

Environmental responsibility for sulfur dioxide emissions and associated biodiversity loss across Chinese provinces

Qian, Y.; Behrens, P.A.; Tukker, A.; Dias Rodrigues, J.F.; Pinke, L.; Scherer, L.A.

Citation

Qian, Y., Behrens, P. A., Tukker, A., Dias Rodrigues, J. F., Pinke, L., & Scherer, L. A. (2018). Environmental responsibility for sulfur dioxide emissions and associated biodiversity loss across Chinese provinces. *Environmental Pollution*, 245, 898-908. doi:10.1016/j.envpol.2018.11.043

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/76195

Note: To cite this publication please use the final published version (if applicable).

ACCEPTED ARTICLE

The final publication is available at Elsevier via <u>https://doi.org/10.1016/j.envpol.2018.11.043</u>.

CC-BY-NC-ND user license

Environmental responsibility for sulfur dioxide emissions and associated biodiversity loss across Chinese provinces

Yuan Qian^{a,b,*}, Paul Behrens^{b,c}, Arnold Tukker^{b,d}, João F.D. Rodrigues^b, Pingke Li^a, Laura Scherer^b

- a. Department of Industrial Engineering, Tsinghua University, Beijing, 100084, China
- Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, 2333 CC
 Leiden, The Netherlands
- Leiden University College The Hague, Anna van Buerenplein 301, 2595 DG The Hague, The Netherlands
- Netherlands Organization for Applied Scientific Research TNO, Anna van Buerenplein 1,
 2595 DA The Hague, The Netherlands
- *. Corresponding author, email address: qiany14@mails.tsinghua.edu.cn

1 Abstract

2 Recent years have witnessed a growing volume in Chinese interregional trade, along with the 3 increasing disparities in environmental pressures. This has prompted an increased attention on 4 where the responsibilities for environmental impacts should be placed. In this paper, we quantify 5 the environmental responsibility of SO2 emissions and biodiversity impacts due to terrestrial 6 acidification at the provincial level for the first time. We examine the environmental responsibility 7 from the perspectives of production, consumption, and income generation by employing a Multi-8 Regional Input-Output (MRIO) model for 2007, 2010, and 2012. The results indicate that ~40% of 9 SO₂ emissions were driven by the consumption in provinces other than where the emissions 10 discharged. In particular, those developed provinces were net importers of SO_2 emissions and 11 mainly outsourced their emissions to nearby developing provinces. Over the period of analysis, 12 environmental inequality among 30 provinces was larger than GDP inequality. Furthermore, 13 environmental inequality continued to increase while GDP inequality decreased over the time 14 period. The results of a shared income- and consumption-based responsibility approach suggest 15 that the environmental responsibility of SO₂ emissions and biodiversity impacts for developed 16 provinces can reach up to ~4- to 93-fold the environmental pressure occurred within those 17 provinces. This indicates that under these accounting principles the developed northern provinces 18 in China would bear a much larger share of the environmental responsibility.

19

Capsule: We calculate the shared responsibilities for SO₂ emissions in China and find them to
 differ significantly from the production-based reduction targets set by governments.

22

Keywords: environmental inequality, impact assessment, multi-regional input-output analysis,
responsibility sharing, soil acidification

25

26 **1. Introduction**

27 China has experienced rapid economic development over the last four decades. The GDP of 28 China (at constant 2010 prices) increased from \$264 billion to \$9.50 trillion during 1997-2016, 29 with an average annual growth rate of 9.6% (WB, 2018). However, this remarkable economic 30 growth came at a cost of environmental damage. China has become one of the largest emitters of 31 SO₂, NO_X, and greenhouse gases in the world (Liu et al., 2016; Meng et al., 2013). Along with 32 ecological impacts, many emissions are linked to multiple health problems, including lung cancer 33 (Tie et al., 2009), respiratory illness (Tao et al., 2014), and heart diseases (Wong et al., 2002), 34 leading to a shorter life expectancy (Ebenstein et al., 2017). It has been estimated by Rohde & 35 Muller (2015) that the air pollution contributed to 1.6 million deaths per year in China, roughly 17% 36 of all deaths.

37 To mitigate environmental impacts, the Chinese government has promoted a series of 38 measures, including increasing the share of non-fossil fuels (Yuan et al., 2018b), lowering CO₂ 39 emission intensities (Cui et al., 2014), developing a trading scheme of carbon emissions (Wang et 40 al., 2015), and formulating the accountability systems for local authorities (Schreifels et al., 2012). 41 Although several environmental targets in China have been proposed at the national level, they are 42 assigned to provinces according to the emissions of each province in policy formulation (Meng et 43 al., 2011; Liu & Wang, 2017). However, the emissions discharged in one region are not 44 necessarily driven by the local consumption only but by the demand from other regions as well

45 through the interregional and international trade (Yuan et al., 2018c). Since China is a country 46 with large regional disparities in the levels of economic development, resource endowment, and 47 industrial development, such disparities may result in the emission transfers via the interprovincial 48 trade: a spatial differentiation between direct emissions of production and indirect emissions of 49 consumption. It was estimated by Wang et al. (2017) that ~45% of the environmental damage in 50 2007 in China was driven by the interprovincial trade. Moreover, the emissions embodied in 51 interprovincial trade usually flow from developing to developed regions, making developed 52 regions become net importers and developing regions become net exporters (Su and Ang, 2014; 53 Wang et al., 2018; Yang et al., 2018b; Yuan et al., 2018a).

54 Considering these embodied emissions, an important debate is underway on the appropriate 55 approaches to allocating the environmental responsibility. The production-based approach 56 attributes full responsibility to the producers who benefit from the production of goods (e.g., the 57 Kyoto protocol). On the contrary, the consumption-based approach attributes full responsibility to 58 the final consumers who benefit from the consumption of goods (Davis & Caldeira, 2010; Peters, 59 2008). Since producers and consumers both benefit from the transactions along the value chain, 60 these two responsibility allocation principles may be viewed as two extremes in a continuum (Sato, 61 2012). A compromise is the scheme of shared environmental responsibility, as a weighted 62 combination of the production- and consumption-based responsibilities (Andrew and Forgie, 63 2008; Lenzen et al., 2007; Marques et al., 2012; Peters, 2008; Rodrigues et al., 2006; Rodrigues 64 and Domingos, 2008). Besides, it is also possible to assign the responsibility to the earners of 65 income from the production of goods (i.e., the income-based perspective) (Liang et al., 2017; 66 Marques et al., 2012), and define the environmental responsibility as a combination of either of

the three perspectives (production, consumption, and income) (Andrew and Forgie, 2008; Lenzen
et al., 2007; Marques et al., 2012; Peters, 2008; Rodrigues et al., 2006; Rodrigues and Domingos,
2008).

70 For the case of China, it has been argued that some form of responsibility sharing is required 71 for various emissions along value chains (Homma et al., 2012; Meng et al., 2013; Zhao et al., 72 2015). However, most of the studies focus on the production- and consumption-based approaches 73 for China, and the studies on shared responsibility are conducted mainly at the national level 74 (Andrew & Forgie, 2008) or at the sectoral level (Cadarso et al., 2012). This paper sets out, for the 75 first time to the best of our knowledge, to apply a responsibility sharing approach to direct and 76 indirect air pollution within China at the provincial level. We focus on SO₂ emissions and related 77 terrestrial acidification impacts on biodiversity as the environmental indicators, since SO₂ is the 78 precursor of ambient sulfate and plays a crucial role in the formation of acid rain and fine particles 79 (Tao et al., 2012; Yan & Wu, 2017; Zhang et al., 2015). The sulfur deposition in soils and 80 acidification can lower the pH, leach nutrients, and increase the bioavailability of toxic heavy 81 metals (Kumar, 2017), which may further lead to changes in the ecosystem services of vegetation 82 (Aherne & Posch, 2013; Lovett et al., 2009; Pandey et al., 2014). Particularly, China is facing a 83 major threat to ecosystems since the sulfur deposition exceeds critical loads in many areas (Duan 84 et al., 2016). In this paper, we investigate the changes of SO_2 emissions and biodiversity impacts 85 due to the terrestrial acidification over time between 2007, 2010, and 2012. The responsibility 86 sharing approach, the time series, the inclusion of biodiversity impacts, and the Gini coefficient 87 analysis differentiate this work from the few earlier studies on SO_2 emissions and interprovincial 88 trade (Huang et al., 2018; Zhang et al., 2018a, 2018b).

89 2. Materials and methods

90 2.1 Production and consumption-based environmental responsibility

91	In this paper we allocate the SO ₂ emissions discharged in different regions of China in 2007,
92	2010, and 2012 by an input-output approach according to three perspectives (production-based,
93	consumption-based, and income-based). Assuming that there are m regions and n sectors, the
94	expression of monetary output flows in an input-output framework is:
95	$x_i^r = \sum_{s=1}^m \sum_{j=1}^n z_{ij}^{rs} + \sum_{s=1}^m y_i^{rs} + ex_i^r $ (1)
96	where x_i^r denotes the total output of sector <i>i</i> in region <i>r</i> , z_{ij}^{rs} denotes the intermediate requirement
97	of sector <i>j</i> in region <i>s</i> from sector <i>i</i> in region <i>r</i> , y_i^{rs} denotes the final demand of region <i>s</i> from
98	sector <i>i</i> in region <i>r</i> , and ex_i^r denotes the international exports of sector <i>i</i> in region <i>r</i> .
99	Since the total inputs and outputs of industries are identical, it is possible to formulate a
100	similar expression for monetary input flows:
101	$x_{j}^{s} = \sum_{r=1}^{m} \sum_{i=1}^{n} z_{ij}^{rs} + v_{j}^{s} + imp_{j}^{s} $ ⁽²⁾
102	where v_j^s is the primary inputs of sector <i>j</i> in region <i>s</i> and imp_j^s is the corresponding imports.
103	Furthermore, denoting S_i^r the SO ₂ emissions of sector <i>i</i> in region <i>r</i> and S_h^r the SO ₂ emissions
104	from households in the same region, the production-based SO ₂ emissions (PBE) of region r in this
105	setting are the sum of emissions discharged in every production sector and household sector of
106	that region:
107	$PBE^r = \sum_{i=1}^n S_i^r + S_h^r \tag{3}$
108	The consumption-based emissions are calculated using the Leontief model, which captures

109 the upstream indirect impacts embodied in final demand along the supply chain (Miller & Blair,

110 1985). However, besides the emissions embodied in the final consumption of a region that

111	originate either from that region or from other regions in China, there are three other types of SO_2
112	emissions that we need to address: (a) emissions discharged outside China but embodied in the
113	final demand of China; (b) emissions discharged in China but embodied in the exports of China; (c)
114	and emissions from households.
115	Because this paper focuses on comparing the responsibility for SO ₂ emissions among
116	Chinese regions we make the following methodological choices. Concerning (a) we do not
117	allocate the emissions discharged outside China, as that would demand the data on international
118	emissions and flows or apply the assumption of domestic technology for imported goods (Tang et
119	al., 2012; Zhao et al., 2015). Considering (b) we allocate the impacts embodied in exports to none
120	of Chinese provinces but to the rest of the world (RoW). Concerning (c) we allocate the emissions
121	from households to the region where the household consumption takes place.

