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Introduction

Malar ia,  the paras ite and disease
Malaria is a vector-born disease of global health importance [1] with 216 million cases in 

91 countries in 2016 resulting in around 445.000 deaths [2]. The greatest burden of malaria 

is in sub-Saharan Africa, where it takes the lives of more than 1,200 children each day [2]. 

Malaria is caused by a protozoan unicellular parasite, Plasmodium, which is transmitted by 

Anopheles mosquitoes. Five Plasmodium species are responsible for malaria in humans: 

Plasmodium falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi [3]. Most clinical 

cases are caused by P. falciparum and P. vivax, with P. falciparum being the deadliest [1, 

3]. P. falciparum infections can cause severe anaemia, fever and organ damage, including 

cerebral complications; in contrast, P. vivax infections are usually not fatal but can be severe 

with recurrent clinical episodes of malaria associated with morbidity [4]. P. malariae and P. 

ovale infections are less well studied but the severity of illness caused by these parasites 

is similar to P. vivax malaria [4]. P. knowlesi is primarily a zoonotic infection encountered in 

Southeast Asia that can cause severe malaria [5].

The P. falciparum life cycle

Figure 1 depicts the life cycle of P. falciparum. A malaria infection in humans begins with 

the inoculation of Plasmodium sporozoites into the host dermis by the bite of an infected 

female Anopheles mosquito [4, 6]. The sporozoites can take 1-3 hours to exit from this site. 

Here they rely on gliding motility to penetrate a blood vessel, entering the blood stream 

and migrating to the liver [7]. Sporozoites recognise hepatocytes and infect these cells 

after the sporozoite become activated through a mechanism that involves interactions 

of host and parasite membrane proteins. Entry is gained by proteins that are released 

from the apical organs of the sporozoite, specifically the micronemes and rhoptries. 

Once hepatocyte infection is established, the parasite grows and divides in the next 2-10 

days. These liver-stage (LS) or exo-erythrocytic forms (EEF) mature and release up to 

40.000 merozoites per infected hepatocyte into the blood stream [3]. Once released into 

the circulation, the merozoites invade erythrocytes, where they grow, divide and form new 

merozoites, which upon release invade new red blood cells, initiating the repeated asexual 

replication cycles. All symptoms of malaria are associated with the blood-stage infection [8]. 

Within a red blood cell P. falciparum parasites progress over the course of 48 hours through 

the ring and the trophozoite stage before replicating into 8-32 merozoites at the schizont 

stage (schizogony) [1]. During the schizogony cycles in red blood cells, a proportion of 

parasites stop asexual division and undergo a developmental switch, initiating sexual 

development by development into male or female gametocytes (gametocytogenesis). 

These gametocytes mature through five defined stages over the course of 8-11 days 

[1, 9]. Once ingested by a mosquito the mature male and female gametocytes emerge 

from the red blood cell and rapidly produce gametes (gametogenesis), with the male 

gametocyte dividing into eight flagellated microgametes (exflagellation) and the female 

gametocyte developing into a single macrogamete. The female gamete is fertilised by 
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the male in the mosquito midgut, resulting in a diploid zygote, which elongates into an 

ookinete that penetrates the mosquito gut wall. The ookinete develops into an oocyst that 

undergoes cycles of replication to form several thousand sporozoites (sporogony), over 

a period of 9-12 days. These oocysts then burst to release the sporozoites that migrate to 

the salivary glands, resulting in mosquitoes that are infectious to humans [9, 10].

