex).

In Figs. 5 and 6 we show graphs with the vertices of a visible setW encircled.
For the graph G in Fig. 5, the upper left W consists of all vertices of degree 3.
It is not minimal, in the sense that it has a proper subset that is also a visible
set, as shown at the upper right. This one is minimal, because dropping one of
the vertices from W produces a vertex of degree 3 in the complement. Another
minimal visible set (of the same size) is shown at the lower left: dropping the
leftmost vertex of W produces a cycle, and dropping one of the other vertices
produces two vertices of degree 3. Finally, a visible set of size 3 is shown at
the lower right. It is of minimal size, i.e., #(W ) ≥ 3 for every visible set W
of G. In fact, removing a vertex of degree 2 from G leaves a graph with two

Figure 5: Visible sets of different sizes.
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Figure 6: Three visible sets of minimal size.

disjoint cycles that both must be broken, whereas removing a vertex of degree 3
from G either leaves a graph with two disjoint cycles or a graph with a cycle
and a vertex of degree 3 of which the neighbourhood is disjoint with that cycle.
Thus, any pattern ϕ such that Gϕ is isomorphic to G can be matched with three
visible pebbles.

Visible sets of minimal size need not be unique. For the graph in Fig. 6,
three different visible sets of minimal size are shown. ✷

If we allow matches to occur more than once in the output, then Theo-
rem 31 is not optimal (still assuming that the order λ is irrelevant). Using
the boolean laws, the mso formula ϕ ≡ β(ϕ1, . . . , ϕm) can be written as a
disjunction ϕ ≡ ψ1 ∨ · · · ∨ ψk where each ψi is a conjunction of some of the
formulas ϕ1, . . . , ϕm or their negations. Now the ptt A can execute the queries
‘for X where ψi return r’ consecutively for i = 1, . . . , k. Obviously, Gψi

is a
subgraph of Gϕ for every i ∈ [1, k]. Hence every visible set of Gϕ is also a visible
set of Gψi

, and so the minimal size of the visible sets of Gψi
is at most the min-

imal size of the visible sets of Gϕ. Thus, pattern matching formulas ψ1, . . . , ψk
consecutively needs at most as many visible pebbles as pattern matching ϕ, but
it may need less. As a simple example, let ϕ ≡ ϕ1(x, y) ∧ (ϕ2(y, z) ∨ ϕ3(x, z)).
Then Gϕ is a triangle, which needs one visible pebble. But ϕ ≡ ψ1 ∨ ψ2 where
ψ1 ≡ ϕ1(x, y) ∧ ϕ2(y, z) and ψ2 ≡ ϕ1(x, y) ∧ ϕ3(x, z). Both Gψ1

and Gψ2
are

(unions of) paths, which do not need visible pebbles. Thus, ϕ can be matched
by an i-ptt. However, all matches for which ϕ1 ∧ ϕ2 ∧ ϕ3 holds occur twice in
the output.

We finally discuss another way to reduce the number of visible pebbles.
Suppose that, for some i ∈ [1,m], the formula ϕi has exactly two free variables
x, y ∈ X . Thus, the edge {x, y} is in Eϕ. Suppose moreover that the trip
defined by ϕi(x, y) is functional. Suppose finally that W is a visible set of Gϕ
with x, y ∈ W . Then all other edges of Gϕ incident with y can be redirected
to x, and y can be dropped from W . To be precise, every formula ϕj that
contains the free variable y can be changed into the formula ∀y(ϕi(x, y) → ϕj)
that contains the free variable x instead of y. The resulting query is obviously
equivalent to the given one.

11 Pebble Forest Transducers

The ptt transforms ranked trees, whereas XML documents are unranked forests.
However, it is not difficult to use, or slightly adapt, the ptt for the transforma-
tion of forests. The most obvious, and well-known way to do this, is to encode
the forests as binary trees. Let enc′ be the class of all encodings enc′ (one
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encoding for each input alphabet Σ), and let dec be the class of all decodings
dec (one decoding for each output alphabet ∆). Then we can view the class
enc

′ ◦ VkI-PTT ◦ dec as the class of forest transductions realized by vki-ptt’s.
For the input forest f this is a natural definition, because it is quite easy to
visualize a ptt walking on enc′(f) as actually walking on f itself. For the out-
put forest g this is also a natural definition, as it is, in fact, easy to transform
a ptt that outputs enc(g) into a (slightly adapted type of) ptt that directly
outputs g itself: change every output rule 〈q, σ, j, b〉 → δ(〈q1, stay〉, 〈q2, stay〉)
into 〈q, σ, j, b〉 → δ(〈q1, stay〉)〈q2, stay〉, and every output rule 〈q, σ, j, b〉 → e
into 〈q, σ, j, b〉 → ε. The definition is also natural with respect to typechecking,
because a forest language L is regular if and only if the tree language enc(L)
is regular, and similarly for enc′(L). Since the transformation of the involved
grammars can obviously be done in polynomial time, Theorem 8 in Section 5
also holds for vki-ptt as forest transducers.

We observe here that the class enc′ ◦ VkI-PTT ◦ dec does not depend on the
chosen encodings and decodings, i.e., enc′ can be replaced by the class enc of
all encodings enc, and dec by the class dec′ of all decodings dec′. In fact, a ptt
that walks on enc′(f) can easily be simulated by one that walks on enc(f): the
original label σkl can be determined by inspecting the children of the node with
label σ. Vice versa, a ptt that walks on enc(f) can be simulated by one that
walks on enc′(f): a node with label, e.g., σ01 represents the original node and
its first child with label e; the difference between these nodes can be stored in
the finite state and in the pebble colours of the simulating ptt. Moreover, a
ptt that outputs enc′(g) can easily be simulated by one that outputs enc(g):
change, e.g., the rule 〈q, σ, j, b〉 → δ01(〈q′, stay〉) into the two rules 〈q, σ, j, b〉 →
δ(〈p, stay〉, 〈q′, stay〉) and 〈p, σ, j, b〉 → e where p is a new state. Vice versa, a
ptt A that outputs enc(g) can be simulated by a ptt A that outputs enc′(g),
but that requires look-ahead (Theorem 19), as follows. If A has an output
rule 〈q, σ, j, b〉 → δ(〈q1, stay〉, 〈q2, stay〉), then A′ has the rule 〈q, σ, j, b,B01〉 →
δ01(〈q2, stay〉) where B01 is a look-ahead test that finds out whether A can
generate e when started in state q1 in the current situation. To be precise, B01

is obtained from A by changing its set of initial states into {q1} and removing
all output rules that do not output e. And of course, A′ has similar rules for
the other symbols δij .

So far so good, in particular for the input forest f . There is, however, another
natural possibility for the output forest g, as introduced and investigated in [48]
for macro tree transducers. It is quite natural to allow a ptt that directly
outputs g, as discussed above, to not only have output rules with right-hand
sides δ(〈q1, stay〉)〈q2, stay〉 and ε, but also right-hand sides 〈q1, stay〉〈q2, stay〉
and δ(〈q′, stay〉) that realize the concatenation of forests and the formation of
a tree out of a forest.

Accordingly we define a tree-walking forest transducer with nested pebbles
(abbreviated pft) to be the same as a ptt M, except that its output al-
phabet is unranked, and its output rules are of the form 〈q, σ, b, j〉 → ζ with
ζ = δ(〈q′, stay〉) introducing a new node with label δ and generating a forest
from state q′, or ζ = 〈q1, stay〉 〈q2, stay〉 concatenating two forests, or ζ = ε
generating the empty forest. Note that a right-hand side δ(〈q1, stay〉)〈q2, stay〉
is also allowed, as it can easily be simulated in two steps.

Formally, an output form of the pft M on an input tree t is defined to
be a forest in F∆(Con(t)). Let s be an output form and let v be a leaf of s
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with label 〈q, u, π〉 ∈ Con(t). If the rule 〈q, σ, b, j〉 → ζ is relevant to 〈q, u, π〉
then we write s ⇒t,M s′ where s′ is obtained from s as follows. If the rule
is not an output rule, then the label of v is changed in the same way as for
the pta and ptt. If ζ = δ( 〈q′, stay〉 ) then node v is replaced by the subtree
δ(〈q′, u, π〉). If ζ = 〈q1, stay〉 〈q2, stay〉 then node v is replaced by the two-
node forest 〈q1, u, π〉〈q2, u, π〉. And if ζ = ε then the node v is removed from s.
The transduction realized by M consists of all (t, s) ∈ TΣ × F∆ such that
〈q0, roott〉 ⇒∗

t,M s for some q0 ∈ Q0. Thus, we have defined the pft as a
transformer of ranked trees into unranked forests. The corresponding classes of
transductions are denoted by VkI-PFT. For forest transformations one can of
course consider the classes enc′ ◦ VkI-PFT.

Lemma 33 For every k ≥ 0,

(1) VkI-PTT ◦ dec ⊆ VkI-PFT and (2) VkI-PFT ◦ enc ⊆ VkI-PTT ◦ I-dPTT

and similarly for the deterministic case.

Proof. Inclusion (1) is obvious from the discussion above: change every rule
〈q, σ, j, b〉 → δ(〈q1, stay〉, 〈q2, stay〉) into 〈q, σ, j, b〉 → δ(〈q1, stay〉)〈q2, stay〉, and
every rule 〈q, σ, j, b〉 → e into 〈q, σ, j, b〉 → ε.

The proof of inclusion (2) is similar to the proof in [48] that every macro
forest transducer can be simulated by two macro tree transducers. Let M be a
vki-pft with (unranked) output alphabet ∆. Let ∆1 be the ranked alphabet ∆∪
{@(2), e(0)}, where every element of ∆ has rank 1. We now obtain the vki-ptt
M′ from M by changing every output rule 〈q, σ, b, j〉 → 〈q1, stay〉 〈q2, stay〉
into 〈q, σ, b, j〉 → @(〈q1, stay〉, 〈q2, stay〉) and every output rule 〈q, σ, b, j〉 → ε
into 〈q, σ, b, j〉 → e. Let ‘flat’ be the mapping from T∆1

to F∆ defined by
flat(@(t1, t2) = flat(t1)flat(t2), flat(δ(t)) = δ(flat(t)) and flat(e) = ε. Then
obviously τM = τM′ ◦flat. Thus, it remains to show that the mapping flat ◦ enc
is in I-dPTT. We will prove this after Theorem 37. It is, in fact, not hard to see
that flat ◦ enc is even in dTT. ✷

Typechecking. The inverse type inference problem and the typechecking prob-
lem are defined for pft’s as in Section 5, except that Gout is a regular forest
grammar rather than a regular tree grammar. It follows from Lemma 33(2),
together with Lemma 4, Theorem 5, and Propositions 6 and 7 that these prob-
lems can be solved for vki-pft’s in (k+4)-fold and (k+5)-fold exponential time.
However, it is shown in [13, Section 7] that they can be solved for vk-pft’s in
the same time as for vk-ptt’s, i.e., in (k + 1)-fold and (k + 2)-fold exponential
time, respectively. This is due to the fact (shown in [13, Lemma 4]) that inverse
type inference for the mapping flat ◦ enc can be solved in polynomial time, cf.
the proof of Lemma 33. For exactly the same reason a similar result holds for
vki-pft’s. In other words, Theorem 8 also holds for vki-pft’s.

Theorem 34 For fixed k ≥ 0, the inverse type inference problem and the type-
checking problem are solvable for vki-pft’s in (k+2)-fold and (k+3)-fold expo-
nential time, respectively.

MSO tests. It should be clear that Theorem 16 also holds for the pft, as mso
tests only concern the input tree.
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Pattern matching. Pattern matching for forests can be defined in exactly the
same way as we did for trees in Section 10. Since, obviously, Lemma 24 also
holds for arbitrary n-ary patterns instead of trips, we may however assume that
the input forest f over Σ of the query

for X where ϕ return r

is encoded as a binary tree t = enc′(f) over Σ′ for which we execute the query

for X where ϕ′ return r

where ϕ′ is the encoding of the formula ϕ according to Lemma 24. Conse-
quently, we can use a pft to execute this query and produce for each match
of ϕ′(x1, . . . , xn) the required output r. We may now assume that r is a
forest rather than a tree, and we may for simplicity assume that r is of the
form µ(x1 · · ·xn) for some output symbol µ. Thus, the output for each match
ϕ′(u1, . . . , un) is µ(f |u1

· · · f |un
), and the output forest is of the form s =

r1r2 · · · rke where r1, . . . , rk are the outputs corresponding to all the matches.
Note that e is another output symbol, and so ∆ = Σ∪{µ, e}. It should be clear
how the total deterministic ptt A in Section 10 can be changed into a total
deterministic pft that executes this query. The only small problem is that A
outputs the encoded subtrees t|ui

rather than the required subtrees f |ui
. How-

ever, a pft can easily transform an encoded forest enc′(f |u) into the forest f |u,
using rules 〈q, σ11, j, b〉 → σ(〈q, down1〉)〈q, down2〉, 〈q, σ01, j, b〉 → σ〈q, down1〉,
〈q, σ10, j, b〉 → σ(〈q, down1〉), and 〈q, σ00, j, b〉 → σ.

From this it should be clear that Theorems 29 and 31 also hold for forest
pattern matching and pft.

Expressive power. As in [48], the pft is more powerful than the ptt. In
particular, the i-pft is more powerful than the i-ptt that generates encoded
forests, i.e., I-PTT ◦ dec is a proper subclass of I-PFT. In fact, it is well known
(cf. [20, Lemma 7] and [26, Lemma 5.40]), and easy to see, that the height of the
output tree of a functional tt M (which means that τM is a function) is linearly
bounded by the size of the input tree: otherwiseM would be in a loop and would
generate infinitely many output trees for that input tree. Since I-PTT ⊆ TT◦TT
by Lemma 4, this implies that for a functional i-ptt the height of the output tree
is exponentially bounded by the size of the input tree. However, the following
total deterministic i-pft M2exp outputs, for an input tree of size n, a forest of
length double exponential in n. Since the height of the encoded output forest is
at least the length of that forest, this transformation cannot be realized by an
i-ptt that generates encoded forests. The transducer M2exp is similar to the
i-ptt Msib of Example 2, assuming that there are large cities only. Thus, using
its pebbles, it enumerates 2n itineraries (where n is the number of intermediate
cities). However, after marking an itinerary, it does not output the itinerary, but
instead branches into two identical subprocesses that continue the enumeration.
After the last itinerary, M2exp is branched into a forest of 22

n

copies of itself,
each of which finally outputs one symbol. Imitating Msib, the i-pft M2exp first
walks to the leaf:

〈qstart, σ1, j,∅〉 → 〈qstart, down1〉
〈qstart, σ0, 1,∅〉 → 〈q1, up〉

Then, in state q1, it marks as many cities as possible:
〈q1, σ1, 1,∅〉 → 〈q1, dropc; up〉
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〈q1, σ1, 0,∅〉 → 〈qnext, down1〉〈qnext, down1〉
In state qnext it continues the search for itineraries by unmarking the most
recently marked city; when arriving at the leaf it outputs e:

〈qnext, σ1, 1,∅〉 → 〈qnext, down1〉
〈qnext, σ1, 1, {c}〉 → 〈q1, liftc; up〉
〈qnext, σ0, 1,∅〉 → e

This ends the description of the i-pft M2exp.

12 Document Transformation

In this section we compare the i-ptt and i-pft to the document transformation
languages dtl and tl, which transform (unranked) forests. We prove that dtl
can be simulated by the i-ptt, and that tl has the same expressive power as
the i-pft.

The Document Transformation Language dtl was introduced and studied
in [39]. A program in the dtl framework is a tuple P = (Σ,∆, Q,Q0, R) where
Σ and ∆ are unranked alphabets, Q is a finite set of states, Q0 ⊆ Q is the set of
initial states, and R is a finite set of template rules of the form 〈q, ϕ(x)〉 → f ,
where f is a forest over ∆, the leaves of which can additionally be labelled by
a selector of the form 〈q′, ψ(x, y)〉; q and q′ are states in Q, and ϕ and ψ are
mso formulas over Σ, with one and two free variables respectively. Such a rule
can be applied in state q at an input node x that matches ϕ, i.e., satisfies ϕ(x).
Then program P outputs forest f , where each selector 〈q′, ψ(x, y)〉 is recursively
computed as the result of a sequence of copies of P , started in state q′ at each
of the nodes y that satisfy ψ(x, y), the nodes taken in pre-order (i.e., document
order). Thus, P “jumps” from node x to each node y, according to the trip
defined by the mso formula ψ.

