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Background  
Cell culture models play an important role in biomedical research and will continue to 
do so given the growing opposition to vivisection and the limited predictive value of 
animal models for human disease. Moreover, cell culture models can be easily 
established to mimic physiological or pathological processes, which is difficult to 
accomplish using in silico models. While non-cellular in vitro models are highly 
suitable for studying simple biochemical processes, cell culture models recapitulate 
many of the complex regulatory circuits governing protein activity in vivo and hence 
allow investigation of diverse physiological processes. Also, cell culture models offer 
the possibility to address fundamental research questions in a much more simplified, 
specific and controllable manner than can be achieved using in vivo models.  

Aging is a complex and multifactorial process driven by genetic and 
environmental factors and govern by various interacting molecular pathways that lead 
to the physiological decline of biological systems. A variety of experimentally 
tractable cellular models were employed in recent years to study the basic mechanisms 
of aging, knowledge of which is essential to the development of effective therapeutic 
interventions against age-related diseases1. Due to the complexity of striated muscle 
structure and function, standardized cell culture models are a real asset for studying 
skeletal and cardiac muscle biology and disease. Cultures of skeletal myoblasts or 
cardiomyocytes (CMCs) can mimic physiological or pathological conditions, making 
them well-suited for proof-of-concept studies and for developing novel therapeutic 
interventions for specific diseases2,3. Especially, cultured cardiac cell monolayers have 
become a popular model system for electrophysiological studies4 into the mechanisms 
of cardiac arrhythmias5-7 as well as drug-induced ventricular pro-arrhythmic effects8. 
Brown adipose tissue (BAT) represents a potential therapeutic target to treat obesity 
and associated metabolic disorders because of its capacity to ingest and combust 
glucose and fatty acids for thermoregulation9. The properties of BAT has been 
investigated using cultures of primary brown preadipocytes (BPAs). Although these 
studies have yielded new insights into adipocyte biology10-12, the full potential of BAT 
culture models has not been utilized due to the scarcity of starting material and the 
limited proliferation capability of primary BPAs. A potential solution to this problem 
would be to establish lines of BPAs by cellular immortalization. Although cell 
immortalization offers the possibility to produce virtually unlimited cell sources by 
inducing cell cycle reentry and by bypassing cell senescence, generation of robust cell 
lines that can recapitulate (most of) the properties of the primary cells from which 
they were derived requires a thorough understanding of the mechanisms of cell 
quiescence, proliferation, differentiation, senescence and apoptosis. 

 

Cell cycle 
To divide, a cell must grow, copy its genetic material (DNA), and physically split into 
two daughter cells. Cells perform these tasks in an orderly and tightly regulated series 
of events known as the cell cycle, which is divided into two major phases, the 
interphase and the mitotic phase. During the interphase, the cell grows and duplicates 
its nuclear DNA. The interphase is divided in three subphases. During gap phase 1 
(G1 phase), the cell grows physically larger, copies organelles except for the nucleus 
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and synthesizes the molecular building blocks needed for the next subphase. In the 
synthesis (S) phase, the cell copies its chromosomal DNA and duplicates a 
microtubule-organizing structure called the centrosome, which helps to separate the 
DNA during the mitotic phase. During gap phase 2 (G2 phase), the cell grows more, 
makes additional macromolecules and organelles, and begins to reorganize its 
contents in preparation for mitosis. In the mitotic phase, the cell’s chromosomal DNA 
is equally separated into two new daughter nuclei and the cell’s cytoplasm and 
organelles are split after the formation of a cleavage furrow producing two new 
daughter cells. The segregation of duplicated chromosomes into daughter nuclei is 
called karyokinesis; the separation of cytoplasm and organelles is called cytokinesis.  

