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ABSTRACT: Environmentally Extended Input−Output Data-
bases (EEIOs) provide an effective tool for assessing environ-
mental impacts around the world. These databases have yielded
many scientific and policy relevant insights, especially through the
national accounting of impacts embodied in trade. However, most
approaches average out the spatial variation in different factors,
usually at the level of the nation, but sometimes at the subnational
level. It is a natural next step to connect trade with local
environmental impacts and local consumption. Due to invest-
ments in earth observation many new data sets are now available,
offering a huge potential for coupling environmental data sets
with economic models such as Multi-Region Input−Output
(MRIO) models. A key tool for linking these scales are Spatially
Explicit Input−Output (SIO) models, which provide both demand and supply perspectives by linking producers and
consumers. Here we define an SIO model as a model having a resolution greater than the underlying input−output transaction
matrix. Given the increasing interest in this approach, we present a timely review of the methods used, insights gained, and
limitations of various approaches for integrating spatial data in input−output modeling. We highlight the evolution of these
approaches, and review the methodological approaches used in SIO models so far. We investigate the temporal and spatial
resolution of such approaches and analyze the general advantages and limitations of the modeling framework. Finally, we make
suggestions for the future development of SIO models.

■ INTRODUCTION

Environmentally-Extended Input−Output (EEIO) models
have been widely applied and have been used to link
production and consumption while accounting for the direct
and indirect relationships between different economic
activities.1−3 Prominent consumption based studies include
analyses of air emissions,4−6 waste generation,7 water use,8

land use,9 and biodiversity loss10 around the world.11 Part of
the popularity of EEIO databases (EEIOs) is due to the steady
increase in the level of environmental impacts embodied in
trade.1,3 Additionally, since these models connect producer and
consumer through supply chains12 (which are often complex),
it is possible to investigate policy interventions from
production-based,13−15 consumption-based,2,16 income-
based,17,18 and other, in betweenness-based, perspectives.19

Currently, the vast majority of EEIO applications are based
on results at the national level. This is acceptable for well-
mixed, global environmental stressors such as greenhouse
gases, and for broader investigations on a national level, but it
limits the usefulness of models for stressors which have highly
local impacts, and for nexus investigations which examine the

interaction and interdependence of several resources. Partic-
ular examples of these types of stressor include water use, land
use, biodiversity, water pollution, and local air pollution (such
as SO2, NOx, PM2.5, PM10). Given this, there has been a recent
trend to link EEIOs with global environmental maps and
databases by disaggregating modeled or directly measured
production activity by sector.20−24

Maps and databases of environmental impacts or stressors
are typically generated from observations by monitoring
stations25 and satellite remote sensing measurements.26 They
can also be modeled by using spatially explicit simulations that
often use direct observations as model boundary condi-
tions.22,27 Monitoring stations collect environmental informa-
tion in situ, with common examples including air quality
(PM2.5, PM10, O3, SO2, CO, NO2) (for example see http://
aqicn.org), soil quality,28 and water quality.29 Remote sensing
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aims to measure environmental impacts from a distance,
including land use,27,30 water,31 air quality,26 and biodiver-
sity,32 Remote sensing may include ground-, sky-, or space-
based observation. The spatial distribution of environmental
impacts derived from these methods can be very accurate and
are often available over time. For example, fixed monitoring
stations record in real time, while satellite imagery products for
air quality and land use are generally updated annually.26,33

Most efforts are carried out by governmental, public research
institutions, or some private research groups. However, there is
always a balance between large-scale, continuous modeling,
and the scientific resources available to make such global
assessments. In response, researchers have also used spatially
explicit simulation models to estimate the spatial distribution
of environmental impacts at higher temporal or spatial
resolutions. Such examples include: the global dynamic
vegetation model LPJmL (Lund-Potsdam-Jena managed
Land);34 the global freshwater model WaterGAP,35 the
dynamical atmospheric Sulfur transport model DEHM;36 a
variant of this model DEHM-POP to depict transport of
persistent organic pollutants (POPs);36 and a historic model of
environmental impacts (HYDE) to simulate land use and land
cover change over time.37 These examples depict environ-
mental issues caused by local production, but they do not
connect local environmental impacts with consumption from
other regions. Additionally, they do not contain enough
sectoral information to provide information on policy impacts.
What we have described so far is the estimation of

environmental impacts from a supply perspective, that is, in
the production of materials for good and services. These data
can be connected to the consumer in several different ways.
We focus on input−output models in this review, but there are
other methodologies for assessing consumption-side impacts
using process-based methods to identify spatially explicit
environmental impacts.38 For example, Hoekstra and Mekon-
nen et al. estimated the spatial distribution of global water
footprints (blue, green, and gray water footprints) using a grid-
based dynamic water balance model, calculating virtual water
flow from water embodied in the direct consumption of
agricultural and industrial commodities.39,40 This approach
describes the embodied impacts through direct consumption
of commodities between two regions, but they omit the
complex supply chain relationships between different sectors
and different regions.

With the increasing availability of spatially explicit environ-
mental data disaggregated by sector, there have been several
efforts to take EEIO analysis to the local level. As yet these
approaches are disparate and spread across the literature.
Given the likely similarities of approaches, the diversity of
environmental and resource assessments, and the possible
utility of such approaches, we provide a critical review of the
approaches so far, limitations, and future opportunities.
We start by highlighting recent efforts in SIO modeling and

we categorize these analyses by the form of disaggregation used
in the input−output model. We then provide an overview of
spatial data sources and their resolution. The need to balance
spatial resolution with policy recommendations is addressed.
We discuss the potential for uncertainty analysis in SIO
investigations and the possibility for further incorporation with
other environmental models. Finally, we highlight the major
obstacles going forward in developing, utilizing, and extending
SIO models.