122 Mathematically, the consumption-based SO₂ emissions (CBE) of region *s* are:

123
$$CBE^{s} = \sum_{r=1}^{m} \sum_{i=1}^{n} u_{i}^{r} y_{i}^{rs} + S_{h}^{r}$$
(4)

124 The first term on the right-hand side of Eq. (4) denotes the emissions embodied in the final
125 demand of region *s*, which is calculated as the sum of the emissions embodied in the purchases of

126 every product from every region by the final demand of region *s*. The second term accounts for

the emissions from households. The consumption-based responsibility of the RoW for the

- 128 emissions discharged within China is $\sum_{s=1}^{m} \sum_{i=1}^{n} u_i^s e x_i^s$.
- 129 The consumption-based (or upstream) emissions embodied in the final demand are
- 130 quantified as the product of the upstream intensity (total SO₂ emissions discharged along the
- 131 supply chain over unit of output) and the volume of final demand. By the Leontief model, the
- 132 vector of upstream intensities, *u*, is calculated as:

$$u = b'(I - A)^{-1}$$
(5)

where b is the column vector of direct intensities, whose entries are $b_i^r = S_i^r / x_i^r$, b' denotes the 134 135 transpose of b, $(I - A)^{-1}$ is the Leontief inverse matrix, and A is the technical coefficient matrix 136 whose entries are $A_{ij}^{rs} = Z_{ij}^{rs}/x_j^s$. 137 Later, we will quantify the flows of upstream emissions embodied in the interregional trade, 138 which requires disaggregating the total upstream embodied emissions according to their sources. The matrix of disaggregated upstream intensity U, whose entry U_{ij}^{rs} denotes the emissions 139 140 discharged in sector i of region r per unit of output of sector j in region s, and is calculated as $U = \vec{b} \cdot (I - A)^{-1}$ where \vec{b} is the diagonalized matrix of b. The flow of emissions from region r 141 142 to region *s* is now:

143
$$CBE^{rs} = \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} U_{ij}^{rk} y_{i}^{ks}$$
(6)

144 Notice that it is possible for there to be emissions flowing from region *r* to region *s* through
145 the purchase of final consumption goods produced in region *k* (but whose supply chain in turn
146 leads to emissions in region *r*).

147 2.2 Terrestrial acidification and biodiversity loss

148 Terrestrial acidification is characterized by the changes in soil chemical properties and

- 149 caused mainly by the atmospheric deposition of acidifying pollutants including NO_X, SO₂, and
- 150 NH₃ (Roy et al., 2014). The acidification impacts of emissions can be assessed with the
- 151 characterization factors obtained from a characterization model investigating the cause-effect
- 152 chain of the emissions to the potential impacts (e.g., human health or biodiversity loss) (Udo de
- 153 Haes et al., 2002). The characterization factor for terrestrial acidification is expressed as a function
- 154 of (1) an atmospheric fate factor representing the link between emissions and deposition locations,

155	(2) a soil sensitivity factor representing the change of H^+ concentration in soil related to acid
156	deposits over a certain area, and (3) an effect factor representing the loss of vascular plant species
157	due to the change of H^+ concentration in soil (Azevedo et al., 2013; Roy et al., 2014).
158	To assess the terrestrial acidification caused by SO_2 emissions derived from the MRIO model,
159	the LC-Impact model is applied, which is a spatially differentiated method for global impact
160	assessment. Compared to previous methods of life cycle impact assessment, the LC-Impact
161	method incorporates new impact pathways, includes spatial differentiation for 11 major
162	environmental mechanisms, and quantifies impacts on ecosystem quality as potential global
163	species loss (Verones et al., 2016). When assessing the terrestrial acidification caused by SO_2
164	emissions, the characterization factors of SO ₂ emissions at grid level (2.0 x 2.5° resolution) are
165	obtained from the LC-Impact webpage (LC-Impact, 2013). The zonal statistics are performed in
166	GIS software to aggregate them to the provincial level, i.e., the raster map of characterization
167	factors for SO_2 emissions is overlaid with the spatial information on provinces, and then the
168	averages of all raster cells within each province are calculated.
169	2.3 Inequality analysis using the Gini coefficient
170	The Gini index is used to analyze the inequality of GDP, SO ₂ emissions, and biodiversity
171	impacts among 30 Chinese provinces (excluding Tibet, Hong Kong, Macau, and Taiwan). The
172	Gini index has been widely used to investigate economic inequality (Gastwirth & Glauberman,

- 173 1976), and is increasingly used to analyze environmental inequality too (Dong and Liang, 2014;
- 174 Jacobson et al., 2005; Luo et al., 2016; Sun et al., 2010).
- 175 When analyzing the inequalities of GDP, SO₂ emissions, and biodiversity impact, they are
- 176 visualized in Lorenz curves where the ordinate values represent the cumulative share of GDP and

the abscissa values represent the cumulative shares of population, SO₂ emissions, and biodiversity
impacts, respectively. The Gini indices are calculated from the Lorenz curves, with a value of 0
indicating the complete equality of allocation and a value of 1 indicating the complete inequality
of allocation (in the case of income, it means one individual accrues all the national wealth). The
Gini index is estimated as:

$$Gini = 1 - \sum_{r=1}^{30} (z_r - z_{r-1}) (gdp_r - gdp_{r-1})$$
(7)

183 where z_r denotes the cumulative share of population (or SO₂ emissions and biodiversity impacts 184 when calculating the Gini indices of SO₂ emission and biodiversity impact) in province *r*, gdp_r 185 denotes the cumulative share of GDP in province *r* with convention that $z_0 = 0$ and $gdp_0 = 0$.

186 2.4 Income-based and shared environmental responsibility

187 In the same way as the Leontief model quantifies the indirect impacts occurring upstream

along a supply chain, the Ghosh model quantifies the indirect impacts occurring downstream

- along a supply chain (Ghosh, 1958). The Leontief model can be used to account for the upstream
- 190 emissions embodied in final demand, defining the consumption-based responsibility. Analogously,
- 191 the Ghosh model can be used to account for the downstream emissions embodied in primary
- 192 inputs, defining the income-based responsibility (Marques et al., 2012).
- 193 As in the case of consumption-based perspective, it is necessary to decide how to allocate the
- 194 emissions embodied in international trade and from final demand among different regions. We
- 195 follow the same routine and (a) ignore the emissions discharged outside China; (b) allocate the
- downstream emissions embodied in imports to the RoW; and (c) allocate the emissions from final
- 197 demand to the region where the final consumption occurs.

198 Mathematically, the income-based SO₂ emissions (IBE) of region *s* are:

$$IBE^s = \sum_{i=1}^n d_i^s v_i^s + S_h^r \tag{8}$$

200 The new term d_i^s is the downstream intensity, calculated as:

201
$$d = (I - G)^{-1}b$$
 (9)

202 where b is the column vector of direct intensities as in Eq. (5), $(I - G)^{-1}$ is the Ghosh inverse

203 matrix, and G is the matrix of fixed sales coefficients whose entries are $G_{ij}^{rs} = Z_{ij}^{rs}/x_i^r$. The

204 income-based responsibility of the RoW for the emissions discharged within China is

 $205 \qquad \sum_{s=1}^{m} \sum_{i=1}^{n} d_i^s \, imp_i^s.$

To calculate the shared responsibility of SO₂ emissions, we apply the indicator proposed by Rodrigues et al. (2006), whereby the environmental responsibility of a region is the average of its consumption-based and income-based emissions:

$$\frac{1}{2}(CBE^r + IBE^r) \tag{10}$$

210 Note that the current SO_2 reduction targets are assigned to provinces based on their total SO_2

211 emissions (a production-based approach).

212 2.5 Data Sources

We used the 30-province, 30-sector Chinese MRIO tables of 2007 (Liu et al., 2012), 2010 (Liu et al., 2014), and 2012 (Mi et al., 2017b). These tables are in the non-competitive form and deflated at 2012 constant prices. Furthermore, since the sectoral SO₂ emissions data are not available at the provincial level, they are estimated using the method proposed by Liu & Wang (2015) as $S_i^r = Q_i^r \cdot \beta_i^r \cdot (1 - \eta_i^r)$, where S_i^r is the sectoral SO₂ emissions (kg), Q_i^r is the coal consumption (kg), β_i^r is the sulfur content (%), and η_i^r is the SO₂ removal rate (%) of sector *i* for region *r*. The industrial and non-industrial SO₂ emissions for 30 provinces can be calculated by assuming that the sulfur content is constant across sectors but differs among provinces ($\beta_i^r = \beta_j^r = \beta_j^r$), and that the SO₂ removal rate is constant across provinces but differs among sectors ($\eta_i^r = \eta_i^s = \eta_i$, implying that the technology diffusion is equal across provinces). Note that the SO₂ removal rates might actually differ among provinces beyond differences in the industrial structure, as assumed here. The SO₂ scrubbers might be preferentially deployed in developed provinces or at large power plants. However, the necessary data to support these assumptions and include the differences in our analysis are not available.

