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ABSTRACT: Activation of a cytotoxic T-cell is a complex multistep
process, and tools to study the molecular events and their dynamics
that result in T-cell activation in situ and in vivo are scarce. Here, we
report the design and use of conditional epitopes for time-controlled
T-cell activation in vivo. We show that trans-cyclooctene-protected
SIINFEKL (with the lysine amine masked) is unable to elicit the T-
cell response characteristic for the free SIINFEKL epitope. Epitope
uncaging by means of an inverse-electron demand Diels−Alder
(IEDDA) event restored T-cell activation and provided temporal
control of T-cell proliferation in vivo.

Cell-to-cell contact is one of the essential means of
information transfer in metazoans. Few examples of

such cell−cell contacts result in more drastic phenotypic
changes than those between cytotoxic T-lymphocytes (CTL)
and antigen presenting cells (APCs).1 Naiv̈e T-cells leave the
thymus as small, featureless cells with minimal metabolism, but
with a strong lymph node homing capacity, reliant on L-selectin
and various integrins.2 Each cell has a specific T-cell receptor
(TCR) capable of recognizing a peptide presented by an APC
on a major histocompatibility type-1 complex (MHC-I).1 Upon
recognition of its cognate peptide-MHC-I (pMHC), in
combination with costimulatory signals copresented by the
APC, massive and rapid phenotypic changes will transform the
naiv̈e CTL into a cell capable of killing any non-APCs
displaying this cognate peptide on their MHC-I.3 This is one of
the major mechanisms by which tumors and virus-infected cells
are routinely cleared from the body, and harnessing these traits
underpins many of the cancer immunotherapies targeted to
tumor neo-epitopes.4

The binding of the TCR is sensitive. As few as one copy of a
cognate peptide can instigate the signaling cascade in vitro.5,6 It
is also selective, as this recognition takes place in the context of
10 000’s of copies of noncognate peptides on the same APC.7,8

Even single amino acid substitutions are capable of curtailing,9

or even abolishing, T-cell activation.10−12 A factor that
complicates T-cell activation studies further is that there is no
correlation between the binding strength in vitro and the
strength of TCR-signaling that follows activation.13 Less is
known about the in vivo activation of T-cells.14 The contacts
between T-cells and APCs are, for example, more transient and
dynamic in nature compared to those found in vitro.15−18 The
lack of a defined starting point to these contacts complicates
the study of T-cell activation kinetics, and methods allowing the
study of early T-cell activation events with real-time control
over activation in vivo are needed to study these processes.14
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Control over T-cell activation using protecting group
strategies to achieve temporal control in vitro is an emerging
field. Two approaches have been reported in which the ε-
amines of lysine residues within either a helper T-cell
epitope19,20 or a cytotoxic T-cell epitope12 are blocked with a
protecting group. The addition of a deprotection reagent, such
as UV-light to remove a nitroveratryl group,19,20 or water-
soluble phosphines to reduce azides to amines21 provided this
temporal control in the Petri dish. Arguably, the use of (UV)
light as a trigger to activate T-cell epitopes has intrinsic
limitations: poor tissue penetration even at higher wavelengths
essentially prohibits systemic application of photocaged T-cell
epitopes. On paper, bioorthogonal chemistry has no such
tissue-penetrating limits; however, the chemistry needs to be
effective (more so than the Staudinger reduction we applied
previously) and all reagents able to penetrate all tissues. In this
respect, the most versatile bioorthogonal chemistry developed
to date for in vivo applications in terms of yield, speed, and side
reactions comprises the inverse electron demand Diels−Alder
reaction (IEDDA).22 This [4 + 2] cycloaddition reaction occurs
between an electron-poor diene (normally an s-tetrazine) and
an electron-rich dienophile (most often a strained alkene). The
tetrazine ligation between a tetrazine and a trans-cyclooctene
was initially reported as an ultrafast bioorthogonal ligation
reaction by the Fox group.23

Recently, Versteegen et al.,24 as well as Li et al.25 and Agustin
et al.26 have shown that the IEDDA can also be used as a
bioorthogonal deprotection reaction (Figure 1a). In this variant
of the IEDDA, the 4,5-dihydropyridazine, resulting from [4 +