■ AN EXPANDING FIELD

Although the term spatially explicit implies a variety of
meanings, there is no uniform definition. Here we define it
as involving a result where the spatial information available
from a study is at a spatial scale greater than the available IO
(input−output) data itself. Studies such as Wang et al.,41

Ridoutt et al.,42 Wilting et al.,43 and Verones et al.,44 average
results to the national level, and would fall under the category
of input−output modeling not SIO since spatial information is
not available. Multiregion input−output tables at the regional
level, such as those using Chinese provincial data also do not
conform to the definition above since the IO table is already at
the spatial scale of the region. These regional MRIOs have
been previously been reviewed in Ploszaj et al.45 Ploszaj et al.
found 42 articles using subnational input−output papers based
on data from 15 countries between 1980 and 2013. We omit
these studies from the review herein.
Interest in incorporating spatially explicit information into

EEIO is a relatively new development, with fast growth since
2014 (see Figure 1, and the Supporting Information (SI) for
how the literature was selected). However, James et al.
provided the first methodological approach in 1985, by
integrating an input−output model with an air pollution
dispersion model.46 It focused on a small region (the Hunter
Region, Australia) and traced the spatial diffusion of sulfur

Figure 1. Number of published papers and their citations using SIO approaches.
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oxide and fluoride emissions from location-specific production
sites given by the regional authority as part of the New South
Wales Clean Air Act. These emissions were calculated based
on the output from specific production sites and emission
coefficients from a regional input−output table. They assumed
the same emission coefficient for the specific site as the
corresponding sectors in the input−output table.46 This early
approach showed that the spatial distribution of emissions
varied with the level of regional economic development.
It subsequently took 20 years for the next publication of an

SIO study, probably due to the limited availability of spatial
data sets with adequate sectoral resolution along with the
limitations of computing power. From 2010, there has been a
large increase in the number of spatially explicit studies. These
studies use a variety of different methods and approaches, and
analyze a number of different environmental pressures. We are
currently in a period of exponentially increasing citation counts
for SIO papers, especially from 2013 onward. This is likely to
continue with increasing data set availability and the fast
development of SIO approaches.

■ METHODOLOGICAL AND SPATIAL CATEGORIES

Methodological Categories. In total, we identify ten
distinct methodological approaches for linking spatially explicit
data to input−output databases (please see Supporting
Information for qualitative and mathematical descriptions of
each). We then classify these further based on the structure of
Environmentally Extended Input−Output (EEIO) databases.
The canonical structure for an EEIO database is a matrix for
environmental extensions by sector and region, a final demand
matrix by sector and region, and a transaction matrix where
sectors purchase the output from other sectors to produce

goods for final demand. We further classify the 10 methods to
3 categories based on the matrices to which the spatial
disaggregation is applied (the studies falling into each category
are shown in Table 1). The categories are enumerated as

Category 1: Disaggregation in Environmental Extensions.
Here, environmental extensions are disaggregated by mapping
the environmental impacts between the production sectors in
the input output model and impacts identified spatially from
the spatial databases. The result is a spatially explicit mapping
of consumption-based footprints. In this category, analysis
mainly focuses on hotspot assessment, which can be driven by
a specific country, region, or sector. Examples of spatial
databases that can be used in this way include: WaterGAP21

for fresh water use and consumption; emissions data from
EDGAR20 giving greenhouse gas (CH4, CO2, N2O), air
pollution (BC, CO, NH3, NOx, PM10, PM2.5, SO2), and toxic
pollutants (Mercury); the IUCN red list which provides details
on threatened species;23,24 and, Aqueduct Global Maps which
maps water stress.47 The connection between the spatial
database and IO tables is usually made by assuming
proportionality between impacts. That is, the demand for
products in an IO table is assumed to be proportionally
distributed to the production information in the spatially
explicit database. Some studies have then aggregated these
impacts or stressors to the national or regional level to build a
set of new environmental extensions for the IO model first, and
then used the same spatial information to allocate
consumption-based impacts into grid cells.48,49 Others use
the existing source data for the environmental extensions
provided by the IO data sets to calculate consumption-based
impacts, and use spatial information to disaggregate to a finer
scale.50

Table 1. Categories of SIO Linked with the Methods and Data Sources Applied

category example spatial database or model used methods references

1. disaggregation in
environmental
extensions

The WaterGAP model Methods 1 and 2: Identifying hotspots 66,67
EDGAR emissions data 48,49
extent-of-occurrence, from IUCN red list and BirdLife data
sets

68

aqueduct global maps for water stress Method 3: Integrating a process-based model with an
input−output model

50

IFA hazardous substance database Method 4: Integrating an MRIO model with
production location information

69
lurvey data from enterprises (SABI, Sistema de anaĺisis de
balances ibeŕicos: base de datos)

70

location of volcanic eruptions and ash volume (Auckland
Volcanic Field, from Geology of the Auckland urban area)

Method 5: Quantitative risk assessment of economic
output reduction due to final-demand perturbations.

71

GEOS-Chem chemical transport model Method 7 and 8: Integrating an MRIO model with an
air pollution dispersion model.

51−57
pollutant dispersion models (Smeared Concentration
Approximation (SCA))

46

spatially explicit econometric model (spatial Regional
Econometric Input−Output Model (REIM))

Method 9: Integrating an econometric model with an
MRIO model

72

GIS methods and approaches Method 10: Integrating an MRIO model with, for
example, spatial interpolation

73−76

2. disaggregation in final
demand

Local statistical data Method 6: Integrating an MRIO model with demand-
side subnational information.