Malar ia,  the health problem 
Malaria incidence and transmission depends on environmental suitability for local 

mosquito vectors, which includes altitude, climate, vegetation, and implementation of 

control measures. The intensity of the host-vector-host transmission depends on factors 

related to the parasite, the vector, the human host and the environment [11]. Currently, half 

of the world’s population is at risk of malaria, with some population groups at higher risk 

of developing severe disease than others. These include infants, children under 5 years of 

age, pregnant women and immunosuppressed patients [2]. Early diagnosis and treatment 

reduces disease, prevents death and directly contributes to a reduction in malaria parasite 

transmission [4, 11]. However after considerable global success in malaria control over 

the past 10-15 years, progress has now stalled according to the WHO World Malaria report 

2017 [2]. A major problem is insufficient funding at both domestic and international levels, 

resulting in gaps in coverage of the use of insecticide-treated nets, antimalarial drugs, 

indoor residual spraying (IRS) with insecticides and other lifesaving tools [2]. Moreover, 

there is a global increase in resistance to front-line antimalarial drugs, such as chloroquine, 

sulfadoxine/pyrimethamine [12] and recently to artemisinin [13]. This highlights the need  

for novel drug and vaccine intervention programs against both the parasite and vector. 

In addition to novel insecticides and approaches to reduce transmission by mosquitoes, 

the identification of new classes of drugs as well as vaccines that target different stages 

of the parasites are required to protect the groups most at risk [2, 12] and to develop 

the most cost-effective means to prevent, eliminate and eradicate malaria [11]. 

Malar ia,  vaccine and drug development
Malaria vaccines are generally classified in different types of vaccines, defined by 

the different life-cycle stages of the parasite that are targeted by the vaccine. Specifically, 

(1) pre-erythrocytic vaccines, which induce antibodies and/or cell-mediated immune 

responses that block sporozoite invasion of hepatocytes or remove infected hepatocytes 

[11]; (2) blood-stage vaccines that are designed to block merozoite invasion of red blood 

cells or to eliminate infected red blood cells [12]; and (3) transmission blocking vaccines (TB 

vaccines) that generate antibodies that can block transmission of parasites in the mosquito 

by either blocking parasite fertilisation or zygote development. Pre-erythrocytic vaccines 

have been shown to prevent infection and can induce sterile protection against malaria. 

Blood-stage vaccines are likely to reduce the overall parasite burden in the blood and 

therefore reduce malaria symptoms and TB vaccines may be an effective means to reduce 

the spread of malaria within a population [12]. 

Currently, the most extensively tested vaccine candidate for prevention of P. falciparum 

malaria is RTS,S/AS01 (RTS,S; also known as Mosquirix), a pre-erythrocytic vaccine candidate 

[14]. This subunit vaccine targets the sporozoite and the infected liver cell and is based on 

the immunodominant antigen that covers the surface of the sporozoite, circumsporozoite 

protein (CSP). In RTS,S the CSP fragment is fused to hepatitis B virus surface antigen 

and administered with the adjuvant AS01 [14]. This is the only vaccine that has shown 

protective efficacy against clinical malaria in a Phase III clinical trial, but protective efficacy 

is modest and wanes over time and may be age dependent [15]. In vaccine development 

against P. vivax the CSP protein is also seen as an important vaccine target since evidence 

from pre-clinical and clinical studies has indicated that immune responses against P. vivax 

CSP play a role in mediating protection against P. vivax infections [16]. 

In addition to CSP, several other antigens of sporozoites and liver-stages have been 

identified as target antigens for subunit vaccines, for example CelTOS (cell traversal 

protein for ookinetes and sporozoites) and TRAP (thrombospondin-related adhesion 

protein). Recombinantly produced CelTOS  of P. falciparum, a micronemal secreted-

Figure 1. Schematic representation of the P. falciparum life cycle. Upper panel, P. falciparum 
development in mosquitoes (grey box) and in humans. Lower panel, the five developmental stages 
of P. falciparum gametocytes and mature P. vivax gametocytes. This image was taken from Bousema, 
T., et. al. (2011 )[10].  
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protein, is one of the few vaccines that has recently entered clinical testing (NCT01540474 

https://clinicaltrials.gov/). A viral-vectored sub-unit vaccine directed against TRAP fused to 

a multi-epitope string, demonstrated some protection against malaria infection in malaria-

naïve adults [17]. 