2] cycloaddition of a tetrazine and a trans-cyclooctene (TCO)
bearing a carbamate at the allylic position, tautomerizes to 1,4-
dihydropyridazines. One of these 1,4-dihydropyridazines can
then undergo elimination of a carbamate-linked biomolecule at
the allylic position, resulting in the liberated biomolecule, CO2,
and a cyclooctene-tetrazine elimination adduct. These adducts
are different for each tetrazine used and can rearrange into the
corresponding aromatic products, making it difficult to
accurately perform toxicity studies. In vivo studies thus far
have not shown any toxic side effects.27−29 Mechanistic
investigations concerning this reaction are currently a field of
interest.30,31

We here present a method based on this inverse electron
demand Diels−Alder pyridazine elimination reaction that
provides chemical control over the activation of T-cells in
vitro and in vivo (Figure 1a). The TCO protecting group was
optimized for solubility and on-cell deprotection yield. The
approach is generic based on the effectiveness for two separate
epitopes and works with different T-cells in vitro, as well as in
vivo.

■ RESULTS AND DISCUSSION
To determine whether TCO chemistry was amenable for in vivo
T-cell activation and to compare its efficacy with that of our
previously reported strategy based on Staudinger reduction,12

we selected OVA257−264 (OT-I, SIINFEKL) as our model
epitope, with modification on the crucial lysine ε-amino group
having shown to block T-cell activation. The peptide sequence
was synthesized using standard Fmoc solid phase peptide

Figure 1. Design and synthesis of caged peptides. (a) Inverse electron-demand Diels−Alder (IEDDA) pyridazine elimination between a silent trans-
cyclooctene-modified epitope and a tetrazine liberates antigenicity of the peptide. After initial cycloaddition, tautomerization and elimination results
in the free lysine ε-amine upon which a T-cell can recognize the epitope again and become activated. (b) Synthesis of SIINFEK[CCO]L (4),
SIINFEK[TCO]L (5), and SIINFEK[mbTCO]L (7). Reagents/conditions: (a) Fmoc SPPS from Fmoc-Leu-Wang; (b) methylsulfonylethyl
succinimido-carbonate, DIPEA, NMP, rt; (c) TFA/H2O/TIPS (95:2.5:2.5), rt, 23%; (d) NHS-CCO (2), NHS-TCO (3), or NHS-mbTCO (6),
DIPEA, DMF, rt; (e) ethanolamine, DMF, rt; (f) dioxane/MeOH/4 M NaOH (7.5:2.25:0.25), rt, 16% (4), 20% (5), 14% (7).
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synthesis (SPPS) conditions followed by N-terminal protection
with the methylsulfonylethyloxycarbonyl (MSc) group32 to
improve the solubility of the liberated peptide after acidic
cleavage from the resin and to enable selective modification of
the lysine ε-amine in the subsequent step (Figure 1b). From
the purified intermediate (MSc-SIINFEKL, 1), we synthesized
cis- and (axial) trans-cyclooct-2-en-1-yl carbamate derivatives of
SIINFEKL by reaction with the corresponding N-hydroxysuc-
cinimide (NHS) esters (2, 3) followed by deprotection under
basic conditions of the MSc group to provide the cis- and trans-
cyclooctene protected SIINFEKL-derivatives 4 and 5. We also
synthesized the bifunctional TCO reported by Rossin et al.27

for modification of the lysine ε-amine. Peptide 1 was reacted
with the NHS-carbonate of reagent 6 in the presence of its
sterically hindered NHS-ester. Next, the latter was reacted with
ethanolamine to install an extra polar moiety on the ring
system. This resulted in a more soluble protected SIINFEKL
(SIINFEK[mbTCO]L, 7).
To establish the suitability of our caged peptides for on-cell

uncaging, the binding affinity of the caged epitopes 4, 5, and 7
for Kb-MHC-I were compared to the binding affinity of
SIINFEKL using the temperature sensitive RMA-S cell line33