Formally, a configuration of P on input forest t is a pair 〈p, u〉 where u is a
node of t and p is either a state or a selector of P . An output form of P on t
is a forest in F∆(Con(t)), where Con(t) is the set of configurations of P on t.
As usual, the computation steps of P on t are formalized as a binary relation
⇒t,P on F∆(Con(t)). Let s be an output form and let v be a leaf of s with
label 〈q, u〉 ∈ Con(t), where q is a state of P . Moreover, let 〈q, ϕ(x)〉 → f be a
template rule of P such that t |= ϕ(u). Let θu(f) be the forest obtained from f
by changing every selector 〈q′, ψ(x, y)〉 into 〈〈q′, ψ(x, y)〉, u〉. Then we write
s⇒t,P s′ where s′ is obtained from s by replacing the node v by the forest θu(f).
Now let s be an output form and let v be a leaf of s with label 〈〈q′, ψ(x, y)〉, u〉.
Then we write s⇒t,P s′ where s′ is obtained from s by replacing the node v by
the forest 〈q′, u′1〉 · · · 〈q

′, u′ℓ〉 where u
′
1, . . . , u

′
ℓ is the sequence of all nodes u′ of t,

in document order, such that t |= ψ(u, u′). The transduction τP realized by P
is defined by τP = {(t, s) ∈ FΣ × F∆ | ∃ q0 ∈ Q0 : 〈q0, roott〉 ⇒∗

t,P s}.
The dtl program P is deterministic if for every two rules 〈q, ϕ(x)〉 → f and

〈q, ϕ′(x)〉 → f ′ with the same state q, the tests ϕ(x) and ϕ′(x) are exclusive,
meaning that the sites they define are disjoint.

We observe here that in [39] the selectors have a more complicated form,
which we will discuss after the next lemma.

We have defined the dtl program such that the input t is an unranked forest,
and thus it can in particular be a ranked tree. It should be clear from Lemma 24
(which also holds for sites instead of trips) that we may in fact restrict ourselves

61



to ranked trees and assume that input forests are encoded as binary trees. Thus,
from now on we assume that in the above definition Σ is a ranked alphabet and
t ∈ TΣ is a ranked input tree. This allows us to compare dtl programs with
pft’s.

Let DTL denote the transductions realized by dtl programs and dDTL those
realized by deterministic dtl programs, from ranked trees to unranked forests.
Thus, the class of forest transductions realized by dtl programs is equal to
enc′ ◦ DTL, and similarly for the deterministic case.

Lemma 35 DTL ⊆ I-PFT and dDTL ⊆ I-dPFT.

Proof. Let P = (Σ,∆, Q,Q0, R) be a dtl program. We construct an equivalent
i-pft M with mso tests, cf. Theorem 16. It has the same alphabets Σ and ∆
as P . Since M stepwise simulates P , its set of states consists of the states and
selectors of P , plus the states that it needs to execute the subroutines discussed
below. It has the same initial states Q0 as P . Moreover, it uses invisible pebbles
of a single colour ⊙, and never lifts its pebbles.

For an input tree t, the transducerM simulates a template rule 〈q, ϕ(x)〉 → f
in state q at node u of t by first using an mso head test to check whether
t |= ϕ(u). With a positive test result, it calls a subroutine S that outputs the
∆-labelled nodes of the right-hand side f . The subroutine S is started by M
in state [f ]. If its state is of the form [sf ′], for a tree s and a forest f ′, it
uses a rule 〈[sf ′], σ, j, b〉 → 〈[s], stay〉 〈[f ′], stay〉, branching the computation. If
the state is of the form [δ(f ′)], the rule is 〈[δ(f ′)], σ, j, b〉 → δ(〈[f ′], stay〉), and
if it is of the form [ε], the rule is 〈[ε], σ, j, b〉 → ε. If the state is of the form
[〈q′, ψ(x, y)〉], for a selector 〈q′, ψ(x, y)〉, the subroutine S returns control to
(this copy of) M in state 〈q′, ψ(x, y)〉. In that state, M first drops a pebble ⊙
on the current node u and then calls a subroutine Sq′,ψ that finds all nodes u′ in
the input tree t for which ψ(u, u′) holds. The subroutine does this by perform-
ing a depth-first traversal of t, starting at the root, checking in each node u′

whether t |= ψ(u, u′) using an mso test on the observable configuration. If true,
then Sq′,ψ branches into two concatenated processes. The left branch returns
control to M in state q′, and the right branch continues the depth-first search.
When the search ends, Sq′,ψ outputs ε. Thus, Sq′,ψ transforms the configuration
〈〈q′, ψ(x, y)〉, u, π〉 of M into the forest of configurations 〈q′, u′1, π〉 · · · 〈q

′, u′ℓ, π〉,
where u′1, . . . , u

′
ℓ are all such nodes u′, in document order. With this definition

of M, it should be clear that τM = τP . ✷

The selectors in [39] are more general than those defined above. They
can be of the form 〈q′1, ψ1(x, y), . . . , q

′
m, ψm(x, y)〉, such that the mso formu-

las ψ1(x, y), . . . , ψm(x, y) are mutually exclusive, i.e., the trips they define are
mutually disjoint. Let ψ(x, y) be the disjunction of all ψi(x, y), i ∈ [1,m]. The
execution of the above selector at node u of the input tree results in the forest
〈q′i1 , u

′
1〉 · · · 〈q

′
iℓ
, u′ℓ〉 where u

′
1, . . . , u

′
ℓ is the sequence of all nodes u′ of t in doc-

ument order such that t |= ψ(u, u′), and for every j ∈ [1, ℓ], ij is the unique
number in [1,m] such that t |= ψij (u, u

′
j). It should be clear that Lemma 35 is

still valid with these more general selectors. To execute the above selector, the
i-pft M calls subroutine Sq′

1
,ψ1,...,q′m,ψm

which in each node u′ tests each of the
formulas ψi(u, u

′); if ψi(u, u
′) is true, then the subroutine branches in two, in

the first branch returning control to M in state qi.
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To compare DTL to I-PTT rather than I-PFT we also consider dtl programs
that transform ranked trees. A dtl program P = (Σ,∆, Q,Q0, R) is ranked if
Σ and ∆ are both ranked alphabets, and every rule 〈q, ϕ(x)〉 → f satisfies the
following two restrictions:

(R1) f is a ranked tree in T∆(S) where S is the set of selectors, and

(R2) for every selector 〈q′, ψ(x, y)〉 that occurs in f , every input tree t ∈ TΣ,
and every node u ∈ N(t), if t |= ϕ(u) then there is a unique node v ∈ N(t)
such that t |= ψ(u, v).

In other words, the trip T (ψ(x, y)) is functional and, for fixed input tree t ∈ TΣ,
it is defined for every node of t that satisfies ϕ(x). Thus, execution of the
selector 〈q′, ψ(x, y)〉 results in a “jump” from node x to exactly one node y.
This clearly implies that all reachable output forms of P are ranked trees in
T∆(Con(t)). Thus τP ⊆ TΣ × T∆ is a ranked tree transformation. The class of
transductions realized by ranked tl programs will be denoted by DTLr, and by
dDTLr in the deterministic case.

Corollary 36 DTLr ⊆ I-PTT and dDTLr ⊆ I-dPTT.

Proof. The proof is the same as the one of Lemma 35, except for the subrou-
tines S and Sq′,ψ. The states of S are now of the form [s] where s is a subtree of
a right-hand side of a rule. Instead of the rules for states [sf ′], [δ(f ′)], and [ε],
subroutine S has rules 〈[δ(s1, . . . , sm)], σ, j, b〉 → δ(〈[s1], stay〉, . . . , 〈[sm], stay〉)
for every δ of rank m and all trees s1, . . . , sm (restricted to subtrees of right-
hand sides). When subroutine Sq′,ψ finds a node u′ such that t |= ψ(u, u′) (and
it always finds one by restriction (R2)), it returns control to M and does not
continue the depth-first search. ✷

It can, in fact, be shown that when output forests are encoded as binary
trees, DTL is included in I-PTT. Thus, instead of I-PFT we consider the class
I-PTT ◦ dec (which equals the class I-PTT ◦ dec

′), cf. Section 11. The next
theorem will not be used in what follows (except in the paragraph directly after
the theorem).

Theorem 37 DTL ⊆ I-PTT ◦ dec and dDTL ⊆ I-dPTT ◦ dec.

Proof. Let P = (Σ,∆, Q,Q0, R) be a dtl program. The main difficulty in
outputting the binary encoding enc(f) of a forest f as opposed to the construc-
tion in the proof of Lemma 35 is that here the first symbol δ of f has to be
determined before any other output can be generated. We reconsider that con-
struction, and here essentially make a depth-first sequential search over nodes
in the computation tree (implemented using a stack of pebbled nodes) instead
of the recursive approach. In that way an i-ptt M can simulate the leftmost
computations of the dtl program P .

As unranked forests with selectors can be generated by the recursive defi-
nition f ::= δ(f)f ′ | 〈q, ψ〉f | ε, where f ′ is an alias of f , dtl rules are of the
form 〈q, ϕ(x)〉 → f , where f is δ(f1)f2, 〈q, ψ〉f

′, or ε. The set of states of the
transducer M to be constructed consists of the states of P and all states [f ]
where f is a subforest of a right-hand side of a rule of P , plus the states of the
subroutines S′

q′,ψ and S′′
q′,ψ discussed below. The state [f ] is used to generate
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the binary encoding of the subforest f , similarly to its use by the subroutine S
in the proof of Lemma 35. The initial states of M are those of P . The pebble
colours used by M are 〈q, ψ, f〉 where 〈q, ψ〉f occurs in the right-hand side of
a rule of P , and the special colour ⊥. The state and pebble stack of M store a
part of the output form of P that still has to be evaluated. The output alphabet
of M is ∆ ∪ {e} where each δ ∈ ∆ has rank 2 and e has rank 0.

The transducer M starts by dropping ⊥ on the root. To simulate, in state q,
a rule 〈q, ϕ(x)〉 → f of P , it uses an mso head test to check whether ϕ holds
for the current node, and goes into state [f ]. We consider the above three cases
for [f ].

In state [〈q′, ψ〉f ′], pebble 〈q′, ψ, f ′〉 is dropped on the current node u. As in
the proof of Lemma 35, M then calls a subroutine S′

q′,ψ which, this time, finds

the first node u′ (in document order) for which ψ(u, u′) holds, where it returns
control to M in state q′. If S′

q′,ψ does not find such a matching node u′, then
it moves to the topmost pebble 〈q′, ψ, f ′〉, lifts it, and returns control to M in
state [f ′].

In state [f ] = [δ(f1)f2], the root δ of the first tree of the forest is ex-
plicitly given, and this is captured by the i-ptt output rule 〈[f ], σ, j, b〉 →
δ( 〈[f1], drop⊥〉, 〈[f2], stay〉 ). The symbol ⊥ is pushed, and never popped af-
terwards, making the stack of pebbles effectively empty: the first copy of the
transducer evaluates f1 as left child of δ. The second copy inherits the stack
and evaluates f2 as right child of δ, together with all postponed duties as stored
in the stack of pebbles. This will generate the siblings of δ in the original forest.

In state [ε], the transducer M determines the colour of the topmost pebble,
using an mso test on the observable configuration. If it is ⊥, it outputs e for
the empty forest. Otherwise it calls subroutine S′′

q′,ψ to continue the search
corresponding to the topmost pebble 〈q′, ψ, f ′〉. That subroutine finds the first
node u′ after the current node u (in document order) for which ψ(v, u′) holds,
where v is the position of the topmost pebble. Similar to S′

q′,ψ, if a matching
node is found it returns control to M in state q′, and otherwise it lifts the
topmost pebble and returns control to M in state [f ′].

This ends the description of M. To understand its correctness, we show
how the output forms of M represent output forms of P . We disregard the
output forms of M that contain states of the subroutines S′

q′,ψ and S′′
q′,ψ, and

view the execution of such a subroutine as one big computation step of M that
(deterministically) changes one configuration into another. The mapping ‘rep’
from such restricted output forms of M to output forms of P is defined as
follows. The ∆-labelled part of the output form of M is decoded, i.e., rep(e) =
ε and rep(δ(s1, s2)) = δ(rep(s1)) rep(s2). It remains to define ‘rep’ for the
configurations on an input tree t that occur in the restricted output forms of M,
i.e., for every configuration 〈p, u, π〉 where p is a state q of P or a state [f ]. We
will write rep(p, u, π) instead of rep(〈p, u, π〉). The definition is by induction
on the structure of π, of which the topmost pebble is of the form (v,⊥) or
(v, 〈q′, ψ, f ′〉). For a state [f ], we define rep([f ], u, π(v,⊥)) = θu(f) and

rep([f ], u, π(v, 〈q′, ψ, f ′〉)) = θu(f)〈q
′, u′1〉 · · · 〈q

′, u′ℓ〉 rep([f
′], v, π)

where u′1, . . . , u
′
ℓ are all nodes u′ after u (in document order) such that t |=

ψ(v, u′). Note that rep([f ], u, π) = θu(f) rep([ε], u, π) because θu(ε) = ε, and
hence rep([f1f2], u, π) = θu(f1) rep([f2], u, π). For a state q of P we define
rep(q, u, π) = 〈q, u〉 rep([ε], u, π).
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It is now straightforward to prove, for every initial state q0 of P , every input
tree t, and every output form s of P , that 〈q0, roott〉 ⇒∗

t,P s if and only if there
exists a restricted output form s′ of M such that 〈q0, roott, (roott,⊥)〉 ⇒∗

t,M s′

and rep(s′) = s. The proof of the if-direction of this equivalence is by induction
on the length of the computation, and consists of four cases, depending on the
state of the configuration of M that is rewritten, as discussed above, viz., q,
[〈q′, ψ〉f ′], [δ(f1)f2], or [ε]. From the last two cases it follows that for every
restricted output form s′ of M there exists a restricted output form s′′ of M
such that s′ ⇒∗

t,M s′′, rep(s′′) = rep(s′), and the states of M that occur in s′′

are either states q of P or states of the form [〈q′, ψ〉f ′]. In the only-if-direction
we only consider leftmost computations of P , i.e., computations in which al-
ways the first configuration of the output form (in pre-order) is rewritten. If
rep(s′) = rep(s′′) = s, with s′′ as above, then the first configuration of M in s′′

corresponds to the first configuration of P in s, and the proof is similar to the
first two cases of the proof of the if-direction. The details are left to the reader.
Since rep(s′) = dec(s′) for every output tree s′ of M, the above equivalence
implies that τM ◦ dec = τP . ✷

We are now able to finish the proof of Lemma 33(2). Consider the mapping
flat : T∆1

→ F∆ defined in that proof. It can be realized by the one-state deter-
ministic dtl program with rules 〈q, lab@(x)〉 → 〈q, down1(x, y)〉〈q, down2(x, y)〉,
〈q, labδ(x)〉 → δ(〈q, down1(x, y)〉) for every δ ∈ ∆, and 〈q, labe(x)〉 → ε. Hence,
by Theorem 37, it is in I-dPTT ◦ dec, which means that the mapping flat ◦ enc
is in I-dPTT.

In [38] the language dtl was extended to the Transformation Language tl
where the states have parameters that hold unevaluated forests, similar to
macro tree transducers with outside-in parameter evaluation [22]. In a tl pro-
gram P = (Σ,∆, Q,Q0, R), the set of states Q is a ranked alphabet such that
the initial states in Q0 have rank 0. The rules of tl program P are of the form
〈q, ϕ(x)〉(z1, . . . , zn) → f , where n = rankQ(q) and z1, . . . , zn are the formal
parameters of q, taken from a fixed infinite parameter set Z = {z1, z2, . . . }. The
right-hand side f of the rule is a forest of which the nodes can be labeled by
a symbol from ∆, by a selector 〈q′, ψ(x, y)〉, or by a formal parameter zi with
i ∈ [1, n]. A node labeled by 〈q′, ψ(x, y)〉 must have rank(q′) children, and a
node labeled by parameter zi must be a leaf. Thus, in such a forest (called
an action in [38]), selectors can be nested. We could as well allow in tl the
more general selectors discussed after Lemma 35, but we restrict ourselves to
the usual selectors for simplicity (and because they are the selectors in [38]).
Determinism of program P is defined as for dtl.