77−79
Consumer Expenditures Survey (CES) data 60,61,80−96
enterprise survey data (Italian company information and
business intelligence (AIDA))

59

zip code tabulation (U.S. zip code tabulation areas (ZCTAs)) 60,97,98
gridded population 60
purchasing power index 60

3. disaggregation in the
transaction matrix

disaggregation all matrices via Nonsurvey methods (such as location quotients (LQs), gravity models, behavior-based
models, neural networks), survey methods, or hybrid methods

99−103
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Some studies then perform additional analyses to model the
diffusion of a pollutant based on the consumption footprint.
Typically, these studies use an input−output model to
calculate the volume of emissions from a region and then
apply a physical model to simulate the spatial diffusion of
emissions (which may also include an atmospheric chemistry
model).51−56 For example, the approach (SI Method 7) has
been used to investigate the human health impact in China
driven by the overseas consumption of Chinese products (this
also required the use of a health impact model).57

Category 2: Disaggregation in Final Demand. Here the
final demand matrix is disaggregated using regional statistics.
These statistics can be derived from household or enterprise
surveys or from local purchasing data such as electricity
bills.58−60 This disaggregation is then used as a stimulus vector
whereby the disaggregated matrix is used instead of the total
national final demand (and the traditional Leontief analysis is
performed). Note that this approach still uses the original
national (or multiregional) input−output transaction matrix
and environmental extensions to trace upstream environmental
impacts. Instead of finding spatially explicit hotspots in
production driven by overseas and domestic consumption
(as in Category 1), this approach is used to show the
environmental footprints of consumption across regions, for
example the differences in the environmental impacts of
consumers in different subnational areas.61,62 For example, SI
Method 6 was used to show spatially explicit consumption
footprints in the EU.58,63 First, the product classifications used
in consumer expenditure surveys (CES) were mapped to the
sectors available in the MRIO EXIOBASE using concordance
matricies at the country level. Then this combined CES-MRIO
model was used to calculate subnational environmental
impacts according to household consumption across the EU.
Category 3: Disaggregation in the Transaction Matrix.

Here the transaction matrix is disaggregated, which by
definition requires the spatial disaggregation of final demand
and environmental extensions also.64,65 As previously stated,
this category requires the construction of an entirely new IO
table in all IO elements, which does not conform to our
definition above, and has been reviewed elsewhere.45 As we
will discuss later in this paper, data limitations preclude doing
this for every analysis. Often we have limited information on
the structure of value chains linking spatially separated
production and production consumptions. Therefore, we
focus mainly on Categories 1 and 2 and reflect on the further
development of Category 3 studies in the discussion.
Spatial Categories. Summarizing Categories 1 and 2, the

inclusion or development of spatially explicit data in the
literature arises from (1) synthesis and incorporation of spatial
environmental extensions data with EEIO (23 of the 48 articles
evaluated), and (2) tracing environmental footprints using
subnational stimulus vector in final demand (25 of the 48
evaluated, see SI). We found no papers belonging to Category
3−papers coming closest to this represented subnational
MRIO tables at e.g. provincial level, which as discussed
above we do not see as disaggregated transaction matrices at a
high spatial detail but rather special cases of regular
multicountry IO tables. The spatial resolution varies to a
large extent both between and within categories.
Studies falling in Category 1 used a total of 20 different

spatial databases or models to trace spatial hotspots driven by
consumption. These databases originate from different sources;
some databases are based on remote sensing observations. For

example, Moran et al. apply IUCN red list and BirdLife data,
whose species-specific habitat loss is estimated from remote
sensing and traces species threat driven by consumption.68

Others use data from WaterGAP66,67 and EDGAR,48,49 or
point measurements of impacts, such as the location of
volcanic eruptions,71 power plants,46 and spatial maps of
national enterprises.59,70 Based on these databases and models,
researchers have explored issues including water consump-
tion,66,67,94 nitrogen and phosphorus loading,69 biodiversity
loss,49 volcanic eruption risk,71 energy consumption,92 green-
houses gas emissions (CO2, CH4),

48,76,93 and other air
pollution emissions (NOx, SO2, PM10, PM2.5).

49,55 The highest
spatial resolution used was 0.5°× 0.5° for water consumption
and 0.1° × 0.1° for greenhouse gas emission and air pollution.
All studies are at the temporal resolution of a year and range
from 1970 to 2008.
Studies falling in Category 2 used 42 different databases to

identify environmental impact footprints at local consumption
level. These databases are mainly from Consumer Expenditures
Survey (CES) (26 European countries, plus U.S., Austria, and
Canada) according to the international COICOP (Classi-
fication of Individual Consumption by Purpose) division. For
example, Ivanova et al., build EU27 subnational household
environmental footprints (carbon, land, water, organic
materials, nonorganic materials) based on CES databases of
every country (except Croatia, Netherlands, and Sweden).58

Additionally, other databases source from national statistics
(such as, Australian Land Use Mapping Program, the National
Pollutant Inventory, and the Australian Business Register; U.S.
zip code tabulation areas (ZCTAs)),94,97 commercial enter-
prise information (e.g., Italian company information and
business intelligence (AIDA))),59 in situ questionnaire survey
data,84,88 and regional purchasing power and gridded
population data.60 these researches explores environmental
impacts footprints, including greenhouse gas emission,58,89

water and land,58,61 which map to the consumption-based side
of IO analysis. The highest spatial resolution mapped carbon
footprints into 250 m based on GHS-POP gridded population
model,60 and U.S. household carbon footprints at zip code
tabulation areas (ZCTAs). Most studies are at the temporal
resolution of a year and range from 1990 to 2015, and even
some researches project to 2050.98

Studies falling into Category 3 would give spatially explicit
information on production processes and related extensions,
spatially explicit information on consumption patterns, with
transaction matrices matching this spatial and sectoral
disaggregation. The disaggregation of transaction matrices is
a clear bottleneck. All existing work uses nonsurvey approaches
or suffers from other crucial limitations, as illustrated by work
on subnational MRIO tables (e.g., Australia,104 China,65

Japan,105 Indonesia,100 Spain,106 and Germany103), the
Industrial Ecology Virtual Laboratory (IELab)42,64,100 and
the Transparent Supply Chains for Sustainable Economies
(Trase.earth) project.62,107,108 The IELab42,64,104,109 includes a
lot of detailed regional data (especially for Australia), from
which customized input−output models can be developed
based on a specific research question, but it cannot provide a
input−output database including all sectors and regions due to
a lack of computing power (one approach could result in over
5 petabytes of data, and impractical computation times).64