(Figure 2a). These experiments showed no affinity penalty

resulting from the modification of Lys-7, in agreement with the
observed solvent exposure of the ε-amine in the crystal
structure of the complex.34 The antibody 25D1, which is
specific for SIINFEKL within the Kb MHC-I complex,35 did not
bind the caged epitopes on RMA-S cells, due to its known
reliance on Lys-7 for recognition (Figure 2a).35 The T-cell
hybridoma B3Z,36 specific for the OVA257−264 epitope
SIINFEKL, was also not activated by the caged variants 4, 5,
and 7 when presented on dendritic cells either, up to 1 μM of
peptide (Figure S1).
We next determined to what extent and how fast our TCO-

caged peptides could be deprotected in vitro. Caged epitopes 4,
5, and 7 were loaded on dendritic cells (DC2.4 cells37) and
incubated with 50 μM of 3,6-dimethyl-tetrazine (8) for 30 min
(Figure 2b). The B3Z T-cell response was measured as beta-
galactosidase-directed CPRG (chlorophenol red-β-galactopyr-
anoside) hydrolysis, which is in direct correlation with IL-2
promotor activity, due to its inclusion under the NFAT-
promotor in the B3Z T-cell line.36 At the highest concentration
of peptide, no T-cell response was observed for the tetrazine-
unreactive peptide 4. However, tetrazine-reactive peptide 5
gave 42% ± 4.2% of the response observed for the wild type
epitope. The mbTCO-modified peptide gave 82% ± 4.4% of

Figure 2. Optimization of in vitro deprotection of the trans-cyclooctene protected epitope SIINFEKL. (a) Binding affinity (MFI) of the caged
epitopes, compared to SIINFEKL, to cell surface H2−Kb at low temperatures of the TAP deficient cell-line RMA-S. Analysis was performed with anti
H2−Kb and H2−Kb−SIINFEKL specific antibody (25-D1-APC). SIINFEK[mbTCO]L (7̧ purple), CCO (4, green), and TCO (5, blue), SIINFEKL
(red). (b,c) Deprotection of caged peptides (4, 5, 7) using DC2.4 cells as APCs and B3Z cells as T-cells. T-cell activation was compared to wild-type
response (SIINFEKL; red) by measuring absorption (AU) of beta-galactosidase-directed CPRG hydrolysis. All experiments have been done twice in
triplicate; error bars represent the standard error of the mean. (b) Deprotection of CCO (4, green), TCO (5, blue), and mbTCO (7, purple) in the
presence of 50 μM 3,6-dimethyltetrazine (8) for 30 min and indicated peptide concentrations. (c) Deprotection of 100 nM mbTCO (7) after
incubation with 50 μM 8 for the indicated times. After 1 min incubation, a significant (p = 0.04) T-cell response could already be detected.

Figure 3. In vitro kinetics of uncaging of SIINFEK[mbTCO]L (7) using different tetrazines. (a) Structures of the four different tetrazines. (b/c)
Deprotection of 100 nM 7 using DC2.4 cells as APCs and B3Z cells as T-cells. T-cell activation was compared to wild-type response (SIINFEKL; set
at 1.0 normalized T-cell response) by measuring absorption (AU) of beta-galactosidase-directed CPRG hydrolysis. All experiments have been done
twice in triplicate; error bars represent the standard deviation. (b) Uncaging of 7 with tetrazines 8−12 for 30 min at the indicated concentrations. (c)
Deprotection reaction of 7 with tetrazines 8−12 at 10 μM of tetrazine at increasing incubation times. Tetrazine 9 blocks T-cell activation, and
tetrazine 10 and 11 show improved uncaging speed compared to tetrazine 8. Tetrazine 12 shows reduced uncaging speed and increases linearly.
Relative T-cell response is normalized between SIINFEKL 100 nM response as 1.0 and no peptide background signal 0.0.
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the wildtype response at this time point. The response was also
rapid: cells loaded with 100 nM of 7 yielded significant (p =
0.04) T-cell responses after 1 min of uncaging with 50 μM 8
(Figure 2c). We also compared the stability of the TCO moiety
for peptides 5 and 7 in full medium and FCS (Figure S1),
revealing poor solubility for 5 and stability up to 4 h in FCS for
7. For all further assays, we therefore continued with caged
epitope 7 due to superior uncaging yield, ease of purification,
and enhanced solubility.
The uncaging strategy was extrapolated to other antigen