An output form of P on input forest t is a forest of which the nodes can be
labeled either by a symbol from ∆, or by a configuration 〈q, u〉 or 〈〈q, ψ(x, y)〉, u〉
of P in which case the node must have rank(q) children. A node of an output
form, or of a right-hand side of a rule, is said to be outermost if all its proper
ancestors are labelled by a symbol from ∆. The computation steps of P are
formalized as a binary relation on output forms, as follows (similar to the dtl
case). Let s be an output form, and let v be an outermost node of s with
label 〈q, u〉, where q is a state of P . Moreover, let 〈q, ϕ(x)〉(z1, . . . , zn) → f
be a rule of P such that t |= ϕ(u). Let θu(f) be defined as in the dtl case.
Then we write s ⇒t,P s′ where s′ is obtained from s by replacing the subtree
s|v with root v by the forest θu(f) in which every parameter zi is replaced
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by the subtree s|vi, for i ∈ [1, rank(q)]. Intuitively, the subtree s|vi rooted at
the i-th child vi of v is the i-th actual parameter of (this occurrence of) the
state q. Now let s be an output form and let v be an outermost node of s
with label 〈〈q′, ψ(x, y)〉, u〉 and rank(q′) = m. Then we write s ⇒t,P s′ where
s′ is obtained from s by replacing the subtree s|v with root v by the forest
〈q′, u′1〉(s|v1, . . . , s|vm) · · · 〈q′, u′ℓ〉(s|v1, . . . , s|vm) where u′1, . . . , u

′
ℓ is the sequence

of all nodes u′ of t, in document order, such that t |= ψ(u, u′). Intuitively, the
actual parameters of (this occurrence of) the selector 〈q′, ψ(x, y)〉 are passed to
each new occurrence of the state q′. As in the dtl case, the transduction realized
by P is defined by τP = {(t, s) ∈ FΣ × F∆ | ∃ q0 ∈ Q0 : 〈q0, roott〉 ⇒∗

t,P s}.
In [38] the denotational semantics of a tl program is given as a least fixed

point. It is straightforward to show that that semantics is equivalent to the
above operational semantics.21 Also, in [38] the syntactic formulation of tl
is such that in the right-hand side of a rule the states can have forests as
parameters rather than trees. Such a forest parameter s1 · · · sm, where each
si is a tree, can be expressed in our syntactic formulation of tl as the tree
〈@m, x = y〉(s1, . . . , sm), where @m is a special state of rank m that has the
unique rule 〈@m, x = x〉(z1, . . . , zm) → z1 · · · zm.

Example 38 The transformation from Example 2 can be computed by a de-
terministic tl program Psib with the following rules, where the variables i, σi,
c, and λi range over the same values as in Example 2, with c = 1 or i = 1 in
rule ρ4.

ρ1 : 〈qstart, root(x)〉 → 〈qstart, leaf(y)〉

ρ2 : 〈qstart,¬root(x) ∧ labσ0
(x)〉 → 〈q1, up(x, y)〉(σ0, e)

ρ3 : 〈q0,¬root(x) ∧ labλ0
(x)〉(z1, z2) → 〈q0, up(x, y)〉(z1, z2)

ρ4 : 〈qc,¬root(x) ∧ labλi
(x)〉(z1, z2)

→ 〈qi, up(x, y)〉(λi(z1), 〈qc, up(x, y)〉(z1, z2))

ρ5 : 〈qc, root(x) ∧ labσ1
(x)〉(z1, z2) → r(σ1(z1), z2)

Intuitively, z1 represents an itinerary from some city to Vladivostok, and z2
represents a list of itineraries from Moscow to Vladivostok (viz. all itineraries
that do not have z1 as postfix), where we only consider itineraries that do not
visit a small city twice in a row.

The selectors in the right-hand sides of the rules all define functional trips,
and hence select just one node. Rule ρ1 jumps from the root to the leaf, and
rules ρ2, ρ3, ρ4 just move to the parent.

To show the correctness of Psib, let u be a node of an input tree t, such that
u is not the leaf of t. Moreover, let ζ1 be an output tree that is an itinerary
from the child of u to the leaf, of which the first stop is large (c = 1) or small
(c = 0), and let ζ2 be an arbitrary output form. Then 〈qc, u〉(ζ1, ζ2) generates
the output form r(s1(ζ1), r(s2(ζ1), . . . r(sn(ζ1), ζ2) · · · )) where s1, . . . , sn are all
possible itineraries from the root to u such that every si(ζ1) is an itinerary from
root to leaf. This can be proved by induction on the number of nodes between
the root and u. The base of the induction is by rule ρ5, which generates the
root label σ1, and the induction step is by rules ρ3 and ρ4. In rule ρ3 a small
city is skipped. In rule ρ4, the outermost selector 〈qi, up(x, y)〉 generates all

21It is similar to the “alternative” fixed point characterization of the OI context-free tree
languages mentioned after [21, Definition 5.19].
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itineraries si from the root to x that include x (or rather, its label λi), whereas
the innermost selector 〈qc, up(x, y)〉 generates all those that do not include x.
Taking c = 1, u equal to the parent of the leaf, and σ0 to the label of the
leaf, shows that 〈q1, u〉(σ0, e) generates all required itineraries. That implies the
correctness of Psib by rule ρ2.

An XSLT 1.0 program with exactly the same structure as Psib is given in
Section 13. ✷

As in the case of DTL, we will assume that in the above definition of tl
program, the input alphabet Σ is ranked and the input forest t is a ranked tree
in TΣ. Also, ranked tl programs are defined as for dtl programs. In particular,
for every rule 〈q, ϕ(x)〉(z1, . . . , zn) → f , the right-hand side f is a ranked tree in
T∆(S ∪Zn) where S is the set of selectors and Zn = {z1, . . . , zn}. The program
Psib of Example 38 is ranked.

Let TL denote the class of transductions realized by tl programs and dTL

the class of those realized by deterministic tl programs, from ranked trees to
unranked forests. Moreover, TLr and dTLr denote the classes of transductions
realized by ranked programs, from ranked trees to ranked trees.

In what follows we will prove that TL = I-PFT, and similarly for the de-
terministic case and for the ranked case (Theorem 46). Note that this also
implies that tl programs and i-pft’s realize the same forest transductions, i.e.,
enc′ ◦ TL = enc′ ◦ I-PFT. These equalities are variants of the well-known fact
that macro grammars are equivalent to indexed grammars [24], see also [23,
Theorem 5.24].

Lemma 39 TL ⊆ I-PFT and dTL ⊆ I-dPFT. Moreover, TLr ⊆ I-PTT and
dTLr ⊆ I-dPTT.

Proof. The construction extends the one in the proof of Lemma 35. The main
idea is to use pebbles to store the actual parameters. Thus, the pebble colours
are of the form ([s1], . . . , [sm]) where m ≥ 0 and s1, . . . , sm are subtrees of a
right-hand side of a rule (in particular, the subtrees rooted at the children of a
node that is labelled by a selector).

As in the dtl case, for an input tree t, the transducer M simulates a rule
〈q, ϕ(x)〉(z1, . . . , zn) → f in state q at node u of t by testing whether t |= ϕ(u)
and, if successful, calling subroutine S. In this (nested) case, S outputs the
outermost ∆-labelled nodes of f , plus the outermost ∆-labelled nodes of the
actual parameters that are the values of the formal parameters zi that occur
outermost in f . For the states [sf ′], [δ(f ′)], and [ε], the rules of S are as in the
proof of Lemma 35 (and see the proof of Corollary 36 for the ranked case). If
the state of S is of the form [〈q′, ψ(x, y)〉(s1, . . . , sm)], then it drops a pebble
([s1], . . . , [sm]) on the current node u to represent the parameters, and returns
control to (this copy of) M in state 〈q′, ψ(x, y)〉. In that state, M calls sub-
routine Sq′,ψ, which works as in the dtl case. Note that M need not drop a
pebble ⊙, as Sq′,ψ can use the pebble ([s1], . . . , [sm]) instead. Finally, if the
state of S is of the form [zi] for some formal parameter zi, this means that the
corresponding actual parameter has to be evaluated. To do this, the subrou-
tine S searches for the topmost pebble, which has some colour ([s1], . . . , [sm]).
Then S lifts that pebble and changes its state to [si], ready to evaluate si.

It is easy to show, for every i ∈ N, that whenever M is in state q or state
〈q, ψ(x, y)〉 with i ∈ [1, rank(q)], and whenever S is in state [f ] and zi occurs
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in f , then the top pebble with colour ([s1], . . . , [sm]) satisfies i ∈ [1,m]. Hence
the last sentence of the previous paragraph never fails.

To understand the correctness of M, we show how the output forms of M
represent output forms of P , similar to the correctness proof of Theorem 37.
We restrict ourselves to output forms in which all the states of M are states
of P or selectors of P or states of the subroutine S, i.e., we disregard the states
of the subroutines Sq′,ψ and view the execution of such a subroutine as one
big step in the computation of M, changing a configuration 〈〈q′, ψ(x, y)〉, u, π〉
deterministically into a forest 〈q′, u′1, π〉 · · · 〈q

′, u′ℓ, π〉 (which is just a one-node
tree 〈q′, u′, π〉 in the ranked case). Thus, we define a mapping ‘rep’ from such
restricted output forms of M to the output forms of P . The ∆-labelled part of
the output form is not changed by ‘rep’, i.e., rep(sf) = rep(s) rep(f), rep(ε) = ε,
and rep(δ(f)) = δ(rep(f)) for δ ∈ ∆, where s is a tree and f a forest (or
rep(δ(s1, . . . , sm)) = δ(rep(s1), . . . , rep(sm)) in the ranked case). It remains to
define ‘rep’ for the configurations of M that occur in restricted output forms,
i.e., for every configuration 〈p, u, π〉 where p is a state q of P , or a selector
〈q′, ψ(x, y)〉 of P , or a state [f ] of S (where f is a subforest of a right-hand side
of a rule of P). As before, we will write rep(p, u, π) instead of rep(〈p, u, π〉).
The definition is by induction on the structure of π, of which we consider the
topmost pebble: let π = π′(v, ([s1], . . . , [sm])). If p = q or p = 〈q′, ψ(x, y)〉, then
rep(p, u, π) = 〈p, u〉(rep([s1], v, π′), . . . , rep([sm], v, π′)). For p = [f ] we define
rep([f ], u, π) to be the forest θu(f) in which every parameter zi is replaced by
rep([si], v, π

′), Finally, for π = ε, we define rep(p, u, ε) = 〈p, u〉 in the first case,
and rep([f ], u, ε) = θu(f) in the second case. If we consider only reachable
output forms of M, then ‘rep’ is well defined (cf. the previous paragraph).

It is now straightforward to prove, for every initial state q0 of P , every input
tree t, and every output form s of P , that 〈q0, roott〉 ⇒

∗
t,P s if and only if there

exists a restricted output form s′ of M such that 〈q0, roott, ε〉 ⇒∗
t,M s′ and

rep(s′) = s. In the proof one should use the rather obvious fact that for every
restricted output form s′ of M there exists a restricted output form s′′ of M
such that s′ ⇒∗

t,M s′′, rep(s′′) = rep(s′), and no states [f ] of S occur in s′′. The
above equivalence implies that τM = τP . ✷

Example 40 The i-ptt M corresponding to the (ranked) tl program Psib of
Example 38, according to the proof of Lemma 39, works in essentially the same
way as the i-ptt Msib of Example 2. Rules ρ1 to ρ5 are translated into rules
for M that are similar to the first 5 rules ofMsib. Rule ρ1 can be translated into
the first rule of Msib, which implements the jump to the leaf. Rule ρ2 can be
translated into the rule 〈qstart, σ0, 1,∅〉 → 〈q1, drop([σ0],[e]); up〉. Thus, M drops
the special pebble ([σ0], [e]) at the leaf, where Msib does not drop a pebble.
Rule ρ3 can be translated into the rule 〈q0, λ0, 1,∅〉 → 〈q0, drop([z1],[z2]); up〉.
Thus, M drops the “empty” pebble ([z1], [z2]) whenever Msib does not drop a
pebble. Rule ρ4 can be translated into the rule 〈qc, λi, 1,∅〉 → 〈qi, dropc(λi); up〉,
where c(λi) is the pebble ([λi(z1)], [〈qc, up(x, y)〉(z1, z2)]) which is dropped byM
instead of the pebble c. Note that the pebble colours c(λi) and ([σ0], [e]) include
the label (λi or σ0) of the node on which the pebble is dropped, which is of
course superfluous information. Finally, rule ρ5 can be translated into the rule
〈qc, σ1, 0,∅〉 → r(〈[σ1(z1)], stay〉, 〈[z2], stay〉), which calls the states [σ1(z1)] and
[z2] of the subroutine S. In state [σ1(z1)], S outputs σ1 and goes into state [z1].
We note that at any moment of time, when M is at node u of the input tree, all
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descendants of u, possibly including u itself, carry a pebble. Thus, in state [zi],
S moves down to the child of u, lifts pebble ([s1], [s2]) and goes into state [si].
It is now easy to see that states [z1] and [z2] of M correspond to states qout and
qnext ofMsib, respectively. In state [z1], S moves down and outputs the labels of
all nodes that are marked by some pebble c(λi) or ([σ0], [e]), lifting those pebbles
one by one. In state [z2], S moves down to the first pebble c(λi), replaces that
pebble by the “empty” pebble ([z1], [z2]), and returns control to M, which then
goes into state qc and moves up to the parent. When, in state [z2], S reaches
the leaf with pebble ([σ0], [e]), it lifts that pebble and outputs e. ✷

Lemma 39 and Theorem 34 (for k = 0) together provide an alternative proof
of the main result of [38]: the inverse type inference problem and the type-
checking problem are solvable for tl programs. The proofs are, however, simi-
lar. In [38] every tl program is decomposed into three macro tree transducers,
whereas we have decomposed every i-ptt into two tt’s. In general, decom-
position into tt’s leads to more efficient typechecking than decomposition into
macro tree transducers, because (cf. Proposition 6) inverse type inference of
a macro tree transducer takes double exponential time, unless the number of
parameters is bounded and the output type is fixed [48]. Let us define a tldb

program to be a tl program in which the mso formulas ϕ(x) and ψ(x, y) in the
template rules of the program are represented by deterministic bottom-up finite-
state tree automata that recognize the corresponding regular sites mark(T (ϕ))
and trips mark(T (ψ)).

Theorem 41 The inverse type inference problem and the typechecking problem
are solvable for tldb programs in 3-fold and 4-fold exponential time, respectively.

Proof. By Theorem 34, these problems are solvable for i-pft’s in 2-fold and
3-fold exponential time. Let us now assume that the regular sites and trips used
in mso tests of i-pft’s are also represented by deterministic bottom-up finite-
state tree automata. Then it is easy to see that the construction in the proof
of Lemma 39 takes polynomial time. However, the mso tests that are used by
the resulting i-pft have to be removed, and the construction in the proof of
Theorem 16 takes exponential time, as can be checked in a straightforward way.
That involves checking that the constructions in the proofs of Lemmas 10, 12,
and 13 take polynomial time, and so does the construction in the proof of
Proposition 14 (for the nonfunctional case), i.e., in the proof of [5, Theorem 8].
The exponential in the proof of Theorem 16 is due to the use of the sets of
states S of Bd in the colours of the beads. Hence, solving the above problems
takes one more exponential for tldb programs than for i-pft. ✷

A tl program P = (Σ,∆, Q,Q0, R) is a macro tree transducer, more pre-
cisely an oi macro tree transducer (see [22]), if it is ranked, and for every
rule 〈q, ϕ(x)〉(z1, . . . , zn) → f the following hold. First, ϕ(x) ≡ labσ(x) for
some σ ∈ Σ. Second, for every selector 〈q′, ψ(x, y)〉 that occurs in f , we have
ψ(x, y) ≡ downi(x, y) for some i ∈ [1, rankΣ(σ)]. It follows immediately from
Lemma 39 that macro tree transducers can be simulated by i-ptt. Let MToi

denote the class of tree transductions realized by oi macro tree transducers, and
dMToi the corresponding deterministic class.

Corollary 42 MToi ⊆ I-PTT and dMToi ⊆ I-dPTT.
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The inclusions are proper because for every oi macro tree transduction the
height of the output tree is exponentially bounded by the height of the input
tree [22, Theorem 3.24], whereas it is not difficult to construct a deterministic
i-ptt M with input alphabet {σ, e}, where rank(σ) = 2 and rank(e) = 0, such
that the height of the output tree is exponential in the size of the input tree.
The transducer M is similar to the i-ptt Msib of Example 2, viewing the nodes
of the input tree as large cities that are ordered by document order; thus, the
number of itineraries is indeed exponential in the size of the input tree. Note
that by [19, Corollary 7.2] and [22, Theorem 6.18], dMToi properly contains
the class DMSOT of deterministic mso definable tree transductions (see also [9,
Section 8]). Note also that, since dB is properly contained in dMToi by [22,
Corollary 6.16], the second part of Corollary 42 strengthens the second part of
Theorem 18. It is open whether or not B is contained in MToi.