The cell cycle is controlled by the activity of cyclin-CDK (cyclin-dependent 
kinase) complexes. CDKs are always present but need to be activated by phase-
specific cyclins. Mitogens induce the synthesis of cyclin D early in the G1 phase. 
Cyclin D associates with CDK4 and CDK6 resulting in the hyperphosphorylation of 
the retinoblastoma protein pRB and the disruption of complexes between this pocket 
protein and several members of the E2F family of transcription factors. This allows 
these EF2 family members to form a complex with the in transcription factor DP 
(dimerization partner) and to induce the expression of various genes involved in cell 
cycle progression including the gene encoding cyclin E which is necessary for G1/S 
transition. CDKs are further activated during cell cycle by cyclin A and B to drive 
transition from S phase to G2 phase and from G2 phase to M phase, respectively. The 
activities of cyclin-CDK complexes are regulated by CKD inhibitors including the 
INK4 family (p15, p16, p18 and p19) and CIP/KIP family (p21, p27 and p57) which 
bind to CDKs and inactive the complexes (Figure 1).  

 
Figure 1. Cell cycle regulation. 

The CDK-cyclin complexes promote cell cycle progression, while the CDK inhibitors stop it. 
CDK4/6-cyclin D is activated in phase G1, CDK2-cyclin E in phase G1/S, CDK2/1-cyclin A 
in phase S/G2 and CDK1-cyclin B in phase M. The CIP/KIP family (p21, p27 and p57) 
inhibit a wide range of cyclin-CDK complexes, yet the INK4 family (p15, p16, p18 and p19) 
specifically diminish CDK4/6 activity. 
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Cell fates 
 
The fate of a cell is determined by the changes in its gene expression pattern and 
associated activities, which will lead to cell proliferation, quiescence, differentiation, 
senescence or death (Figure 2). Mitotic cells such as cells in the skin and gut 
repetitively progress through phases G1, S, G2 and M of the cell cycle. Mitotic cells 
can also enter the G0 phase of the cell cycle. This state of cell cycle arrest is observed 
in quiescent, (terminally) differentiated and senescent cells. Quiescent cells such as 
adult stem cells, fibroblasts and lymphocytes are temporarily arrested in G0 phase and 
readily reenter the cell cycle when exposed to mitogens. Dormant cells are quiescent 
cells showing very low metabolic activity, which is frequently interpreted as being in 
a deeply quiescent state. Cells like adipocytes, cardiomyocytes and neurons are 
believed to lose the capacity to enter the cell cycle and to permanently reside in the G0 
phase of the cell cycle once they are fully differentiated. However, recent studies have 
shown that both self-renewal of cardiac tissue and regeneration upon damage mainly 
results from the cell cycle reentry and proliferation of existing cardiomyocytes13-18. In 
general mitotic cells will stop dividing and become senescent after a limited number 
of divisions. Senescent cells cannot replicate anymore because of telomeres shorting, 
irreparable DNA damage, nutritional deficiency, harmful chemicals, oxidative stress 
or physiologic stress. Except for the stem, progenitor and precursor cells that escape 
from death by being converted in more differentiated cell types, all other cells finally 
die because of natural turnover or due to injury, including the death of the organism. 
Cell deaths can occur by various different mechanisms. Two of the major types of cell 
death are apoptosis and necrosis19. Apoptosis, also known as programmed cell death, 
is a normal physiological, non-inflammatory process to remove unwanted cells. In this 
process, apoptotic bodies are formed to confine cell organelles and other parts, which 
will be phagocytosed by macrophages. Necrosis, also known as unprogrammed cell 
death, is a less orderly process than apoptosis, in which cells and organelles swells 
resulting in membrane rupture. As a consequence, the cellular content is released in 
the extracellular space triggering an inflammatory response and possible causing 
further damage to adjacent cells20. A major difference between normal somatic cells 
and transformed cells is their proliferation potential. Normal somatic cells in culture 
have a limited ability to multiply themselves known as the Hayflick limit (see below), 
while transformed cells have evaded normal cellular senescence due to mutations 
resulting in acquisition of unlimited proliferation ability, evasion of apoptosis, growth 
factor independency, non-responsiveness to growth inhibitors, promotion of 
angiogenesis and invasive capacity. Immortalized cells have not necessarily 
undergone neoplastic transformation, but have accumulated sufficient mutations to 
proliferate unlimitedly. Upon transplantation immunocompromised mice, transformed 
cells will form tumors in contrast to immortalized cells. More details about cellular 
senescence, quiescence and immortalization are described below. 
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Figure 2. Possible cell fates.  