- 227 China Emission Accounts and Datasets (CEADs) provides the coal consumption data (Shan
- et al., 2016, 2018). The data on SO₂ emissions, industrial SO₂ removal, population, and provincial
- GDP are obtained from the China Statistical Yearbook on Environment. Since the industrial SO₂
- removal data in 2012 are not released yet, they are forecasted based on the data of 2001-2010
- using exponential smoothing (Appendix A.3).
- 232 To maintain consistency in the classification of sectors, the 44 sectors with SO₂ emissions
- data and the 30 sectors in the MRIO tables are aggregated to 27 sectors, including 5 non-
- industrial sectors and 22 industrial sectors. The details on the sector aggregation are documented
- in Table S1, and the abbreviations for the 30 provinces are shown in Table S2.
- 236 **3. Results**

237 3.1 Production- and consumption-based SO₂ emissions

During the study period, the total SO_2 emissions increased from 25.8 Mt (million tons) in 239 2007 to 26.4 Mt in 2010 and then decreased to 22.5 Mt in 2012, consistent with the results 240 obtained by Yang et al. (2018a). Figure S24 illustrates the production- and consumption-based SO₂ emissions in 2007, 2010, and 2012, and also shows that the production-based emissions were
higher than the consumption-based emissions in most provinces since a large part of emissions
embodied in consumption leaked to the RoW. During 2007-2012, ~17.1-23.9% of the emissions
can be attributed to the RoW. Furthermore, ~64% of the emissions embodied in the RoW occurred
in five coastal provinces, namely, Guangdong, Jiangsu, Zhejiang, Shandong, and Shanghai.

246 Figure S24 also shows that the intra-provincial and inter-provincial consumption varied 247 among different provinces. It is worth noting that the intra-provincial consumption in developed 248 provinces accounted for only a small part of the total consumption-based emissions. For example, 249 the intra-provincial consumption in Beijing, Tianjin, and Shanghai only accounted for 18.8%-39.1% 250 of the total consumption-based emissions. However, in some developing provinces with energy-251 intensive industries (e.g., Inner Mongolia, Shanxi, and Guizhou), the intra-provincial consumption 252 contributed most to the total consumption-based emissions. Besides, the proportion of intra-253 provincial consumption showed different trends in some neighboring provinces. For example, the 254 proportion of intra-provincial consumption in Beijing indicated a decreasing trend, from 31.1% in 255 2007 to 21.7% in 2010, and then to 14.1% in 2012. However, the proportions of intra-provincial 256 consumption in nearby Tianjin and Hebei kept rising during the same time period. Such a pattern 257 among Beijing-Tianjin-Hebei area might be due to the provincial transfer of industries after 2007, 258 when some heavily polluting industries in Beijing were relocated to Tianjin and Hebei (Zheng et 259 al., 2018).

260 3.2 Inflows and outflows of SO₂ emissions

Figure S25 shows the provincial inflow and outflow of SO₂ emissions through the interprovincial trade within China in 2007, 2010, and 2012. During the study period, ~37.3%-38.8% of

the emissions were generated by the consumption of other provinces. Furthermore, for some developed provinces, e.g., Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, and Guangdong, the inflows were much larger than the outflows. For example, the inflows of SO_2 emissions in Beijing were ~9.9-, 18.2-, and 10.3-fold the outflows in 2007, 2010, and 2012, respectively. On the contrary, for some developing provinces, e.g., Shanxi, Inner Mongolia, Henan, Anhui, and Guizhou, the outflows were much larger than the inflows. For example, the outflows of SO_2 emissions in Inner Mongolia were ~6.5-, 2.3-, and 2.7-times the inflows in those years.

270 *3.3 SO*₂ *emissions embodied in interregional trade*

From the analysis above, there are evident spatial differences between inflows and outflows of SO₂ emissions. To facilitate the visualization of these flows, the 30 provinces are aggregated into eight regions (Feng et al., 2013; Wang et al., 2017, see Figure S1 for details). The SO₂ emissions embodied in interregional trade in 2007, 2010, and 2012 are documented in Figure S26, Figure S27, and Figure S28, respectively.

276 Figure 1 shows that the Northwest, Southwest, and Central regions had the largest emissions 277 during the study period. However, a considerable proportion of the emissions of these three 278 regions were generated by the consumption in other regions. Besides, the developed Jing-Jin, East 279 Coast, and South Coast regions were the main net importers of emissions, while the less 280 developed Northwest, Southwest, and Central regions were net exporters of emissions. In 2007, 281 the Jing-Jin, East Coast, and South Coast regions outsourced between 0.60 and 1.54 Mt to other 282 regions, which slightly increased in 2010. Although the inflows of these three regions decreased in 283 2012, they were still much higher than the respective outflows, ~2.1-5.9 times. In 2007, between 284 1.19 and 1.69 Mt of SO₂ emissions generated in the Central, Northwest, and Southwest regions

were embodied in products traded to other regions, accounting for ~21.7-36.3% of the total
production-based emissions. The outflows of these three regions slightly fluctuated in 2010 and
2012.

Figure 1. Net transfers of SO₂ emissions of eight regions in China

290 Figure 1 also illustrates that the largest flow of SO₂ emissions was from the Central region to 291 the East Coast region, followed by the flow from the Southwest to the South Coast, and that from 292 the Northwest to the East Coast. During the study period, ~59-71% of emissions in the Central 293 region can be attributed to the consumption of East Coast. The South Coast region predominately 294 outsourced the emissions to the Southwest region, and ~39-53% of the inflows to the South Coast 295 were from the Southwest region. At the provincial level, Guangdong was the main province in the 296 South Coastal region outsourcing SO_2 emissions to the Southwest. Besides the Central region, the 297 Northwest region, particularly Gansu, Shaanxi, and Inner Mongolia, was also another main 298 destination to which the East Coast outsourced SO₂ emissions. Figure 1 also demonstrates that the 299 outflows from the Central region to the South Coast region increased significantly in 2010, mainly 300 due to the outflows from Jiangxi to Guangdong. More details about the net transfers are 301 documented in Table S4, Table S5, and Table S6, respectively.

It is also worth noting that most provinces outsourced SO₂ emissions to their neighboring provinces. For example, Beijing and Tianjin mainly outsourced the emissions to Hebei and Inner Mongolia. Shanghai, Jiangsu, and Zhejiang, the three developed provinces in the east, mainly outsourced the emissions to nearby regions like Shandong, Henan, and Anhui. In the south, Guangdong mainly outsourced the emissions to Guizhou and Yunnan.

307 *3.4 Biodiversity impacts at provincial level*

308 Figure 2 demonstrates the biodiversity impacts caused by SO₂ emissions for each province.
309 During the study period, the three provinces, Xinjiang, Sichuan, and Fujian, suffered most from
310 the biodiversity loss indicated by the high values of the characterization factors in these provinces,
311 which can be attributed mainly to the atmospheric fate and soil sensitivity factors (Roy et al.,

2014). Therefore, the severe biodiversity loss in these three provinces might be due to the proximity of the receptor and the source of SO₂ emissions and the high levels of soil acidification in these three provinces. Furthermore, the biodiversity losses of Sichuan and Fujian reduced during 2010-2012, while the biodiversity loss of Xinjiang increased rapidly during the same period. Besides, the biodiversity loss due to terrestrial acidification in China showed an obvious spatial disparity, with the most severe loss occurred mainly in the western and central regions, and much lower loss occurred in the eastern regions.

320 Figure 2. Biodiversity loss due to terrestrial acidification at provincial level (PDF in the legend321 means "potentially disappeared fraction of species" and the numeric values on the maps indicate

322 the biodiversity loss of each province).

323 *3.5 Regional environmental inequality*

324 From Figure 1 and Figure 2, we find that both the SO₂ emissions and the biodiversity loss 325 displayed regional disparities during the study period. Considering that the embodied emission flows were mainly from developing regions to developed regions, the economic inequalities were 326 327 likely reflected in environmental inequalities. Hence, the Lorenz curves and Gini indices of GDP, 328 SO₂ emissions, and biodiversity loss are illustrated in Figure 3. During 2007-2010, the inequality 329 of SO₂ emissions remained more or less static, but slightly increased during 2010-2012. 330 Furthermore, the inequality of SO₂ emissions was larger than that of GDP. The changing pattern 331 of SO₂ emissions inequality was in contrast to that of GDP inequality, consistent with Clarke-332 Sather et al. (2011) who found that carbon inequality and income inequality in China showed 333 inverse trends during 1997-2007. Compared to SO₂ emissions and GDP, the biodiversity loss in 334 2007, 2010, and 2012 showed the largest degrees of inequality, with Gini coefficients of ~0.9.

336 Figure 3. Lorenz curves of population, SO₂ emissions, and biodiversity loss relative to GDP

337

335

(The numbers in brackets indicate the respective Gini values)

338 *3.6 Shared income and consumer responsibility*

339 We now investigate the shared environmental responsibilities of SO₂ emissions and 340 associated biodiversity loss at the provincial level. When the income-generating provinces share 341 the responsibility with the consuming provinces, we find a similar pattern of provincial allocation 342 of environmental responsibility as that under the consumption-based accounting. Under the shared 343 responsibility approach, the RoW would bear ~15% responsibility of the total SO₂ emissions and 344 only 7 out of 30 provinces would bear more responsibility than the production-based emissions 345 discharged in their own territory. Furthermore, these 7 provinces are mainly developed Jing-Jin 346 regions and developing northeastern regions (e.g., Heilongjiang, Jilin). When concerning the biodiversity loss caused by SO₂ emissions, only a few provinces would bear less responsibility,
e.g., Sichuan, Fujian, Xinjiang, and Qinghai. Further details about the shared environmental
responsibility of SO₂ emissions and associated biodiversity loss are documented in Table S7 and
Table S8.

