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Abstract 

Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most 

mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent 

coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree 

properties associated with vibrational coherence such as phase and coupling of atomic motion can impact 

the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that 

deuteration of the H11-C11=C12-H12 double-bond of the 11-cis retinal chromophore in the visual pigment 

rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing only small 

changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these 

results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope 

effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes. 
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The breakdown of the Born-Oppenheimer approximation separating electronic and nuclear degrees of 

freedom forms the basis of energy flow in molecules.1,2 The conventionally proposed mechanism of rapid 

(<10 ps) condensed-phase photochemical processes is undergoing revision as a result of the combined efforts 

of modern ultrafast spectroscopic techniques and theoretical modeling. For multi-chromophoric systems 

such as light harvesting complexes, coherent vibronic coupling of electronic states has been suggested as a 

potential source of quantum effects influencing and possibly optimizing the outcome of energy transfer.3–10 

Other extremely rapid photochemical processes such as the primary isomerization of the retinal 

chromophore in rhodopsin, are now classified as intramolecular vibrationally coherent internal conversion 

processes through an early conical intersection (CI) allowing for the rapid formation of isomerized 

photoproduct irrespective of illumination conditions.11–17 A key question that remains unanswered is 

whether this coherence is functionally significant.  

Highly time-resolved transient grating studies of rhodopsin recently reported the sub-50 fs appearance of 

excited photoproduct and extracted short lifetime oscillatory vibrational features assigned to the transient 

excited state.18,19 These observations suggest that the vibrational motion of key modes that make up the 

isomerization coordinate, like the C11=C12 torsion and H-C11=C12-H hydrogen out-of-plane (HOOP) wags (also 

described as coupled C11 and C12 pyramidalizations) could be an important factor in determining the efficiency 

and outcome of the reaction. Furthermore, molecular dynamics simulations of the rhodopsin surface crossing 

have proposed that the phase of vibrational motions upon encountering the CI connecting the excited and 

ground electronic states is important for the reactivity.13–15,20–25 In particular, recent theoretical studies on 

the isomerization dynamics in rhodopsin have emphasized that the degree of intramolecular vibrational 

coherence plays a crucial role for the quantum yield of photoproduct formation.26,27 Despite multiple 

indications that the relative phase of vibrational modes may be important in rhodopsin photochemistry,13,25,28 

there is no direct experimental evidence suggesting its relevance for the chemical outcome, in particular with 

biologically relevant, incoherent excitation.  

An informative means to test the reactive influence of vibrational modes and their phase relationship at the 

CI involves isotopic labeling. Isotopes have traditionally been employed to study reaction mechanisms 
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through primary kinetic isotope effects where the isotopomer is transferred, such as in the light-driven 

proton transfer in green-fluorescent protein.29,30 The primary kinetic isotope effect arises from the change in 

the zero-point energy for the heavier atom, but even larger effects have been reported when tunneling plays 

a role in the reaction mechanism.30 In the context of visual photochemistry, early studies suggested a primary 

kinetic isotope effect associated with chromophore proton or hydrogen transfer, but these models have not 

been sustained.31,32  

To examine the effect of isotopic substitution on the photochemistry of vision, we synthesized three modified 

11-cis retinal analogues (11-D, 12-D and 11,12-D2) and regenerated these chromophores in the opsin protein 

(Fig. 1). We then characterized the isomerization quantum yield using a continuous-wave light source33–35 

and the isomerization kinetics by recording the dynamic appearance of the photoproduct using ultrafast 

transient absorption spectroscopy.16,36 Isotopic substitution had a large effect on the photochemical 

quantum yield, which is dictated by the efficiency of internal conversion through the CI from the excited-

state 11-cis reactant to the all-trans photoproduct. The effect of isotopic substitution on the 

photoisomerization kinetics was, however, less pronounced and followed the trend expected for known 

isotope effects. These results, coupled with non-adiabatic molecular dynamics simulations, suggest a novel 

isotope effect where mass-induced changes in vibrational phase and thereby mode-specific vibrational 

coupling alter the reaction efficiency of a vibronically coherent photochemical reaction. 