Under normal conditions, cells adopt one of five distinct cell fates: they can remain in the cell 
cycle and continue to proliferate or leave the cell cycle and become quiescent, differentiated 
or senescent or undergo apoptotic or necrotic cell death. Under pathological conditions, cells 
can escape from senescence or apoptosis and become immortalized or transformed following 
the activation of endogenous oncogenes and/or the inactivation of endogenous tumor 
suppressor genes. Cell immortalization can also be brought about by oncogenic viruses or via 
genetic engineering. 

 

Cellular senescence  
Senescence as a common stress response  

Normal mammalian somatic cells such as fibroblasts, myoblasts and preadipocytes, 
grown in culture fail to proliferate after a finite number of divisions and ultimately 
encounter senescence. This phenomenon was first found in human fibroblast cultures 
by Hayflick21 and later referred to as replicative senescence22-24. Replicative 
senescence is thought to be the result of progressive telomere shortening as a cell-
intrinsic mechanism25,26. Cellular senescence can also be stimulated by various types 
of cell stress like lack of nutrients, harmful chemicals (e.g. cytostatic drugs), oxidative 
stress or physiologic stress (e.g. caused by aberrant expression of tumor suppressor or 
oncogenes and excessive growth factor stimulation), which block the proliferation of 
cells27-29. This type of senescence is referred to as premature or induced senescence30. 
These findings have led to a distinction between “replicative senescence” which is 
induced by a cell-intrinsic mechanism, and “stress-induced premature senescence” 
which is triggered by extrinsic factors31. In many cases, replicative and premature 
senescence are interconnected. Telomere shortening is, for instance, accelerated by 
oxidative stress. Actually, cells may suffer cumulative damage from multiple stresses 
during culture. Senescence will be triggered when cellular damage has reached a 
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certain threshold, whatever has caused the damage. Senescent cells undergo dramatic 
changes in morphology and function. They generally become enlarged and flattened, 
have an increased lysosomal content, suffer from mitochondrial dysfunction and 
secrete increased amounts of inflammatory, growth-promoting, and remodeling 
factors. They may also form senescence-associated heterochromatin foci, often 
display a chronic DNA damage response, are incapable of synthesizing DNA for 
mitosis, show high resistance to apoptosis and are unresponsive to mitogenic stimuli. 
However, senescent cells are still metabolically active for months or even years27,32-35. 
 

p53 and pRB as key regulators of senescence 

Molecular pathways of senescence are complex involving multiple layers of 
regulation with cooperative changes. The p53 tumour suppressor protein and the 
pocket proteins (i.e. pRB, p107 and p130) have been shown to play critical roles in the 
induction of senescence. The p53 protein is an important cell cycle regulator of both 
the G1/S and G2/M checkpoints by activating CDKN1A transcription. CDKN1A 
codes for p21 protein, which is a member of the CIP/KIP family of tumor suppressor 
proteins. These proteins inhibit various cyclin-CDK complexes required for promotion 
of the cell cycle (Figure 3). Hypophosphorylated pRB controls the G1/S checkpoint 
by directly binding to and inhibiting various E2F family members thereby repress 
gene transcription required for transition from the G1 to S phase of the cell cycle. In 
actively dividing cells, the suppressive effect of pRB on E2Fs is lost due to 
hyperphosphorylation of pRB by cyclin D-CDK4 and cyclin D-CDK6 complexes. In 
senescent cells the activity of these complexes is inhibited by members of the INK4 
family of tumor suppressor proteins36. (Figure 3). 