presenting cells (the D1 cell line38 and bone-marrow derived
dendritic cells, BM-DCs39). Both these cell types showed
significant and comparable levels of deprotection of the caged
epitope (7) compared to DC2.4 under the same conditions
(>85% and >48% T-cell activation compared to SIINFEKL,
respectively (Figure S2)). Tetrazine 8 has been reported to be
nontoxic in vivo up to 140 mg/kg (1.25 mmol/kg)28 in mice.
Negligible loss of cell viability was observed (up to 100 μM 8
(Figure S3a,b)), confirming this tolerance for APCs. The
addition of serum had no influence on uncaging or T-cell
response (Figure S3c).
The speed of the uncaging of mbTCO-SIINFEKL (7) was

investigated using the recently reported asymmetric tetra-
zines,30 which were shown to have improved kinetics due to a
combination of electron donating and withdrawing substituents
on the tetrazine ring. 3,6-Dipyrimidinyl-tetrazine (9; two
EWGs) showed no detectable elimination, whereas 3-methyl-
6-pyrimidinyl-tetrazine (10) and 3-hydroxyethyl-6-pyrimidinyl-
tetrazine (11)30 indeed showed improved uncaging rates and
efficacy (Figure 3a−c; verified using LC/MS analysis; Figures
S4, S5) compared to 8, with maximal T-cell activation already
observed at the first (1 min) time point, while for 8 maximal T
cell activation is reached at 30 min incubation. Additionally, the
previously reported dextran-functionalized tetrazine (12),
which has a reduced yield and uncaging speed compared to 8
in vitro, but performs better in vivo due to reduced
clearance,27,40 was tested in our in vitro system. Tetrazine 12
showed similar concentration dependent behavior to that of 8
but slower uncaging speed, although linear in time. For later
experiments, we focus on tetrazine 8, 11, and 12, which also
show negligible toxicity on APCs (Figure S3a,b).
To assess whether the approach could be used for other key

lysine residues as well as other MHC-I haplotypes, we used a
second epitope in which T-cell recognition is dependent on a
critical lysine, namely, the DbM187−195 peptide (NAITNAKII)
from respiratory syncytial virus (RSV).41 This virus is the main
causative agent of respiratory failure in infants and responsible
for significant mortality in the very young (<2 years) and the
elderly.42 In C57BL/6 mice, M187−195 is a dominant epitope,

43

and a highly functional subdominant epitope in CB6F1 mice.44

The peptide (sequence NAITNAKII) is a nonamer that binds
the MHC-I haplotype Db, and the recognition by T-cells is
critically dependent on Lys-193 recognition,45 which we have
previously shown is amenable to caging.12 Synthesis of a
mbTCO-caged variant of this peptide (NAITNAK[mbTCO]II,
13) followed by a mixed splenocyte assay showed the same
level of control over T-cell activation as seen for SIINFEKL/
OT-I (Figure S6), suggesting application to lysine-cognate
TCRs in general.
T-cell hybridomas (e.g., B3Z) lack some key hallmarks of

native T-cell activation, due to their immortalized nature. For
instance, hybridoma cells are in a continually dividing state,
which makes them unsuitable for studying the switch from

quiescence to activation, as this is marked by the switch from a
nonproliferative to a highly proliferative state. Alterations in
surface marker expression of these T-cells associated with this
activation are also absent in these cell lines.36 Naiv̈e primary T-
cells do allow the study of this activation switch, as they show
these properties upon activation.46 We therefore determined
whether the approach was compatible with primary CTLs.
Primary CTLs were isolated from OT-I mice, which has a
homogeneous T-cell population selective for the SIINFEKL-
epitope.46 CD62L and CD69 are the first markers that show
changes in cell-surface expression levels upon T-cell activation
in vitro.2,47,48 We therefore quantified changes in surface
expression levels of these early markers, and the induction of
proliferation, upon IEDDA-deprotection on primary naiv̈e
CTLs.
Analysis of early activation markers showed similar kinetics of