Results and Discussion 

Isomerization quantum yield 

Native and 11,12-H2 regenerated rhodopsin exhibited statistically indistinguishable isomerization quantum 

yields of 0.63 (±0.01) and 0.65 (±0.01), respectively, demonstrating that retinal regeneration did not alter the 

system (Fig. 2). The 11,12-D2 derivative exhibited a quantum yield of 0.69 (±0.01), which is higher compared 

to the native and regenerated chromophore. In contrast, the 11-D and 12-D isotopomers, with just a single 

isotopic substitution, had substantially lower quantum yields of 0.45 (±0.01) and 0.48 (±0.01), respectively. 

This surprising yield reduction in view of the increase for 11,12-D2 is statistically significant beyond 
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experimental error. The protonated 11-cis chromophore in solution exhibited an even lower quantum yield 

of 0.19 (±0.04) outside the protein pocket.37 These results evidence an anomalous isotope effect where 

symmetric deuteration of the isomerizing bond produces a higher isomerization quantum yield while 

asymmetric isotopic substitution significantly lowers the yield. 

Transient absorption spectroscopy and dynamics 

The differences in isomerization yield could in principle be explained by a non-trivial dependence of the 

reaction rate on isotopic substitution, especially given the proposed involvement of hydrogen wagging 

motion in the reaction.12,13,16,18,23,25 We thus recorded the appearance of the photoproduct of native 

rhodopsin and its isotopic derivatives using broadband transient absorption spectroscopy after excitation at 

the rhodopsin absorption maximum (498 nm) with a 20 fs pulse. We then followed the growth of the 

photoinduced absorption in the region from 545-616 nm, indicative of the formation of the primary 

photoproduct, for each derivative including native and 11,12-H2 regenerated rhodopsin (Fig. 3a). All traces 

exhibited the expected features known for rhodopsin photochemistry: an oscillatory coherent artifact near 

zero pump-probe delay,38 a delayed growth of the photoproduct signal that is complete by ~200 fs11,39 and 

weak modulations of the electronic signal for longer time delays caused by coherent nuclear motion of the 

photoproduct.16,17 The coherent artifacts are nearly identical for all derivatives with any variations caused by 

the different optical densities available for the five samples. The most prominent differences in the traces 

are restricted to the appearance of the vibrational coherence superimposed on the electronic signal in the 

300-500 fs window, as expected for changes in vibrational frequencies caused by isotopic substitution. The 

overall similarity of the electronic dynamics suggested by the ultrafast appearance of the photoproduct signal 

continued throughout the entire probed region (500-900 nm, Supplementary Fig. 1).  

To more carefully quantify the dynamics of photoproduct formation, we fitted the transients in Fig. 3a to a 

sum of a coherent artifact contribution and a mono-exponential decay function convolved with a Gaussian 

function describing formation of the photoproduct (Supplementary Figs. 2-4).40 This approach allowed us to 

define the time delay when pump and probe pulses arrive at the sample (t0,CA) independently of the time 

delay of photoproduct formation (t0,PIA). The difference (t0,PIA - t0,CA) provides an internally referenced measure 
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of the lag time for photoproduct formation, which can be taken as representative of the time it takes for the 

excited-state population to reach the CI (Fig. 3b). Furthermore, the rise time of the photoproduct formation 

(PIA) provides a measure of how quickly the excited state is depopulated once the CI is reached (Fig. 3c). We 

refer the reader to section 2 of the Supplementary Information for a more detailed analysis and discussion 

of the fitting procedure. 

The retrieved average lag time is 150.6 ± 5.2 fs but the individual traces show subtle variations across the 

isotopomers (Fig. 3b). Native and 11,12-H2 regenerated rhodopsin are expected to show the same value but 

differ by 3.2 fs. While we cannot rule out that the reconstitution process introduces this difference, we 

attribute this difference to systematic errors not accounted for by our fitting model, putting a lower limit to 

the precision with which we can quantify differences between the isotopomers (see Supplementary Fig. 2-

4). Using the same procedure, we find that the lag time for 11,12-D2 increases by 9.1 fs. The 11-D isotopomer 

exhibits similar dynamics to 11,12-D2 (increase by 7.3 fs) while 12-D is indistinguishable from native 

rhodopsin. The retrieved average photoproduct formation rise time of 29.3 ± 3.4 fs (Fig. 3c) agrees with 

recent transient grating measurements on rhodopsin.18 The trend observed for the rise times differs 

significantly compared to the lag times observed in Fig. 3b as all isotopomers apart from 11-D show identical 

values within error bounds. We remark, however, that any fitting model can only yield strictly comparable 

parameters under the assumption that all samples were measured with the same optical density, which was 

not possible for 11-D (see Methods). Consequently, contributions from vibrational coherences and different 

signal-to-noise levels are likely to differentially affect the retrieved kinetic parameters. 

