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Chapter 1

Introduction

1.1 Categorical Response Data

In statistical analysis, we often explore and analyze a single variable or many variables
depending on the research question at hand. A variable, sometimes referred to as a
random variable, is a statistical quantity which can be measured or observed. The fol-
lowing are examples of a variable: age, gender, survival of a patient (i.e., survived or
not survived), mental status (i.e., normal, mild, moderate, severe), marital status (single,
married, divorced, widowed), temperature and humidity, carbon emission, etc.

As described by Agresti (2002, Chap. 1), a variable can be classified in different
ways: (1) response (sometimes referred to as dependent or outcome) variable versus
explanatory (sometimes referred to as independent or predictor) variable; (2) continuous
variable versus discrete variable; (3) quantitative variable versus qualitative variable; and,
(4) nominal variable versus ordinal variable. Except for the first classification, the criteria
for the other classifications are based on the type of values or measurements a variable
could take. Gender, for example, is a nominal variable because it takes a value which is
either male or female. Gender is also a qualitative variable. Mental status, on the other

hand, could be defined either as qualitative or quantitative depending on the research.
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In the above example, mental status is defined as an ordinal qualitative variable since
there is a natural ordering between values for severity of mental status. Both survival
of a patient and marital status, in the above example, are nominal qualitative variables.
Qualitative variables are sometimes referred to as categorical variables. Age, like mental
status, could be defined either as a discrete quantitative variable (e.g., Age (in years)
= 23, 24, 43, etc) or as a continuous quantitative variable (e.g., Age (in hours) =
1.5, 3.5, 8.0, etc)orasa ordinal qualitative variable (e.g., Age = young, middle,
elderly). The other variables in the above example (i.e., temperature, humidity and
carbon emission) are defined most of the time as continuous quantitative variables.

In regression analysis or Analysis of Variance (ANOVA), for example, we study the
relationship between a response variable and one or more explanatory variable(s). The
aim of such analysis is to understand the amount of change on a response variable when
a explanatory variable changes by some amount (usually a unit change). For example, a
researcher might be interested in the relationship between mental status and age. The
hypothesis of her research could be that severity of mental status of a subject might be
affected by age. In this case, the response variable is mental status and the explanatory
variable is age. Another example where a response variable is continuous, is the relation-
ship between level of temperature in a given area (or country) and the amount of carbon
emission. In this case, the response variable is temperature and it is a continuous variable.
Carbon emission is the explanatory variable since it has the potential to explain level of
atmospheric temperature.

In this thesis, the focus is on categorical response variables (where the response variable
takes discrete values, e.g., yes / no, cured / not cured, etc) and the relationship between

one or more explanatory variable(s) and these response variables.
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1.1.1 Binary Response Data

A binary response variable is a categorical variable whose values are binary (i.e., yes or
no; 1 or 0; survived or not survived; passed or failed). In many areas of research binary
response variables are collected. A clinical psychologist might be interested depression,
depression=1 if a given subject in the study has a depression, otherwise depression=0
representing absence of depression. A cardiologist might be interested to predict the
chance of a patient to survive after performing heart surgery (i.e., survival = 1 if a

patient survived; survival = 0 otherwise).

1.1.2 Multicategory Response Data

A multicategory response variable is a categorical variable with more than two possible

values. Mental and marital status are examples of multicategory response variable.

1.2 Explanatory variables

An explanatory variable is expected to influence the response variable of interest. A
possible set of explanatory variables for mental status could be age, residence (i.e., rural
or urban), life style (e.g., smoking status, physical exercise, etc), personality traits (e.g.,
neuroticism, extroversion), etc. In this dissertation the explanatory variables might be

continuous or categorical.

1.3 Logistic Regression Model

Logistic Regression (LR) model is a statistical model used for analyzing categorical re-
sponse data. LR model is a member of the family of Generalized Linear Models (GLMs)
(Agresti, 2007, chap. 3). The GLM is a general framework that extends ordinary linear

regression model for continuous response variable to other types of variables (e.g., cat-
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egorical response variables, i.e., both binary and multicategorical variables). Our main
focus in this thesis will be GLM for categorical response data.