We now turn to the inclusion I-PFT ⊆ TL. To prove that, we need a normal
form for i-pft. We say that a rule of an i-pft is initial if the state in its left-hand
side is an initial state. We define an i-pft M = (Σ,∆, Q,Q0, C,∅, Ci, R, 0) with
C = Ci to be in normal form if its rules satisfy the following five requirements:

(1) Initial states do not appear in the right-hand side of a rule.
(2) All initial rules are of the form 〈q0, σ, 0,∅〉 → 〈q, dropc〉 for some q0 ∈ Q0,

σ ∈ Σ, q ∈ Q\Q0, and c ∈ C. Intuitively, M starts its computation by dropping
a pebble on the root of the input tree.

(3) All non-initial rules have a left-hand side of the form 〈q, σ, j, {c}〉 with
c ∈ C. Intuitively, M always observes the topmost pebble, i.e., that pebble is
always at the position of the head.

(4) All non-initial non-output rules have a right-hand side 〈q′, α〉 with q′ ∈
Q \ Q0 and α = stay or α = µ; dropc or α = liftc;µ where c ∈ C and µ ∈
{up, stay} ∪ {downi | i ∈ [1,mxΣ]}. We will identify stay; dropc with dropc and
liftc; stay with liftc. Intuitively, to force that M always observes the topmost
pebble, M always drops a pebble after moving, and always moves after lifting
a pebble. Note that, in a successful computation, M never lifts the pebble that
it dropped with an initial rule.

(5) There is a function δ from C to {up, stay} ∪ {downi | i ∈ [1,mxΣ]} such
that (i) if a rule of M has right-hand side 〈q′, liftc;µ〉, then µ = δ(c), and (ii) for
every rule 〈q, σ, j, {d}〉 → 〈q′, µ; dropc〉 of M, if µ = up then δ(c) = downj , if
µ = stay then δ(c) = stay, and if µ = downi then δ(c) = up. Intuitively
this means that M, after lifting a pebble, always knows where to find the new
topmost pebble.

This ends the definition of normal form. Obviously, it can also be defined
for i-ptt’s and for i-pta’s. The i-pta in normal form can be viewed as a
reformulation of the two-way backtracking pushdown tree automaton of [52].
The i-ptt in normal form can be viewed as a reformulation of the RT(P(S))-
transducer of [12, 23], where S is the storage type Tree-walk of [12].22

Lemma 43 For every i-pft M an equivalent i-pft M′ in normal form can be
constructed. If M is deterministic, then so is M′. The same holds for i-ptt.

Proof. The idea of the construction is a simplified version of the one in the proof
of Theorem 16, where “beads” are used to cover the shortest path between the

22See also [20, Section 3.3] where the tt is related to the RT(S)-transducer for S = Tree-
walk.
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head and the topmost pebble. Assuming that the i-pta A in that proof starts
by dropping a pebble on the root (which is never lifted), the constructed i-pta
A′ satisfies the above requirements on the rules. To show the details, we will
repeat that construction, in a simplified form. Here, the only information a
bead has to carry is the position of the previous pebble or bead. Moreover, we
do not have to drop a bead on the position of the topmost pebble.

Let M be an i-pft with colour set C. We may obviously assume that M
already satisfies the first two requirements above. We construct M′ with the
same states and initial states as M, and with the colour set C ∪ B where
B = {up} ∪ {downi | [1,mxΣ]}. The function δ of requirement (5) is defined
by δ(d) = d for every d ∈ B, and δ(c) = stay for every c ∈ C. The rules of M′

are obtained from those of M as follows. The initial rules of M are also rules
of M′.

If 〈q, σ, j,∅〉 → 〈q′, up〉 is a rule ofM, thenM′ has the rules 〈q, σ, j, {up}〉 →
〈q′, liftup; up〉 and 〈q, σ, j, {downi}〉 → 〈q′, up; dropdownj

〉 for every i. Also, if
〈q, σ, j, {c}〉 → 〈q′, up〉 is a rule of M, then M′ has the rule 〈q, σ, j, {c}〉 →
〈q′, up; dropdownj

〉.
Similarly, if 〈q, σ, j,∅〉 → 〈q′, downi〉 is a rule of M, then M′ has the rules

〈q, σ, j, {downi}〉 → 〈q′, liftdowni
; downi〉 and 〈q, σ, j, {µ}〉 → 〈q′, downi; dropup〉

for every µ ∈ {up} ∪ {downk | k 6= i}. Also, if 〈q, σ, j, {c}〉 → 〈q′, downi〉 is a
rule of M, then M′ has the rule 〈q, σ, j, {c}〉 → 〈q′, downi; dropup〉.

The remaining rules of M (viz. rules with right-hand side 〈q′, stay〉, output
rules, rules that lift, and non-initial rules that drop) are treated as follows. If
〈q, σ, j,∅〉 → ζ is such a rule of M, then M′ has the rules 〈q, σ, j, {µ}〉 → ζ for
every bead µ ∈ B. If 〈q, σ, j, {c}〉 → ζ is such a rule of M, then it is also a rule
of M′.

It should be clear that M′ is equivalent to M. Whenever M observes the
topmost pebble c, so does M′. Whenever M does not observe c, M ′ observes a
bead that indicates the direction of the topmost pebble. Note that if M′ lifts
pebble c of M, the new topmost pebble/bead is always at the same position,
because when c was dropped M′ was observing the topmost pebble/bead. ✷

The tl program that we will construct to simulate a given i-pft M will use
mso formulas ϕ(x) and ψ(x, y) that closely resemble the tests and instructions in
the left-hand and right-hand sides of the rules of M, respectively. Those tests
and instructions are “local” in the sense that they only concern the node x,
its parent, and its children. Thus, we say that a tl program P is local if
in the left-hand side of a rule it only uses a formula ϕσ,j(x) for σ ∈ Σ and
j ∈ [0,mxΣ], where ϕσ,0(x) ≡ labσ(x)∧root(x) and ϕσ,j(x) ≡ labσ(x)∧childj(x)
for j 6= 0, and in the right-hand side of that rule it only uses the formulas up(x, y)
(provided j 6= 0), stay(x, y), and downi(x, y) for i ∈ [1, rankΣ(σ)].

23 Thus,
P also satisfies restriction (R2) in the definition of a ranked tl program. Note
that macro tree transducers, as defined before Corollary 42, are local ranked tl
programs. The classes of transductions realized by local tl programs will be
decorated with a subscript ℓ.

Lemma 44 I-PFT ⊆ TLℓ and I-dPFT ⊆ dTLℓ. Moreover, I-PTT ⊆ TLℓr and
I-dPTT ⊆ dTLℓr.

23Recall that root(x) ≡ ¬∃z(down(z, x)), childi(x) ≡ ∃z(downi(z, x)), up(x, y) ≡
down(y, x), and stay(x, y) ≡ x = y.
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Proof. Let M = (Σ,∆, Q,Q0, C,∅, Ci, R, 0) with C = Ci be an i-pft in
normal form. We construct a tl program P that is equivalent to M. The set
of states of P is

Q0 ∪ ((Q \Q0)× C) ∪ {q⊥}.

Each initial state has rank 0, each pair 〈q, c〉 has rank #(Q \ Q0), and q⊥ has
rank 0. The set of initial states of P is Q0. The rules of P are defined as follows,
where we denote a state 〈q, c〉 as qc. Let Q \Q0 = {q1, . . . , qn} where we fix the
order q1, . . . , qn.

First, if 〈q0, σ, 0,∅〉 → 〈q, dropc〉 is an initial rule of M, then P has the rule
〈q0, ϕσ,0(x)〉 → 〈qc, stay(x, y)〉(⊥, . . . ,⊥), where ⊥ abbreviates 〈q⊥, stay(x, y)〉.
There are no rules of P with q⊥ in the left-hand side.

Second, let 〈q, σ, j, {c}〉 → ζ be a (non-initial) rule of M that does not con-
tain a drop- or lift-instruction. Thus, ζ is of the form 〈p, stay〉, 〈p1, stay〉〈p2, stay〉,
δ(〈p, stay〉), or ε, with p, p1, p2 ∈ Q and δ ∈ ∆.24 Then P has the rule
〈qc, ϕσ,j(x)〉(z1, . . . , zn) → ζ′, where ζ′ is obtained from ζ by replacing every
〈p, stay〉 by 〈pc, stay(x, y)〉(z1, . . . , zn).

Third, let 〈q, σ, j, {d}〉 → 〈p, µ; dropc〉 be a rule of M. Note that for every
µ ∈ {up, stay} ∪ {downi | i ∈ [1,mxΣ]}, there is an mso formula µ(x, y). Then
P has the rule

〈qd, ϕσ,j(x)〉(z1, . . . , zn) → 〈pc, µ(x, y)〉(s1, . . . , sn)

where si = 〈qdi , stay(x, y)〉(z1, . . . , zn) for every i ∈ [1, n]; thus, the rule is

〈qd, ϕσ,j(x)〉(z1, . . . , zn) →

〈pc, µ(x, y)〉(〈qd1 , stay(x, y)〉(z1, . . . , zn), . . . , 〈q
d
n, stay(x, y)〉(z1, . . . , zn)).

Fourth and final, if 〈q, σ, j, {c}〉 → 〈qi, liftc;µ〉 is a rule of M, then P has the
rule 〈qc, ϕσ,j(x)〉(z1, . . . , zn) → zi.

Intuitively, P is in state qc when M is in state q and the topmost pebble
of M is c. The parameter zi of q

c contains the continuation ofM’s computation
just after pebble c is lifted and M goes into state qi. At the moment that M
drops pebble c, P does not know what the state qi ofM will be after lifting c and
thus prepares the continuation for every possible state. The correct continuation
is then chosen by P when it simulates M’s lifting of c. Note that due to
requirement (5) of the normal form, when M lifts a pebble, it returns to the
same node where it decided to drop the pebble (at that node, or at the parent
or at one of the children of that node).

Formally, we define a mapping ‘rep’ from the output forms of M (except
the initial one) to those restricted output forms of P of which the outermost
nodes are labelled by a symbol from ∆ or by a configuration 〈q, u〉 where q is
a state of P (thus, they are not labelled by a configuration 〈p, u〉 where p is
a selector of P). As in the proof of Lemma 39, the ∆-labelled part of the
output form is not changed. Thus, it remains to define ‘rep’ for the configura-
tions of M that contain non-initial states, which are of the form 〈q, u, π(u, c)〉
because the topmost pebble is always at the position of the head. We define
rep(q, u, π(u, c)) = 〈qc, u〉 rep′(π), where rep′ maps the pebble stacks of M to
sequences of output forms of P , recursively as follows: rep′(ε) = (⊥, . . . ,⊥)

24In the case where M is an i-ptt, ζ is of the form 〈p, stay〉 or δ(〈p1, stay〉, . . . , 〈pm, stay〉).
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and rep′(π(u, c)) = (s1, . . . , sn) where si = 〈〈qci , stay(x, y)〉, u〉 rep
′(π) for every

i ∈ [1, n]. Note that ‘rep’ is injective.
It is now straightforward to prove, for every q ∈ Q \Q0, every c ∈ C, every

input tree t, and every output form s of P (restricted as described above), that
〈qc, roott〉(⊥, . . . ,⊥) ⇒∗

t,P s if and only if there exists an output form s′ of M
such that 〈q, roott, (roott, c)〉 ⇒∗

t,M s′ and rep(s′) = s. Since ‘rep’ is injective,
s′ is in fact unique. Note that each computation step of M is simulated by two
(or three) computation steps of P , where the second (and third) step executes
a selector to satisfy the restriction on the output forms of P . Due to its special
form, the execution of such a selector ψ(x, y) changes the label 〈〈q′, ψ(x, y)〉, u〉
of a node of the output form into 〈q′, u′〉 where u′ is the unique node of the
input tree for which ψ(u, u′) holds.

Taking into account the initial rules of M, it should be clear that the above
equivalence proves that τP = τM. ✷

Example 45 We illustrate Lemma 44 with the deterministic i-ptt Msib of
Example 2. We first construct an i-ptt M′

sib in normal form that is equivalent
to Msib. We also allow tuples 〈q′, liftd;µ〉 in the output rules for any colour d,
which can easily be handled too. The transducerM′

sib has a new initial state qin,
in which it drops pebble ⊙ on the root, which also serves as the pebble ‘up’.
The pebble ‘down1’ is denoted by ↓. The normal form function δ is defined
by δ(⊙) = up, δ(↓) = down1, and δ(c) = stay for c ∈ {0, 1}. There are new
states q0 and q1 in which M′

sib moves up, drops pebble ↓, and goes into the
corresponding unbarred state. Thus the rules for them are

ρc,d : 〈qc, σ, 1, {d}〉 → 〈qc, up; drop↓〉

with σ ∈ Σ and d ∈ {⊙, ↓, 0, 1}. The other rules (with c = 1 or i = 0 in rule ρ4
as usual) are

ρ0 : 〈qin, σ1, 0,∅〉 → 〈qstart, drop⊙〉

ρ1 : 〈qstart, σ1, j, {⊙}〉 → 〈qstart, down1; drop⊙〉

ρ2 : 〈qstart, σ0, 1, {⊙}〉 → 〈q1, stay〉

ρ3 : 〈q0, λ0, 1, {↓}〉 → 〈q0, stay〉

ρ4 : 〈qc, λi, 1, {↓}〉 → 〈qi, dropc〉

ρ5 : 〈qc, σ1, 0, {↓}〉 → r(〈qout, stay〉, 〈qnext, lift↓; down1〉)

ρ6 : 〈qout, σ1, 0, {↓}〉 → σ1(〈qout, lift↓; down1〉)

ρ7 : 〈qout, σ1, 1, {↓}〉 → 〈qout, lift↓; down1〉

ρ8 : 〈qout, σ1, 1, {c}〉 → σ1(〈qout, liftc〉)

ρ9 : 〈qout, σ0, 1, {⊙}〉 → σ0

ρ10 : 〈qnext, σ1, 1, {↓}〉 → 〈qnext, lift↓; down1〉

ρ11 : 〈qnext, σ1, 1, {c}〉 → 〈qc, liftc〉

ρ12 : 〈qnext, σ0, 1, {⊙}〉 → e

We now construct the deterministic tl program P corresponding to M′
sib. The

states of M′
sib after lifting ↓ are qout and qnext. Thus, the states of P that

are active when the topmost pebble is ↓ only need two parameters z1, z2 cor-
responding to qout and qnext. Similarly, the states of P that are active when
the topmost pebble is c only need two parameters z1, z2 corresponding to qout
and qc. The states of P that are active when the topmost pebble is ⊙ do not
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need parameters, because ⊙ is never lifted. Program P has the states qin, q
⊙
start,

q↓c , q
d
c , q

d
out, and q

d
next, where c ∈ {0, 1} and d ∈ {⊙, ↓, 0, 1}. Note that the state

q⊥ is superfluous. The initial state qin and all states with superscript ⊙ have
rank 0, and the other states have rank 2.

Program P has the following rule corresponding to rule rc,d of M′
sib, with

d 6= ⊙:

ρc,d : 〈q
d
c , ϕσ,1(x)〉(z1, z2) →

〈q↓c , up(x, y)〉(〈q
d
out, stay(x, y)〉(z1, z2), 〈q

d
next, stay(x, y)〉(z1, z2))

and for d = ⊙ the same rule without the parameters (z1, z2). The other rules
of P are

ρ0 : 〈qin, ϕσ1,0(x)〉 → 〈q⊙start, stay(x, y)〉

ρ1 : 〈q⊙start, ϕσ1,j(x)〉 → 〈q⊙start, down1(x, y)〉

ρ2 : 〈q⊙start, ϕσ0,1(x)〉 → 〈q⊙1 , stay(x, y)〉

ρ3 : 〈q↓0 , ϕλ0,1(x)〉(z1, z2) → 〈q↓0, stay(x, y)〉(z1, z2)

ρ4 : 〈q↓c , ϕλi,1(x)〉(z1, z2) →

〈qci , stay(x, y)〉(〈q
↓
out, stay(x, y)〉(z1, z2), 〈q

↓
c , stay(x, y)〉(z1, z2))

ρ5 : 〈q↓c , ϕσ1,0(x)〉(z1, z2) → r(〈q↓out, stay(x, y)〉(z1, z2), z2)

ρ6 : 〈q↓out, ϕσ1,0(x)〉(z1, z2) → σ1(z1)

ρ7 : 〈q↓out, ϕσ1,1(x)〉(z1, z2) → z1

ρ8 : 〈qcout, ϕσ1,1(x)〉(z1, z2) → σ1(z1)

ρ9 : 〈q⊙out, ϕσ0,1(x)〉 → σ0

ρ10 : 〈q↓next, ϕσ1,1(x)〉(z1, z2) → z2

ρ11 : 〈qcnext, ϕσ1,1(x)〉(z1, z2) → z2

ρ12 : 〈q⊙next, ϕσ0,1(x)〉 → e

Applying rule ρ6 to the right-hand side of rule ρ5, we obtain the rule ρ′5 :
〈q↓c , ϕσ1,0(x)〉(z1, z2) → r(σ1(z1), z2), which is in fact rule ρ5 of program Psib of
Example 38, if we identify the states q↓c and qc. Rules ρ0 and ρ1 of P correspond
to rule ρ1 of Psib in an obvious way (with q⊙start and qstart identified). Since
program P is deterministic, and its states generate trees (rather than forests),
we can also apply rules ρ7−ρ12 to the right-hand side of rule ρc,d, and we obtain
the rules

ρ′c,↓ : 〈q↓c , ϕσ1,1(x)〉(z1, z2) → 〈q↓c , up(x, y)〉(z1, z2)

ρ′i,c : 〈q
c
i , ϕσ1,1(x)〉(z1, z2) → 〈q↓i , up(x, y)〉(σ1(z1), z2)

ρ′c,⊙ : 〈q⊙c , ϕσ0,1(x)〉 → 〈q↓c , up(x, y)〉(σ0, e)

Applying ρ′1,⊙ to the right-hand side of ρ2 we obtain ρ′2 : 〈q⊙start, ϕσ0,1(x)〉 →

〈q↓1 , up(x, y)〉(σ0, e), which is rule ρ2 of Psib. Applying ρ′0,↓ to the right-hand

side of ρ3 we obtain ρ′3 : 〈q↓0 , ϕλ0,1(x)〉(z1, z2) → 〈q↓0 , up(x, y)〉(z1, z2) which
is rule ρ3 of Psib. Finally, applying rules ρ′i,c, ρ7, and ρ′c,↓ to the selectors
in the right-hand side of rule ρ4, respectively, we obtain the right-hand side
〈qi, up(x, y)〉(λi(z1), 〈qc, up(x, y)〉(z1, z2)) of rule ρ4 of Psib. Thus, program P is
essentially the same as program Psib of Example 38. ✷

Lemmas 39 and 44 together prove that tl programs have the same expressive
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power as i-pft’s. Additionally, they prove that for every tl program there is
an equivalent local one.