Numerous studies have explored the roles of p53 and pocket proteins in the 
induction and maintenance of senescence in mouse embryo fibroblasts (MEFs). 
Suppression of p53 expression allows cells to escape from senescence and leads to 
their indefinite expansion37. Inactivation of pRB alone is not enough to ease 
senescence of MEFs, while accompanying ablation of other pocket proteins including 
p107 and p130 strongly increased their proliferation capacity38,39. This demonstrates 
that the inactivation of either p53 or all three pocket proteins is sufficient to block the 
initiation of senescence. Suppression of either p53 or pRB in senescent MEFs is not 
enough to maintain senescence but leads to reactivation of the cell cycle37,40. 
Collectively, these findings suggest that p53 and the pocket proteins control cellular 
senescence in a hierarchical manner, in which the activation of pocket proteins is 
downstream of that of p53. Indeed, as mentioned before, p53 actives p21, which in 
turn inhibit cyclin-CDK complexes involved in the phosphorylation and inactivation 
of the pocket proteins. However, MEFs lacking p21 still undergo senescence and have 
a lifespan similar to wild-type cells41, which shows that p21 is not the only link 
between p53 and pocket protein activity in the regulation of senescence (Figure 3). 

 
Cellular quiescence  
 
As indicated above, cells can enter into either of three different G0 states. While 
senescent and (terminally) differentiated cells have permanently excited the cell cycle 
(irreversible G0 arrest), quiescent cells only temporarily reside in the G0 phase 
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(reversible G0 arrest) and reenter the cell cycle in response to normal physiological 
stimuli42. The notion that terminally differentiated cells are irreversibly arrested in G0 
has been challenged by the finding that mature hepatocytes dedifferentiate and reenter 
the cell cycle after injury of the liver and contribute to its regeneration43-46. Similar 
observation have recently been made for terminally differentiated cardiomyocytes13-18. 
Hence, not only quiescent cells but also terminally differentiated cells can exit the G0 
phase and resume cell division. 

In quiescent cells, p53 has been considered as main molecular regulator of cell 
cycle arrest47. Similar to senescence, the mechanism by which p53 mediates 
quiescence is dependent on the activation of p21, a CDK inhibitor and critical 
component of the pRB-E2F pathway48. In addition to p53, quiescent cells typically 
feature lower levels of pRB-E2F pathway activators, such as cyclin D49-51 and high 
levels of pathway repressors, such as p2148. The disruption of all three pocket proteins 
and the acute loss of pocket protein function in quiescent cells lead to cell 
proliferation38-40,52. pRB deficiency in quiescent skeletal stem cells leads to an 
increase of proliferation and a loss of terminal differentiation capacity38,53. All of the 
above suggest that the RB-E2F pathway plays a pivotal role in quiescence. Among the 
E2F family of transcription factors, E2F1, -2 and -3 are considered “E2F 
transcriptional activators” and E2F4 and -5 are deemed “E2F transcriptional 
repressors”54. In cell cycle-arrested cells, hypophosphorylated pRB prevents cell cycle 
reentry by binding and repressing E2F1, -2 and -3, which activate genes required for 
the transition from G1 into S phase. In addition, hypophosphorylated p130 and p107 
form complexes with E2F4 and -5. The complexes bind to the promotors of E2F target 
genes and recruit chromatin remodeling factors that block transcription55,56. In 
quiescent cells that are stimulated with mitogens, cyclin-CDK complexes 
phosphorylate pRB thereby releasing E2F1, -2 and -3. Similarly, phosphorylation of 
p130 and p107 abolishes their interaction with E2F4 and -5 repressors57,58. Especially 
E2F4-p130 complexes are very prominent in resting (i.e. G0-arrested ) cells 
suggesting that they play a pivotal role in the maintenance of cell quiescence59-61 
(Figure 3). 