A GLM has three parts: (1) a random component; (2) a systematic component; and,
(3) a link function. The random component represents the distribution of the response
variable. The systematic component represents a linear combination of the explanatory
variables. The link function is the part which does the linking between the response and

the explanatory variables. Below is the mathematical representation of GLM:

9(w) = Bo + B + Pawz + ... + Bry, (1.1)

where = E(Y) is the random component and it is the expected value of the distribution
of response variable Y from the exponential family. The right-hand side of Eq. (1.1)
represents the systematic part of GLM including the intercept (i.e., 8) and the regression
coefficients (i.e., 51, B2, ..., 3, corresponding to the p explanatory variables denoted by
x). The link function is g(.) and it connects the random part (i.e., 1) to the systematic

part (i.e., Bo + B7x, where x = (z1,22,...,2,)7).

1.3.1 Binary Logistic Regression

Binary logistic regression, sometimes referred to as simple logistic regression, is a GLM
for binary response data (Agresti, 2007, chap. 4). Let y; denote the observed value of a
binary dependent variable Y for subject ¢, where i = 1,2,..., N. Binary logistic regression
models the probability of a “success” category conditional on the value of explanatory

variables x;, Pr(y; = 1|x;) = w(x;), i.e.,

L exp(Bo+BTxi)
m(x;) = ¥ exp(Bo £ BTx)’ (1.2)

— T
where X; = (xﬂ, Li2y - - - ,J,‘ip) .
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The log-odds representation of the same binary LR model (1.2) is,

logit[ (x;)] = Bo + B x, (1.3)

where logit[m(x;)] = log [m(x;)/(1 — m(x;))]. This representation of binary LR is similar
to the Generalized Linear model presented in Eq. (1.1) where the link function is now the

“logit” function with p = 7(x;) = Pr(y; = 1|x;).

1.3.2 Multinomial Logistic Regression

Multinomial LR model is a GLM for multicategory response data (Agresti, 2007, chap.
6). Let G; = k denote the observed value of a multicategory dependent variable G for
subject i, where i =1,2,..., N.

The Multinomial Baseline-Category Logit (MBCL) model is a natural extension of
binary logistic regression model to the case of a nominal categorical variable. The prob-
ability of the k-th category in MBCL model (i.e., Pr(G; = k|x;) = mr(x;)) is defined

as,

exp(Box + /5;’%)

i) = . 1.4
) > exp(Boc + BIxi) (1.4)
The log-odds representation of the MBCL model (1.4) becomes,

logit([7 (x;)] = Box + ﬁlxik, (1.5)

where logit[m (x;)] = log [ (x;)/7s(x;)]. The index b refers to the reference (or baseline)
category against which other categories are compared with. Thus, there are (C' — 1)
number of “logit” models in MBCL for a multicategory response variable, G, with C the
number of categories.

Suppose a researcher would like to study people’s preference for environment (or
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location) to spend their weekend. The possible values of the response variable G could be:
stay at home, meet friends at their place, meet friends at a city center, travel to somewhere
(e.g., park, beach, museum, other cities), and go to the gym. Let G; = 0,1,2,3,4 be
the numerical representation of the possible values and to be used in the MBCL model,
respectively. Suppose the main aim of the investigation is to estimate the probability of
preference of people to spend the weekend out of their home. That is, the probability
of going to the gym, the park, the beach, museum, and other cities. In this case, the

reference/baseline category will be staying at home (i.e., G; = 0).