351 Figure 4 and Figure 5 show the contribution of consumption, income, and household 352 consumption to the environmental responsibility of SO2 emissions and biodiversity loss. As 353 illustrated in Figure 4, the consumption contributed most to the environmental responsibility for 354 developed regions, e.g., Beijing, Shanghai, and Zhejiang. However, for developing regions, the 355 income contributed most to the shared responsibility, e.g., Shanxi, Yunnan, and Heilongjiang. 356 These regions showed a similar pattern when assessing the environmental responsibility for 357 biodiversity loss. In contrast to other provinces that would bear less responsibility, the household 358 consumption in Xinjiang contributed a relatively large part to the final responsibility for 359 biodiversity loss (Figure 5).

360 The current pollution control targets in China are designed by the national government and 361 then assigned to each province. We may assess the fairness of the current allocation scheme of 362 SO_2 reduction targets among provinces under the shared responsibility principle by comparing the 363 provincial share in the allocation of environmental responsibility with the pollution reduction 364 target. The latest reduction targets for SO_2 emissions on the provincial level were designed for 365 2010 according to the 2005 levels. The provincial shares of SO₂ reduction in the policy are 366 calculated based on the provincial reduction targets for SO₂ emissions, as shown in Table S9. The 367 comparison between the provincial shares of environmental responsibility and the reduction 368 targets is conducted in Figure 4. The results indicate that the reduction targets of some provinces

- 369 fall behind their estimated environmental responsibility for SO₂ emissions, e.g., Beijing, Tianjin,
- and Inner Mongolia. For some other provinces, e.g., Shanxi, Shanghai, and Jiangsu, the reduction
- 371 targets exceeded the environmental responsibility.

HUBE

SHAN

CHON

2007

SHA

BEI

■ Household • Production

HUNA

ANHU

LIAO

TIAN

GUIL

ANA

112t

IL HEIL

IAN

THE

OTACHTER C

Consumption Income

GUAT

SHAA

HEBE

IIIV UN

Figure 4. Comparison of provincial responsibility shares and reduction shares in 2010

374

373

1.E-05 0.E+00

CAN HENORENA

GUAD

375 Figure 5. Provincial responsibility for the biodiversity loss caused by terrestrial acidification (Unit:

376

PDF·yr)

377 4. Discussion

378 Our results showed that the developed provinces had larger outflows than inflows of SO_2 379 emissions and mainly outsourced emissions to those developing provinces with energy-intensive 380 industries, especially to their neighboring developing provinces. Under a shared income- and 381 consumption-based responsibility approach, some developed provinces would bear more emission 382 responsibility than that under the production-based accounting method. Furthermore, the 383 developing provinces mainly acted as resource suppliers in the domestic supply chain, especially 384 in the energy intensive sectors (e.g., coal mining, chemistry, metallurgy, and electricity). The 385 developed provinces, however, mainly acted as final consumers rather than resources suppliers, 386 especially in the construction and service sectors (Figure S29, Figure S30).

However, the responsibility of SO_2 emissions and associated biodiversity loss showed different patterns. Only a few provinces would bear more responsibility for SO_2 emissions, while most provinces would bear more responsibility for biodiversity loss. The large differences of biodiversity effects among regions were mainly due to the variations in the distances between emissions and deposition, the buffer capacity, and the plant species sensitivity.

When comparing biodiversity loss to SO₂ emissions, Xinjiang, Sichuan, and Fujian suffered most as indicated by the high values of the characterization factors in these provinces. Furthermore, the household consumption in Xinjiang accounted for ~38.9%, 26.8%, and 22.2% of the total responsibility in 2007, 2010, and 2012, larger than the corresponding proportions in other provinces, indicating that improving the energy efficiency in household consumption could be an 397 efficient way to lower the SO₂-related biodiversity loss in Xinjiang.

398 Our analysis also showed that the Gini indices of GDP and SO₂ emissions have the opposite 399 temporal trends during the period 2007-2012, consistent with the research by Clarke-Sather et al. 400 (2011) investigating the relationship between income and carbon emissions. However, our 401 analysis revealed that the inequality of SO₂ emissions exceeded GDP inequality while the 402 inequality of carbon emissions was lower than income inequality as shown in Clarke-Sather et al. 403 (2011). According to Chen et al. (2016), the differences of interprovincial carbon emissions from 404 coal in China were greater than that from fossil fuels. Considering that coal combustion accounts 405 for $\sim 72\%$ of the total energy consumption in China and is the main source of SO₂ emissions (Yang 406 et al., 2016), the SO_2 emission differences were greater than the GDP differences. A distinct 407 characteristic in the inequality analysis is that the biodiversity impact inequality was far greater 408 than GDP and SO₂ inequalities, because the biodiversity loss in Xinjiang, Sichuan, and Fujian was 409 much more severe than in other provinces.

The impacts of other acidifying pollutants (NOx and NH₃) and of pollutant interactions on terrestrial biodiversity may be investigated in an analogous manner. In addition, the impacts on aquatic ecosystems and on human health deserve more research attention.

413 5. Conclusions

Using a MRIO model, this paper conducted a quantification of the shared responsibility for
SO₂ emissions and associated biodiversity loss for 30 provinces in China for 2007, 2010, and 2012.
The results showed that the developed provinces caused more SO₂ emissions through consumption
than through production, while the opposite applied to the developing provinces. Under the shared
responsibility principle, the rest of the world would bear ~15% responsibility of the total SO₂

emissions in China. Some developed northern provinces (e.g., Beijing, Tianjin) and developing northeastern provinces (e.g., Heilongjiang, Jilin) would bear more responsibility for SO_2 emissions. Other provinces, especially those with energy-intensive industries, would bear less responsibility for SO_2 emissions. For example, the responsibility for SO_2 emissions in Beijing was ~1.8-, 2.4-, and 3.6-times the actual emissions in 2007, 2010, and 2012. However, the responsibility for SO_2 emissions in Inner Mongolia was only 69.7%, 77.4%, and 75.6% of the actual emissions.

426 Compared to SO₂ emissions, biodiversity loss was much more unequal within 30 provinces in 427 China, with Gini coefficients of about 0.9. The provinces that suffered from severe biodiversity 428 loss, e.g., Sichuan, Fujian, and Xinjiang, would bear less environmental responsibility. 429 Furthermore, the differences between environmental responsibility and biodiversity loss occurred 430 within the provinces were even larger. For example, in Xinjiang, the environmental responsibility 431 for biodiversity loss was ~73.8%, 74.6%, and 74.9% of the biodiversity loss occurred within the 432 province in 2007, 2010, and 2012. However, in Shanghai, the responsibility for biodiversity loss 433 was ~58-, 54-, and 93-fold the biodiversity loss occurred within the province.

434 Acknowledgements

We thank Dr. Rong Yuan for sharing the MRIO data. This work was partially supported by
the "Short-Term Study Abroad Fund for the Ph.D. Students of Tsinghua University" and the
"Tsinghua University Initiative Scientific Research Program" [grant number 2014z2017].

438 **References**

439 Aherne, J., Posch, M., 2013. Impacts of nitrogen and sulphur deposition on forest ecosystem services in

440	Canada. Curr. Opin. Environ. Sustain. 5, 108-115. https://doi.org/10.1016/j.cosust.2013.02.005
441	Andrew, R., Forgie, V., 2008. A three-perspective view of greenhouse gas emission responsibilities in
442	New Zealand. Ecol. Econ. 68, 194–204. https://doi.org/10.1016/j.ecolecon.2008.02.016
443	Azevedo, L.B., Van Zelm, R., Hendriks, A.J., Bobbink, R., Huijbregts, M.A.J., 2013. Global
444	assessment of the effects of terrestrial acidification on plant species richness. Environ. Pollut. 174,
445	10-15. https://doi.org/10.1016/j.envpol.2012.11.001
446	Cadarso, M.Á., López, L.A., Gómez, N., Tobarra, M.Á., 2012. International trade and shared
447	environmental responsibility by sector. An application to the Spanish economy. Ecol. Econ. 83,
448	221-235. https://doi.org/10.1016/j.ecolecon.2012.05.009
449	Chen, J., Cheng, S., Song, M., Wang, J., 2016. Interregional differences of coal carbon dioxide
450	emissions in China. Energy Policy 96, 1–13. https://doi.org/10.1016/j.enpol.2016.05.015
451	Clarke-Sather, A., Qu, J., Wang, Q., Zeng, J., Li, Y., 2011. Carbon inequality at the sub-national scale:
452	A case study of provincial-level inequality in CO ₂ emissions in China 1997–2007. Energy Policy
453	39, 5420–5428. https://doi.org/10.1016/j.enpol.2011.05.021
454	Cui, L.B., Fan, Y., Zhu, L., Bi, Q.H., 2014. How will the emissions trading scheme save cost for
455	achieving China's 2020 carbon intensity reduction target? Appl. Energy 136, 1043–1052.
456	https://doi.org/10.1016/j.apenergy.2014.05.021
457	Davis, S.J., Caldeira, K., 2010. Consumption-based accounting of CO ₂ emissions. Proc. Natl. Acad. Sci.
458	107, 5687–5692. https://doi.org/10.1073/pnas.0906974107
459	Dong, L., Liang, H., 2014. Spatial analysis on China's regional air pollutants and CO ₂ emissions:

- 460 Emission pattern and regional disparity. Atmos. Environ. 92, 280–291.
- 461 https://doi.org/10.1016/j.atmosenv.2014.04.032