Theorem 46 TL = TLℓ = I-PFT and dTL = dTLℓ = I-dPFT. Moreover, TLr =
TLℓr = I-PTT and dTLr = dTLℓr = I-dPTT.

Since local tl programs satisfy restriction (R2) in the definition of a ranked
tl program, the equation TL = TLℓ shows that the pattern matching aspect that
is involved in the execution of selectors, can be viewed as an extended feature.
Moreover, even the “jumps” in the execution of selectors, and the arbitrary mso
head tests in the left-hand sides of rules, can be viewed as extended features
of TLℓ.

Note that for tldbℓ programs the construction in the proof of Lemma 39 can
easily be simplified to one that takes polynomial time and that results in an
i-pft that does not use mso tests. That implies that the inverse type inference
problem for such programs is solvable in 2-fold exponential time, and hence
typechecking can be done in 3-fold exponential time (cf. Theorem 41).

The local ranked tl program is an obvious reformulation of the “macro
tree-walking transducer” (2-mtt) of [38]. The inclusion TLr ⊆ TLℓr is a (slightly
stronger) version of [38, Theorem 5]. Moreover, the local ranked tl program
is the same as the “0-pebble macro tree transducer” of [20, Section 5.1] and
it is the CFT(S)-transducer of [23] for the storage type S = Tree-walk, both
of which generalize the macro attributed tree transducer of [36, 26] which ad-
ditionally satisfies a noncircularity condition. It follows from Lemma 4 and
Theorem 46 that TLℓr ⊆ TT

2, which was stated as an open problem in [20,
Section 8] (where TLℓr and TT are denoted 0-PMTT and 0-PTT, respectively).
In view of Lemma 43, the equality TLℓr = I-PTT is the same as the equality
CFT(S) = RT(P(S)) of [23, Theorem 5.24] for S = Tree-walk, and similarly for
the deterministic case.

13 A TL Program in XSLT

In Tables 1 and 2 we listed a possible input document and the resulting output
document for the i-ptt Msib of Example 2. In this section we present in
Table 7 an XSLT 1.0 program with the same structure as the tl program Psib

of Example 38. In what follows we comment on the XSLT program and its
relationship to Psib, abbreviated as P .

The first rule ρ1 of P corresponds to the first template of the XSLT pro-
gram: this template initalizes the algorithm by matching the root of the input
document, jumping to the leaf by selecting the final stop, and invoking named
template start on it.

The second rule ρ2 of P corresponds to template start: it moves up, using
the apply-templates instruction which selects the parent, and thus invokes
the third template on that parent, which is the only template for nonroot doc-
ument elements. It invokes that template with the appropriate parameters:
nextstoplarge is 1 because large = 1 for the final stop, stoplist is a list
containing only the final stop, and additionalresults is the single element
<endofresults />.

The remaining rules of P correspond to the third template, which is applied
to all nonfinal stops. That template takes a partial stop list stoplist (from the
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<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>

<xsl:template match="/">

<xsl:for-each select="//stop[@final=1]">
<xsl:call-template name="start" />

</xsl:for-each>
</xsl:template>

<xsl:template name="start">
<xsl:apply-templates select="parent::stop">

<xsl:with-param name="nextstoplarge" select="@large" />
<xsl:with-param name="stoplist">

<xsl:copy>

<xsl:copy-of select="attribute::*" />
</xsl:copy>

</xsl:with-param>
<xsl:with-param name="additionalresults">

<endofresults />
</xsl:with-param>

</xsl:apply-templates>

</xsl:template>

<xsl:template match="stop">
<xsl:param name="nextstoplarge" />
<xsl:param name="stoplist" />

<xsl:param name="additionalresults" />
<xsl:if test="@initial = 1">

<result>
<xsl:copy>

<xsl:copy-of select="attribute::*" />
<xsl:copy-of select="$stoplist" />

</xsl:copy>

<xsl:copy-of select="$additionalresults" />
</result>

</xsl:if>
<xsl:if test="not(@initial = 1)">

<xsl:variable name="results">

<xsl:apply-templates select="parent::stop">
<xsl:with-param name="nextstoplarge" select="$nextstoplarge" />

<xsl:with-param name="stoplist" select="$stoplist" />
<xsl:with-param name="additionalresults" select="$additionalresults" />

</xsl:apply-templates>
</xsl:variable>
<xsl:if test="@large = 1 or $nextstoplarge = 1">

<xsl:apply-templates select="parent::stop">
<xsl:with-param name="nextstoplarge" select="@large" />

<xsl:with-param name="stoplist">
<xsl:copy>

<xsl:copy-of select="attribute::*" />

<xsl:copy-of select="$stoplist" />
</xsl:copy>

</xsl:with-param>
<xsl:with-param name="additionalresults" select="$results" />

</xsl:apply-templates>
</xsl:if>
<xsl:if test="@large = 0 and $nextstoplarge = 0">

<xsl:copy-of select="$results" />
</xsl:if>

</xsl:if>
</xsl:template>

</xsl:stylesheet>

Table 7: XSLT Program
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current stop to the final stop) and generates all allowed ways to complete that
stop list using the stops between the current one and the initial one. Nested
below the deepest element of the output, it includes the result tree fragment
passed in additionalresults. The third template has three parameters:

nextstoplarge: a boolean indicating whether or not the “next” stop (i.e.,
the stop at the front of stoplist) is a large stop; it corresponds to states
q1 and q0 in P , respectively,

stoplist: a partial list of stops (taken from the current stop to the final
stop) for which this template will recursively generate all (allowed) ways
in which it can be completed; it corresponds to parameter z1 in P ,

additionalresults: results that are to be appended to the results that
this template generates; it corresponds to parameter z2 in P ,

where both stoplist and additionalresults are of type ‘result tree fragment’.
Corresponding to rule ρ5 of P , the third template, when invoked on the initial

stop (for which initial = 1), has computed a complete stop list (after adding
this stop) and outputs it: it copies the initial stop and nests the remainder of
the stop list (i.e., the value of its parameter stoplist) in it; it also includes the
additional results (i.e., the value of parameter additionalresults).

Corresponding to rules ρ3 and ρ4 of P , the third template, when invoked
on an intermediate stop (for which not(initial = 1)), has not yet computed
a complete stop list, and now calculates all allowed ways to complete it. Intu-
itively, it computes two result sets: one that does not add the current stop, and
one that does. They are combined by passing the first result set as “additional
results” to the calculation of the second one. Thus, the third template starts by
computing the first result set, and, to abbreviate the remaining code, it assigns
its value to a variable called results. In rules ρ3 and ρ4 of P this result set cor-
responds to the selector 〈qc, up(x, y)〉(z1, z2), where c = 0 in ρ3. In the case that
large = 0 and nextstoplarge = 0, we are not allowed to stop here because
that would create two consecutive small stops. Thus the template only outputs
the results that it just stored in the variable (corresponding to rule ρ3 of P).
In the case that large = 1 or nextstoplarge = 1, the template calculates all
possible ways to complete the stop list that contain this stop, and includes as
additional results those that are stored in the variable (corresponding to rule ρ4
of P).

14 Data Complexity

In this section we show that the transduction of a deterministic ptt M can be
realized in (1-fold) exponential time, in the sense that there is an exponential
time algorithm that, for every given input tree t, computes a regular tree gram-
mar G that generates the language {τM(t)}. If t is in the domain of M, then G
can be viewed as a DAG (directed acyclic graph) that defines the output tree
τM(t), in the usual sense. Thus, producing the actual output tree would take
2-fold exponential time. If t is not in the domain of M, then G generates the
empty tree language (which can be decided in time linear in the size of G).
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Theorem 47 For every deterministic ptt M there is an exponential time al-
gorithm that, for given input tree t, computes a regular tree grammar G such
that L(G) = {s | (t, s) ∈ τM}.

Proof. Let M = (Σ,∆, Q, {q0}, C, Cv, Ci, R, k) be a deterministic vki-ptt.
For an input tree t ∈ TΣ in the domain of M, let us consider the computation
〈q0, roott, ε〉 ⇒∗

t,M s, where s = τM(t), and let 〈q, u, π〉 be a configuration of M
that occurs in that computation. We claim that the length of π is at most
N = |Q| · (|C|+ 1)k+1 · nk+2, where n is the size of t.

To prove this claim we define, as an auxiliary tool, the nondeterministic
vki-pta A that is obtained from M by changing every output rule 〈q, σ, j, b〉 →
δ(〈q1, stay〉, . . . , 〈qm, stay〉) of M into the rules 〈q, σ, j, b〉 → 〈qi, stay〉 for all
i ∈ [1,m]. Intuitively, whenever M branches, A nondeterministically follows
one of those branches. Thus, all computations of A that start with 〈q0, roott, ε〉
are finite. Obviously, 〈q, u, π〉 occurs in such a computation of A. Let π =
(v1, c1) · · · (vm, cm) and suppose that m > N . For every ℓ ∈ [1,m] we define
πℓ = (v1, c1) · · · (vℓ, cℓ). Then there exist configurations 〈qℓ, uℓ, πℓ〉, ℓ ∈ [1,m],
such that 〈q0, roott, ε〉 ⇒∗

t,A 〈q1, u1, π1〉 and 〈qℓ, uℓ, πℓ〉 ⇒∗
t,A 〈qℓ+1, uℓ+1, πℓ+1〉

for every ℓ ∈ [1,m− 1], and such that, moreover, every configuration occurring
in the computation 〈qℓ, uℓ, πℓ〉 ⇒∗

t,A 〈qℓ+1, uℓ+1, πℓ+1〉 has a pebble stack with
prefix πℓ. Due to the choice of m, there exist i, j ∈ [1,m] with i < j such that
qi = qj , ui = uj , (vi, ci) = (vj , cj), and for every v ∈ N(t) and c ∈ Cv: (v, c) oc-
curs in πi if and only (v, c) occurs in πj . This implies that the computation
〈qi, ui, πi〉 ⇒∗

t,A 〈qj , uj, πj〉 can be repeated arbitrarily many times, leading to
an infinite computation of A, which is a contradiction and proves the claim.

We now construct the regular tree grammarG. Its nonterminals are the con-
figurations 〈q, u, π〉 ofM on t such that |π| ≤ N . Since N is polynomial in n, the
number of nonterminals of G is exponential in n. The initial nonterminal of G
is 〈q0, roott, ε〉. If 〈q, u, π〉 ⇒∗

t,M 〈q′, u′, π′〉 ⇒t,M δ(〈q1, u′, π′〉, . . . , 〈qm, u′, π′〉),
then 〈q, u, π〉 → δ(〈q1, u′, π′〉, . . . , 〈qm, u′, π′〉) is a rule of G. To decide whether
〈q′, u′, π′〉 ⇒t,M δ(〈q1, u

′, π′〉, . . . , 〈qm, u
′, π′〉) it suffices to inspect the output

rules of M. To decide whether 〈q, u, π〉 ⇒∗
t,M 〈q′, u′, π′〉 we construct from M

and t an ordinary pushdown automaton P that simulates the non-output be-
haviour of M on t, as in the query evaluation paragraph at the end of Section 9.
Since, as opposed to that paragraph, M also has visible pebbles, P should keep
track of those pebbles in its finite state. Let Γ be the set of all mappings
γ : Cv → N(t) ∪ {⊥} such that #({c ∈ Cv | γ(c) 6= ⊥}) ≤ k. During P ’s
computation, the mapping γ in its finite state indicates for every visible pebble
whether it occurs in the current stack and, if so, on which node it is dropped.
Thus, we define P to have state set Q × N(t) × Γ and pushdown alphabet
N(t) × C. A configuration 〈q, u, π〉 of M is simulated by the configuration
P(〈q, u, π〉) = 〈p, π〉 of P such that p = (q, u, γ) where, for every c ∈ Cv, if
γ(c) ∈ N(t) then (γ(c), c) occurs in π, and if γ(c) = ⊥ then c does not occur
in π. The transitions of the automaton P are defined in such a way that P
(with the empty string as input) has the same computation steps as M (with-
out its output rules), i.e., such that 〈q, u, π〉 ⇒t,M 〈q′, u′, π′〉 if and only if
P(〈q, u, π〉) ⇒P P(〈q′, u′, π′〉), where ⇒P is the computation step relation of P .
For instance, let P be in state (q, u, γ) and let the top element of its stack be
(v, c). Let u have label σ and child number j, and let b consist of all c′ ∈ Cv

with γ(c′) = u plus c if v = u. If 〈q, σ, j, b〉 → 〈q′, dropd〉 is a rule of M such
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that d ∈ Cv, γ(d) = ⊥, and #({c′ ∈ Cv | γ(c′) 6= ⊥}) < k, then P pushes (u, d)
on its stack and goes into state (q′, u, γ′) where γ′(d) = u and γ′(c′) = γ(c′)
for all c′ 6= d. If 〈q, σ, j, b〉 → 〈q′, liftc〉 is a rule of M such that c ∈ Ci and
v = u, then P pops (v, c) from its stack and goes into state (q′, u, γ). The
transitions of P are defined similarly for the other non-output rules of M. It
should be clear that P can be constructed in time polynomial in n. Since it
can be decided in polynomial time for configurations 〈p, π〉 and 〈p′, π′〉 of P
whether 〈p, π〉 ⇒∗

P 〈p′, π′〉, it can be decided whether 〈q, u, π〉 ⇒∗
t,M 〈q′, u′, π′〉

in polynomial time. Hence the total time to construct G is exponential. ✷

Note that the first part of the above proof also shows that for every deter-
ministic ptt the height of the output tree is exponential in the size of the input
tree.

A natural question is whether Theorem 47 also holds for forest transducers,
i.e., for deterministic pft’s. That is indeed the case (as the reader can easily
verify), except that G is not a regular forest grammar, but a forest generating
context-free grammar. To be precise, G is a context-free grammar of which every
rule is of the form X0 → δ(X1) or X0 → X1X2 or X → ε where δ is a symbol
from an unranked alphabet. If L(G) = {f}, then G can still be viewed as a DAG
that defines the forest f . Thus, in this sense, by Theorem 46, deterministic tl
programs can be executed in exponential time, in accordance with the result
of [34] that XSLT 1.0 programs can be executed in exponential time.

Another natural question is whether there exist interesting subclasses of
ptt’s that can be realized in polynomial time. Here we discuss one such sub-
class. We define a ptt to be bounded if there exists m ∈ N such that output
rules can only be applied when the pebble stack contains at most m pebbles.
Intuitively it means that the infinitely many invisible pebbles are mainly used
to check mso properties of the observable configuration. Formally it can either
be required as a dynamic property of the (successful) computations of the ptt
or be incorporated statically in the semantics of the ptt. We now show that
bounded ptt’s can be realized in polynomial time, even in the nondeterministic
case.

Theorem 48 For every bounded ptt M there is a polynomial time algorithm
that, for given input tree t, computes a regular tree grammar G such that L(G) =
{s | (t, s) ∈ τM}.