1.3.3 Parameter Estimation in Logistic Regression Models

In logistic regression, parameters of the model (i.e., the intercept and the regression
coefficients) are unknown and thus estimated from sample data. Maximum likelihood
optimization is a standard method used for estimating the parameters of LR models.
The likelihood function is the probability of the sample data, expressed as a function
of model parameters (Agresti, 2002, pp. 6). The likelihood function for a binary LR

model assuming a binomial distribution is defined as (Agresti, 2002),

N

LivlB) = H yil(ni — ys)

il )L — ()] (1.6)
where n; represents the number of trials and y; represents the number of successes, and
B is a concatenation of the intercept and the regression coefficients of the binary LR
model. The maximum likelihood estimation technique optimizes the likelihood function
(Eq. (1.6)). Similarly, the likelihood function of MBCL model is defined as (Agresti,
2002),
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1.4 Distance Models

Multidimensional scaling (MDS) is a technique developed in the behavioral and social
sciences for studying the structure of objects or people (Davison, 1983, pp. 1). MDS
uses proximity between pairs of objects as an input for analysis.

The proximity data is either similarity or dissimilarity of objects. In similarity data,
the higher value for the proximity measure represents more alike pairs of objects whereas
in dissimilarity data, the higher value for proximity measure represents less alike pairs of
objects. An example of the latter type of proximities would be flight times.

Other examples of proximity measures are the correlation coefficient and joint prob-
abilities (Davison, 1983, pp. 1). We will show later in this thesis that it is possible to
express logistic regression models (i.e., Eq. (1.2) and (1.4)) in terms of distance models.
In that case, probability is a similarity measure. That is, the smaller the relative distance
between a subject (or person) point and a category point, the larger the probability that

the subject chooses that category.

1.4.1 Multidimensional Scaling

In MDS, the proximities are represented in terms of distances between points in a low
dimensional space (Kruskal & Wish, 1978; Davison, 1983; Borg & Groenen, 2005). The

Euclidean distance model for dissimilarity measures is defined as (Davison, 1983, pp. 3),

m=1

M 1/2
6tu - [Z (Ztm - Zum)2‘| 5 (18)

where z, is the coordinate of object ¢ on dimension m (m =1,2,..., M) . An example
of MDS solution is shown in Figure 1.1 which is a two-dimensional configuration of five
objects: A, B, C, D and E. Suppose we would like to know: (1) how dissimilar A and D

are, and (2) how dissimilar A and C are. This question can be answered easily by imputing
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object coordinates in Eq 1.8. That is, dap = [(241 — 2p1)? + (242 —zD2)2]1/2 =
[(6—3)2+ (7—6)2]"/% = 3.16. Similarly, dac = [(2a1 — 201)? + (242 — 202)?] /" =
1/2

[(6 —7)% + (7 —3)?]"'" = 4.1. Thus, object A is more similar to D than to object C. The
MDS problem is the reverse of this calculation: it is to find the coordinates of the points

given the proximities.

10 e B

31 o C

3 4 5 6 7 8 9

Figure 1.1: MDS Model: A two-dimensional configuration of dissimilarity data with five objects
(i.e., A, B, C, DandE).

1.4.2 Multidimensional Unfolding

Coombs (1964) proposed a distance model for preference data, sometimes referred to

as multidimensional unfolding (MDU) model. Preference data refers to proximity data
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between a subject (usually a person) and an object (usually a product). For example,
preference of students about study courses, preference of customers about set of product
designs, preference of instructors about teaching methodology, etc. In this case, subjects

are asked to rank their preference for a set of objects or stimuli.

10 - oB

8 1 s3%

77 s1* oA

6 A eD oFE

51 s2%

3 oC

14 sd%*

1 2 3 4 5 6 7 8 9

Figure 1.2: MDU Model: A two-dimensional configuration of preference data with four subjects
(i.e., s1, s2, s3 and s4) and five objects (i.e., A, B, C, D and E).

The objective of MDU is to find distances in Euclidean space between subjects and
objects that approximate a set of proximities as well as possible (Heiser, 1981, 1987; De
Leeuw, 2005). An example of MDU is shown in Figure 1.2 which is the same configuration
as Figure 1.1 with respect to the objects and with additional points for the subjects.