CD62L downregulation and CD69 upregulation upon pulsing
with SIINFEKL or upon preloading with 7, followed by
tetrazine-mediated uncaging with 11 (Figure 4a). The uncaged
7 shows a slight delay for both markers; however, after 180 min
a similar level of early markers is reached. The histograms
(Figure S7a,b) of each time point are also similar, indicating no
increase in the heterogeneity of activation. These early markers
demonstrate that the activation of T-cells using a caged epitope
shows a similar profile of activation upon the addition of
tetrazine 11 compared to the natural epitope. The caged
epitope (7, up to 100 pM) and tetrazine 11 (10 μM) induced
no background proliferation (Figure S8). The addition of 11 to
7-pulsed OT-I cells induced T-cell proliferation (Figure 4b).
The addition of 11 to SIINFEKL changed the proliferation
pattern. These differences were assigned to earlier observed
sensitivity of these cells; even slight changes in environment
have an effect on activation/proliferation.
Encouraged by these ex vivo results, we set out to translate

the chemical control over early activation events, CD62L
shedding and CD69 upregulation, and T-cell proliferation from
an in vitro to in vivo setting. For this, OT-I cells were adoptively
transferred on day −1 i.v. in the lateral tail vein, allowing
distribution of the cells throughout the body,49 followed by tail
base s.c. injection of 7 at day 0. Tetrazine 11 was injected
subcutaneously (s.c.) in the right flank above the right inguinal
lymph node (iLN) and incubated for 1, 2, or 3 h. Afterward,
mice were sacrificed, and iLNs were extracted. Cells were
stained and analyzed by FACS. At 3 h, 70% of CD8α+-CD45.1+

T-cells were double positive (CD62L− and CD69+) in the right
inguinal lymph node (iLN) compared to 17% in the left
(Figure S9).
On the basis of these initial results, the experiment was

repeated with three mice per group at 3 h of tetrazine
incubation (Figure 5a,b). Interestingly, even injecting only the
caged peptide 7 already resulted in significant down- and
upregulation of CD62L and CD69, respectively (p = 0.0004
and p < 0.0002), indicating the presence of an in vivo
mechanism for T-cell activation by antigens for which a TCR
has low affinity. However, when tetrazine 11 was also injected,
a significant difference was detected for CD62L compared to
protected peptide 7 alone (p < 0.05). Dextran tetrazine 12
induced significant shifts for both markers. Furthermore,
significant differences were observed between left and right
iLN for both markers (CD62L p < 0.05 and CD69 p < 0.01).
When assessing both markers in combination as a more robust
method for selecting activated T-cells,19 left over right
differences became clearer. A similar percentage of double
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activated T-cells were observed in the right iLN (84.7% ± 6.9%
of CD8α+-CD45.1+ T-cells; compared to 87.3% ± 1.3% for
SIINFEKL in the right iLN), whereas only 43.1% ± 12% cells
showed activation of both markers in the contralateral iLN. The

Figure 4. Primary T-cell (OT-I) proliferation and the early T-cell
activation of SIINFEK[mbTCO]L (7) can be controlled by tetrazine
elimination. (a) Detection (MFI) of early activation markers upon
deprotection of 7 (100 pM) with 11 (10 μM) using primary T-cells
(OT-I). Early activation markers CD62L and CD69 were compared to
wild-type response (SIINFEKL, 100 pM) by using fluorescent
antibodies (CD62L-APC and CD69-PE, respectively). Data of three
individual experiments with SD, normalized between highest signal
obtained and zero fluorescence intensity. (b) OT-I proliferation at day
3 after incubation with 100 pM of peptide (SIINFEKL or 7) and 10
μM of tetrazine 11; representative figure of experiment performed
twice.