Most research on the development of asexual blood-stage vaccines has focused on 

only a few antigens, for example merozoite surface protein 1 (MSP1) and apical membrane 

antigen 1 (AMA1). Antibodies against both proteins correlate with naturally-acquired 

immunity in multiple epidemiological studies and vaccines targeting these antigens 

induced protective immune responses in preclinical studies in rodents [18]. However, 

although some studies performed in humans have shown some efficacy, no blood-stage 

vaccine has reached phase III testing [19]. It is important to consider the challenges that 

have faced the development of blood-stage vaccines, such as high levels of antigenic 

polymorphism and redundant pathways of invasion of red blood cells by merozoites. 

Different preclinical assays are used to predict the efficacy of blood-stages vaccines [19, 20]. 

The growth inhibition assay (GIA) is one of the most widely used functional assays to test 

interventions against asexual blood-stage development. In vaccine-based studies, blood-

stage parasites are co-cultured with either control or test antibodies and the percentage 

of reduction in parasitemia is measured after a defined culture period [19].

For TB-vaccines, the leading target antigens include the ookinete surface protein 

Pf25 and the gametocyte/gamete antigens Pf48/45 and Pf230. Antibodies against these 

antigens perform well in inhibition of transmission in comparative preclinical studies, with 

functionality assessed by the standard membrane feeding assay (SMFA) using mosquitoes 

that are fed with cultured gametocytes in the presence of antibodies, whole serum or 

purified IgG [21]. The most advanced TB vaccine candidates are based on the antigens 

P48/45 of gametes and P25 of zygotes and ookinetes and recombinant vaccines of P25 of 

both P. falciparum and P. vivax have progressed into Phase I trials [22-24].

Despite three decades of testing different (recombinant) sub‐unit vaccines, both 

in the clinic and the field, only modest protection against infection has been achieved 

[15, 25-27], which has renewed an interest in whole parasite-based vaccine approaches 

[28, 29]. It was first shown in rodent models of malaria that complete protection against 

infection could be obtained by vaccination using live attenuated sporozoites [30, 31]. 

Subsequently, sterile protection against malaria was also demonstrated in humans after 

immunization with Plasmodium falciparum sporozoites, either attenuated by radiation 

[32, 33] or administered under chemoprophylaxis [34]. A prerequisite for induction 

of protective immunity using sporozoite-based vaccines is that sporozoites retain their 

capacity to invade liver cells after administration. While the precise mechanisms of 

protection mediated by immunization with attenuated sporozoites remain unknown, T 

cells appear to be critical for protection and in particular CD8+ T cells are thought to play 

a major role in eliminating infected hepatocytes [35]. The most advanced live-attenuated 

vaccine is based on irradiation-attenuated sporozoites (Irr-Spz), which is currently being 

evaluated both in the clinic and in field trials [36, 37]. In rodent models, immunization 

with sporozoites of genetically-attenuated parasites (GAP) can induce similar or even 

better levels of protective immunity compared to  Irr-Spz [35, 38]. Genetic attenuation 

of sporozoites has been achieved through the deletion of one or more genes that play 

a critical role during liver-stage development, resulting in complete arrest of parasite 

growth in the liver, thereby preventing a blood-stage infection after immunization with 

GAP sporozoites. Currently two P. falciparum GAP-based vaccines are undergoing clinical 

evaluation [38-42]. 

While the search for an effective vaccine against malaria remains a very active area 

of research, the most effective means to treat and prevent malaria remains the use of 

drugs [43]. However, resistance to available antimalarials continues to spread, including 

resistance to the widely used artemisinin-based combination therapies [44]. As multi-drug 

resistance spreads, there is an urgent need for new antimalarial agents to control malaria 

infections [43]. At the forefront of antimalarial development is the Medicines for Malaria 

Venture (MMV), a not-for-profit, public–private partnership (www.mmv.org). The current 

MMV portfolio contains many promising compounds at various stages of development [43]. 

New classes of antimalarial compounds have been identified in high-throughput screens 

of large compound libraries [45]. Most of such screens involve the exposure of different 

life cycle stages of P. falciparum parasites to the compounds and the measurement of 

inhibition of development. For example in short-term cultures of the blood-stages and 

determination of inhibition of blood-stage growth and multiplication. Such screening of 

large compound libraries requires highly reproducible and cost-effective assays that are 

amenable to automation and can be performed in a small culture volumes [43, 45]. 