The position of the subjects are sometimes referred to as an ideal points of subjects.
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The closer an object or stimulus to the ideal, the more it will be preferred (Davison, 1983,
pp. 7). Suppose we would like to know which object (& or C) in Figure 1.2 most preferred
by the fourth subject. This question can be answered by working out Eq 1.8. That

is, 0g4.4 = [(254,1 —za1)% + (2542 — ZA2)2] V2o [(1 —6)*+ (1 - 7)2] V2 _ 781

. 1/2 1/2
Slmllarly, 554"0 = [(2’3471 - 2’01)2 + (25472 — 202)2] / = [(1 - 7)2 + (1 - 3)2} / =
6.3. Thus, this subject prefers object C since the object is closer to its ideal position.
Analogous to MDS, the unfolding problem is the reverse of this calculation: it is to find

the coordinates of the object points and ideal points given the proximities between object

and subjects.

1.4.3 IPDA Model

Takane, Bozdogan, and Shibayama (1987) proposed ldeal Point Discriminant Analysis
(IPDA). The IPDA model is a multidimensional unfolding technique used for classification
of subjects. The input data of IPDA model are not preference data but classification data,
i.e., a given subject would choose one and only one object from a set of categories. The
probability for the k—th category in the IPDA model is defined as (Takane, Bozdogan, &
Shibayama, 1987),

52
mo(x:) = my exp(—02,)

- Zc Mme exp(i(szzc) ’ (19)

where my is a bias parameter for category k which can be interpreted as a prior probability
of the class, and 62, is the squared Euclidean distance in an M —dimensional space between
an ideal point for subject ¢ with coordinates 7, and a class point for category k with

coordinates g, (Takane et al., 1987), i.e.,

M

0% = Z (Nim — Yem)*- (1.10)

m=1
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The ideal points are assumed to be a linear combination of the explanatory variables:

17 = Bo + x; 3,

where B is a (p X M) matrix with regression weights and, By an M dimensional vector
with intercepts. The parameters of this model are the regression weights and the class
points. The class points, denoted as -, is a matrix of dimension (C' x M).

The MBCL model, i.e.,, Eq. (1.4) and (1.5), is equivalent to the IPDA model in

maximum dimensionality, i.e., M = (C' — 1) where C' is number of categories or objects.

1.4.4 IPC Model

De Rooij (2009a) proposed the Ideal Point Classification (IPC) model. The IPC model is
a probabilistic multidimensional unfolding model and closely related to the IPDA model.

As noted by Takane et al (1998), the interpretation of IPDA model is hampered by
the bias parameters. De Rooij (2009a) showed that the bias parameters can be ignored
without loss of information, except when (1) the response variable has many categories
and a low-dimensional distance model is used; and (2) the response variable has a category
that dominates the other categories. The probability for the k—th category in the IPC

model is defined as (De Rooij, 2009a),

exp(—0.5 * %)

> exp(—0.5%62)" (1.11)

Wk(xi) =

By looking at Eq. (1.9) and Eq. (1.11), it can be seen that IPC model is equivalent to
the IPDA model without the bias parameters. The log-odds representation of the IPC

model is,

logit[ms(x;)] = 0.5 % 02, — 0.5 % 62, (1.12)
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where 5?17 is the squared Euclidean distance between the b-th baseline category and the

ideal point for subject 3.

IPC Model for Binary Data

De Rooij (2009a) showed that logistic regression for a binary response variable, i.e., Eq.
(1.2) and (1.3), can be expressed as an unidimensional IPC model. That is, a distance
model in a joint space with points representing the two categories of the response variable
and points representing the subjects.