Figure 5. In vivo activation and proliferation of OT-I cells after local
tail base injection of SIINFEK[mbTCO]L (7) and subsequent
injection of tetrazine 8, 11, or 12. (a,b) CD62L and CD69 cell
surface appearances were measured on OT-I T-cells using fluorescent
antibodies: CD62L-APC and CD69-PE. When CD62L was decreased
and CD69 was increased, the T-cells were qualified as activated. Mice
were injected in the tail base area on both sides of the tail with a total
amount of 10 nmol peptide (7 or SIINFEKL) and later injected with
100 nmol tetrazine or PBS only s.c. in the right flank right above the
right iLN. (a) Activation of right and left iLN represented as MFI of
CD62L and CD69, respectively. Three mice per experimental group
and two for each control group. Dots represent individual lymph
nodes. (b) Bar chart representation of percentage of OT-I cells fully
activated, positive for CD69 and negative for CD62L, with error bars
as SD. There is a significant difference between 7 and 7 + 12 with p <
0.0002. There is even a significant difference between the left and right
iLN for tetrazine dextran (12) of p < 0.01. P values were determined

ACS Chemical Biology Articles

DOI: 10.1021/acschembio.8b00155
ACS Chem. Biol. 2018, 13, 1569−1576

1573



dextran-functionalized tetrazine 12 has been reported to have
slower clearing properties,27 and therefore we hypothesize that
this slower diffusion time explains the increased control over
localized activation. These results show the regioselective
potential of the approach.
To correlate these early activation events observed in vivo to

full activation, the proliferation of OT-I T-cells was studied
after 3 days. CFSE-labeled OT-I T-cells46 were adoptively
transferred in recipient C57BL/6 mice on day −1. On day 0,
the mice were either injected with mbTCO SIINFEKL (7) or
SIINFEKL in the tail base. After 3 days, the amount of T-cell
proliferation was assessed by flow cytometry through CFSE-
dilution (Figure 5c).50 Under these conditions, compound 7
induced very low levels of proliferation of OT-I CTLs, and
upon injection with tetrazine 8, CTL proliferation was induced
similar to SIINFEKL (3.1% ± 0.11% vs 4.4% ± 0.05% divided
OT-I of total lymphocytes; Figure 5d).
Conclusion. In our attempts to develop a methodology that

allowed chemical control over T-cell activation, we have here
demonstrated that the IEDDA-pyridazine elimination reaction
can be used to exert chemical control over T-cell activation in
vitro and in vivo. The technique complements other bio-
orthogonal deprotection strategies in vitro, such as palladium-
mediated reductions51,52 or Staudinger-based chemistry.21

Without the presence of a tetrazine, the lysine-caged epitopes
show no T-cell receptor activation while MHC-I binding was
not affected. Upon deprotection, T-cell receptor activation was
restored. The lysine cage was implemented in two different
epitopes, suggesting a generic application to lysine-sensitive
TCRs.
In vivo, chemical deprotection of a caged peptide epitope

could be achieved selectively 3 h post epitope injection. Using
this decaging approach, local early activation of T-cells could be
detected by quantifying cell surface expression of two early
markers of T-cell activation, CD69 and CD62L, showing
significant T-cell activation with tetrazine 12. Furthermore, in
vivo results showed very similar T-cell proliferation potency
upon decaging epitope 7 compared to the natural epitope,
whereas the caged epitope showed no proliferation by itself.
Selective activation was achieved through localized peptide and
tetrazine injections in the tail base. Systemic administration
would be more beneficial for clinical translation; however,
systemic T-cell activation can cause the so-called cytokine
release syndrome (CRS). CRS occurs when a large number of
immune cells are activated and release inflammatory cytokines,
potentially causing death.53 By combining this uncaging
technique with injectable tetrazine-hydrogels29 or antibody-
epitope conjugates,27 the activation of T-cells could be
controlled more precisely in future experiments. This can
provide new angles to the study of CTL activation in vivo,
analogous to that which has been achieved in vitro using
photo-19,20,54 and chemo12-deprotection. We foresee that this
mild, fast deprotection chemistry will be a valuable addition to

the study of T-cell-APC interactions and will ultimately lead to
spatiotemporal control of T-cell activation in vivo.

■ METHODS
A detailed description of the methods is provided in the Supporting
Information.
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