Malaria elimination is likely to require a combination of interventions, including 

the generation, testing and implementation of new drugs and vaccines as well as new 

vector control strategies.

Genetical ly  modif ied malar ia paras ites and 
their  use in malar ia research:  the a im of the 
studies descr ibed in this  thesis
In the mid-nineties, genetic modification to create permanent modifications in malaria 

parasite genomes was first described in the rodent malaria parasite Plasmodium berghei 

[46]. This technology was extended to other Plasmodium species, including the human 

malaria parasite P. falciparum, and was initially used for loss-of-function analyses to 

uncover the function of Plasmodium genes, including genes encoding potential vaccine 

candidate antigens (reviewed in [47, 48]). In addition to gene disruption and gene mutation, 

methodologies have been developed for creating malaria parasites that express ‘foreign’ 

genes from other organisms, so-called transgenic parasites. Among the first transgenic 

mutants were rodent malaria parasites (RMP) that were modified to express fluorescent and 

luminescent reporter proteins. These parasites have been used to visualize and analyse 

parasite growth and development in vitro and in vivo, and have been valuable tools to 
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analyse cellular and molecular aspects of malaria parasite biology (reviewed in [49-52]), 

and to study host-parasite interactions and pathology [53-58]. In addition, transgenic 

rodent parasites have been used to develop and evaluate vaccines (reviewed in [59]). For 

example, chimeric RMP expressing P. falciparum or P. vivax antigens have been used to 

directly evaluate human malaria vaccines before their advancement to clinical testing.

Transgenic parasites expressing fluorescent or luminescent reporter proteins have also 

been created in the human parasite P. falciparum and the primate parasite P. cynomolgi. 

These transgenic parasites have been exploited in screening assays to measure (inhibition 

of) parasite growth at different points of the parasite life cycle. GFP- and luciferase-

expressing P. falciparum parasites have been used in vitro to examine the effect of 

drugs and other inhibitors on blood-stage growth and on gametocytes [51, 60-63] and 

fluorescent P. cynomolgi parasites have been generated to screen for compounds that 

target the hypnozoite stage in the liver [64]. 

For RMP, the availability of transgenic parasite lines expressing different reporter 

proteins under the control of stage-specific or constitutive promoters has been of great 

benefit to research of parasite gene function and on research focused on evaluation of 

novel drugs and vaccines. The availability of similar P. falciparum transgenic reporter lines 

would open up possibilities to perform these studies directly with the human malaria 

parasite. For example, strongly fluorescent liver-stage P. falciparum parasites could create 

possibilities for enriching infected hepatocytes by flow-sorting methods, which would 

aid identification of novel vaccine targets, or mCherry-expressing P. falciparum parasites 

could be used to analyse parasite interactions with host cells (e.g. sporozoites with cells 

of the immune system or hepatocytes). Increasingly, cell-cell interactions in culture are 

examined using transgenic host cells expressing, for example, green fluorescent protein; 

therefore, the availability of transgenic P. falciparum parasites expressing different 

fluorophores can boost such studies. The creation of transgenic RMP expressing more than 

one transgene has permitted more elaborate and intricate studies on parasite biology 

and immunity. For example, fluorescent parasites that also express the immunological 

reporter antigen ovalbumin have been used to better understand how parasite antigens 

induce protection by examining interactions of infected hepatocytes with anti-OVA OT-1/2 

T-cells [55]. The creation of transgenic parasites stably expressing multiple transgenes 

is dependent on the presence of multiple suitable target loci in the parasite genome, 

which can be modified without altering parasite growth and development. In P. falciparum 

the p47 gene locus has most frequently been used to introduce transgenes [65, 66]. 

Therefore, the identification of other suitable ‘neutral’ genomic loci would greatly aid in 

the generation of mutants expressing multiple transgenes.