The unidimensional IPC model of the binary response variable which is a simplification

of Eq. (1.11) becomes,

exp(—0.5 * 0%)

. 1.13
exp(—0.5 * %) + exp(—0.5 * 63) (1.13)

w(x;) =

-
The class points of the unidimensional IPC model are given by v = {701, %1} , Where
o1 is the class point of the baseline category (i.e., Y = 0), and 711 is the class point of
the “success” category (i.e., Y = 1). The log-odds representation of the unidimensional

IPC model is,

logit[m(x;)] = 0.5 % 67 — 0.5 % 63
=0.5 % (777;1 — ’701)2 — 0.5 % (nil — 711)2 (114)

= (711 — Yo1) * M1 + 0.5 % (78, — 7vi1)-

-
With a restriction on class points for model identification (e.g., v = {07 1] ), the

unidimensional IPC model can be simplified to,

logit[r(x:)] = (Bo — 0.5) + BTx,. (1.15)
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Thus, the unidimensional IPC model is equivalent to the binary logistic regression pre-
sented in Eq. (1.2) and (1.3) and has the same regression coefficients (i.e., 8) and an

intercept with an offset of half (i.e., BiF¢ = B5R +0.5).

IPC Model for Multicategory Data

As shown in Eq. (1.5), MBCL model is a natural extension of a simple LR model for
nominal response variable. De Rooij (2009a) also showed that IPC model in a maximum
dimensional space (i.e., M = C' — 1) is equivalent to the MBCL model.

The log-odds representation of IPC model for a multicategory response variable is given
in Eq. 1.12. By setting constraints on the class points, the IPC model can be identified
uniquely. Suppose we have a multicategory response variable G with four categories such
as ¢ = 0,1,2,3. For model identification, the class points in a maximum dimensional

space (M = 3) can be represented as follows,

0 0 O
1 0 0
y = (1.16)
01 0
0 0 1

That is, the first category (probably the baseline) is positioned on the origin (i.e., Y1, =

{0 0 0}) the second category is on the x—axis (i.e., Yom = {1 0 0}) the third
category is on the y—axis (i.e., Ysm = |0 1 0} ), and the fourth category is on the

z—axis (i.e., Yam = [0 0 1} ). With this class points configuration, it is possible to
show that the IPC model is equivalent to the MBCL model. For demonstration purpose,

let us see the derivation of the log-odds representation of the second category (i.e., ¢ = 1)
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against the baseline (i.e., ¢ = 0). That is,

logit[my (x;)] = 0.5 % 63 — 0.5 % 63

3 3

- 05 * Z (Thm - 'YOm)Q - 05 * Z (n7m - 717"/)2
m=1 m=1
3 3
1.17
= Z ('Ylm - 'VOm) * Nim + 0.5 * Z (78'#1 - 'Y%m) ( )
m=1 m=1
=M1 — 0.5

Similarly, the log-odds for the third category: logit[m2(x;)] = 17;2—0.5 = (B02—0.5)+ 031 x;,
and the log-odds for the fourth category: logit[m3(x;)] = 13 — 0.5 = (Bo3 — 0.5) + B3 x;.
Thus, ﬂg’c = ﬂz'\,/'BCL for regression coefficients with dimension (p x M), and BIF¢ =

BY'BCL — 0.5 for intercepts with dimension (1 x M).

1.5 Multivariate Binary Data

In the previous sections, we considered only a single binary or multicategory response
variable. However, it is not uncommon to see multiple binary/multicategory response
variables in a given study. In medical science, for example, researchers are often interested
not only on the efficacy of a newly developed drug, but also on the side effect of the drug.
The explanatory variables in such a drug study setting could be the type of treatment (i.e.,
placebo, current drug, and newly developed drug), age, gender, etc. In this hypothetical
study, there are two binary responses: efficacy (i.e., whether the subject is cured or not),
and side effect (i.e., whether the drug has a side effect or not).

Multivariate binary data with multiple binary response variables and one or more
explanatory variables, are often collected in empirical sciences such as psychology, crim-

inology, epidemiology, life sciences and medicine. In the British coalminers study, for
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example, researchers investigated impact of exposure to smoking and pneumoconiosis on
two respiratory diseases, breathlessness (1 = yes; 0 = no) and wheeze (1 = yes; 0 = no),
of coalminers in Britain (Ashford, Morgan, Rae, & Sowden, 1970; McCullagh & Nelder,
1989; Palmgren, 1989).