Trase.earth62,107,108 focuses on constructing trade flows at finer
scale (see SI Method 11), disaggregating producers on a finer
scale, but consumers still at national level. None of these
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examples use directly measured data or survey-based data for
estimating spatially explicit transaction matrices. This is natural
due to the expense of ad-hoc surveys for interregional trade
data.64 Claims such as “city X consumes Y beef from pixel Z”
by necessity requires estimates of highly estimated and
modeled flows. We have found no work yet that solves this
problem and hence do not discuss this category further in this
section.
We classify studies into five further spatial categories: global,

regional, national, subnational regional, and city, depending on
the resolution of the final result. Table 2 shows a breakdown of
the spatial scale and environmental impacts for different
studies in the literature. We then discuss the major highlights
from studies at each of these scales and their policy relevance.
Global Studies. Globalization has served to disconnect

commodity consumption with production-related impacts.67

High-income countries to some extent have improved their
local environmental footprints and impacts by outsourcing
through the global supply chain.49 However, these impacts will
impact high-income countries as well. For example, along the
U.S. west coast, 3−10% of annual average surface sulfate and
0.5−1.5% of ozone, both of which are deleterious to health,
arise from the atmospheric transport of Chinese pollution
driven by exports.51 In another example, Zhang et al., build a
global spatial distribution estimate of premature mortality
driven by PM2.5 in 2007 at 100 × 100 km resolution, and find
that some 411 100 deaths (12% of total premature mortality)
are caused by pollutant transport from one location to a more
distant location, and 762 400 deaths (22% of total premature
mortality) are linked indirectly through the supply chain.57

A common analysis is the tracing of embodied environ-
mental impacts flowing through global supply chains at the
national level. Spatially explicit approaches allow for a greater
resolution in assessing local environmental impacts. We
illustrate this using two examples: CO2 emissions, and
biodiversity threats. First, at the national level, Davis et al.
identified national flows of CO2 emissions, and identified
American imports as having the largest embodied CO2 flows in
2004 (0.7 Gt net import).110 By using the EDGAR database,
further work made these flows spatially explicit, showing that
U.S. footprints of CO2, SO2, NOx, PM10 in 2008 are highly
concentrated, with 90% of the footprints located in only 1.6%,
3.1%, 3.6%, 9.9% of the land area, respectively, in 2008.48,49

Similarly, at the national level, Lenzen et al., find that American
consumption drives the largest number of biodiversity threats
(2424 total threat records, and 995 from net imports).10

Further spatially explicit analysis showed that 23.6% of species
threats were concentrated on just 5% of global land area, and
60.7% of species threats were concentrated on 5% of the global
marine area.68 The identification of these hotspots may help
facilitate global policy responses.

Macro-Regional Studies. A good example of macro-
regional scale applications is the use of European Union data
to investigate the spatial variation of environmental impacts
driven by consumption. Ivanova et al. introduced a method for
calculating carbon footprints, driven by household consump-
tion in 177 regions of the EU27.58 They used this approach
(described in SI Method 5) to calculate land, water, organic
materials, and nonorganic materials footprints under different

Table 2. Studies Analyzing Social or Environmental Impacts at Different Spatial Scales

spatial scale Category 1 Category 2

global air pollution (SO2, NOx, and PM10, PM2.5, BC,
CO)49,51,55,57

greenhouse gases (CO2, CH4)
48 greenhouse gases (CO2)

60

biodiversity68

water50,66,67

gray water69

macro regional carbon (EU27; 19 cities around the Mediterranean)58,81

national water (UK, Australia)94

gray water (Spanish)70

air pollution (SO2, NOx, and PM2.5,
China)52,54,56

atmospheric Mercury (China)53

carbon (Japan)76 carbon (Norway, U.S., UK., Australia, Estonia, China, Germany)78−80,83−85,89−91,94,95,97

natural disasters (earthquakes, floods, landslides)(Italy)59

subnational
regional

ecological footprint (15 cities, Canada)96

carbon (15 cities, Canada; San Francisco Bay Area in CA, 20 cities in Finland; 24 cities in
China; Helsinki Metropolitan Area in Finland)82,86,88,96,98

city air pollution (Hunter region, Australia)46

COD (chemical oxygen demand) (Changzhou
City, China)73,74

volcanic eruptions (Auckland region, New
Zealand)71

economic loss driven by earthquake (Beijing, China)77

employment, population (Chicago, IL)72

flood (South-Holland, Netherlands)75

energy (Sydney, Australia)92

CO2 (Sydney, Australia; Boston, MA)87,93
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kinds of consumption categoriesshelter, food, clothing,
mobility, manufactured products, and services.58

National Studies. High-income countries and lower-
income countries have different perspectives for environmental
impact research. For the UK, a high-income country with
relatively large consumption-based impacts, researchers have
focused on carbon footprints89,90 and water footprints61 at the
scale of the local authority. Some researchers go further,
attempting to find even higher resolution spatial distributions,
for example of the gray footprint of Spain70 and the carbon
footprint in Estonia.91 Since some atmospheric pollutants have
highly local health effects, but can also be transported within
the nation, there has been work to model the diffusion of
pollutants such as PM2.5 and mercury, which also incorporate
dynamics of international and interprovincial trade.52−54

Subnational Regional Studies. These studies are very
useful for interregional management, especially for a large
country. For example, by linking census data with input−
output models, researchers were able to show that the lowest
Canadian per capita carbon footprint was found in
metropolitan areas, since they often share goods and services.96

Another study investigated the opportunities for high-income
and low-income consumers to reduce their carbon footprints
across California,98 finding that lifestyle modes have a large
impact on overall carbon levels.
City Studies. Compared with other scales, cities tend to

have highly local measurements of environmental impacts, for
example via in situ air or water pollution measurement devices.
Researchers have used input−output models and local city data
to estimate direct economic losses to cities from natural
hazards, including earthquakes,77 volcanic eruptions71 and
floods.75 Analysis of the energy requirements of cities at
suburban scales has also been made.92,93 City-based input−
output tables are useful for this sort of analysis, and can
provide specific support for local decision makers.
Most SIO investigations are on global and national levels.