29

- 462 Duan, L., Yu, Q., Zhang, Q., Wang, Z., Pan, Y., Larssen, T., Tang, J., Mulder, J., 2016. Acid
- 463 deposition in Asia: Emissions, deposition, and ecosystem effects. Atmos. Environ. 146, 55–69.
- 464 https://doi.org/10.1016/j.atmosenv.2016.07.018
- 465 Ebenstein, A., Fan, M., Greenstone, M., He, G., Zhou, M., 2017. New evidence on the impact of
- 466 sustained exposure to air pollution on life expectancy from China's Huai River Policy. Proc. Natl.
- 467 Acad. Sci. 114, 10384–10389. https://doi.org/10.1073/pnas.1616784114
- 468 Feng, K., Davis, S.J., Sun, L., Li, X., Guan, D., Liu, W., Liu, Z., Hubacek, K., 2013. Outsourcing CO₂
- 469 within China. Proc. Natl. Acad. Sci. 110, 11654–11659.
- 470 https://doi.org/10.1073/pnas.1219918110
- 471 Gastwirth, J.L., Glauberman, M., 1976. The interpolation of the Lorenz curve and Gini index from
- 472 grouped data. Econometrica 44, 479–483.
- 473 Ghosh, A., 1958. Input-output approach in an allocation system. Economica 25, 58–64.
- 474 Homma, T., Akimoto, K., Tomoda, T., 2012. Quantitative evaluation of time-series GHG emissions by
- 475 sector and region using consumption-based accounting. Energy Policy 51, 816–827.
- 476 https://doi.org/10.1016/j.enpol.2012.09.031
- 477 Huang, R., Hubacek, K., Feng, K., Li, X., Zhang, C., 2018. Re-examining embodied SO₂ and CO₂
- 478 emissions in China. Sustainability 10, 1505. https://doi.org/10.3390/su10051505
- 479 Jacobson, A., Milman, A.D., Kammen, D.M., 2005. Letting the (energy) Gini out of the bottle: Lorenz
- 480 curves of cumulative electricity consumption and Gini coefficients as metrics of energy
- 481 distribution and equity. Energy Policy 33, 1825–1832.
- 482 https://doi.org/10.1016/j.enpol.2004.02.017
- 483 Krzywinski, M. et al, 2009. Circos: An information aesthetic for comparative genomics. Genome Res

484

19, 1639–1645. https://doi.org/10.1101/gr.092759.109.19

- 485 Kumar, S., 2017. Acid rain-The major cause of pollution: Its causes, effects and solution. Int. J. Appl.
 486 Chem. 13, 53–58.
- 487 LC-Impact, 2013. Characterization factors for terrestrial acidification [WWW Document]. LC-Impact,
- 488 Robin Budel. URL http://lc-impact.eu/downloads-characterisation-factors (accessed 6.4.18).
- 489 Lenzen, M., Murray, J., Sack, F., Wiedmann, T., 2007. Shared producer and consumer responsibility-
- 490 Theory and practice. Ecol. Econ. 61, 27–42. https://doi.org/10.1016/j.ecolecon.2006.05.018
- 491 Liang, S., Qu, S., Zhu, Z., Guan, D., Xu, M., 2017. Income-based greenhouse gas emissions of nations.
- 492 Environ. Sci. Technol. 51, 346–355. https://doi.org/10.1021/acs.est.6b02510
- 493 Liu, F., Zhang, Q., Van Der A, R.J., Zheng, B., Tong, D., Yan, L., Zheng, Y., He, K., 2016. Recent
- 494 reduction in NOx emissions over China: Synthesis of satellite observations and emission
- 495 inventories. Environ. Res. Lett. 11, 114002. https://doi.org/10.1088/1748-9326/11/11/114002
- 496 Liu, Q., Wang, Q., 2017. Sources and flows of China's virtual SO₂ emission transfers embodied in
- 497 interprovincial trade: A multiregional input-output analysis. J. Clean. Prod. 161, 735–747.
- 498 https://doi.org/10.1016/j.jclepro.2017.05.003
- 499 Liu, Q., Wang, Q., 2015. Reexamine SO₂ emissions embodied in China's exports using multiregional
- 500 input-output analysis. Ecol. Econ. 113, 39–50. https://doi.org/10.1016/j.ecolecon.2015.02.026
- 501 Liu, W., Tang, Z., Chen, J., Yang, B., 2014. China's interregional input-output table for 30 regions in
- 5022010 (in Chinese). China Statictics Press, Beijing.
- 503 Lovett, G.M., Tear, T.H., Evers, D.C., Findlay, S.E.G., Cosby, B.J., Dunscomb, J.K., Driscoll, C.T.,
- 504 Weathers, K.C., 2009. Effects of air pollution on ecosystems and biological diversity in the
- 505 eastern United States. Ann. N. Y. Acad. Sci. 1162, 99–135. https://doi.org/10.1111/j.1749-

506 6632.2009.04153.x

- 507 Luo, X., Dong, L., Dou, Y., Liang, H., Ren, J., Fang, K., 2016. Regional disparity analysis of Chinese
- 508 freight transport CO₂ emissions from 1990 to 2007: Driving forces and policy challenges. J.
- 509 Transp. Geogr. 56, 1–14. https://doi.org/10.1016/j.jtrangeo.2016.08.010
- 510 Marques, A., Rodrigues, J., Lenzen, M., Domingos, T., 2012. Income-based environmental
- 511 responsibility. Ecol. Econ. 84, 57–65. https://doi.org/10.1016/j.ecolecon.2012.09.010
- 512 Meng, B., Xue, J., Feng, K., Guan, D., Fu, X., 2013. China's inter-regional spillover of carbon
- emissions and domestic supply chains. Energy Policy 61, 1305–1321.
- 514 https://doi.org/10.1016/j.enpol.2013.05.108
- 515 Meng, L., Guo, J., Chai, J., Zhang, Z., 2011. China's regional CO₂ emissions: Characteristics, inter-
- 516 regional transfer and emission reduction policies. Energy Policy 39, 6136–6144.
- 517 https://doi.org/10.1016/j.enpol.2011.07.013
- 518 Mi, Z., Meng, J., Guan, D., Shan, Y., Song, M., Wei, Y.-M., Liu, Z., Hubacek, K., 2017. Chinese CO₂
- 519 emission flows have reversed since the global financial crisis. Nat. Commun. 8, 1712.
- 520 https://doi.org/10.1038/s41467-017-01820-w
- 521 Miller, R.E., Blair, P.D., 1985. Input-output analysis: Foundations and extensions. Prentice-Hall, Inc.,
- 522 Englewood Cliffs, New Jersery.
- 523 Pandey, B., Agrawal, M., Singh, S., 2014. Coal mining activities change plant community structure due
- to air pollution and soil degradation. Ecotoxicology 23, 1474–1483.
- 525 https://doi.org/10.1007/s10646-014-1289-4
- 526 Peters, G.P., 2008. From production-based to consumption-based national emission inventories. Ecol.
- 527 Econ. 65, 13–23. https://doi.org/10.1016/j.ecolecon.2007.10.014

- 528 Rodrigues, J., Domingos, T., 2008. Consumer and producer environmental responsibility: Comparing
- 529 two approaches. Ecol. Econ. 66, 533–546. https://doi.org/10.1016/j.ecolecon.2007.12.010
- 530 Rodrigues, J., Domingos, T., Giljum, S., Schneider, F., 2006. Designing an indicator of environmental
- 531 responsibility. Ecol. Econ. 59, 256–266. https://doi.org/10.1016/j.ecolecon.2005.10.002
- 532 Rohde, R.A., Muller, R.A., 2015. Air pollution in China: Mapping of concentrations and sources. PLoS
- 533 One 10, 1–14. https://doi.org/10.1371/journal.pone.0135749
- 534 Roy, P.O., Azevedo, L.B., Margni, M., van Zelm, R., Deschênes, L., Huijbregts, M.A.J., 2014.
- 535 Characterization factors for terrestrial acidification at the global scale: A systematic analysis of
- 536 spatial variability and uncertainty. Sci. Total Environ. 500–501, 270–276.
- 537 https://doi.org/10.1016/j.scitotenv.2014.08.099
- 538 Sato, M., 2012. Embodied carbon in trade: A survey of the empirical literature, Centre for Climate
- 539 Change Economics and Policy.
- 540 Schreifels, J.J., Fu, Y., Wilson, E.J., 2012. Sulfur dioxide control in China: Policy evolution during the
- 541 10th and 11th Five-year Plans and lessons for the future. Energy Policy 48, 779–789.
- 542 https://doi.org/10.1016/j.enpol.2012.06.015
- 543 Shan, Y., Guan, D., Zheng, H., Ou, J., Li, Y., Meng, J., Mi, Z., Liu, Z., Zhang, Q., 2018. China CO₂
- 544 emission accounts 1997–2015. Sci. Data 5, 1–14. https://doi.org/10.1038/sdata.2017.201
- 545 Shan, Y., Liu, J., Liu, Z., Xu, X., Shao, S., Wang, P., Guan, D., 2016. New provincial CO₂ emission
- 546 inventories in China based on apparent energy consumption data and updated emission factors.
- 547 Appl. Energy 184, 742–750. https://doi.org/10.1016/j.apenergy.2016.03.073
- 548 Su, B., Ang, B.W., 2014. Input-output analysis of CO₂ emissions embodied in trade: A multi-region
- 549 model for China. Appl. Energy 114, 377–384. https://doi.org/10.1016/j.apenergy.2013.09.036

- 550 Sun, T., Zhang, H., Wang, Y., Meng, X., Wang, C., 2010. The application of environmental Gini
- 551 coefficient (EGC) in allocating wastewater discharge permit: The case study of watershed total
- mass control in Tianjin, China. Resour. Conserv. Recycl. 54, 601–608.
- 553 https://doi.org/10.1016/j.resconrec.2009.10.017
- 554 Tang, X., Zhang, B., Feng, L., Snowden, S., Höök, M., 2012. Net oil exports embodied in China's
- international trade: An input-output analysis. Energy 48, 464–471.
- 556 https://doi.org/10.1016/j.energy.2012.10.010
- 557 Tao, M., Chen, L., Su, L., Tao, J., 2012. Satellite observation of regional haze pollution over the North
- 558 China Plain. J. Geophys. Res. Atmos. 117, 1–16. https://doi.org/10.1029/2012JD017915
- 559 Tao, Y., Mi, S., Zhou, S., Wang, S., Xie, X., 2014. Air pollution and hospital admissions for respiratory
- diseases in Lanzhou, China. Environ. Pollut. 185, 196–201.
- 561 https://doi.org/10.1016/j.envpol.2013.10.035
- 562 Tie, X., Wu, D., Brasseur, G., 2009. Lung cancer mortality and exposure to atmospheric aerosol
- 563 particles in Guangzhou, China. Atmos. Environ. 43, 2375–2377.
- 564 https://doi.org/10.1016/j.atmosenv.2009.01.036
- 565 Udo de Haes, H., Finnveden, G., Goedkoop, M.J., Hauschild, M.Z., Hertwich, E.G., Hofstetter, P.,
- Jolliet, O., Klöpfer, W., Krewitt, W., Lindeijer, E., Mueller-Wenk, R., Olson, S., Pennington, D.,
- 567 Potting, J., Steen, B., 2002. Life cycle impact assessment: Striving towards best practice, in:
- 568 SETAC.
- 569 Verones, F., Hellweg, S., Azevedo, L.B., Chaudhary, A., Cosme, N., Fantke, P., Goedkoop, M.,
- 570 Hauschild, M., Laurent, A., Mutel, C.L., Pfister, S., Ponsioen, T., Steinmann, Z., Zelm, R. van,
- 571 Vieira, M., Huijbregts, M.A.J., 2016. LC-Impact Version 0.5-A spatially differentiated life cycle