Figure 3. Participation of cell cycle regulators in cell cycle arrest.  

p53 activates CDK inhibitors (e.g. p15, p16 and p21), which in turn disrupts cyclin-CKD 
complexes involved in the inactivation of the pocket proteins (pRB, p107 and p130). This 
allows the pocket proteins to arrest cell in a non-proliferative state by blocking the 
transcription of E2F target genes. LT, large tumor antigen. mdm2, mouse double minute 2. 
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Simian virus 40 LT antigens & cell immortalization 
 
Simian virus 40 (SV40) is a small double-stranded non-enveloped DNA virus with a 
circular genome and an icosahedral capsid in the family of Polyomaviridae. The SV40 
genome is composed of three main regions: (i) an early region encoding large tumor 
antigen (LT), 17kT and small tumor antigen (ST), (ii) a late region encoding the viral 
coat proteins (VP1, VP2, VP3 and VP4) and the agnoprotein (Agno) and (iii) the 
regulatory region containing the early and late promotor and the origin (Ori) of 
replication (Figure 4A). LT, 17kT and ST are produced from alternative splice 
products of the early viral pre-mRNA and are co-expressed in infected cells. The 
amino-terminus of LT contains a J domain which contributes to viral DNA 
replication62. Downstream of the the J domain, there is a LXCXE motif that can 
directly bind to the pocket proteins (i.e. pRB, p107 and p130)63,64. The J domain 
cooperates with the LXCXE motif to disrupt the interaction between E2F family 
members and the pocket proteins63. The DNA-binding domain (DBD) of LT 
recognizes Ori sequences and this interaction is essential for the initiation of viral 
DNA replication. The helicase domain works as DNA helicase to unwind the dsDNA 
template for viral replication and it also interacts with p5365. ST contains a J domain 
followed by a cellular protein phosphatase 2A (PP2A) binding region which contains 
two zinc fingers. ST binds the A and C subunits of PP2A and displaces the B subunit, 
thereby inhibiting the pro-apoptotic activity of PP2A66,67. 17kT shares several 
regulatory domains with LT that mediate some of its most important functions 
including stimulation of cell proliferation by binding to pocket proteins68 (Figure 4B). 

LT plays an essential role in multiple steps of the viral life cycle. After 
infection, LT induces host cells to enter the S phase thereby creating optimal 
conditions for the replication of viral DNA. Meanwhile, LT works as the DNA 
helicase and then utilizes the host’s replication machinery to replicate the viral DNA. 
Besides, LT is also involved in transcription and virion assembly. Given the capability 
of LT to incite cell proliferation, LT has been successfully used to immortalize 
multiple primary cell types with no/limited proliferative capacity in vitro69-71. Our 
current understanding indicates LT’s ability to drive cell proliferation is mainly due to 
its interaction with the pocket proteins and p5372,73. Quiescent cells including 
differentiated cells are trapped in G0 by the pocket proteins42. Hypophosphorylated 
pocket proteins bind to E2Fs and thereby block gene expression required for 
nucleotide synthesis, DNA replication, cell cycle progression and apoptosis. When 
cells are mitogenically stimulated, pocket proteins become phosphorylated allowing 
E2F-mediated S phase gene transcription. Instead of disrupting E2F-pocket protein 
complexes by pocket protein hyperphosphorylation, LT binds to hypophosphorylated 
pocket proteins setting free the pocket protein-bound E2Fs resulting in E2F-dependent 
gene expression and cell cycle reentry74. The p53 level in normal cells remains very 
low because it binds to Mdm2 which induces ubiquitination and subsequent 
degradation of p5372,75. Besides Mdm2, many other proteins affect the biological 
activity and stability of p53 through various types of post-translational modifications. 
Different cellular stress conditions lead to stabilization of p53 allowing it to act as a 
transcriptional activator of genes mediating apoptosis or cell cycle arrest76,77. LT 
inactivates p53 by covering its DNA-binding domain and thus block the expression of 
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p53-dependent genes, which leads to cell cycle reentry and avoids cell cycle arrest as 
well as apoptosis78 (Figure 3). 

Exposure of SV40 particles to chemical mutagens has resulted in the recovery 
of several temperature-sensitive LT mutants (ts-LTs) that can cause cell 
immortalization/transformation at permissive temperatures (≤ 34°C) but fail to do so 
at nonpermissive temperatures (≥ 37°C)79,80. These ts-LTs have been used to control 
the activity of LT allowing conditional immortalization of primary mammalian cells.