Proof. The construction of G is exactly the same as in the proof of Theorem 47,
except that its nonterminals are now the configurations 〈q, u, π〉 of M on t such
that |π| ≤ m.25 The number of nonterminals of G is therefore polynomial in the
size of t, and since the pushdown automaton P can also be constructed (and
tested) in polynomial time, the total time to construct G is polynomial. ✷

Again, the same result holds for pft’s, taking G to be a forest generating
context-free grammar. Note that for a nondeterministic pft M and an input
tree t, the set {s | (t, s) ∈ τM} is not necessarily a regular forest language.

Also, the same result holds for bounded ptt’s that use mso tests on the
observable configuration. That is not immediate, because the construction in
the proof of Theorem 16 does not preserve boundedness, due to the use of beads.

25Additionally, G has an initial nonterminal S with rules S → 〈q0, roott, ε〉 for every initial
state q0 of M.
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However, it is easy to adapt the construction of the pushdown automaton P in
the proof of Theorem 47 to incorporate the mso tests of the vki-ptt M. In
fact, the observable configuration tree obs(t, π) can be constructed from t, from
the mapping γ in the state of P , and from the top element of its stack, and then
obs(t, π) can be tested in linear time using a deterministic bottom-up finite-state
tree automaton. An example of bounded ptt’s (with mso tests) are the pattern
matching ptt’s of Section 10. In that section, every ptt that matches an n-ary
pattern is bounded, with bound n or even n−1. Hence, pattern matching ptt’s
can be evaluated in polynomial time. And the same is true for pattern matching
pft’s, see Section 11.

15 Variations of Decomposition

In this section we present a number of results the proofs of which are based on
variations of the decomposition techniques used in Section 4. In the first part of
the section we consider deterministic ptt’s, and in the second part we consider
ptt’s with strong (visible) pebbles.

Deterministic PTT’s. As observed at the end of Section 4 it is open whether
I-dPTT ⊆ dTT ◦ dTT. We first show that a subclass of I-dPTT is included in
dTT ◦ dTT and then we show that I-dPTT ⊆ dTT

3. Hence, every deterministic
ptt can be decomposed into deterministic tt’s.

Recall that dTTmso denotes the class of transductions that are realized by
deterministic tt’s with mso head tests. By Lemma 12 it is a subclass of I-dPTT.
We will show that such transducers can be decomposed into two deterministic
tt’s of which the first never moves up. To do this we need a lemma with an
alternative proof of the inclusion dTTmso ⊆ I-dPTT, showing that the resulting
i-ptt uses its pebbles in a restricted way. The i-ptt that is constructed in the
proof of Lemma 12 does not satisfy that restriction.

For the definition of normal form of an i-ptt see the paragraphs before
Lemma 43. We now define an i-ptt (or i-pta) to be root-oriented if it sat-
isfies requirements (1)−(3) of the normal form, and all non-initial non-output
rules have a right-hand side of one of the following five forms: 〈q′, downi; dropc〉,
〈q′, liftc; up〉, 〈q′, liftc; dropd〉, or 〈q

′, stay〉, where q′ ∈ Q\Q0, i ∈ N and c, d ∈ C.
Thus, except in an initial configuration, every pebble stack is of the form
(u1, c1) · · · (un, cn) where u1, . . . , un is the path from the root to the current
node. The i-pta in the proof of Lemma 10 is root-oriented.

The next lemma follows from [9, Theorem 8.12], but we provide its proof for
completeness sake. Let r I-dPTT denote the class of transductions realized by
root-oriented deterministic i-ptt’s.26

Lemma 49 dTT
mso ⊆ r I-dPTT.

Proof. Let M be a deterministic tt that uses a regular site T as mso head
test. For simplicity we will assume that M tests T in every rule. Let A =
(Σ × {0, 1}, P, F, δ) be a deterministic bottom-up finite-state tree automaton
that recognizes mark(T ). As usual we identify the symbols (σ, 0) and σ. For

26In [9, Chapter 8] root-oriented i-ptt’s are called tree-walking pushdown transducers, and
r I-dPTT is denoted P-DTWT. They are the rt(p(tr))-transducers of [23], also called indexed
tree transducers.
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every tree t ∈ TΣ and every node u ∈ N(t), we define the set succt(u) of
successful states of A at u to consist of all states p ∈ P such that A recognizes t
when started at u in state p. To be precise, succt(roott) = F and if u has
label σ ∈ Σ(m) and i ∈ [1,m], then succt(ui) is the set of all states p ∈ P such
that δ(σ, p1, . . . , pi−1, p, pi+1, . . . , pm) ∈ succt(u), where pj is the state in which
A arrives at uj for every j ∈ [1,m] \ {i}.

We construct a root-oriented deterministic i-ptt M′ that stepwise simu-
lates M and simultaneously keeps track of succt(v) for all nodes v on the path
from the root to the current node u, by storing that information in its pebble
colours. It uses the i-pta A′ of Lemma 10 (with A restricted to Σ× {0}) as a
subroutine to compute the states in which A arrives at the children of u. Using
these states and succt(u), it can easily test whether (t, u) ∈ T . Morover, when
moving down to a child ui of u it can use this information to compute succt(ui).

Formally, in addition to the pebble colours p1 · · · pm ofA′, the transducerM′

uses pebble colours (S, p1 · · · pm) where S ⊆ P . As states it uses (apart from
its initial state) the states of M and states of the form (q̃, q) where q̃ is a state
of M and q a state of A′; in fact, q is either the main state q◦ of A′ or it is
q̄p for some p ∈ P . Initially, M′ drops pebble (F, ε) on the root and goes into
state (q̃0, q◦) where q̃0 is the initial state of M. This incorporates rule ρ1 of A′.
The other rules of M′ that correspond to A′ are as follows. First, the rule ρ2
of A′ together with the corresponding rule for pebble colour (S, p1 · · · pm), both
for m < rank(σ):

〈(q̃, q◦), σ, j, {p1 · · · pm}〉 → 〈(q̃, q◦), downm+1; dropε〉

〈(q̃, q◦), σ, j, {(S, p1 · · · pm)}〉 → 〈(q̃, q◦), downm+1; dropε〉.

Second, the rule ρ3 of A′, for m = rank(σ) and p = δ(σ, p1, . . . , pm):

〈(q̃, q◦), σ, j, {p1 · · · pm}〉 → 〈(q̃, q̄p), liftp1···pm ; up〉 if j 6= 0.

Third, the rule r6 of A′ together with the corresponding rule for pebble colour
(S, p1 · · · pm), both for m < rank(σ):

〈(q̃, q̄p), σ, j, {p1 · · · pm}〉 → 〈(q̃, q◦), liftp1···pm ; dropp1···pmp〉

〈(q̃, q̄p), σ, j, {(S, p1 · · · pm)}〉 → 〈(q̃, q◦), lift(S,p1···pm); drop(S,p1···pmp)〉.

The subroutine A′ is always called at a node u where M′ observes a pebble
of the form (S, ε), and when A′ is finished M′ is back at the same node u
and observes the pebble (S, p1 · · · pm) where p1, . . . , pm are the states at which
A arrives at the children of u.

Finally we consider the simulation of a step of M, which either occurs when
the subroutine A′ is finished (instead of its rules ρ4 and ρ5), or just after the
simulation of another step of M, in which it does not move down. Suppose that
M has a rule 〈q̃, σ, j, T 〉 → ζ and that δ((σ, 1), p1, . . . , pm) ∈ S, or suppose that
it has a rule 〈q̃, σ, j,¬T 〉 → ζ and δ((σ, 1), p1, . . . , pm) /∈ S. Then M′ has the
following two rules, for m = rank(σ):

〈(q̃, q◦), σ, j, {(S, p1 · · · pm)}〉 → ζ′

〈q̃, σ, j, {(S, p1 · · · pm)}〉 → ζ′

such that

81



(1) if ζ = 〈q̃′, up〉, then ζ′ = 〈q̃′, lift(S,p1···pm); up〉,

(2) if ζ = 〈q̃′, downi〉, then ζ′ = 〈(q̃′, q◦), downi; drop(S′,ε)〉
where S′ = {p ∈ P | δ(σ, p1, . . . , pi−1, p, pi+1, . . . , pm) ∈ S}, and

(3) ζ′ = ζ otherwise.

This ends the formal description of M′. In general, M uses regular sites
T1, . . . , Tn as mso head tests, and correspondingly M′ has pebble colours of
the form (S1, . . . , Sn, p1 · · · pm) where Si is a set of states of an automaton Ai

recognizing mark(Ti). ✷

Let dTT↓ denote the class of transductions realized by deterministic tt’s
that do not use the up-instruction. Such transducers are equivalent to classical
deterministic top-down tree transducers. The next lemma is shown in [9, The-
orem 8.15] but we provide its proof again, to show the connection to Lemma 4.

Lemma 50 r I-dPTT ⊆ dTT↓ ◦ dTT.

Proof. Let M be a root-oriented deterministic i-ptt. Looking at the proof of
Lemma 4, it should be clear that, for every input tree t, the simulating trans-
ducer M′ only visits those nodes of t′ that correspond to a sequence of instruc-
tions of M that starts with a drop-instruction and then consists alternatingly
of a down-instruction and a drop-instruction. Consequently, the “preprocessor”
N can be adapted so as to generate just that part of t′. The new N does not
need the states fi any more, but just has the initial state g and the state f . Its
rules are

〈g, σ, j〉 → σ′(⊥m, 〈f, stay〉γ)

〈f, σ, j〉 → σ′
0,j(〈g, down1〉, . . . , 〈g, downm〉,⊥γ ,⊥)

where m is the rank of σ and ⊥n abbreviates the sequence ⊥, . . . ,⊥ of length n.
Note that the child number j is irrelevant. With this new, total deterministic
preprocessor N the proof of Lemma 4 is still valid. ✷

The following corollary was shown in [9, Theorem 8.22], but we repeat it
here for completeness sake, cf. Corollary 42.

Corollary 51 r I-dPTT = dTT↓ ◦ dTT = dMToi.

Proof. The inclusion dTT↓ ◦ dTT ⊆ dMToi follows from the inclusions dTT ⊆
dMToi, shown in [20, Theorem 35 for n = 0], and dTT↓ ◦ dMToi ⊆ dMToi,
shown in [22, Theorem 7.6(3)]. By Lemma 50 it now suffices to show that
dMToi ⊆ r I-dPTT (which strengthens the second inclusion of Corollary 42).
There are two ways of proving this, which are essentially the same. First, the
proof of Lemma 39 can be adapted in a straightforward way.27 Second, the
equality r I-dPTT = dMToi is shown for total functions in [23, Theorem 5.16].
By [22, Theorem 6.18], every transduction τ ∈ dMToi is of the form τ1 ◦ τ2
where τ1 is the identity on a regular tree language R and τ2 ∈ dMToi is a total
function. Thus, τ2 is in r I-dPTT. This implies that τ1 ◦ τ2 is in r I-dPTT: the
i-ptt just starts by checking that the input tree is in R, using the root-oriented
i-ptt A′ in the proof of Lemma 10 as a subroutine. ✷

27The transducer M uses an additional pebble ⊙, which it drops initially on the root and
whenever it moves down (instead of calling subroutine Sq′,ψ). When necessary it replaces ⊙
by a pebble ([s1], . . . , [sm]). When subroutine S is in state [zi] for some parameter zi, it lifts
⊙ and moves up where it finds a pebble ([s1], . . . , [sm]).
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We now turn to the decomposition of an arbitrary deterministic i-ptt into
deterministic tt’s.

Lemma 52 I-dPTT ⊆ tdTT
mso ◦ dTT.

Proof. Let M = (Σ,∆, Q, {q0}, C,∅, Ci, R, 0) be a deterministic i-ptt with
C = Ci. We may assume that there is a mapping χ : C → Q such that χ(c) = q′

for every rule 〈q, σ, j, b〉 → 〈q′, dropc〉 of M. If not, then we change C into C×Q
and we change every rule 〈q, σ, j, b〉 → 〈q′, dropc〉 into 〈q, σ, j, b〉 → 〈q′, drop(c,q′)〉
and every rule 〈q, σ, j, {c}〉 → 〈q′, liftc〉 into all the rules 〈q, σ, j, {(c, p)}〉 →
〈q′, lift(c,p)〉. Moreover, we may assume that C = [1, γ] for some γ ∈ N.

As in the proof of Lemma 50 we consider the proof of Lemma 4 and adapt
the preprocessor N to the needs of M. Every copy of the input tree that is
generated by N corresponds to a unique potential pebble stack π of M. The
simulating deterministic tt M′ walks on that copy whenever M has pebble
stack π. The idea is now to construct a variation N ′ of N that only gener-
ates those copies of the input tree t that correspond to reachable pebble stacks.
A pebble stack π is reachable (on t) if M has a reachable output form that con-
tains a configuration 〈q, v, π〉 for some q ∈ Q and v ∈ N(t). For a given t in the
domain of M, the number of reachable stacks is finite because M is determin-
istic and thus has a unique computation on t. Consequently N ′ can preprocess
t deterministically. Then we can define a total deterministic preprocessor N ′′

that starts by performing an mso head test whether or not the input tree is in
the domain of M (which is regular by Corollary 9). If it is, then N ′′ calls N ′,
and if it is not, then N ′′ outputs ⊥ and halts.

As an auxiliary tool, we define (as in the proof of Theorem 47) the non-
deterministic i-pta A that is obtained from M by changing every output
rule 〈q, σ, j, b〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) of M into the rules 〈q, σ, j, b〉 →
〈qi, stay〉 for i ∈ [1,m]. Intuitively, whenever M branches, A nondeterministi-
cally follows one of those branches. Obviously a nonempty pebble stack π with
top element (u, c) is reachable if and only if 〈χ(c), u, π〉 is a reachable configura-
tion of A (see footnote 9). Note that 〈χ(c), u, π〉 is the configuration of M just
after dropping pebble c at node u.

For pebble colour c, we consider the site Tc consisting of all pairs (t, u)
such that one-pebble stack (u, c) is reachable, i.e., such that A has a com-
putation starting in the initial configuration and ending in the configuration
〈χ(c), u, (u, c)〉. It is not difficult to see that Tc is a regular site. In fact,
mark(Tc) is the domain of an i-pta B with stack tests that simulates A; when-
ever it arrives at the marked node u in state χ(c) and it observes pebble c, then
it may lift the pebble, check that its stack is empty, and accept. Stack tests are
allowed by Lemma 1, and the domain of B is regular by Corollary 9.

We now turn to reachable pebble stacks with more than one pebble, i.e., of
the form π(u, c)(v, d). Assuming that we already know that π(u, c) is reachable,
we can find out whether π(u, c)(v, d) is reachable through a regular trip, as
follows. For pebble colours c and d, we consider the trip Tc,d consisting of all
triples (t, u, v) such that A has a computation on t starting in configuration
〈χ(c), u, (u, c)〉 and ending in configuration 〈χ(d), v, (u, c)(v, d)〉; moreover, in
every intermediate configuration the bottom element of the pebble stack must
be (u, c). The trip Tc,d is regular because mark(T ) is the domain of an i-pta B′

with stack tests that first walks to the marked node u. Then B′ simulates A,
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starting in state χ(c), interpreting the mark of u as pebble c (which cannot
be lifted). Similar to B above, whenever B′ arrives at the marked node v in
state χ(d) and it observes pebble d, then it may lift the pebble, check that the
stack is empty, and accept. Obviously, if π(u, c) is reachable, then π(u, c)(v, d)
is reachable if and only if (t, u, v) ∈ Tc,d. Let Bc,d be a (nondeterministic) ta
with mso head tests that computes Tc,d, as in Proposition 14.

The new preprocessor N ′ is a deterministic tt with mso head tests that
works in the same way as N but only creates the copies of the input tree t that
correspond to reachable pebble stacks. Initially it uses the test Tc at node u to
decide whether it has to create a copy of t corresponding to pebble stack (u, c).
If the test is positive, then, just as N , it creates a copy of t by walking from u to
every other node v of t, copying v to the output. Now recall that N walks from u
to v along the shortest (undirected) path in t. Thus, by Proposition 14, N ′ can
simulate the behaviour of ta Bc,d from u to v, for every pebble colour d (using
a subset construction as in the proof of Theorem 16). Thus, arriving at v it can
use the trip Tc,d to decide whether it has to create a copy of t corresponding to
pebble stack (u, c)(v, d). At the next level it simulates all Bd,d′ for every d′ ∈ C,
etcetera.