Our analysis suggests a weak dependence of the photochemical dynamics upon isotopic substitution 

manifested in the delayed appearance (lag time) of the photoproduct formation for deuterated isotopomers 

relative to native rhodopsin. This delay is correlated with the degree of isotopic substitution and is expected 

based on mixing of the HOOP mode with the C11=C12 torsional mode whose frequency primarily determines 

the time it takes to reach the CI. A higher isotope mass will consequently result in a lower torsional frequency 

and a retardation of the reaction speed with our analysis revealing an upper bound for this retardation of 

~7% for 11,12-D2 relative to the average of native and 11,12-H2 regenerated rhodopsin. Critically, the 
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variations in dynamic parameters (Fig. 3b, c) are small compared to changes in isomerization quantum yields 

which range from -30% to +8% (Fig. 2) and there appears to be no correlation between these observables 

(see Supplementary Fig. 5). The C11-H or C12-H HOOP motion is therefore not rate limiting for the reaction as 

might be expected based on a Landau-Zener-type surface tunneling mechanism.41,42 Traditional primary or 

secondary kinetic isotope effects including tunneling30 can be ruled out as well because the quantum yield 

for the 11,12-D2 derivative is higher and heavy isotope effects on the zero-point energy or on tunneling 

probability generally result in lower reaction rates. 

These results can be understood by adopting an intramolecular vibrationally coherent picture of rhodopsin’s 

reactive internal conversion, which considers the nature and relative timing and phasing of the various 

nuclear motions within a single molecule. The extremely rapid isomerization event reduces the overall 

reaction coordinate in rhodopsin to critical displacements along a localized backbone torsion and a HOOP 

motion, with surface hopping restricted to a relatively narrow range of torsional angles around 90 

degrees.13,25 A local isomerizing twist about the C11=C12 double bond is achieved through a correctly phased 

motion of the C10-C11=C12-C13 torsion and the corresponding anti-symmetric H-C11=C12-H torsion, related to 

the HOOP coordinate, at the CI. A successful isomerization reaction thus requires a cooperative effect of both 

vibrational degrees of freedom in a well-defined manner. 

 

Quantum-chemical trajectory calculations 

To obtain deeper insight into the phase relationship and role of these modes, we carried out non-adiabatic 

molecular dynamics simulations for all studied isotopomers using a multiconfigurational-QM/MM rhodopsin 

model featuring a computationally more affordable five double-bond chromophore (Fig. 4a).13,24 The excited-

state lifetime and quantum yield of each isotopomer were computed by propagating 400 semi-classical 

trajectories starting with initial conditions corresponding to a room-temperature Boltzmann distribution. The 

simulated quantum yields paralleled the experimentally observed trend (increase for 11,12-D2, decrease for 

11-D and 12-D) as well as the weaker isotope-dependent trend in the lag times in agreement with previous 

full-chromophore studies (Table 1).11,13 
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Motivated by this agreement between experiment and theory, we investigated the simulated trajectories to 

extract general trends for all isotopomers governing the underlying mechanisms. Upon analyzing the 

population decay we consistently observed an oscillatory behavior showing initially alternating ‘reactive‘ 

(formation of trans-photoproduct) and ‘unreactive‘ (formation of cis-reactant) waves associated with 

different subsets of the decaying population (Fig. 4b). The subsets corresponded to distinct phases of the 

torsion (α) and HOOP (δop) coordinate (Fig. 4a). It is instructive to define an effective coordinate τ = α −
δop