The main aim of the studies described in this thesis was to develop novel CRISPR/

Cas9 methodologies to improve P. falciparum transgenesis. This was done in order to 

create novel transgenic reporter parasites that can be used to analyse host-pathogen 

interactions and for anti-malarial drug and vaccine research. We first focused on improving 

CRISPR/Cas9 gene editing technology and on introducing transgenes into the P. 

falciparum genome using a new potential ‘neutral’ locus. Using this improved CRISPR/

Cas9 methodology, transgenic P. falciparum parasites were created that either express 

fluorescent-luminescent reporters or express a major vaccine candidate from the other 

major human malaria parasite, P. vivax. The outline of the different studies is explained in 

more detail below, as well as the rationale for the different approaches taken to generate 

these transgenic parasites.

Outl ine of  this  study
In Chapter 2 we provide a review on the use of transgenic malaria parasites in 

the development of malaria vaccines targeting different stages of the parasite life-cycle. 

While transgenic P. falciparum parasites have been used in studies to evaluate both 

antimalarial drugs and vaccines, the majority of the studies use transgenic RMP, for which 

a greater number of techniques is available to genetically modify and examine the parasite 

throughout the complete life cycle.  

Improved CRISPR/Cas9 genetic modification of P. falciparum (Chapter 3)

For rodent malaria parasites (RMP) efficient technologies have been developed for stably 

introducing transgenes into the parasite genome and efficient and rapid methods are 

available for the generation of transgenic reporter parasites that do not contain drug-

selectable markers [67, 68]. Such ‘marker-free’ parasites make it considerably easier to 

further genetically modify transgenic parasites; moreover, they can be used for drug-

sensitivity testing, as possible interference from an introduced drug-selection marker 

is absent. For RMP, a variety of transgenic reporter parasite lines have been generated 

in multiple strains of three different Plasmodium species [69]. In comparison to RMP, 

the technologies to genetically modify the human malaria parasite P. falciparum are much 

less efficient [48]. Traditional approaches to engineer the P. falciparum genome have been 

hampered by the limited methods available and transfection inefficiencies for introducing 

exogenous DNA into the parasite genome. Also, the limited number of drug-selectable 

markers restricts genetic engineering of P. falciparum; for example, performing sequential 

genetic manipulations in the same parasite line. Several technologies have been developed 

for the removal (re-cycling) of drug-selectable markers from the modified parasite 

genome, specifically using FLP and Cre recombinases [70, 71]. However, the application 

of these techniques is time consuming, as it can take 4-5 months to generate cloned 

‘marker-free’ genetically modified parasites. The RNA-guided CRISPR/Cas9 (clustered 

regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system has 

transformed genome editing in a wide variety of organisms [72]. This powerful genome 

editing technique has also been applied to P. falciparum and provides efficient methods to 

manipulate the parasite’s genome, such as site-directed mutagenesis, gene disruption and 

the introduction of transgenes [73, 74]. Generation of P. falciparum transgenic reporter 

parasites would benefit from the availability of standard CRISPR/Cas9 plasmids that 
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permit the rapid introduction of different transgenes into the parasite genome without 

permanently integrating a drug-selectable marker cassette. Currently, no cloned reporter 

lines have been published that are drug-selectable marker free.

In Chapter 3 we describe studies aimed at improving CRISPR/Cas9 genetic modification 

for introduction of transgenes into the genome of P. falciparum without the inclusion of 

a drug-selectable marker cassette. We describe the generation of transgenic parasites 

expressing GFP under control of different P. falciparum promoter regions that were 

selected based on their high (and constitutive) expression in different life cycle stages. 

The GFP-expression cassettes were introduced into the genome in the p230p gene 

locus, which we predicted to be a ‘neutral’ locus. We examined and compared the GFP-

reporter expression of the three novel transgenic lines at different points during blood-

stage development. However, disruption of the P230p locus unexpectedly resulted  in 

parasites that could not infect and develop in mosquitoes. The phenotype of the ‘gene-

deletion’ mutants in mosquitoes and the potential role of the P230p protein in mosquito 

development is described in more detail in Chapter 4. 