Another example of multivariate binary data is the Netherlands Study of Depression
and Anxiety (NESDA). In NESDA, data were collected to investigate the interplay between
personality traits and co-morbidity of depressive and anxiety disorders (Penninx et al.,
2008; Spinhoven, De Rooij, Heiser, Penninx, & Smit, 2009). Co-morbidity is a presence
of two or more mental disorders. In the area of mental disorders clinical psychologists
and epidemiologists are interested in co-morbidity and how co-morbidity is related to risk
factors such as personality traits and background variables (Krueger, 1999; Beesdo-Baum
et al., 2009; Spinhoven, Penelo, De Rooij, Penninx, & Ormel, 2013). The NESDA data
will be a leading example throughout this dissertation. We thank the NESDA consortium
for providing the data.

Another study in which multivariate binary data arises is the Indonesian Children’s
Study (ICS: Sommer, Katz, & Tarwotjo, 1984; Liang, Zeger, & Qaqish, 1992) where over
three-thousand children were medically examined to investigate whether they had respi-
ratory infection, diarrhoeal infection, and xerophthalmia. The aim of the ICS study was
to investigate whether vitamin A deficiency places children at increased risk of respiratory
and diarrhoeal infections.

Suppose y; = (Yi1,Yi2, - - Yij»---»Yis) | denotes the multivariate responses observed
on the i—th subject, which is a (J x 1)-dimensional vector of all responses. The y;;
represents a binary measurement of the j-th response variable observed on the i-th subject.
In Table 1.1, we display the typical structure of such multivariate data in long format. The
first column (Subject) contains subjects’ identification number. The second column has
binary measurements of the multivariate response variable. For demonstration purpose,

we assume a total of five binary response variables that are measured for each subject.
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The other columns in Table 1.1 have measurements for explanatory variables X, Xo, ...

X,.

Table 1.1: The structure of multivariate data in long format.

Explanatory variables

Subject Response X; Xj Xp
1 Y11 r11 T12 T1p
1 Y12 T11 Ti12 T1p
1 Y13 T11 T12 T1p
1 Y14 T11 T12 T1p
1 Y15 11 12 Tip
i Yil Tyl T2 Tip
i Yio Tyl T2 Tip
i Yi3 Tyl T2 Tip
i Yia Ti1 T2 Tip
i Yis Ti1 T2 Tip
n Yn1 Tnl Tn2 Tnp
n Yn2 Tnl Tn2 Tnp
n Yn3 Tnl Tn2 Tnp
n Yna Tnl Tn2 Tnp
n Yns Tni Tn2 Tnp
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1.5.1 Bivariate Binary Data

Two cross classified binary variables observed on the i-th subject is displayed in Table
1.2. The rows represent measurements of the first binary response variable (y;;), and
the columns represent measurements of the second response variable (y,5). In this Table,
both marginal probabilities (shown in the margins, i.e., m;1., m;o., 7.1, and m; ) and the
joint probabilities (shown in the four cells, i.e., m; 11, 7,10, Ti,01, and m; go) are presented.
The sum of probabilities either for the margins by row/column or for the individual cells
always equals one.

Empirical researchers working with bivariate binary data are often interested in one of
the following thee parameters (Ashford et al., 1970; MacLean, Sofuoglu, & Rosenheck,
2018; Bhuyan, Islam, & Rahman, 2018): (1) the marginal probabilities; (2) the association
between the two binary responses; or (3) the joint (or multinomial) probabilities.

Table 1.2: Cross-classification of measurements of a bivariate binary data observed on the i-th
subject.

Yi2
1 0

Yao 1 miir miio0 mi

0 mio1 oo Tio.