2
, 

which is proportional to the overlap between the π-orbitals involved in the breaking and reconstitution of 

the C11=C12 double bond (Fig. 4a, right hand side).13 We found that the ‘reactive‘ or ‘unreactive‘ direction is 

best described by considering the velocity of the angle τ at the CI, where a negative τ velocity leads to trans-

photoproduct formation (Fig. 4c, orange) while a positive τ velocity results in cis-reactant formation (Fig. 4c, 

blue). Further examining the individual components of the τ motion revealed a similar α component in 

reactive and unreactive trajectories, rendering the velocity of δop (i.e. of the HOOP coordinate) the decisive 

factor determining the sign of the τ velocity and therefore the quantum yield of the reaction. As highlighted 

in Fig. 4d, reactive and unreactive trajectories approach the CI at approximately the same α velocity in both 

cases with α moving towards more negative values. Successful trans-photoproduct formation occurs, 

however, only if δop moves in the opposite direction to α, i.e. towards more positive values, to achieve a 

counterclockwise skeletal twisting motion (orange trajectory), while cis-reactant reformation is observed if 

δop moves in the same direction as α, i.e. towards more negative values (blue trajectory). 

Following these findings, we can now reconcile the discrepancy arising between the modest changes in 

reaction rates and the non-monotonous trend in isomerization quantum yields for rhodopsin isotopomers. 

Partial deuteration of the retinal backbone has only a small effect on the torsional mode progression and 

consequently on the movement of the ground and excited electronic states towards the CI, because the 

torsion is predominantly localized on the carbon framework.24,43 Since the surface hopping probability is 

directly linked to the evolution of this torsion to values close to 90 degrees, no significant kinetic changes are 

expected upon deuteration in agreement with our experimental and theoretical observation of a weak 

isotope-dependence on the excited-state lifetime. The main difference between the isotopomers used here 

is that the C11-H and C12-H wags are coupled for native 11,12-H2 rhodopsin and for 11,12-D2, resulting in the 
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formation of symmetric and anti-symmetric HOOP vibrations where the two hydrogen (deuterium) 

displacements maintain a specific phase relationship with the carbon torsional coordinate until the molecule 

decays via the CI. In this context, di-deuteration provides a slightly more suitable phase-matching of the 

HOOP to the torsional motion, resulting in an increase in the isomerization quantum yield (compare 

Supplementary Fig. 12 and 13). When a single position is deuterated, however, that coupling is reduced 

resulting in more isolated C-H and C-D out-of-plane wags associated with a less well-phased HOOP motion.44 

Consequently, a single deuteration significantly alters the phase relationship between the C-H and C-D 

wagging motions and ultimately the torsion at the CI, thereby inhibiting photoproduct formation.  

 

Two-mode harmonic model 

To understand how an increasing level of deuteration of the C11=C12 double bond can result in the observed 

non-monotonous quantum yield trend (increase for 11,12-D2, decrease for 11-D and 12-D) for the 

vibrationally coherent photoisomerization in rhodopsin, we constructed a minimal two-mode harmonic 

model with frequency parameters (ωα and ωδop) derived from the simulations (see Supplementary 

Information, section 7). The model contains a torsional mode with ωα = 83 cm-1 and a HOOP mode with an 

isotope-dependent ωδop = 953 cm-1, 855 cm-1 or 725 cm-1 for 11,12-H2, 11-D/12-D or 11,12-D2, defined by 

equations (1) and (2). 

α = 𝐴α𝑐𝑜𝑠[𝜔α𝑡] + 𝐵   (1) 

δop = 𝐴δop𝑐𝑜𝑠[𝜔δop𝑡 + 𝐶]  (2) 

The amplitude parameters Aα and Aδop are also extracted from the 400 calculated trajectories and kept 

constant in all cases. The B and C coefficients represent initial conditions (t = 0) and are obtained from the 

simulated Boltzmann distribution of each isotopomer. Each trajectory computed using equations (1) and (2) 

represents the coherent dynamics of a population subset defined by the B and C values. 
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The modeled time evolution of α, δop and the resulting τ value for specific B and C values of the 11,12-H2 

isotopomer are illustrated in Fig. 5a. The normalized fraction of decayed trajectories at each time point is 

calculated to be proportional to the velocity of τ multiplied by the value of a reference Gaussian function 

(derived from the simulations) and a population decay factor, which represents the decay probability (Fig. 