Characterization of P. falciparum mutant (reporter) lines lacking P230p 
expression (Chapter 4)

In P. falciparum the p47 gene locus has been most frequently used to introduce transgenes 

into the P. falciparum genome [65, 66]. We initially had selected the p230p gene locus to 

introduce transgenes as an alternative to the p47 gene, since the P47 protein has been 

shown to be important for limiting the host-defence responses against the parasite in 

mosquitoes [75, 76] . Consequently, P. falciparum parasites lacking P47 expression are less 

efficiently transmitted by some strains of Anopheles mosquitoes, as they have a decreased 

capacity to escape the mosquito immune response. In two rodent Plasmodium species 

the male-specific P230p protein appears to be dispensable throughout the parasite’s 

complete life cycle [77-79]. P. berghei and P. yoelii mutants lacking expression of P230p can 

develop in the vertebrate host and in the mosquito vector without a discernible phenotype 

and p230p knock-out parasites manifest a wild type parasite phenotype. Consequently, 

as P230p is non-essential, the p230p gene is the locus most frequently used to introduce 

additional transgenes into rodent malaria parasite genomes [78]. 

P230p and P47 belong to the s48/45 domain 6-cysteine (6-cys) family of Plasmodium 

proteins, a small family with 14 members that show stage-specific expression throughout 

the parasite life cycle and most members localize at the parasite surface [80]. Most members 

have critical roles in parasite development, either in the vertebrate host or in the mosquito 

vector, and several members are leading targets for malaria vaccines. These include 

vaccine antigens that target parasites in the mosquito, the so called transmission blocking 

vaccines, i.e. P48/45 and P230 which are paralogs of P47 and P230p, respectively [81-83]. 

In both P. berghei and P. falciparum P47 is specifically expressed in female gametocytes/

gametes and is located on the surface of female gametes, zygotes and ookinetes [84]. 

P47 is important in protecting ookinetes from the mosquito’s complement-like immune 

response in both rodent and human malaria species [76, 85, 86]. In addition, P. berghei 

P47 plays an essential role in the attachment and recognition of the female gamete by 

the male gamete [77, 85]. In contrast, P. falciparum P47 does not play such a crucial role 

in gamete fertilization [84].

In Chapter 4 we characterise in more detail some of the transgenic reporter lines 

we have described in Chapter 3, where the reporter cassette had been introduced into 

the P230p locus. Specifically, we examine the phenotype of these parasites during sexual 

blood-stage development and early mosquito stages. 

Generation of a transgenic P. falciparum parasite line expressing fluorescent 
and luminescent protein in different life cycle stages (Chapter 5)

For RMP the availability of transgenic reporter parasites expressing different fluorescent 

and luminescent proteins under the control of stage-specific or constitutive has been of 

great benefit to research of parasite gene function and research focused on evaluation of 

novel drugs and vaccines. Such transgenic reporter lines for P. falciparum would benefit 

research where P. falciparum parasites are used (see the sections above). 

In Chapter 3 we described studies to test different P. falciparum promoter-GFP 

expression cassettes. These studies were performed in order to generate parasite lines 

that express fluorescent proteins at high levels throughout the complete life cycle. 

However, given that the insertion of transgenes into the P. falciparum p230p locus resulted 

in parasites that could no longer infect mosquitoes (Chapter 3 and 4), we reverted to 

using the standard ‘neutral’ p47 gene locus for introduction of a novel reporter expression 

cassette. In Chapter 5, we describe the creation and evaluation of a reporter line that 

expresses a fusion of mCherry and luciferase driven by the promoter of the etramp10.3 

gene and examine these transgenic parasites in blood- and liver-stage cultures, as well 

as in mosquitoes. We selected this promoter because etramp10.3 has structural similarity 

to the uis4 gene of RMP and both genes have the same syntenic genomic location. In 

transgenic RMP lines the promoter of the uis4 gene has been used to drive expression of 

multiple transgenes specifically in sporozoites and liver-stages, such as genes encoding 

mCherry, ovalbumin or human malaria proteins [87-93]. The uis4 gene is highly transcribed 

in sporozoites and liver-stages and encodes a parasitophorous vacuole membrane (PVM) 

protein that surrounds the parasite in the infected hepatocyte [87]. Evidence has been 

presented for expression of etramp10.3 in P. falciparum sporozoites and in blood- and 

liver-stages where the protein is located at the PVM, similar to the PVM location of UIS4 in 

liver-stages of RMP [94]. We chose to generate an mCherry-expressing P. falciparum line, 

as it could be used to visualise interactions of Plasmodium sporozoites with host-cells (e.g. 

immune cells or hepatocytes) which are often labelled with green fluorescent proteins. 