More formally, N ′ has initial state g, and all other states are of the form
(q, c, S1, . . . , Sγ) where q is a state of N , c ∈ C, and Sd is a set of states of Bc,d
for every d ∈ C = [1, γ]. We will call them “extended” states in what follows.
To describe the rules of N ′, we first recall the rules of the transducer N from
the proof of Lemma 4. Apart from the rules 〈f, σ, j〉 → ⊥, N has the rules

ρg : 〈g, σ, j〉 → σ′(〈g, down1〉, . . . , 〈g, downm〉, 〈f, stay〉γ)

ρf : 〈f, σ, j〉 → σ′
0,j(〈g, down1〉, . . . , 〈g, downm〉, 〈f, stay〉γ , ξj)

ρfi : 〈fi, σ, j〉 → σ′
i,j(〈g, down1〉, . . . , 〈g, downi−1〉,⊥,
〈g, downi+1〉, . . . , 〈g, downm〉, 〈f, stay〉γ , ξj)

where ξj = 〈fj , up〉 for j 6= 0, and ξ0 = ⊥.
The rules of N ′ for state g are obtained from rule ρg by adding all possible

combinations of the mso head tests Tc and their negations to the left-hand
side. In the right-hand side, the sequence 〈f, stay〉γ should be replaced by the
sequence ζ1, . . . , ζγ where ζc = 〈(f, c, Ic,1, . . . , Ic,γ), stay〉 if Tc is true, Ic,d being
the set of initial states of Bc,d, and ζc = ⊥ if Tc is false.

28 The rules of N ′ for an
“extended” state (q, c, S1, . . . , Sγ) are obtained from rule ρq as follows. In the
left-hand side change q into (q, c, S1, . . . , Sγ). Moreover, add all mso head tests
of Bc,d for every d ∈ C. In the right-hand side change every occurrence of a state
q′ 6= f into the extended state (q′, c, S′

1, . . . , S
′
γ) where the set S′

d is obtained
from the set Sd by simulating Bc,d appropriately, moving down to the ℓ-th
child if q′ = g in 〈g, downℓ〉 and moving up if q′ = fj. Moreover, the sequence
〈f, stay〉γ should be replaced by ζ1, . . . , ζγ where ζd = 〈(f, d, Id,1, . . . , Id,γ), stay〉
if Sd contains a final state of Bc,d, and ζd = ⊥ otherwise (where Id,d′ is defined
similarly to Ic,d above).

It should be clear that N ′ produces an output for every input tree t on
which M has finitely many reachable pebble stacks. Thus, N ′ preprocesses t
appropriately and the deterministic ttM′ in the proof of Lemma 4 can simulate
M on τN ′(t). Hence τM′(τN ′(t)) = τM(t) for every t in the domain of M. ✷

28More precisely, Ic,d consists of all initial states of Bc,d, plus all states that Bc,d can reach
from an initial state by applying a relevant rule with a stay-instruction.
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It is easy to adapt the proof of Theorem 17 to the case where the first
(deterministic) tt M1 uses mso head tests; those tests can also be executed by
the constructed i-ptt M, by Lemma 12. Moreover, that proof can also easily be
adapted to the case where the second transducer M2 is a root-oriented i-ptt.
From this and Lemmas 49 and 52 we obtain the following characterizations of
I-dPTT as a corollary. We do not know whether similar characterizations hold
for I-PTT.

Theorem 53 I-dPTT = dTTmso◦dTT = dTTmso◦dTTmso = dTTmso◦ r I-dPTT.

Proof. Let us show for completeness sake that dTT ◦ r I-dPTT ⊆ I-dPTT. The
proof of Theorem 17 can easily be generalized to a root-oriented i-ptt M2,
because the path from the root of s to the current node v of M2 is represented
by the pebble stack of the constructed transducer M, and so the pebbles of M2

can also be stored in the pebble stack of M. For each node on that path, the
stack contains a pebble with the rule of M1 that generates that node, with its
child number, and with the pebble that M2 drops on that node.

Formally, the pebble colours of M are now triples (ρ, i, c) where c is a pebble
colour ofM2, and the states ofM are the states ofM2 and all 4-tuples (p, i, c, q)
where c is again a pebble colour of M2. The initial state of M is now the one
of M2, and if M2 has an initial rule 〈q0, δ, 0,∅〉 → 〈q, dropc〉, then M has
the rule 〈q0, δ, 0,∅〉 → 〈(p0, 0, c, q), stay〉. The rules of M that simulate M1

are defined as in the proof of Theorem 17, replacing i by i, c everywhere for
each c. The rules of M that simulate the non-initial rules of M2 are defined as
follows. Let 〈q, δ, i, {c}〉 → ζ be a non-initial rule of M2 and let ρ : 〈p, σ, j〉 →
δ(〈p1, stay〉, . . . , 〈pm, stay〉) be an output rule of M1. Then M has the rule
〈q, σ, j, {(ρ, i, c)}〉 → ζ′ where ζ′ is defined as follows. If ζ = 〈q′, downℓ; dropd〉,
then ζ′ = 〈(pℓ, ℓ, d, q′), stay〉. If ζ = 〈q′, liftc; up〉, then ζ′ = 〈q′, lift(ρ,i,c); to-top〉.
If ζ = 〈q′, liftc; dropd〉, then ζ′ = 〈q′, lift(ρ,i,c); drop(ρ,i,d)〉. In the remaining
cases, ζ′ = ζ. ✷

As another corollary we obtain from the three Lemmas 49, 50, and 52 that
I-dPTT ⊆ dTT

3. Moreover, I-dPTT ⊆ dMT
2
oi by the second equality of Corol-

lary 51. Together with Theorem 46, that implies that dTLℓr ⊆ dMT
2
oi, which

was stated as an open problem in [20, Section 8] (where dTLℓr and dMToi are
denoted 0-DPMTT and DMTT, respectively).

Corollary 54 I-dPTT ⊆ dTT↓ ◦ dTT ◦ dTT ⊆ dMToi ◦ dMToi.

We are now able to prove the deterministic analogue of Theorem 5 for ptt’s
with at least one visible pebble.

Theorem 55 For every k ≥ 1, VkI-dPTT ⊆ dTT
k+2.

Proof. Since it follows from Lemma 3 and Corollary 54 that VkI-dPTT ⊆
tdTT

k−1 ◦ tdTT◦dTT↓ ◦dTT◦dTT, it suffices to show that tdTT◦dTT↓ ⊆ dTT.
For the sake of the proof of Lemma 61, we will show more generally that for all
deterministic tt’s M1 and M2 such that M2 does not use the up-instruction,
a deterministic tt M can be constructed such that τM(t) = τM2

(τM1
(t)) for

every input tree t in the domain ofM1. This can be proved by a straightforward
product construction, which is an easy adaptation of the construction in the
proof of Theorem 17. Since transducer M2 never moves up, there is no need to
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backtrack on the computation of M1. Therefore, the constructed transducer M
only considers the topmost pebble. Since that pebble is always at the position
of the head, its colour can as well be stored in the finite state of M. Hence
M can be turned into a tt rather than an i-ptt.

Formally, let M1 = (Σ,∆, P, {p0}, R1) and M2 = (∆,Γ, Q, {q0}, R2). The
deterministic tt M has input alphabet Σ and output alphabet Γ. Its states are
of the form (p, i, q) or (ρ, i, q), where p ∈ P , i ∈ [0,mx∆], q ∈ Q, and ρ is an
output rule ofM1, i.e., a rule of the form 〈p, σ, j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉).
Its initial state is (p0, 0, q0). As in the proof of Theorem 17, state (p, i, q) is used
by M when simulating the computation of M1 that generates the i-th child of
the current node of M2 (keeping the state q of M2 in memory). A state (ρ, i, q)
is used by M when simulating a computation step of M2 on the node that M1

has generated with rule ρ. The rules of M are defined as follows.
First the rules that simulate M1. Let ρ : 〈p, σ, j〉 → ζ be a rule in R1. If

ζ = 〈p′, α〉, where α is a move instruction, then M has the rules 〈(p, i, q), σ, j〉 →
〈(p′, i, q), α〉 for every i ∈ [0,mx∆] and q ∈ Q. If ρ is an output rule, then M
has the rules 〈(p, i, q), σ, j〉 → 〈(ρ, i, q), stay〉 for every i and q as above.

Second the rules that simulate M2. Let 〈q, δ, i〉 → ζ be a rule in R2 and
let ρ : 〈p, σ, j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) be an output rule in R1 (with
the same δ). Then M has the rule 〈(ρ, i, q), σ, j〉 → ζ′ where ζ′ is obtained
from ζ by changing every 〈q′, stay〉 into 〈(ρ, i, q′), stay〉, and every 〈q′, downℓ〉
into 〈(pℓ, ℓ, q′), stay〉. ✷

Since the topmost pebble of a v-ptt can be replaced by an invisible pebble,
we obtain from Theorem 55 that Vk-dPTT ⊆ dTT

k+1, which was proved in [20,
Theorem 10].

Theorem 55 allows us to show that, in the deterministic case, k + 1 visible
pebbles are more powerful than k visible pebbles.

Theorem 56 For every k ≥ 0, VkI-dPTT ( Vk+1I-dPTT.

Proof. It follows from Theorem 55 and Corollary 54 (and the inclusion dTT ⊆
dMToi in Corollary 51) that VkI-dPTT ⊆ dMT

k+2
oi for every k ≥ 0. But it is

proved in [20, Theorem 41] that, for every k ≥ 1, Vk-dPTT is not included
in dMT

k
oi. Hence, since the topmost pebble of a v-ptt can be replaced by an

invisible pebble, VkI-dPTT is not included in dMT
k+1
oi . ✷

The above proof also shows that Theorem 55 is optimal, in the sense that,
for every k ≥ 1, VkI-dPTT is not included in dTT

k+1.
Another consequence of Theorem 55 is that, by the results of [37], all total

deterministic vi-pft transformations for which the size of the output document
is linear in the size of the input document, can be programmed in TL. Let LSI
be the class of all total functions ϕ for which there exists a constant c ∈ N such
that |ϕ(t)| ≤ c · |t| for every input tree t.

Theorem 57 For every k ≥ 0,

VkI-dPTT ∩ LSI ⊆ I-dPTT = dTLr and VkI-dPFT ∩ LSI ⊆ I-dPFT = dTL.

Proof. It is shown in [37] that dMT
k
oi ∩ LSI ⊆ dMToi for every k ≥ 1. By

Theorem 55 and Corollary 51, VkI-dPTT ⊆ dMT
k+2
oi . And by Corollary 42

and Theorem 46, dMToi ⊆ I-dPTT = dTLr. This proves the first inclusion.
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To prove the second inclusion, let ϕ ∈ VkI-dPFT ∩ LSI. Obviously, ϕ ◦ enc
is also in LSI, and ϕ ◦ enc ∈ VkI-dPTT ◦ I-dPTT by Lemma 33(2). Hence
ϕ ◦ enc ∈ dMT

k+4
oi ⊆ I-dPTT, as above. In other words, ϕ ∈ I-dPTT ◦ dec.

Consequently, by Lemma 33(1) and Theorem 46, ϕ ∈ I-dPFT = dTL. ✷

In fact, VkI-dPTT∩ LSI is the class of total functions in the class DMSOT of
deterministic mso definable tree transductions discussed after Corollary 42, and
similarly, VkI-dPFT∩LSI is the class of total functions in the class of deterministic
mso definable tree-to-forest transductions (which equals DMSOT ◦ dec, because
both dec and enc are mso definable).

For the reader familar with results about attribute grammars (which are a
well-known compiler construction tool) and related formalisms, we now briefly
discuss the relationship between those results and some of the above. As ex-
plained in detail in [20, Section 3.2], the total deterministic tree-walking tree
transducer, i.e., the tdtt, is essentially a notational variant of the attributed
tree transducer (at) of [25, 26], except that the at is in addition required to be
“noncircular”, which means that no configuration can generate an output form
in which that same configuration occurs. As observed at the end of Section 12,
the deterministic i-ptt has the same expressive power as the deterministic tl
program that is local and ranked, which corresponds to the macro attributed
tree transducer (mat) of [36, 26] in the same way, i.e., the mat is the “non-
circular” tdtlℓr program. Since r I-dPTT = dMToi by Corollary 51, Lemma 49
(dTTmso ⊆ r I-dPTT) is closely related to the well-known fact that at (with look-
ahead) can be simulated by deterministic macro tree transducers. Lemma 50
(r I-dPTT ⊆ dTT↓ ◦ dTT) is related to the fact that every total deterministic
macro tree transducer can be decomposed into a deterministic top-down tree
transducer followed by a YIELD mapping, which can be realized by an at. The-
orem 53 (I-dPTT = dTTmso ◦ dTT = dTTmso ◦ r I-dPTT) is closely related to the
fact that every mat can be decomposed into two at’s, and that the composition
of an at and a total deterministic macro tree transducer can be simulated by a
mat, as shown in [36, Theorem 4.8] and its proof (see also [26, Corollary 7.30]).
The inclusion tdTT ◦ dTT↓ ⊆ dTT in the proof of Theorem 55 is closely related
to the closure of at under right-composition with deterministic top-down tree
transducers, as shown in [25, Theorem 4.3] (see also [36, Lemma 4.11] and [26,
Lemma 5.46]). We finally mention that the class DMSOT of deterministic mso
definable tree transductions is properly included in dTTmso (see [9, Theorems 8.6
and 8.7]), as shown for attribute grammars (with look-ahead) in [14].

Strong pebbles. In the litterature there are pebble automata with weak and
strong pebbles. Weak pebbles (which are the pebbles considered until now) can
only be lifted when the reading head is at the position where they were dropped,
whereas strong pebbles can also be lifted from a distance, i.e., when the reading
head is at any other position. So, strong pebbles are more like dogs that can be
whistled back, or like pointers that can be erased from memory. Formally, we
define a pebble colour c to be strong as follows. For a rule 〈q, σ, j, b〉 → 〈q′, liftc〉
we do not require any more that c ∈ b. If the rule is relevant to configuration
〈q, u, π〉, then it is applicable whenever the topmost element of the pebble stack
is (v, c) for some node v (not necessarily equal to u). That top pebble is then
popped from the stack, i.e., π = π′(v, c) where π′ is the new stack. Strong
pebbles were investigated, e.g., in [16, 44, 7, 49, 28].

It turns out that strong invisible pebbles are too strong, in the sense that
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they allow the recognition of nonregular tree languages, cf. the paragraph after
Theorem 11. For example, the nonregular language {an#bn | n ∈ N} can be
accepted by an i-pta with strong pebbles as follows. After checking that the
input string w is in a∗#b∗, the automaton drops a pebble on # and walks to
the left, dropping a pebble on every a. Next it walks to the end of w, and then
walks to the left, lifting a pebble (from a distance) for every b it passes. It
accepts w if it arrives at # and observes a pebble on #.

Thus, we will only consider the pta and ptt with strong visible pebbles,
abbreviated as v+i-pta and v+i-ptt (and similarly for the classes of transduc-
tions they realize). Obviously, VkI-PTT ⊆ V

+
k I-PTT for every k ≥ 0. We do not

know whether the inclusion is proper.
Let us first show that the v+i-pta and v+i-ptt can perform stack tests.

Lemma 58 Let k ≥ 0. For every v+
k i-pta with stack tests A an equivalent

(ordinary) v+
k i-pta A′ can be constructed in polynomial time. The construction

preserves determinism and the absence of invisible pebbles. The same holds for
the corresponding ptt’s.

Proof. Let A = (Σ, Q,Q0, F, C, Cv , Ci, R, k). We construct A′ in the same
way as in the proof of Lemma 1, except that it additionally keeps track of the
visible pebbles in its own stack, in the order in which they were dropped, cf.
the construction of a counting pta after Lemma 1. Thus, its states are of the
form (q, γ, ϕ) where q ∈ Q, γ ∈ C ∪ {ε}, and ϕ ∈ (C′

v)
∗ = (Cv × (C ∪ {ε}))∗

is a string without repetitions of length ≤ k. Its initial states are (q, ε, ε) with
q ∈ Q0.

The rules of A′ are defined as follows. Let 〈q, σ, j, b, γ〉 → 〈q′, α〉 be a
rule of A, let ϕ be a string over C′

v as above, and let b′ be (the graph of)
a mapping from b to C ∪ {ε}. If α is a move instruction, then A′ has the rule
〈(q, γ, ϕ), σ, j, b′〉 → 〈(q′, γ, ϕ), α〉 (and similarly for an output rule of a ptt). If
α = dropc, then A′ has the rule 〈(q, γ, ϕ), σ, j, b′〉 → 〈(q′, c, ϕ′), drop(c,γ)〉 where
ϕ′ = ϕ if c ∈ Ci and ϕ

′ = ϕ(c, γ) otherwise (provided |ϕ| < k and (c, γ) does
not occur in ϕ). Now let α = liftc and γ = c. If c ∈ Ci and (c, γ′) ∈ b′, then
A′ has the rule 〈(q, γ, ϕ), σ, j, b′〉 → 〈(q′, γ′, ϕ), lift(c,γ′)〉. If c ∈ Cv, then A′ has
the rule 〈(q, γ, ϕ(c, γ′)), σ, j, b′〉 → 〈(q′, γ′, ϕ), lift(c,γ′)〉 for every γ′ ∈ C ∪ {ε}
such that (c, γ′) does not occur in ϕ (with |ϕ| < k). ✷

Using this lemma, we now show that every v+-ptt can be decomposed into
tt’s, as already shown in [28] in a different way.29

Lemma 59 For every k ≥ 1, V
+
k -PTT ⊆ TT ◦ V

+
k−1-PTT. For fixed k, the

construction takes polynomial time.