 
 

Figure 4. Structure of SV40 

(A) Genomic structure of SV40. The circular double-stranded DNA genome contains three 
main regions: the regulatory region, an early region encoding LT, 17kT and ST, and a late 
region encoding the viral coat proteins VP1, VP2, VP3 and VP4 as well as the agnoprotein. 
(B) The functional domains of SV40 T antigens. The J domain is shared by all three antigens. 
LT also contains a pocket protein-binding LXCXE motif, a DNA-binding domain (DBD), a 
p53-binding helicase domain. 17kT shares several regulatory domains with LT including a 
pocket protein binding domain. ST contains a J domain followed by a PP2A-binding region 
with two zinc-fingers. 
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For instance, ts-LT tsA58, which carries an alanine to valine substitution at amino 
acid position 438 that abolishes its binding to and inhibition of p53 at nonpermissive 
temperatures81 was expressed in transgenic mice to generate conditional immortalized 
cell lines from different tissues82,83. 

 

Cell cycle regulation in cardiomyocytes 
In the embryonic and fetal hearts of vertebrates, including mammals, cardiomyocytes 
have high cell cycle activity and are capable of DNA synthesis, karyokinesis and 
cytokinesis resulting in cardiomyocyte division and an increase of cardiomyocyte 
number. However, the proliferative capacity of postnatal hearts differs from various 
species. Zebrafish have cardiomyocyte proliferative capacity throughout life. A 
complete regeneration of heart tissue lost from the resection of the ventricular apex 
can be managed in adult zebrafish through the proliferation of pre-existing 
cardiomyocytes15,84. In contrast, mammalian cardiomyocytes lose their proliferative 
capacity shortly after birth and the expansion of postnatal mammal heart driven by 
non-mitotic growth produces multinucleated or polyploid cells and hypertrophic 
cells85-88. In mice, during the first week of postnatal period, the majority of 
cardiomyocytes undergo karyokinesis in the absence of cytokinesis, which generates a 
population of binucleated cardiomyocytes85. In this event, cardiomyocytes enter the M 
phase of the cell cycle and perform nuclear division, but they do not undergo 
cytokinesis86,88. In contrast, the timeline of human cardiomyocyte proliferative 
capacity is not clear, however, more than half of all adult human cardiomyocytes are 
polyploid as a result of DNA duplication without nuclear division87. The 
polyploidazation results from shuttling between G1, S and G2 phase without entering 
into the M phase. Although damage-induced cardiomyocyte proliferation in adult 
mammals has been observed13,89,90, the growth of stressed and injured mammalian 
hearts is largely caused by hypertrophy. Under physiological and pathological 
hypertrophy-stimulating conditions, cardiomyocytes enter the G1 phase of cell cycle 
where the grow in size by synthesis of extra RNAs and proteins, but they fail to 
undergo S phase91-93 (Figure 5).  

This different behavior of antenatal and postnatal cardiomyocytes is due to the 
developmental changes in cell cycle activity86,94. The cell cycle of cardiomyocyte is 
tightly controlled by transcription factors and regulators thereof like the pocket 
proteins, which play an essential role in cell cycle exit and differentiation of 
cardiomyocytse95. For example, p107 and p130 interact with E2F family members to 
inhibit DNA synthesis in the fetal and neonatal cardiomyocytes, respectively96. 
Moreover, pRB silences multiple proliferation-promoting genes in adult 
cardiomyocyte to maintain their post-mitotic state by interaction with heterochromatin 
protein 1γ97,98. Apart from the pocket proteins, transcription factors such as Meis1, 
MEF2D, FoxO1, and FoxO3, inhibit cell cycle progression by increasing the 
expression of p21, p27, p15, and p1699-102. In contrast, transcription factors, such as 
E2F1, E2F2, E2F4, CASZ1, GATA4, Tbx20, and FoxM1, stimulate cell cycling by 
increasing the expression of cyclins99,101,103-106. Besides, PI3K-AKT, Wnt/β-catenin 
and YAP signaling pathways play important roles in cardiomyocyte proliferation107-111. 
Manipulation of the cell cycle in post-mitotic cardiomyocytes may be an attractive 
strategy to obtain large numbers of cardiomyocytes for in vitro studies, cardiac cell 
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therapy and the regeneration of injured hearts from inside by re-awaking cell cycling 
in cardiomyocytes surrounding the site(s) of myocardial damage. 