Moreover, we fused the mCherry gene to the gene encoding firefly luciferase as luciferase 

expression can be used to quantify parasite numbers (e.g. sporozoites and liver-stages) 

using simple and sensitive luminescence assays [62, 95, 96].
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Generation of chimeric P. falciparum parasites that express vaccine candidate 
antigens from the human malaria parasite, P. vivax (Chapter 6) 

Testing the next generation of P. falciparum vaccines and vaccine formulations is greatly 

aided by being able to perform immunization studies in people followed by malaria-

parasite challenge in controlled human malaria infections (CHMI) [97-100]. CHMI studies 

have increased the speed of vaccine evaluation by using well-controlled early-phase 

proof-of-concept clinical studies. Such studies facilitate the down-selection of vaccine 

candidates and the identification of those candidates most suitable for further evaluation 

in more expensive and complex phase II/III trials in areas where malaria is endemic.

 Although recently CHMI has also been developed for P. vivax [101] and has been 

applied to assess pre-erythrocytic vaccine candidates [102, 103], the use of P. vivax CHMI 

to rapidly screen different P. vivax vaccines is limited because of the lack of methods to 

continuously propagate P. vivax blood-stages in culture and to produce gametocytes in 

vitro that can be used to infect mosquitoes to produce sporozoites for challenge infections 

[101]. Therefore, P. vivax CHMI is dependent on sporozoites that have been obtained 

from mosquitoes fed on infected patients [101]. Moreover, P. vivax sporozoites can 

produce hypnozoites, dormant forms that can persist in the liver for prolonged periods, 

which requires safe and effective means to clear these forms from the liver in CHMI  

studies [101, 104]. 

In preclinical evaluation of vaccines, chimeric rodent malaria parasites (chimeric RMP) 

expressing P. falciparum and P. vivax pre-erythrocytic antigens have been used to analyse 

protective immune responses induced by P. vivax or P. falciparum vaccines in vivo in mice. 

These chimeric RMP have been used to assess the protective immune responses induced 

by vaccination that influence sporozoite invasion of hepatocytes both in vitro and in vivo, 

and the removal of infected hepatocytes in vivo [59]. For example, chimeric RMP have been 

generated where the endogenous csp gene has been replaced either with P. falciparum 

csp or different P. vivax csp alleles. These chimeric parasites produce sporozoites that are 

infectious to rodent hepatocytes in vivo and human hepatocytes in culture [59]. 

Based on studies with chimeric rodent parasites, we reasoned that the availability of 

chimeric P. falciparum parasites that express P. vivax antigens would open up possibilities 

to analyse protective immune responses induced by vaccination using P. vivax antigen-

based vaccines in CHMI, bypassing the need for P. vivax parasite production and measures 

to ensure that P. vivax  hypnozoites are removed. As a proof of concept we explored in 

Chapter 6 the possibility to create, using CRISPR/Cas9 gene editing methodologies, two 

chimeric P. falciparum parasites where the gene encoding circumsporozoite protein (CSP), 

was replaced by csp genes of P. vivax. CSP is the major protein of the sporozoite surface 

[14, 109] and plays a critical role both in sporozoite formation and in sporozoite invasion of 

mosquito salivary glands and liver cells of the host [105-108]. CSP is the target antigen of 

the most advanced P. falciparum malaria vaccine (RTS,S) and is also an important vaccine 

target for P. vivax [110, 111].  

In Chapter 7 the results of the studies described in Chapters 3-6 are summarized 

and discussed, including a discussion on the use of transgenic P. falciparum parasites in 

research aimed at developing novel drugs and vaccines  
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