Proof. Let M = (Σ,∆, Q,Q0, C, Cv, Ci, R, k) be a v+
k -ptt with Ci = ∅. The

construction is similar to the one in the proof of Lemma 3, except that we use
the nondeterministic “multi-level” preprocessor N of the proof of Lemma 4, for
which we assume that Cv = [1, γ].

By Lemma 58 we may assume that the simulating transducer M′ can per-
form stack tests. As in the proof of Lemma 3, M′ starts by simulating M on

29In that paper the authors “think that those proofs cannot be generalized for the strong
pebble case because the mapping EncPeb [· · · ] is strongly based on weak pebble handling”,
where ‘those proofs’ mainly refers to the proof of [20, Lemma 9] in which the preprocessor is
called EncPeb, see Lemma 3.
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the top level of the preprocessed version t′ of the input tree t. When M drops
the first pebble c on node u, M′ enters the second level copy t̂u of t correspond-
ing to c, but it also stores c in its finite state. When M wants to lift pebble c
and can actually do so because the pebble stack of M′ is empty, M′ removes c
from its finite state and continues simulating M on t̂u. Note that since c can
be lifted from a distance, M′ cannot return to the top level without loosing its
current position. When M again drops a pebble d on some second-level node
that corresponds to a node v of t, M′ enters the third level copy t̂v correspond-
ing to d, and stores d in its finite state. Thus, whenever M drops a bottom
pebble, M′ moves one level down in the “tree of trees” t′.

It should be noted that we could as well have taken γ = 1 for N and let
M′ enter the unique copy of t when it drops a pebble c, because M′ keeps c
in its finite state. However, the present construction simplifies the proof of
Theorem 62.

Although the above description should be clear, let us give the formal details.
As in the proof of Lemma 4, the output alphabet Γ of N is the union of {⊥},
{σ′ | σ ∈ Σ}, and {σ′

i,j | σ ∈ Σ, i ∈ [0, rankΣ(σ)], j ∈ [0,mxΣ]} where, for every
σ ∈ Σ of rank m, σ′ has rank m+γ and σ′

i,j has rank m+γ+1. As in the proof

of Lemma 3, the v+
k−1-ptt M′ has input alphabet Γ, set of states Q∪ (Q×Cv),

and the same initial states and pebble colours asM. The rules ofM′ are defined
as follows. Let 〈q, σ, j, b〉 → ζ be a rule of M with rankΣ(σ) = m.

First, we consider the behaviour of M′ in state q, where we assume that
b = ∅. Then M′ has the rules 〈q, σ′, j,∅〉 → ζ1, 〈q, σ′

0,j , j
′,∅〉 → ζ2, and

〈q, σ′
i,j , j

′,∅〉 → ζ3,i for every i ∈ [1,m] and j′ ∈ [1,mxΓ], where ζ1 is obtained
from ζ by changing 〈q′, dropc〉 into 〈(q′, c), downm+c〉 for every q′ ∈ Q and
c ∈ Cv, ζ2 is obtained from ζ1 by changing up into downm+γ+1, and ζ3,i is
obtained from ζ2 by changing downi into up. Thus, whenever the pebble stack
of M is empty, M′ simulates M on a copy of the input tree t in t′, until M
drops a pebble c ∈ Cv. Then M′ steps to the next level, and stores c in its
finite state.

Second, we consider the behaviour of M′ in state (q, c), where c ∈ Cv. Rules
of M′ that have σ′

0,j in their left-hand side are defined under the proviso that
c ∈ b, and the other rules under the proviso that c /∈ b. If ζ = 〈q′, liftc〉, then
M′ has the rules 〈(q, c), σ′, j, b, ε〉 → 〈q′, stay〉, 〈(q, c), σ′

0,j ,m + c, b \ {c}, ε〉 →
〈q′, stay〉, and 〈(q, c), σ′

i,j , j
′, b, ε〉 → 〈q′, stay〉 for every i ∈ [1,m] and j′ ∈

[1,mxΓ], where ε is the stack test that checks emptiness of the stack of M′.
Thus, when M lifts pebble c (at the position of c or from a distance), M′ re-
moves c from memory and knows that the pebble stack of M is empty. Other-
wise, M′ has the rules 〈(q, c), σ′, j, b〉 → ζc,1, 〈(q, c), σ′

0,j ,m+ c, b \ {c}〉 → ζc,2,
and 〈(q, c), σ′

i,j , j
′, b〉 → ζc,3,i for every i ∈ [1,m] and j′ ∈ [1,mxΓ], where ζc,1

is obtained from ζ by changing every occurrence of a state q′ into (q′, c), ζc,2 is
obtained from ζc,1 by changing up into downm+γ+1, and ζc,3,i is obtained from
ζc,2 by changing downi into up. Thus, M′ simulates M on a copy of the input
tree in t′, assuming that c is present on the node with label σ′

0,j and absent on
the other nodes, until c is lifted by M. ✷

The next result is an immediate consequence of Lemma 59. It was proved
in [28, Theorem 6.5(5)], generalizing the same result for weak pebbles in [20,
Theorem 10] (cf. Theorem 55). It implies that Propositions 6(2) and 7(2)
also hold for strong pebbles. Thus, for ptt’s without invisible pebbles, the
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inverse type inference problem and the typechecking problem are solvable for
strong pebbles in the same time as for weak pebbles (cf. [28, Theorem 6.7
and 6.9]). Note that it also implies that the domains of v+-ptt’s are regular
(cf. Corollary 9), which was proved in [28, Corollary 6.8] and [45, Theorem 4.7].

Theorem 60 For every k ≥ 0, V+
k -PTT ⊆ TT

k+1. For fixed k, the construction
takes polynomial time.

To prove a similar result for deterministic ptt’s with strong pebbles, we
need the next small lemma.

Lemma 61 For every k ≥ 1, (tdTTmso)k ⊆ dTT↓ ◦ dTT
k.

Proof. We will show by induction on k that for every τ ∈ (tdTTmso)k there exist
τ0 ∈ dTT↓ and τ1, . . . , τk ∈ dTT such that τ = τ0 ◦ τ1 ◦ · · · ◦ τk. Note that since τ
is a total function, every output tree of τ0 ◦ τ1 ◦ · · · ◦ τi−1 is in the domain of τi,
for every i ∈ [1, k]. For k = 1 the statement is immediate from the inclusion
dTT

mso ⊆ dTT↓◦dTT, which follows from Lemmas 49 and 50. Now consider τ ∈
(tdTTmso)k+1. By induction and the case k = 1, τ = τ0 ◦τ1 ◦ · · ·◦τk ◦τ ′0 ◦τ

′
1 with

τ0, τ
′
0 ∈ dTT↓ and τ1, . . . , τk, τ

′
1 ∈ dTT. Since every output tree of τ0◦τ1◦· · ·◦τk−1

is in the domain of τk, we can replace τk ◦ τ ′0 by any transduction τ ′ such that
τ ′(t) = τ ′0(τk(t)) for every t in the domain of τk. Since τk ∈ dTT and τ ′0 ∈ dTT↓,
we can take τ ′ ∈ dTT by the proof of Theorem 55. ✷

Theorem 60 was also shown in [20, Theorem 10] for weak pebbles in the
deterministic case. Here we need one more deterministic tt.

Theorem 62 For every k ≥ 1, V+
k -dPTT ⊆ dTT↓ ◦ dTT

k+1.

Proof. By Lemma 61 it suffices to show that V+
k -dPTT ⊆ tdTTmso ◦V+

k−1-dPTT

for every k ≥ 1. The proof of this inclusion is obtained from the proof of
Lemma 59 by changing the preprocessor N in a similar way as in the proof
of Lemma 52.

For the given deterministic v+
k -ptt M we assume that Ci = ∅ and C =

Cv = [1, γ]. As in the proof of Lemma 52, we may assume that there is a mapping
χ : C → Q that specifies the state of M after dropping a pebble (because we
may also assume that M keeps track in its finite state of the pebbles in its stack,
in the order in which they were dropped, cf. the proof of Lemma 58).

The new preprocessor N ′ is constructed in the same way as in the proof
of Lemma 52, with a different definition of the trips Tc,d. For c ∈ C, the
site Tc is defined as in that proof, i.e., it consists of all pairs (t, u) such that
the configuration 〈χ(c), u, (u, c)〉 is reachable by the automaton A associated
withM, which now is a nondeterministic v+

k -pta. The automaton B recognizing
mark(Tc) is a v+

k -pta with stack tests (see Lemma 58). When it arrives at the
marked node u in state χ(c) and observes c, it may check that c is the top pebble,
lift it, check that the stack is now empty, and accept. For c, d ∈ C, the trip Tc,d
now consists of all triples (t, u, v) such that A has a computation on t starting in
configuration 〈χ(c), u, (u, c)〉 and ending in configuration 〈χ(d), v, (v, d)〉, with
at least one computation step. It should be clear that there is a v+

k -pta B′

with stack tests that recognizes mark(Tc,d): it starts by dropping c on marked
node u in state χ(c), and then behaves similarly to B (with respect to v and d).
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For every input tree t in the domain of M, the preprocessor N ′ produces
the appropriate output. In fact, if N ′ would not produce output, then there
would be an infinite sequence (u1, c1), (u2, c2), . . . such that (t, u1) ∈ Tc1 and
(t, ui, ui+1) ∈ Tci,ci+1

for every i ≥ 1. But that would imply the existence
of an infinite computation of M on t that starts in the initial configuration,
contradicting the determinism of M. ✷

Next, we decompose arbitrary v+i-ptt’s. To do that we need two tt’s at
each decomposition step rather than one.

Lemma 63 For every k ≥ 1, V+
k I-PTT ⊆ TT ◦ TT ◦ V

+
k−1I-PTT. For fixed k,

the construction takes polynomial time.

Proof. The proof of Lemma 59 is also valid for v+i-ptt, provided every reach-
able pebble stack of the given transducer has a visible bottom pebble (for the
definition of reachable pebble stack see the proof of Lemma 52). Thus, it suf-
fices to construct for every v+

k i-ptt M a tt N and a v+
k i-ptt M′ with that

property, such that τN ◦ τM′ = τM.
Let M = (Σ,∆, Q,Q0, C, Cv, Ci, R, k). The construction is similar to the

one in the proof of Lemma 4. In particular, we assume that Ci = [1, γ] and
we use the same nondeterministic “multi-level” preprocessor N of that proof.
The simulating transducer M′ works in the same way as the one in the proof
of Lemma 4 as long as the pebble stack of M consists of invisible pebbles
only. Thus, during that time the pebble stack of M′ is empty. As soon as
M drops a visible pebble c, M′ stays in the same copy of the input tree and
also drops c. After that, M′ just simulates M on that copy until M lifts c.
Then M′ also lifts c and returns to the first mode until M again drops a visible
pebble. Note that when M drops c, all invisible pebbles on the input tree
become unobservable until c is lifted.

Formally, the set of states of M′ is the union of Q (used in the first mode)
and Q × Cv (used in the second mode). The rules for the first mode are
the same as in the proof of Lemma 4, with the empty set of pebble colours
added to each left-hand side. Now let 〈q, σ, j, b〉 → ζ be a rule of M and
rankΣ(σ) = m. In what follows, i ranges over [1,m] and j′ over [1,mxΓ], as
usual. With the following rules M′ switches from the first to the second mode,
where we assume that ζ = 〈q′, dropc〉 with c ∈ Cv: if b = {d} with d ∈ Ci,
then it uses the rule 〈q, σ0,j ,m + d,∅〉 → 〈(q′, c), dropc〉, and if b = ∅, then it
uses the rules 〈q, σ′, j,∅〉 → 〈(q′, c), dropc〉 and 〈q, σi,j , j

′,∅〉 → 〈(q′, c), dropc〉.
The rules for the second mode are as follows, for every c ∈ Cv. We first as-
sume that ζ does not contain the instruction liftc. Then M′ has the rules
〈(q, c), σ′, j, b〉 → ζ1, 〈(q, c), σ0,j , j′, b〉 → ζ2, and 〈(q, c), σi,j , j′, b〉 → ζ3,i, where
ζ1 is obtained from ζ by changing every state q′ into (q′, c), ζ2 is obtained from
ζ1 by changing up into downm+γ+1, and ζ3,i is obtained from ζ2 by changing
downi into up. Finally, if ζ = 〈q′, liftc〉, then M′ switches from the second to the
first mode with the following rules: 〈(q, c), σ′, j, b〉 → ζ, 〈(q, c), σ0,j , j′, b〉 → ζ,
and 〈(q, c), σi,j , j

′, b〉 → ζ. ✷

The next result is immediate from Lemmas 63 and 4. It implies, by Proposi-
tions 6(1) and 7(1), that the inverse type inference problem and the typechecking
problem are solvable for ptt’s with k strong visible pebbles, in (2k+2)-fold and
(2k+ 3)-fold exponential time, respectively. It also implies that the domains of
v+i-ptt’s are regular, cf. Corollary 9.
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Theorem 64 For every k ≥ 0, V+
k I-PTT ⊆ TT

2k+2. For fixed k, the construc-
tion takes polynomial time.

Applying the techniques in the proofs of Lemma 52 and Theorem 62 to the
proof of Lemma 63, and using Lemmas 52 and 61, we obtain that every deter-
ministic v+i-ptt can be decomposed into deterministic tt’s, cf. Theorem 55.
The formal proof is straightforward.

Theorem 65 For every k ≥ 0, V+
k I-dPTT ⊆ dTT↓ ◦ dTT

2k+2.

We do not know whether these results are optimal, i.e., whether the exponent
2k + 2 can be lowered.

16 Conclusion

We have shown in Theorem 5 that VkI-PTT ⊆ TT
k+2, but we do not know

whether this is optimal, i.e., whether or not VkI-PTT ⊆ TT
k+1. Since the

results on typechecking in Section 5 are based on this decomposition, we also
do not know whether the time bound for typechecking vki-ptt’s, as stated in
Theorem 8, is optimal. Using the results of [49], it can be shown that the
time bound for inverse type inference is optimal, cf. the discussion after [13,
Corollary 1].

We have shown in Theorem 29 that all mso definable n-ary patterns can
be matched by deterministic vn−2i-ptt’s, but we do not know whether this is
optimal, i.e., whether or not it can be done with less than n − 2 pebbles. In
particular, we do not know whether or not all mso definable ternary patterns
can be matched by i-ptt’s (or, by tl programs), cf. Theorem 57. In Section 10
we have suggested ways of reducing the number of visible pebbles in special
cases. Given an mso formula ϕ, can one compute the minimal number of visible
pebbles that is needed to match the pattern ϕ?

The language tl can be extended with visible pebbles, in an obvious way.
The resulting “pebble tl programs” are closely related to the pebble macro
tree transducers that were introduced in [20]. What is the relationship between
the k-pebble macro tree transducer and the vki-ptt? Is there an analogon of
Theorem 46? It is not clear whether the proof of Theorem 46 can be generalized
to the addition of visible pebbles.

We have shown in Theorem 56 that VkI-dPTT ( Vk+1I-dPTT, i.e., that
k+1 visible pebbles are more powerful than k, in the deterministic case. We do
not know whether this holds for the nondeterministic transducers, i.e., whether
or not the inclusion VkI-PTT ⊆ Vk+1I-PTT is proper. We also do not know
whether every functional vki-ptt can be simulated by a deterministic one, where
a ptt M is functional if τM is a function. If so, then the inclusion would of
course be proper.

Is it decidable for a given deterministic vk+1i-ptt M whether or not τM
is in VkI-dPTT? If so, then one could compute the minimal number of visible
pebbles needed to realize the transformation τM by a ptt. Obviously, that
would answer the above question for the pattern ϕ in the affirmative.

It is proved in [7] that the v+
k -pta has the same expressive power as the

vk-pta, i.e., that strong pebbles are not more powerful than weak pebbles. We
do not know whether or not the v+

k -ptt is more powerful than the vk-ptt, and
neither whether or not the v+

k i-ptt is more powerful than the vki-ptt.
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