 

 
 
Figure 5. Cell cycle activities in cardiomyocytes. 

In a typical cell cycle, cell successively enters the G1 phase (for synthesis of RNAs and 
proteins), S phase (for DNA synthesis), G2 phase (for additional growth) and M phase (for 
karyokinesis and cytokinesis) resulting in two individual cells. In the presence of 
hypertrophic stimuli, cardiomyocytes enter the G1 phase and grow in size by synthesis of 
RNAs and proteins, but they fail to enter the S phase. Polyploidazation results from shuttling 
between G1, S and G2 phase without entering into the M phase. Multinucleation occurs when 
cardiomyocytes enter the M phase and perform karyokinesis, but are withdraw from the cell 
cycle before cytokinesis. 
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Aim and outline of thesis 
 
The aim of this thesis is to develop and use cell culture models for fundamental and 
applied biomedical research. Cell immortalization is a promising approach to produce 
large number of cells from same amounts/scarce primary staring material by inducing 
cell cycle reentry or bypassing cell senescence. Accordingly, a major part of this 
thesis was dedicated to the generation of robust cellular model systems by cell 
immortalization for addressing fundamental and applied research questions in a 
reproducible, flexible and standardized way. 

Bypassing cellular senescence is a prerequisite for cell immortalization. It is 
therefore important to have a better understanding of the mechanism of senescence 
before immortalizing cells. A variety of proteins and pathways were found to be 
involved in senescence. However, the role of heterochromatin proteins and their 
contribution to abnormal chromatin organization in cell senescence is largely 
unknown. Chapter II of this thesis uses premature MEFs as a senescence model 
system which is derived from progeria disorder mice and studies the role of 
heterochromatin proteins and the associated chromatin organization in DNA damage 
response (DDR)-induced senescence. 

In order to get familiar with the properties of immortalized cells including their 
culture conditions, proliferation and differentiation, an existing line of immortalized 
human myoblast is cultured and its differentiation is investigated in Chapter III. With 
the aid of this cell line, a novel non-destructive quantitative assay to monitor cell 
fusion is developed. 

Cardiac cell therapy, tissue engineering and in vitro studies into cardiac 
arrhythmias or for testing the potential cardiotoxicity of drugs require large numbers 
of functional and homogeneous cardiomyocytes. Progress in these areas of research is 
impeded by the limited availability of heart tissue and the very low mitotic activity of 
cardiomyocytes highlight the urge to develop new/rich source of cadiomyocytes for 
both basic and translational research. Chapter IV describes the generation and 
characterization of a immortalized atrial myocyte cell line with preserved 
cardiomyogenic differentiation capacity. Through controlled expansion and 
differentiation of this cell line, large numbers of functional cardiomyocytes are 
generated, hence providing an attractive cell model for cardiac research. 

BAT is regarded as a potential target to treat obesity and associated metabolic 
disorders because of its capacity to take up and combust glucose and fatty acids for 
thermoregulation. However, its cellular and molecular investigation has been 
hampered due to high cellular heterogeneity and a limited availability of cell material. 
In Chapter V, monoclonal lines of immortalized BPAs are generated by using mouse 
BAT as starting material. The long-term proliferation and high adipogenic capacity of 
the cell lines provide an attractive model system for fundamental and applied research 
into BAT. 

Besides immortalized cell lines, primary cardiomyocytes were also used to 
solve research questions. In Chapter VI, neonatal rat ventricular myocyte cultures are 
established as an in vitro model for investigating the action potential-prolonging and 
associated proarrhythmic effects of Kv11.1 blockers. In this study, a newly designed 
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and synthesized compound LUF7244 is shown to prevent drug-induced proarrhythmic 
effects as by an allosteric mechanism.  

Finally, Chapter VII provides the summary and conclusions drawn from each 
study of this thesis, as well as future perspectives related to the application of 
immortalized cells. 
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