5a, gray shaded area). The population subset of 11,12-H2 decays in three distinct waves (Fig. 5a, bottom), 

namely two reactive (orange) and one unreactive (blue) wave, showing the same oscillatory character of the 

population decay found in the full simulation (Fig. 4b). In fact, the short time separation between the first 

reactive and the unreactive wave and the larger time separation between the two successive reactive waves 

in Fig. 5a roughly matches the time separations between the corresponding reactive and unreactive maxima 

found in the simulation (Fig. 4b). These observations indicate that the oscillations in the population decay for 

both the reactive and unreactive sub-populations are present in a basic 2D model and must results from the 

superposition of trajectory subsets with the same features but displaying decay waves at different times and 

amplitudes. The modeling of trajectories characterized by different B and C values and/or ωδop value indicates 

that the above conclusions are general. 

The origin of the modeled decay waves can be understood by considering the corresponding temporal 

evolution of the torsion and HOOP coordinates (Fig. 5b). At ~70 fs delay (compare Fig. 5a and 5b), the 

trajectory enters the decay region. Initially the trajectory shows a positive velocity of δop and the 

corresponding decay leads to photoproduct formation (compare Fig. 5b to Fig. 4d). At the turning point, the 

trajectory inverts its direction still remaining in the decay region and thus leading to reactant formation upon 

decay. At ~85 fs, the trajectory exits the decay region halting a population decay. Just before 100 fs, however, 

the trajectory re-enters the decay region with a positive velocity of δop leading to a second wave of 

photoproduct formation, which is stopped after ~110 fs. 

According to the above model the change in the overall quantum yield upon isotopic labeling depends on 

three factors characterizing each population subset: the initial conditions, the evolution of the phase 

relationship between δop and α and the magnitude of the dephasing of the C11-H and C12-H wags. We find 

that the deviation of the average δop of the simulated trajectories, d(δop
AV)/dt, of asymmetrically deuterated 
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isotopomers is more sensitive to the value of the initial conditions than that of their symmetric counterparts. 

This is reflected by the deviation of the simulated population dynamics from a trajectory released from the 

Franck-Condon point with no velocities (see Supplementary Fig. 12). More specifically, the 11,12-H2 and 

11,12-D2 populations follow rather closely such trajectory revealing that the corresponding motion is 

dominated by the structure of the excited-state potential energy surface rather than by the initial velocities. 

This condition would guarantee a high degree of vibrational coherence. In contrast, the 11-D and 12-D 

populations display much larger deviations suggesting a more de-phased motion and a lesser degree of 

vibrational coherence. Thus, despite being intrinsically dependent on a frequency change occurring upon 

isotopic substitution, the observed/simulated isotope effect should be described as a vibrational phase 

isotope effect, since it relies on the dynamic phase relationship achieved at the CI by the fundamental 

vibrational modes involved in the reaction coordinate. It is thus distinctly different from the often-employed 

primary and secondary kinetic isotope effects, which operate after dephasing has taken place. 

Conclusion 

We have shown experimentally and theoretically that deuteration along the isomerizing double-bond of the 

retinal chromophore in rhodopsin causes a significant and unanticipated pattern of isomerization quantum 

yield changes while inducing only modest perturbations of the kinetics in line with known isotope effects. 

The lack of correlation between these two experimental observables points towards the existence of a novel 

vibrational phase isotope effect that could be functionally important for other ultrafast and vibrationally 

coherent processes.45 Although illustrated here for rhodopsin photochemistry, vibrational phase isotope 

effects should be a general and powerful approach for revealing the importance of vibronic coupling in 

ultrafast light induced processes, such as Förster or Dexter energy transfer, electron transfer, ultrafast 

internal conversion or proton transfers. The fact that this vibrational phase isotope effect is manifested in 

the quantum yield measured with incoherent light demonstrates the importance of intramolecular 

multimode vibrational coherence in photochemical reactions, irrespective of the illumination conditions.40,41 

Finally, we remark that the observed phase dependence is most likely not only a classical effect but 

intrinsically linked to the quantum nature of the reaction in a non-adiabatic region of the potential energy 
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surface. In rhodopsin, the vibrational phase modulations affecting the quantum yield also have an impact on 

the electron re-coupling, a purely quantum mechanical process, which allows for the C11=C12 double bond 

reconstitution. The vibrational isotope effect thus opens new avenues for studying ultrafast energy flow in 

vibronic processes beyond the Born-Oppenheimer approximation. 
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Methods 

Sample Preparation 

Rhodopsin samples were prepared in a 100 mM sodium phosphate buffer (pH 7.1% Ammonyx-LO) as 

described by Eyring et al.44 with optical densities at 498 nm of: OD(native rhodopsin) = 3.0, OD(11,12-H2 

regenerated) = 3.4, OD(11,12-D2) = 4.2, OD(11-D) = 0.54, OD(12-D) = 1.3. 