This makes a certain amount of sense since global input−
output models (WIOD, Eora, GTAP, EXIOBASE) and
national input−output tables (official statistical publications)
have been available for some time now, as have large-scale,
spatially explicit, global models of environmental stressors and
impacts

■ OPTIONS FOR ENHANCING SPATIAL AND
SECTORAL RESOLUTION

Theoretically, an MRIO framework could provide arbitrary
spatial and sectoral resolution if the data and resources are
available to those constructing the models. In one sense, at the
extreme, a full MRIO model could include all interactions of
economic activities for very fine spatial units, for example, 1 ×
1 m. This sort of model would fall under Category 3 above and
is the ultimate ideal in developing SIO models (this would
involve trillions of data points) because it can reveal all sectoral
and spatial heterogeneity.
This approach overcomes the spatial homogeneity assump-

tion, which is an intrinsic shortcoming of input−output models
(i.e., that each sector and region has specific environmental
impacts across all products produced by that sector and across
regions). However, data and computation limitations preclude
such an approach for the foreseeable future. SIO models in
Categories 1 and 2 attempt to gain insights that such an
approach might yield without the significant data and
computation challenges. There is a large potential for

developing these models further. In the following we expand
on the opportunities for developments, first from a sectoral
perspective, and then from a spatial resolution perspective. We
then present some avenues for the development of approaches
for Category 3.

Enhancing Category 1, The Sectoral and Spatial
Resolution of Environmental Extensions. Sectoral
Resolution. The individual sectors included in analyses are
important for further environmental and policy insights
beyond the total environmental impact. However, it is difficult
to create spatial maps for each sector, especially in the form of
grid-cell data. In general, there are a greater variety of spatial
data available for primary sectors such as crops111 and
livestock.112 Primary sectors account for most of the land
use, water use, and other environmental impacts resulting from
production, so these sectors receive more research attention.
Also, the function of land for primary sectors is often unique,
so it is generally easier for remote-sensing to identify. In
contrast, identifying the distribution of secondary and tertiary
sectors is much more challenging. For example, a particular
building could be used as a residence, restaurant, school, a
company, or several other uses. Many land classification
schemes do not include factories, refineries, restaurants etc. It
is this underlying inability to specify land use that causes much
of the problem. Some environmentally important industries
may still be possible to spatially identify, for example, transport
and stationary power plants.113 The phenomenon is especially
evident in spatial distribution of carbon emission from EDGAR
databases, which have detailed carbon emission for transport
sectors, but much more coarse for manufacturing and service
sectors.20 Given this issue, the environmental impacts of most
of industries are proportionally allocated into sectors based on
their output. For example, for lack of sector-specific data
Moran et al. mapped all sectors in an input−output table into
11−13 spatial maps of air pollution and greenhouse gas
emission.48,49 Similarly, for water, in Lutter et al. and Holland
et al., WaterGAP consumption data was combined with an
MRIO model (EXIOBASE for Lutter et al, and GTAP for
Holland et al.), which was relatively straightforward to link in
the case of agricultural and electricity sectors, but not directly
possible in the manufacturing sectors.66,67 These difficulties in
pinpointing secondary and tertiary sectors are a focus of
ongoing research for water and energy modelers.22

One way to solve this sectoral information problem is to
construct a map with a detailed land use classification based on
current high-resolution map data, for example, Google Earth or
OpenStreet map, which can identify location of secondary and
tertiary sectors precisely. It would then be possible to link the
sectoral map with spatially explicit environmental models to
create more accurate spatial distribution of environmental
impacts for more sectors in input−output models. Multiuse
buildings will remain a challenge for the foreseeable period; for
example, one building may include resident households,
restaurants, banks and other service. The phenomenon is
particularly prominent in metropolis areas with high-density
population and complex industrial structures. While some
regions in some data sets have information on building-by-
building use, the data is currently too patchy and limited for
full integration into input−output models.

Spatial Resolution. Compared to subnational statistical
data, grid-cell data is not limited to administrative boundaries,
and it has the possibility of depicting spatial variation more
accurately. But spatial variation still depends on the area of the
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grid cell. The coarsest resolution used in the 48 papers
reviewed this study was 2° lon × 2.5° lat (about 60 500 km2 at
the equator),51 slightly larger than smaller countries such as
Netherlands, Switzerland, Slovakia, and Belgium. While
increasing the spatial resolution of databases may be important
for SIO models, there is little the input−output practitioner
can realistically do about this given that these models often
result from large research campaigns, for example NASA Earth
Observations (NEO).114 For ease of viewing we have
presented a nonexhaustive selection of some common spatial
databases that have the potential to be used in combination
with input−output models in Table 3.
A key issue arises when looking at the spatial resolution of

Category 1 studies. All the studies in our review use a
proportionality assumption in assigning regions for production
(which fulfills international demand). That is, all regions of
production are treated the same whether products are used
domestically or exported. This means that regions which do
not have good access to markets and are likely producing
goods for local consumption are “counted” as part of the
footprint of overseas consumers. Studies have suggested that
regions with good transportation services and access to ports
are more likely to be regions which export commodities.115,116

It may be possible to use this fact to apply a first-order
correction to which regions may be producing domestically or
exporting goods. Regions where road density is highest could
be used as the first-priority for export, with the remaining area
as the first-priority for domestic production and consumption.
Similarly, we can allocate environmental impacts in the same
way. In some cases, the subnational trade data is directly
available (for example, at the municipal level in Brazil),117 but
is difficult to implement globally due to data limitations.
Going beyond the data sets provided in the Table 3, the

increasing number of monitoring stations provided by local
authorities, such as those for air and water quality may also
provide further data available for analysis25