- 572 impact assessment approach.
- 573 Wang, F., Liu, B., Zhang, B., 2017. Embodied environmental damage in interregional trade: A MRIO-
- 574 based assessment within China. J. Clean. Prod. 140, 1236-1246.
- 575 https://doi.org/10.1016/j.jclepro.2016.10.036
- 576 Wang, P., Dai, H. cheng, Ren, S. yan, Zhao, D. qing, Masui, T., 2015. Achieving Copenhagen target
- 577 through carbon emission trading: Economic impacts assessment in Guangdong Province of China.
- 578 Energy 79, 212-227. https://doi.org/10.1016/j.energy.2014.11.009
- 579 Wang, Z., Yang, Y., Wang, B., 2018. Carbon footprints and embodied CO₂ transfers among provinces
- 580 in China. Renew. Sustain. Energy Rev. 82, 1068-1078. https://doi.org/10.1016/j.rser.2017.09.057
- 581 WB, 2018. World Bank national accounts data [WWW Document]. World Bank Gr. URL
- 582 https://data.worldbank.org/indicator/NY.GDP.MKTP.KD?locations=CN&view=chart (accessed 583 6.4.18).
- 584 Wong, T., Tam, W., Yu, T., Wong, A., 2002. Associations between daily mortalities from respiratory
- 585 and air pollution in Hong Kong, China. Occup. Environ. Med. 59, 30-35.
- 586 Yan, S., Wu, G., 2017. SO₂ emissions in China-Their network and hierarchical structures. Sci. Rep. 7,
- 587 46216. https://doi.org/10.1038/srep46216
- 588 Yang, X., Wang, S., Zhang, W., Li, J., Zou, Y., 2016. Impacts of energy consumption, energy structure,
- 589 and treatment technology on SO₂ emissions: A multi-scale LMDI decomposition analysis in
- 590 China. Appl. Energy 184, 714-726. https://doi.org/10.1016/j.apenergy.2016.11.013
- 591 Yang, X., Zhang, W., Fan, J., Li, J., Meng, J., 2018a. The temporal variation of SO₂ emissions
- 592 embodied in Chinese supply chains, 2002–2012. Environ. Pollut. 241, 172–181.
- 593 https://doi.org/10.1016/j.envpol.2018.05.052

- 594 Yang, X., Zhang, W., Fan, J., Yu, J., Zhao, H., 2018b. Transfers of embodied PM2.5 emissions from
- and to the North China region based on a multiregional input-output model. Environ. Pollut. 235,
- 596 381–393. https://doi.org/10.1016/j.envpol.2017.12.115
- 597 Yuan, R., Behrens, P., Rodrigues, J.F.D., 2018a. The evolution of inter-sectoral linkages in China's
- energy-related CO_2 emissions from 1997 to 2012. Energy Econ. 69, 404–417.
- 599 https://doi.org/10.1016/j.eneco.2017.11.022
- 600 Yuan, R., Behrens, P., Tukker, A., Rodrigues, J.F.D., 2018b. Carbon overhead: The impact of the
- expansion in low-carbon electricity in China 2015–2040. Energy Policy 119, 97–104.
- 602 https://doi.org/10.1016/j.enpol.2018.04.027
- 603 Yuan, R., Rodrigues, J.F.D., Behrens, P., 2018c. Impact of non-fossil electricity on the carbon
- emissions embodied in China's exports. J. Clean. Prod. 192, 582–596.
- 605 https://doi.org/10.1016/j.jclepro.2018.04.255
- Chang, Q.Q., Wang, Y., Ma, Q., Yao, Y., Xie, Y., He, K., 2015. Regional differences in Chinese SO₂
- 607 emission control efficiency and policy implications. Atmos. Chem. Phys. 15, 6521–6533.
- 608 https://doi.org/10.5194/acp-15-6521-2015
- Chang, W., Liu, Y., Feng, K., Hubacek, K., Wang, J., Liu, M., Jiang, L., Liu, N., Zhang, P., Zhou, Y.,
- 610 Bi, J., 2018a. Revealing environmental inequality hidden in China's inter-regional trade. Environ.
- 611 Sci. Technol. https://doi.org/10.1021/acs.est.8b00009
- 612 Zhang, W., Wang, F., Hubacek, K., Liu, Y., Wang, J., Feng, K., Jiang, L., Jiang, H., Zhang, B., Bi, J.,
- 613 2018b. Unequal exchange of air pollution and economic benefits embodied in China's exports.
- 614 Environ. Sci. Technol. 52, 3888–3898. https://doi.org/10.1021/acs.est.7b05651
- 615 Zhao, H.Y., Zhang, Q., Guan, D.B., Davis, S.J., Liu, Z., Huo, H., Lin, J.T., Liu, W.D., He, K.B., 2015.

616	Assessment of China's virtual air pollution transport embodied in trade by using a consumption-
617	based emission inventory. Atmos. Chem. Phys. 15, 5443-5456. https://doi.org/10.5194/acp-15-
618	5443-2015
619	Zheng, H., Wang, X., Li, M., Zhang, Y., Fan, Y., 2018. Interregional trade among regions of urban
620	energy metabolism: A case study between Beijing-Tianjin-Hebei and others in China. Resour.

621 Conserv. Recycl. 132, 339–351. https://doi.org/10.1016/j.resconrec.2017.05.010

622

Appendix

A.1. Sector classification

	Coal consumption (44 sectors)	MRIO (30 sectors)	Aggregates sectors (27
			sectors)
1	Farming, Forestry, Animal Husbandry, Fishery & Water Conservancy	Agriculture	Agriculture
2	Coal Mining and Dressing	Coal mining	Coal mining
3	Petroleum and Natural Gas Extraction	Petroleum and Gas	Petroleum and Gas
1	Ferrous Metals Mining and Dressing	Metal Mining	Metal Mining
	Nonferrous Metals Mining and Dressing		
5	Nonmetal Minerals Mining and Dressing	Nonmetal Mining	Nonmetal Mining
	Other Minerals Mining and Dressing		
5	Food Processing	Food Processing and Tobaccos	Food Processing and
	Food Production		Tobaccos
	Beverage Production		
	Tobacco Processing		

Table S1. Sector classification

7	Textile Industry	Textile	Textile
8	Garments and Other Fiber Products Leather, Furs, Down and Related Products	Clothing, Leather, Fur, etc.	Clothing, Leather, Fur, etc.
9	Timber Processing, Bamboo, Cane, Palm & Straw Products Furniture Manufacturing	Wood Processing and Furnishing	Wood Processing and Furnishing
10	Papermaking and Paper Products Printing and Record Medium Reproduction	Paper Making, Printing, Stationery, etc.	Paper Making, Printing, Stationery etc.
11	Petroleum Processing and Coking	Petroleum Refining, Coking, etc.	Petroleum Refining, Coking, etc.
12	Raw Chemical Materials and Chemical Products Medical and Pharmaceutical Products Chemical Fiber Rubber Products Plastic Products	Chemical Industry	Chemical Industry
13	Nonmetal Mineral Products	Nonmetal Products	Nonmetal Products
14	Smelting and Pressing of Ferrous Metals Smelting and Pressing of Nonferrous Metals	Metallurgy	Metallurgy
15	Metal Products	Metal Products	Metal Products

16	Ordinary Machinery	General and Specialist Machinery	General and Specialist
	Equipment for Special Purpose		Machinery
17	Transportation Equipment	Transport Equipment	Transport Equipment
18	Electric Equipment and Machinery	Electrical Equipment	Electrical Equipment
19	Electronic and Telecommunications Equipment	Electronic Equipment	Electronic Equipment
20	Instruments, Meters Cultural and Office Machinery	Instrument and meter	Instrument and meter
21	Other Manufacturing Industry	Other Manufacturing	Other Manufacturing
	Scrap and waste		
22	Electric Power, Steam and Hot Water Production and Supply	Electricity and Hot Water	Electricity and Hot Water
		Production and Supply	Production and Supply
23	Gas Production and Supply	Gas and Water Production and	Gas and Water Production
	Tap Water Production and Supply	Supply	and Supply
24	Construction	Construction	Construction
25	Transport, Storage, Postal & Telecommunications Services	Transport and Storage	Transport and Storage
26	Wholesale, Retail Trade and Catering Service	Wholesale and Retailing	Wholesale, Retail Trade
		Hotel and Restaurant	and Catering Service
27	Other	Leasing and Commercial Services	Other Services
		Scientific Research	
		Other Services	

Name	Abb.	Name	Abb.	Name	Abb.
Beijing	BEIJ	Zhejiang	ZHEJ	Hainan	HAIN
Tianjin	TIAN	Anhui	ANHU	Chongqing	CHON
Hebei	HEBE	Fujian	FUJI	Sichuan	SICH
Shanxi	SHNX	Jiangxi	JINX	Guizhou	GUIZ
Inner Mongolia	NEMO	Shandong	SHND	Yunnan	YUNN
Liaoning	LIAO	Henan	HENA	Shaanxi	SHAA
Jilin	JILI	Hubei	HUBE	Gansu	GANS
Heilongjiang	HEIL	Hunan	HUNA	Qinghai	QING
Shanghai	SHAN	Guangdong	GUAD	Ningxia	NINX
Jiangsu	JINU	Guangxi	GUAX	Xinjiang	XING

A.2. Abbreviation of 30 provinces and classification of eight regions in China

Table S2. Abbreviation of 30 provinces in China

Figure S1. Eight regions of China

A.3 Prediction of $(1 - \eta_i)$ values in 2012

The $(1 - \eta_i)$ values in 2012 are estimated by exponential smoothing according to the values during 2001-2010 with some obvious outliers excluded by visual inspection. The results are shown in Table S3. Figure S2 to Figure S23 illustrate the values of $(1 - \eta_i)$, the trend prediction (TP) values, the lower confidence limits (LCL), and the upper confidence limits (UCL) based on the standard deviation for the 22 industrial sectors (from sector 2 to sector 23 in Table S1) during 2001-2010, respectively.