Ultrafast Spectroscopy 

The experimental setup has been described by Liebel et al.36 Briefly, pulses were delivered by a Pharos-6W 

amplifier system (LightConversion, 1030 nm, 180 fs, 1.05 W at 1 kHz). A small fraction was split off to generate 

the white light probe pulses (500-900 nm) in a 3 mm sapphire crystal. Pump pulses were generated in a 

home-built non-collinear optical parametric amplifier as detailed elsewhere,46 and compressed to 20 fs 

(transform-limit) with a set of chirped mirrors (Layertec). 

Samples were flowed through a 500 m path length flowcell (120 m windows) by a peristaltic pump at a 

rate sufficient to ensure replenishment of the sample between consecutive laser shots. Furthermore, we 

added NH2OH (0.2 mM) to degrade subsequent photointermediates. Pump and probe focus diameters were 

65 and 44 m with corresponding pulse energies set to 20 nJ and 2.5 nJ, respectively. The optical densities 

of the samples at 500 nm in the sample cell were: OD(rhodopsin) = 0.15, OD(regenerated) = 0.17, OD(11,12-

D2) = 0.21, OD(11-D) = 0.027, OD(12-D) = 0.065. 

Quantum Yield Measurements 

Continuous-wave laser output (532 nm, 0.6 mW) was passed through a Glan-Taylor polarizer (Thorlabs), 

narrow-band filtered (532 nm, FWHM = 10 nm, Thorlabs) and attenuated to 1 W before being split by a 

50:50 beamsplitter (Thorlabs) into a reference and a sample beam. The sample beam illuminated a 1 cm path 

length quartz cuvette. Both reference and transmitted sample beams were subsequently detected with an 

EMCCD (Andor iXon3 860). Integration of the detected spots provided (referenced) bleaching curves 

(corrected for 4.5% back-reflection of the cuvette), which were analyzed using the established protocol.33,34  
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Samples were diluted with buffer solution (100 mM sodium phosphate buffer, pH 7.1% Ammonyx-LO) to an 

OD at 498 nm of 0.3 and NH2OH was added to rapidly degrade later photointermediates. Each sample was 

stirred constantly during the measurement and illuminated for 20 min corresponding to a bleaching of <15 

% of the initial molecules. The quantum yield of the 11-cis chromophore in methanol was measured according 

to the procedure described by Sovdat et al.37,47  

Statistical significance (n=4) was determined based on a t-test at 99% confidence interval to yield p(11,12-H2 

regenerated)=0.111, t(11,12-H2 regenerated)=1.867; p(11,12-D2)=6.9x10-4, t(11,12-D2)=9.694; p(11-D)<1x10-

5, t(11-D)=27.014; p(12-D)=2.8x10-5, t(12-D)=11.342.  

Simulations 

The employed QM/MM model was constructed starting from the 2.2 Å resolution crystallographic structure 

of bovine rhodopsin (PDB code: 1U19)48 and following the protocol reported by Luk et al.49 All retinylidene, 

NH and CεH3 atoms linked to the Cδ atom of the Lys296 side-chain were included in the QM subsystem. The 

remaining atoms formed an MM subsystem described by the AMBER94 force field.50 After QM/MM geometry 

optimization at the CASSCF(12,12)/6-31G*/Amber level, a more computationally affordable model featuring 

a chromophore with five conjugating double bonds was generated following the protocol described by 

Manathunga et al.51 and geometrically optimized at the CASSCF(10,10)/6-31G*/Amber level. This model was 

then used to simulate a room-temperature Boltzmann-like distribution and extract 400 initial conditions for 

each isotopomer at room temperature.51 Finally non-adiabatic population dynamics at the same 

CASSCF(10,10)/6-31G*/Amber level were performed using the stochastic Tully surface-hop method.52,53 All 

calculation were run using the Molcas54/Tinker55 interface suitably modified to account for the deuterium 

mass. More details are provided in the Supplementary Information, sections 4-7. 