Enhancing Category 2, The Sectoral and Spatial
Resolution of Final Demand. Sectoral Resolution.
typically, commodity classification is more detailed than the
products or sectors given in input−output models. However,
the classification of consumer expenditure surveys is based on
direct household consumption in mind, rather than economic
sectors like those included in input−output models and so a
conversion has to be applied. In addition, most categories
within a consumer expenditure survey are food commodities.
For example, out of the 183 commodities in the Norwegian
database, 66 are food-related, but there are only 26 food
related products in 200 products in high sectoral MRIO
databases, EXIOBASE.63 Additionally, surveys cannot distin-
guish domestically made or imported products consumed by
households. Other import parts, such as government
consumption expenditure, and gross fixed capital information
still lack of research. Blockchain with IoT devices would be a
good way to trace these final consumptions in the future.127

Spatial Resolution. From the final demand perspective, the
spatial distributions of environmental footprints are generally
performed at the local authority level−as described by SI
Method 6. This is mainly due to the lack of spatial distribution
of consumption at any other resolution. Some scholars, for
example, Moran et al., applied global gridded population and
local per-capita purchasing power databases to spatialize
consumption-based environmental impacts.60 Beyond that,
Big Data methodologies have been suggested by various

researchers as the possibility of collecting detailed human
activities consumption with geolocation at a very high spatial
(as well as sectoral) resolution.128

Pathways for Moving toward Category 3 SIO’s. In an
ideal situation, efforts to enhance sectoral and spatial
resolution ultimately leads to a Category 3 SIO database.
That is, spatially explicit information on production processes
and related extensions, spatially explicit information on
consumption patterns, with intermediate transaction matrices
that match this spatial and sectoral detail. Compiling the
intermediate transaction matrix is extremely challenging when
compared to compiling spatially explicit extensions or final
demand. Some national statistical institutes may have detailed,
sectoral, statistical data consistent with international stand-
ards.129 But even in these cases it is extremely challenging to
build spatially explicit input−output databases, since it requires
a large amount of in situ surveys. As discussed, studies that
provide such transaction information generally do so using
nonsurvey methods, leading to highly estimated transaction
information.
The most common nonsurvey method for constructing

intraregional input−output models is to compile subnational
input−output models and then estimate interregional trade
flows separately.99 However, this approach requires the
common assumption that regional production technologies
and preferences of customers are similar to the national level.99

Clearly this introduces uncertainties at the subnational level.
Furthermore, interregional trade flows are usually estimated
using a gravity model that assumes trade is only related to
economic size and geographical distance of the producing and
consuming regions65,130 (other nonsurvey models, such as
entropy and information models, neuronal network models,
and behavior-based models can also be used102).
From above analysis, we find that most studies concentrate

on the global or national level since national input−output
models are readily available, and global MRIO models (e.g.,
EXIOBASE, WIOD, EORA, GTAP) have become increasingly
available in recent years. Few studies focus at city level, due to
a lack of official data. New technologies based on Big Data
approaches and blockchain may offer ways forward in the
future. Blockchain is a shared, distributed ledger that protects
records from deletion, tampering or revision. Some researchers
have used distributed ledgers combined with IoT devices to
trace food supply chains, from plantation to processing and to
retailers.131 Similarly, if any commodity is labeled with a
unique code, it can be traced using advanced database
approaches. Once a complete network of supply chains is
constructed, it may be possible to use these data to build a
transaction matrix for input−output models. The technology
may reduce the cost of collecting transaction data, improve the
efficiency and reliability of databases.127 and provide real-time
information.

Balancing Resolution and Policy Needs. Ideally, finer
spatial and sectoral scales will reveal more spatial heterogeneity
in environmental impacts and will be of increasing relevance to
policy makers. However, if there are no (reliable) data or
reasonable assumptions for downscaling some regions, and
attempting to do so might introduce unquantifiable un-
certainty. Additionally, there may be cases where the policy
need does not require higher-resolution in the first place. From
the papers reviewed herein, the resolution of the final result is
almost always dependent on external spatial information
beyond input−output models. For this reason, papers which

Environmental Science & Technology Critical Review

DOI: 10.1021/acs.est.8b03148
Environ. Sci. Technol. 2019, 53, 1048−1062

1055

http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b03148/suppl_file/es8b03148_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b03148/suppl_file/es8b03148_si_001.pdf
http://dx.doi.org/10.1021/acs.est.8b03148


fall under Category 2: the disaggregation of final demand, are
focused on American, European, and Australian regions since
they have more complete local consumption statistics and a
high availability of household surveys. It is best if the spatial
scale chosen relates to the policy relevance of the environ-
mental impact findings. For example, water pollution is
regarded as local environmental impact, but a river will run
through many regions and countries, so local and regional
water balances need to be considered as well as the linkages to
trade through input−output tables.66 For example, Lutter et
al.66 and Wang et al.50 study fresh water at the spatial
resolution of the water basin, which may be more helpful to
inform general, sector-based policies for water extraction and
pollution within a region. Conversely, greenhouse gas (GHG)
emissions are well-mixed and is an impact suitable for analysis
at the national scale. However, identifying the spatial
distribution of GHG driven by consumption helps connect
consumers with the impacts of their consumption.48 This is the
case for Kanemoto et al. where they develop a hotspot analysis
of carbon footprints at a global resolution of 0.1° × 0.1°.48

A different approach is needed for other types of air
pollution such as particulate matter, which is very much a local
issue and most often driven by point source emission.49 In
addition, aerosols which remain in the atmosphere for several
days, can easily diffuse to other regions.55 Therefore, locating
pollution sources and exploring the spatial distribution of
emission diffusion embodied in trade is a more appropriate
scale to help consumers participate in abating targeted air
pollution. This also requires additional modeling of emission
diffusion and a temporal resolution greater than the yearly
average as commonly used in studies.
Increasing the spatial resolution of input−output models

may also put pressure on increasing the temporal resolution.
One of the major drivers of making an IO database spatially
explicit is to examine the local impacts of resource availability
or pollutant emissions, which can sometimes vary more
temporally than spatially. Since input−output databases are
annual aggregations of activity, this elides some of the seasonal
complexities. For example, the availability for water used in the
cooling of thermal power plants vary more through the year
than across the nation.132 Some level of temporal resolution
may be possible simply by using time-explicit final demand
vectors, however these data will first have to be collected by
national or regional bodies. For example, emission transport
models need time series data, (hourly, daily, weekly, or
monthly), since aerosols diffuse to other locations on the order
of several days. Temporal issues may also impact uncertainties,
a topic to which we turn next.