Sector	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2012
2	0.81	0.75	0.70	0.73	0.79	0.62	0.63	0.62	0.61	0.76	0.62
3	0.29	0.28	0.21	0.21	0.22	0.30	0.24	0.39	0.36	0.37	0.40
4	0.72	0.58	0.55	0.65	0.57	0.63	0.57	0.32	0.23	0.22	0.17
5	0.76	0.77	0.74	0.62	0.35	0.87	0.69	0.71	0.64	0.66	0.63
6	0.80	0.80	0.75	0.70	0.72	0.72	0.74	0.73	0.69	0.69	0.67
7	0.81	0.79	0.76	0.80	0.77	0.77	0.77	0.72	0.71	0.71	0.70
8	0.80	0.76	0.78	0.82	0.75	0.78	0.76	0.76	0.75	0.80	0.77
9	0.85	0.77	0.79	0.84	0.82	0.88	0.92	0.83	0.85	0.83	0.87
10	0.85	0.74	0.73	0.74	0.72	0.68	0.71	0.70	0.66	0.69	0.65
11	0.51	0.43	0.42	0.46	0.44	0.33	0.27	0.24	0.21	0.21	0.12
12	0.63	0.61	0.62	0.64	0.54	0.60	0.59	0.54	0.49	0.46	0.45
13	0.90	0.85	0.83	0.82	0.78	0.80	0.81	0.82	0.79	0.81	0.79
14	0.30	0.28	0.79	0.29	0.31	0.27	0.26	0.23	0.21	0.24	0.21
15	0.83	0.80	0.13	0.86	0.82	0.74	0.15	0.85	0.83	0.77	0.79
16	0.79	0.74	0.70	0.74	0.70	0.58	0.71	0.76	0.75	0.65	0.68
17	0.75	0.77	0.72	0.77	0.73	0.67	0.74	0.70	0.69	0.67	0.66

Table S3. Prediction of $(1 - \eta_i)$ values in 2012

0.59
0.54
0.69
0.15
0.61

Sector 2 0.90 0.80 0.70 0.60 0.50 ----0.40 0.30 0.20 0.10 0.00 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 0.70 0.73 0.79 0.62 0.76 Value 0.81 0.75 0.62 0.63 0.61 TP 0.76 0.64 0.62 0.61 LCL 0.76 0.50 0.48 0.46 UCL 0.76 0.78 0.77 0.76

- Value ---- TP ---- LCL ---- UCL

Sector 3

Figure S3. Prediction of $(1 - \eta_i)$ value for Sector 3 in 2012

Figure S4. Prediction of $(1 - \eta_i)$ value for Sector 4 in 2012

0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Value 0.76 0.77 0.74 0.62 0.69 0.71 0.64 0.66 TP 0.66 0.64 0.63 0.62 LCL 0.66 0.55 0.54 0.53 UCL 0.71 0.66 0.73 0.72 - Value -- TP ---- LCL ---- UCL

Figure S5. Prediction of $(1 - \eta_i)$ value for Sector 5 in 2012

Sector 6

44

Sector 5

Figure S6. Prediction of $(1 - \eta_i)$ value for Sector 6 in 2012

Value TP ---- LCL ---- UCL

Figure S7. Prediction of $(1 - \eta_i)$ value for Sector 7 in 2012

Figure S8. Prediction of $(1 - \eta_i)$ value for Sector 8 in 2012

80													
70		\sim											
60	-										*****		_
50	-												
40	-												
30	-												
20	-												
10	-												
⁰⁰	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	201
	0.85	0.74	0.73	0.74	0.72	0.68	0.71	0.70	0.66	0.69			
alue										0.00		0.65	0.6
'alue P										0.69	0.66	0.65	0.64
'alue P CL										0.69	0.66	0.65	0.64

Sector 10

Figure S10. Prediction of $(1 - \eta_i)$ value for Sector 10 in 2012

Sector 11 0.60 0.50 0.40 0.30 0.20 - -0.10 -0.00 2005 2001 2002 2003 2004 2007 2008 2009 2012 2013 2006 2010 2011 0.42 Value 0.51 0.43 0.24 0.46 0.44 0.33 0.27 0.21 0.21 TP 0.21 0.16 0.12 0.09 LCL 0.09 0.21 0.05 0.02 UCL 0.21 0.23 0.20 0.16 - Value TP ---- LCL ---- UCL _

Figure S12. Prediction of $(1 - \eta_i)$ value for Sector 12 in 2012

Sector 1	13	
----------	----	--

Figure S13. Prediction of $(1 - \eta_i)$ value for Sector 13 in 2012

Figure S14. Prediction of $(1 - \eta_i)$ value for Sector 14 in 2012

Sector 15 0.90 0.85 0.80 0.75 0.70 0.65 0.60 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Value 0.83 0.80 0.86 0.82 0.74 0.85 0.83 0.77 TP 0.79 0.79 0.78 0.77 LCL 0.73 0.72 0.72 0.77 UCL 0.77 0.86 0.85 0.85 - Value -- TP ---- LCL ---- UCL

Figure S15. Prediction of $(1 - \eta_i)$ value for Sector 15 in 2012

Sector 16

Figure S16. Prediction of $(1 - \eta_i)$ value for Sector 16 in 2012

Sector 17

Value TP ---- LCL ---- UCL

Figure S17. Prediction of $(1 - \eta_i)$ value for Sector 17 in 2012

Sector 18

Figure S18. Prediction of $(1 - \eta_i)$ value for Sector 18 in 2012

Figure S19. Prediction of $(1 - \eta_i)$ value for Sector 19 in 2012

Sector 20 1.00 0.90 0.80 0.70 0.60 0.50 0.40 ****** 0.30 0.20 0.10 0.00 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Value 0.75 0.68 0.71 0.79 0.85 0.94 0.81 0.77 0.71 0.56 TP 0.56 0.55 0.54 0.54 LCL 0.39 0.32 0.26 0.56 UCL 0.56 0.71 0.77 0.82 -Value -- TP ---- LCL ---- UCL

Figure S20. Prediction of $(1 - \eta_i)$ value for Sector 20 in 2012

Sector 21

Figure S22. Prediction of $(1 - \eta_i)$ value for Sector 22 in 2012

Figure S23. Prediction of $(1 - \eta_i)$ value for Sector 23 in 2012

Figure S24. Production- and consumption-based SO_2 emissions in China (Unit: Mt) (There is a mismatch of 20.8%, 16.3%, and 15.5% between production-based and consumption-based SO_2 emissions in 2007, 2010, and 2012 because of the leakage to foreign countries as explained in the method section)

Figure S25. Inflows and outflows of SO2 emissions in China (Unit: Mt)

A.6. Net transfers of SO₂ emissions of eight regions

Table S4, Table S5, and Table S6 present the net transfers of SO_2 emissions of eight regions in 2007, 2010, and 2012, respectively.

	Northeast	Jing-	North	East	South	Central	Northwest	Southwest
		Jin	Coast	Coast	Coast			
Northeast		43	-2	35	13	-30	-202	-8
Jing-Jin	-43		-111	-18	-11	-104	-142	-65
North	2	111		162	68	-97	-117	-25
Coast								
East	-35	18	-162		-6	-437	-195	-125
Coast								
South	-13	11	-68	6		-132	-59	-285
Coast								
Central	30	104	97	437	132		-34	-149
Northwest	202	142	117	195	59	34		17
Southwest	8	65	25	125	285	149	-17	

Table S4. Net transfer of SO₂ emissions in 2007 (Unit: kt)

Table S5. Net transfer of SO_2 emissions in 2010 (Unit: kt)

	Northeast	Jing-	North	East	South	Central	Northwest	Southwest
		Jin	Coast	Coast	Coast			
Northeast		26	-80	5	8	-70	-155	-26
Jing-Jin	-26		-151	-19	-8	-124	-140	-59
North	80	151		265	88	-89	-34	-17
Coast								
East	-5	19	-265		4	-552	-185	-121
Coast								
South	-8	8	-88	-4		-229	-71	-310
Coast								
Central	70	124	89	552	229		9	-131
Northwest	155	140	34	185	71	-9		-36
Southwest	26	59	17	121	310	131	36	

	Northeast	Jing-	North	East	South	Central	Northwest	Southwest
		Jin	Coast	Coast	Coast			
Northeast		40	-48	1	10	-66	-86	-25
Jing-Jin	-40		-91	-28	-4	-91	-99	-39
North	48	91		70	35	-8	-88	0
Coast								
East	-1	28	-70		20	-297	-194	-102
Coast								
South	-10	4	-35	-20		-119	-103	-178
Coast								
Central	66	91	8	297	119		-106	-25
Northwest	86	99	88	194	103	106		48
Southwest	25	39	0	102	178	25	-48	

Table S6. Net transfer of SO2 emissions in 2012 (Unit: kt)

A.7. Embodied SO₂ emissions of 30 provinces in 2007, 2010, and 2012

Figure S26, Figure S27, and Figure S28 present the embodied SO_2 emissions of 30 provinces in 2007, 2010, and 2012, respectively. The flows of SO_2 emissions among 30 provinces are drawn by Circos, an open-source software package for data visualization (Krzywinski, 2009). The three ribbons located outside show, respectively, the sum of inflow and outflow, inflow, and outflow of a province. Furthermore, the sizes of ribbons are proportional to the corresponding values. The innermost ribbon has a direction: it starts with the outflow value which it touches and ends with inflow value where there is a gap.