Data availability 

The authors declare that the data supporting the findings of this study are available within the main article 

and the Supplementary Information. Additional data are available from the corresponding author upon 

request or can be accessed free of charge at http://ora.ox.ac.uk.  
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Figure captions 

 

Figure 1. Native and isotopically labelled 11-cis retinal protonated Schiff base chromophores in rhodopsin 

studied in this work. 

 

Figure 2. Isomerization quantum yields for native, 11,12-H2 regenerated and isotopically labelled retinal 

chromophores in rhodopsin obtained at an excitation wavelength of 532 nm. Grey - symmetrically 

substituted, orange - asymmetrically substituted. The quantum yields are compared to the free chromophore 

in methanol solution (blue,*) obtained using a different procedure (see Methods).  

 

Figure 3. Transient absorption measurements and corresponding fitting results of rhodopsin regenerated 

with retinal chromophores with different patterns of isotopic substitution about the isomerizing C11=C12 

double bond. a, Normalized differential absorbance averaged over the full photoproduct absorption band 

(545-616 nm, grey circles) and corresponding fits (black dashed). The photoproduct rise has been highlighted 

in orange for clarity. Traces were normalized to the maximum absorption feature occurring at a time delay 

of 200 fs. Time delays <75 fs (grey shaded) have been manually scaled as indicated to show coherent artifact 

and photoproduct signal contributions on the same scale for visual purposes. b, Retrieved lag (or delay) time 

before photoproduct formation and c, Rise time of the photoproduct after the lag period. Error bars 

represent one standard deviation. See Supplementary Information, section 2, for detailed trace alignment 

and fitting procedure. 

 

Figure 4. Simulated excited-state isomerization dynamics of bovine rhodopsin. a, Dihedral angles defining 

the chromophore double-bond torsion (α) and hydrogen-out-of-plane (δop) coordinates. The relationship 

between the ‘overlap’ coordinate (τ) and the π-orbitals (green) responsible for double bond reconstitution is 

schematically illustrated on the right. hδop(H11) is defined as the dihedral angle between the H11C11C12 and 
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C10C11C12 planes and hδop(H12) is defined as the dihedral angle between the H12C11C12 and C11C12C13 planes in 

such a way that the relationship δop = hδop(H11) + hδop(H12) is satisfied. b, Oscillatory character of the excited-

state population decay for both the reactive and unreactive sub-populations. c, Distribution of the τ velocities 

at the decay point (CI) for the reactive and unreactive sub-populations. Negative and positive τ velocities 

correlate with reactive (orange) and unreactive (blue) events, respectively. d, Representative reactive and 

unreactive trajectories showing that the sign of the τ velocity is determined by the sign of the δop velocity. 

The two straight dashed lines give the corresponding values of τ for the reactive (orange) and unreactive 

(blue) trajectory. 

 

Figure 5. 2D-modeling of simulated rhodopsin population dynamics. a, Graphical representation of the α 

and δop periodic functions and Gaussian decay region defining the model. The alternating reactive and 

nonreactive population decay events produced by the model are projected below. b, Origin of the reactive 

(orange) and nonreactive (blue) decay events in terms of trajectory segments characterized by an increase 

and decrease of δop while α is monotonically increasing. The shaded area between τ = -76 and τ = -96 degrees 

defines the decay region (gray shaded) centered along the collection of CI points forming the intersection 

space (black dashed line).15 
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Tables 

Table 1. Comparison of experimental and simulated photoproduct kinetics and quantum yields for 

rhodopsin isotopomers. All indicated errors refer to one standard deviation. 

  11,12-H2
2 11,12-D2 11-D 12-D 

Experiment 
lag time1 (fs) 147.7 ± 1.0 156.8 ± 1.9 155.0 ± 0.86 148.8 ± 1.1 

quantum yield 0.63 ± 0.01 0.69 ± 0.01 0.45 ± 0.02 0.48 ± 0.01 

Simulation 
hop time3 (fs) 100 ± 31 113 ± 41 100 ± 35 93 ± 35 

quantum yield 0.69 0.70 0.61 0.58 

1Lag time (t0,PIA - t0,CA) derived from non-linear fit (see Supplementary Information, section 2). 2Experimental 

values for native rhodopsin. 3Average hop time. 

 