■ ADDRESSING UNCERTAINTIES
Underlying Sources of Uncertainty. General uncertain-

ties for input−output models arise from the source statistical
data, sector aggregation, and data allocation ap-
proaches.16,133−138 For EEIO models, further issues with
source data and assumptions about the density of environ-
mental impacts also contribute to uncertainties.137,138 SIO
analyses add two further, related uncertainties: (1) Uncertainty
in spatial databases themselves, and (2) uncertainty from
spatial and sectoral aggregation.
With respect to uncertainty in spatial databases, this can vary

depending on the type of source. For remote sensing, sensor
quality, image generation, and processing techniques will drive
uncertainty.139 In local statistical data, uncertainty will be

driven mostly by statistical methods.140 Finally, for modeling
approaches, input data, assumptions, and model methodology
will all drive uncertainties. Furthermore, the spatial resolution
in environmental impacts will, on its own, result in some
uncertainty. For example, the resolution of WaterGAP is 0.5°
× 0.5° (about 50 × 50 km at the equator), implying that water
consumption is the same within a 50 × 50 km region.
Uncertainty will also be introduced when aggregating spatial

databases into regions matched with input−output databases,
especially at the border between regions. Spatial databases
often have to break down spatial information into different
sectors, using assumptions which will further drive uncertainty.
Often, we can resolve the spatial distribution of primary sectors
(e.g., food crops and livestock) and some secondary sectors
(large power plants, for example). But as mentioned above,
most manufacturing and service sectors remain difficult to
locate.
As we will see below, it is often hard to obtain a firm grasp of

where the largest uncertainties may arise. In some cases,
researchers have found it is likely that more uncertainty arises
from additional pollutant modeling and not the input−output
models themselves. For example, emission transport and health
impact models have been found to have more uncertainty than
the underlying input−output model.51,57

Approaches for Estimating Uncertainty. Uncertainty
analysis for EEIO modeling is already challenging given the
diversity of data141 and the model structure.142 Approaches
have been developed to estimate uncertainties141,143−145 and
perform sensitivity analyses.137,146,147 but there is still a lot
more work to do to fully understand uncertainties. Given these
existing difficulties, spatially explicit uncertainties add another
layer of complexity. Given the variation of possible
uncertainties, approaches such as Monte Carlo simulations
can be computationally prohibitive.53,57,60

Still, some researchers have attempted to clarify uncertain-
ties by narrowing down the number of uncertainties for
sensitivity analysis. For example, Lin et al. ran over 10 000
Monte Carlo simulations51 for each type of air pollution in
their study. Zhang et al. estimate overall uncertainty in SIO
models by aggregating 4 sources of uncertainty, including
uncertainty from air pollution (via the spatial database),
uncertainty in the MRIO model, uncertainty from chemical
transport modelGEOS-Chem model using Normalized Root
Mean Square Deviation (NRMSD) method, and uncertainty
from health impact model.57 Lenzen et al., simulate standard
errors of household factor multipliers, embodied factor
multipliers and household expenditure, and then integrate all
these parts of standard error into a total standard error
estimate of the entire SIO model using Monte Carlo
simulations. In another example, Moran et al., employ a
Monte Carlo approach to build up range of alternative global
Lorenz curves for carbon emissions.60 These methods inherit
approaches used in the uncertainty analysis of traditional
input−output models.148

These examples are all based on conventional Monte Carlo
simulations, extracting a large number of samples with assumed
distributions, usually normal or log-normal. These simulations
require an assumption that the extracted data are independent.
Rodrigues et al. use a Bayesian approach to compare the
uncertainties of independent sampling such as this,149 and find
that this approach underestimates the uncertainty of results.149

Future uncertainty analysis could expand this concept to
include spatial data, since spatial data are often developed by
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incorporating the same underlying databases as those used in
input−output models, resulting in nonindependent errors.

■ INTEGRATION WITH OTHER ENVIRONMENTAL
MODELS

Future options for SIO models may include integration with
other environmental assessment models including technology-
rich Integrated Assessment Models (IAMs), such as
IMAGE,150 GCAM,151 AIM/CGE,152 MESSAGE,153 RE-
MIND.154 Generally, IAMs use macroeconomic models to
downscale the world spatially into 10−30 aggregated
regions,155 after which they are coupled to earth system
models or environmental data using spatially explicit models.
The environmental impacts are then downscaled to that
resolution (Figure 2). IAMs have already been integrated with
other spatially explicit land use models such as the CLUE-s
model,156,157 the Global Land-use Model,158,159 and the Land
Use Land Cover Change (LULCC) model,160 and these could
be all be combined with input−output approaches. IAMs have
also been used to make water demand spatially explicit.161,162

For example, the LPJmL land model has been used to examine
carbon balances,163 the dynamic GLOBIO model for
evaluating biodiversity impacts,150 the integration of the
GLOFRIS model for estimating impacts of flood risks,150

and the GISMO model for human development.150 However,
IAMs lack physical linkages between capital stock and material
flows and they cannot trace the entire supply chain, this means
IAMs are generally not able to assess environmental impacts
other than on a production-basis. However, input−output
models are an effective tool to assess impacts including those
impacts embodied in the trade.164

Generally, input−output models are constructed from
historical data and used for historical analysis. Given their
structure there are no built-in dynamic mechanisms.
Conversely, technology-rich IAMs are used to project different
scenarios for industrial structure, final demand, and spatial
distribution of environmental impacts, which are the
components of input−output models. It would be possible to
establish soft links between IAMs and SIOs.164 IAMs could be
used to project components of input−output models needed
to provide input data to perform scenario-based consumption
focused accounting.164−166