Figure S26. Embodied SO₂ emissions of 30 provinces in 2007 (Unit: t)

Figure S27. Embodied SO₂ emissions of 30 provinces in 2010 (Unit: t)

Figure S28. Embodied SO₂ emissions of 30 provinces in 2012 (Unit: t)

A.8. Regional shares of SO₂ reduction and SO₂ responsibility

This section shows the results of environmental responsibility about SO_2 emissions and acidification, as well as the provincial targets about SO_2 reduction.

Table S7. Regional responsibility of SO₂ emissions in 2007, 2010, and 2012 (Unit: Mt)

 ,	2007		2010	2012	
Emissions	Responsibility	Emissions	Responsibility	Emissions	Responsibility

BEIJ	0.19	0.33	0.13	0.31	0.08	0.28
TIAN	0.20	0.23	0.24	0.29	0.22	0.24
HEBE	1.01	0.85	1.57	1.22	1.32	1.11
SHNX	1.18	0.92	1.17	0.91	0.99	0.95
NEMO	1.36	0.95	1.27	0.98	1.25	0.94
LIAO	1.16	0.90	0.99	0.86	0.76	0.65
JILI	0.34	0.40	0.31	0.37	0.37	0.33
HEIL	0.35	0.43	0.31	0.36	0.32	0.40
SHAN	0.33	0.45	0.36	0.54	0.23	0.28
JINU	1.60	1.25	1.37	1.19	1.18	1.19
ZHEJ	1.13	0.96	0.84	0.80	0.68	0.66
ANHU	1.01	0.74	1.17	0.91	0.86	0.69
FUJI	0.44	0.37	0.38	0.35	0.33	0.28
JINX	1.00	0.81	1.12	0.82	0.95	0.70
SHND	2.00	1.70	2.52	1.98	2.29	1.83
HENA	1.51	1.22	1.40	1.18	1.35	1.20
HUBE	0.85	0.75	0.84	0.76	0.81	0.73
HUNA	0.93	0.83	0.96	0.87	0.76	0.73
GUAD	1.47	1.21	1.09	1.09	0.84	0.73
GUAX	1.04	0.76	0.96	0.77	0.74	0.61
HAIN	0.03	0.03	0.05	0.05	0.04	0.06
CHON	0.94	0.81	0.85	0.77	0.61	0.61
SICH	1.14	1.06	1.16	1.04	0.88	0.83
GUIZ	1.34	1.03	1.77	1.34	1.05	0.79
YUNN	1.01	0.72	0.99	0.77	0.93	0.74
SHAA	0.64	0.61	0.84	0.75	0.74	0.69
GANS	0.88	0.62	0.89	0.67	0.84	0.62
QING	0.08	0.08	0.10	0.10	0.15	0.12

NINX	0.26	0.21	0.41	0.31	0.43	0.26
XING	0.37	0.37	0.35	0.34	0.55	0.48
RoW		4.19		3.66		2.81
Total	25.78	25.78	26.38	26.38	22.54	22.54

Table S8. Regional responsibility of biodiversity loss in 2007, 2010, and 2012 (Unit: $PDF \cdot yr$)

	20	007	20	010	2012		
	Acidificatio	Responsibilit	Acidificatio	Responsibilit	Acidificatio	Responsibilit	
	n	У	n	У	n	У	
BEIJ	5.57E-07	1.80E-05	3.89E-07	1.80E-05	2.34E-07	1.99E-05	
TIAN	5.98E-07	1.67E-05	7.29E-07	1.66E-05	6.69E-07	9.30E-06	
HEBE	4.05E-06	3.94E-05	6.27E-06	2.86E-05	5.30E-06	2.83E-05	
SHNX	2.36E-05	2.48E-05	2.33E-05	2.31E-05	1.99E-05	2.22E-05	
NEM	6.65E-05	5.67E-05	6.22E-05	5.46E-05	6.10E-05	5.78E-05	
0							
LIAO	4.63E-06	1.64E-05	3.96E-06	1.40E-05	3.04E-06	2.73E-05	
JILI	1.02E-06	9.55E-06	9.17E-07	7.84E-06	1.11E-06	1.06E-05	
HEIL	3.19E-06	8.87E-06	2.76E-06	7.12E-06	2.85E-06	1.74E-05	
SHAN	3.31E-07	1.93E-05	3.55E-07	1.90E-05	2.26E-07	2.10E-05	
JINU	1.60E-06	4.54E-05	1.37E-06	4.11E-05	1.18E-06	4.61E-05	
ZHEJ	1.13E-06	3.79E-05	8.44E-07	3.29E-05	6.82E-07	3.07E-05	
ANH	2.01E-06	1.68E-05	2.35E-06	1.71E-05	1.72E-06	2.07E-05	
U							
FUJI	1.25E-03	8.03E-04	1.07E-03	7.41E-04	9.39E-04	6.60E-04	
JINX	9.97E-07	1.11E-05	1.12E-06	1.06E-05	9.51E-07	1.32E-05	
SHND	5.99E-06	3.23E-05	7.55E-06	3.06E-05	6.87E-06	3.39E-05	
HEN	1.36E-05	4.64E-05	1.26E-05	3.74E-05	1.22E-05	3.93E-05	

А						
HUBE	1.02E-05	2.11E-05	1.01E-05	1.97E-05	9.74E-06	1.58E-05
HUN	2.80E-06	1.70E-05	2.87E-06	1.56E-05	2.29E-06	1.99E-05
А						
GUA	1.47E-05	6.50E-05	1.09E-05	6.22E-05	8.43E-06	3.86E-05
D						
GUA	2.90E-05	3.03E-05	2.70E-05	2.86E-05	2.08E-05	2.82E-05
Х						
HAIN	0.00E+00	1.65E-06	0.00E+00	2.41E-06	0.00E+00	4.72E-06
СНО	1.12E-05	2.28E-05	1.01E-05	2.20E-05	7.33E-06	2.92E-05
Ν						
SICH	1.37E-03	1.15E-03	1.39E-03	1.15E-03	1.06E-03	9.03E-04
GUIZ	1.07E-05	1.57E-05	1.42E-05	1.79E-05	8.44E-06	1.56E-05
YUN	4.66E-05	4.28E-05	4.57E-05	4.27E-05	4.28E-05	4.79E-05
Ν						
SHAA	3.16E-05	3.85E-05	4.10E-05	4.26E-05	3.61E-05	4.49E-05
GANS	5.56E-05	5.83E-05	5.61E-05	5.66E-05	5.26E-05	5.01E-05
QING	4.49E-05	3.54E-05	5.92E-05	4.54E-05	8.81E-05	7.59E-05
NINX	1.66E-05	1.51E-05	2.58E-05	2.15E-05	2.68E-05	2.23E-05
XING	9.00E-04	6.64E-04	8.35E-04	6.24E-04	1.32E-03	9.89E-04
RoW	_	5.49E-04	_	4.73E-04	_	3.98E-04
Total	3.93E-03	3.93E-03	3.72E-03	3.72E-03	3.74E-03	3.74E-03

At the beginning of 11^{th} FYP, the Chinese government set the provincial targets of SO₂ emissions based on the 2005 level. Columns 2-4 in Table S9 show the reduction targets set by the Chinese government, from which we can calculate the reduction amount and the corresponding share of each province.

	2005	2010	Change	Allocation	Share
	(Mt)	(Mt)	(%)	(Mt)	(%)
BEIJ	0.19	0.15	-20.40	0.04	1.29
TIAN	0.27	0.24	-9.40	0.03	0.83
HEBE	1.50	1.27	-15.00	0.23	7.43
SHNX	1.52	1.30	-14.00	0.21	7.00
NEMO	1.46	1.40	-3.80	0.06	1.85
LIAO	1.20	1.05	-12.00	0.14	4.76
JILI	0.38	0.36	-4.70	0.02	0.59
HEIL	0.51	0.50	-2.00	0.01	0.33
SHAN	0.51	0.38	-25.90	0.13	4.39
JINU	1.37	1.13	-18.00	0.25	8.16
ZHEJ	0.86	0.73	-15.00	0.13	4.26
ANHU	0.57	0.55	-4.00	0.02	0.76
FUJI	0.46	0.42	-8.00	0.04	1.22
JINX	0.61	0.57	-7.00	0.04	1.42
SHND	2.00	1.60	75.70	0.40	13.25
HENA	1.63	1.40	-14.00	0.23	7.53
HUBE	0.72	0.66	-7.80	0.06	1.85
HUNA	0.92	0.84	-9.00	0.08	2.74
GUAD	1.29	1.10	-15.00	0.19	6.41
GUAX	1.02	0.92	-9.90	0.10	3.34
HAIN	0.02	0.02	0.00	0.00	0.00
CHON	0.84	0.74	-11.90	0.10	3.30

Table S9. Provincial reduction targets of SO_2 emissions in 2010

SICH	1.30	1.14	-11.90	0.16	5.12
GUIZ	1.36	1.15	-15.00	0.20	6.74
YUNN	0.52	0.50	-4.00	0.02	0.69
SHAA	0.92	0.81	-12.00	0.11	3.67
GANS	0.56	0.56	0.00	0.00	0.00
QING	0.12	0.12	0.00	0.00	0.00
NINX	0.34	0.31	-9.30	0.03	1.06
XING	0.52	0.52	0.00	0.00	0.00

A.9. Production-, consumption-, and income-based SO₂ emissions in some provinces

Figure S29. Production-, consumption-, and income-based SO₂ emissions in developed provinces (Unit:

Figure S30. Production-, consumption-, and income-based SO₂ emissions in developing provinces

(Unit: t)