■ OUTLOOK

Spatially explicit approaches inherit the advantages of EEIO,
linking environmental impacts from production to consump-
tion,16 while revealing the spatial variation of local environ-
mental impacts. The recent growth in SIO is not necessarily
surprising given the extensive role of globalization in

outsourcing production and the associated environmental
impacts of goods and services worldwide. Such SIO
approaches can allow for a better understanding of the
distribution of impacts from consumption, and provide data for
targeted consumption-based mitigation measures.
We have critically reviewed recent SIO analyses and

provided an overview of their methodologies and strengths.
These analyses can be broadly separated into three approaches:
(1) spatial disaggregation in environmental extensions, (2)
spatial disaggregation in final demand, and (3) construction of
a new input−output table with spatially disaggregated
transaction matrices. We describe the considerations and
issues that are raised when performing these analyses, and have
presented an overview of specific findings. We have outlined
the main challenges and limitations in present SIO modeling,
including: the availability of spatially explicit data of different
spatial and sectoral resolutions, the balancing of spatial
resolution with research goals and policy advice, and the
difficulty in assessing uncertainties. We also discuss the
possibility of incorporating SIO modeling with integrated
assessment models.
We expect that future efforts will focus on several key areas:

as further spatial databases become available with greater
sectoral resolution−especially in secondary and tertiary
sectors−more options for deeper analysis and linkage with
other environmental models will become possible; we see the
opportunity of temporal analysis for certain resources, such as
water, becoming increasingly tractable; and, studies that
combine both demand-side (Category 1) and consumption-
side (Category 2) disaggregation will become possible. A
major hurdle in building accurate Category 3 input−output
models at a high level of spatial detail is the lack of information
about intermediate transactions and the structure of the value
chains at this level of detail. Issues with uncertainties will likely
remain problematic for some time, given the difficulties in
assessing input−output model uncertainty even without spatial
disaggregation. However, this is a problem which is not specific
to input−output modeling, and is faced by many other large-
scale environmental model approaches such as IAMs.
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Analysis of Environmentally Extended Input−output Models as a
Tool for Building Scenarios of Sustainable Development. Ecol. Econ.
2013, 86, 148−155.
(138) Wu, X.; Chen, G. Energy Use by Chinese Economy: A
Systems Cross-Scale Input-Output Analysis. Energy Policy 2017, 108,
81−90.
(139) Benz, U. C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.;
Heynen, M. Multi-Resolution, Object-Oriented Fuzzy Analysis of
Remote Sensing Data for GIS-Ready Information. ISPRS J. Photo-
gramm. Remote Sens. 2004, 58 ((3)), 239−258.
(140) Sandefur, J.; Glassman, A. The Political Economy of Bad
Data: Evidence from African Survey and Administrative Statistics. J.
Dev. Stud. 2015, 51 (2), 116−132.
(141) Lenzen, M.; Wood, R.; Wiedmann, T. Uncertainty Analysis
for Multi-Region Input−output Models−a Case Study of the UK’s
Carbon Footprint. Econ. Syst. Res. 2010, 22 (1), 43−63.
(142) Karstensen, J.; Peters, G. P.; Andrew, R. M. Uncertainty in
Temperature Response of Current Consumption-Based Emissions
Estimates. Earth Syst. Dyn. 2015, 6 (1), 287.
(143) Wiedmann, T.; Wood, R.; Minx, J.; Lenzen, M.; Harris, R.
Emissions Embedded in UK Trade−UK-MRIO Model Results and
Error Estimates. In International Input−output Meeting on Managing
the Environment; 2008; pp 9−11.
(144) Bullard, C. W.; Sebald, A. V. Monte Carlo Sensitivity Analysis
of Input-Output Models. Rev. Econ. Stat. 1988, 70, 708−712.
(145) Oita, A.; Malik, A.; Kanemoto, K.; Geschke, A.; Nishijima, S.;
Lenzen, M. Substantial Nitrogen Pollution Embedded in International
Trade. Nat. Geosci. 2016, 9 (2), 111−115.
(146) Wilting, H. C. Sensitivity and Uncertainty Analysis in Mrio
Modelling; Some Empirical Results with Regard to the Dutch Carbon
Footprint. Econ. Syst. Res. 2012, 24 (2), 141−171.
(147) Yan, J.; Zhao, T.; Kang, J. Sensitivity Analysis of Technology
and Supply Change for CO 2 Emission Intensity of Energy-Intensive
Industries Based on Input−output Model. Appl. Energy 2016, 171,
456−467.
(148) Lenzen, M. Errors in Conventional and Input-Outputbased
LifeCycle Inventories. J. Ind. Ecol. 2000, 4 (4), 127−148.
(149) Rodrigues, J. F. D.; Moran, D.; Wood, R.; Behrens, P.
Uncertainty of Consumption-Based Carbon Accounts. Environ. Sci.
Technol. 2018, 52 (13), 7577−7586.
(150) Stehfest, E.; van Vuuren, D.; Bouwman, L.; Kram, T.
Integrated Assessment of Global Environmental Change with IMAGE 3.0:
Model Description and Policy Applications; Netherlands Environmental
Assessment Agency (PBL), 2014.
(151) West, T. O.; Le Page, Y.; Huang, M.; Wolf, J.; Thomson, A.
M. Downscaling Global Land Cover Projections from an Integrated
Assessment Model for Use in Regional Analyses: Results and
Evaluation for the US from 2005 to 2095. Environ. Res. Lett. 2014,
9 (6), 64004.
(152) Hasegawa, T.; Fujimori, S.; Ito, A.; Takahashi, K.; Masui, T.
Global Land-Use Allocation Model Linked to an Integrated
Assessment Model. Sci. Total Environ. 2017, 580, 787−796.
(153) Hurtt, G. C.; Chini, L. P.; Frolking, S.; Betts, R. A.; Feddema,
J.; Fischer, G.; Fisk, J. P.; Hibbard, K.; Houghton, R. A.; Janetos, A.
Harmonization of Land-Use Scenarios for the Period 1500−2100:600
Years of Global Gridded Annual Land-Use Transitions, Wood
Harvest, and Resulting Secondary Lands. Clim. Change 2011, 109
(1−2), 117.
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