5.1 5.0 1.00

Joint Probabilities

The joint probability is an important quantity of bivariate binary data. In the Coalminers
study, for example, let y;; and y,, denotes the measurements of breathlessness and wheeze
of the coalminers, respectively. Then, the joint probability m; 1o represents the probability
of getting breathlessness, but no wheeze. Similarly, the joint probability 7; o1 represents
the probability of getting wheeze, but no breathlessness. The other joint probabilities

represents risk of getting both respiratory diseases (m;,11), and the risk of getting none of
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the diseases (7;,00)-

Bivariate binary data are special case of a multicategory response variable with four
categories. Therefore, we can use a single index to represent the joint probabilities, i.e.,
mik(%;) = Pr(G; = k|x;). For the joint probabilities in Table 1.2, this means: m;; = m; g0,
g = T,10, M3 = 01, and T4 = ;. 11. Because of this relationship, logistic regression
models for a multicategory response data such as the MBCL model (Eq. 1.4 and 1.5)
and the IPC model (Eq. 1.11 and 1.12), can be used to analyze the joint probabilities of

bivariate binary data.

Marginal Probabilities

The marginal probability of a bivariate binary data models a single response variable
without controlling for measurements of the second response variable. Two separate
simple logistic regression models (Eq. 1.2 and 1.3) can be used for this purpose, one
for each response variable. In the Coalminers study, the marginal model can be used
to answer a question about probability of breathlessness (wheeze) of coalminers due to

exposure.

Association

The third quantity of interest is the association between the binary response variables.
The association gives us information about the relationship of the two binary response
variables. That is, it tells us whether the probability of occurrence of the second response
variable increase/decrease when the probability of occurrence of the first response variable
increases, and vice versa.

The most common measures of association structure for bivariate binary data are the
odds (OR) ratio and the relative risk (RR). In this thesis, we use the OR as measure
of association. The OR can also be modeled to investigate the impact of explanatory

variables on the association structure (Lipsitz, Laird, & Harrington, 1990; Bahadur, 1961).
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That is,
log (1;) = Bo + B, (1.18)

where 7; denotes the OR and is defined as 7; = (w4 X 1)/ (Ti2 X 7i3).

1.6 Models for Multivariate Binary Data

The most common statistical modeling approach for analyzing multivariate binary re-
sponses in the presence of explanatory variables, are (1) marginal models (Agresti, 2002,
Chap 11), and (2) latent variable models (Agresti, 2002, Chap 12). Marginal models
are sometimes referred to as population-averaged models. Latent variable models are

sometimes referred to as random-effects or subject-specific models.

1.6.1 Marginal Models

The availability of the multivariate normal distribution for multivariate interval responses,
makes application of maximum likelihood-based statistical models relatively easy. How-
ever, for binary responses, there is no general parsimonious parameterization of the mul-
tivariate binary distribution, and therefore estimation becomes difficult (Agresti, 2002;
Cox, 1972). Liang and Zeger (1986) proposed Generalized Estimating Equations (GEE)
for marginal modelling of correlated categorical data. GEE is a quasi-likelihood (QL) esti-
mation method that does not require specification of a particular multivariate distribution.
It is widely used as a standard approach for fitting marginal models on multivariate data
(Ziegler, Kastner, & Blettner, 1998; Fitzmaurice, Davidian, Verbeke, & Molenberghs,
2008; Ziegler, 2011).
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1.6.2 Latent Variable Modeling

Latent variable models are a general class of models that are used for analyzing multi-
variate data (Bartholomew & Knott, 1999; Skrondal & Rabe-Hesketh, 2004). In Latent
Variable (LV) models the multivariate response variables are treated as dependent vari-
ables, and one or more unobserved variables, referred to as latent variables, are treated
as independent variables. The response variables are sometimes called indicators because
they are used as an indirect measure of the latent variables.

The main application of LV models are: (1) for reducing the dimensionality of the
multivariate data (to explain the variation of observed variables in few dimensions), (2) as
measurement model (for representing a concept or construct that cannot be directly mea-
sured, e.g., depression, quality of life, political attitude, mathematical ability, intelligence,
etc), and (3) for assigning scores on the latent scale which correspond to subjects’ profile
(Bartholomew, Steele, Moustaki, & Galbraith, 2002; Bollen, 2002; Rizopoulos, 2006).
Tomarken and Waller (2005) provided a detailed literature review on Structural Equation

Modeling (SEM) focusing on its strengths, limitations, and misconceptions.

Confirmatory Factor Analysis of Multivariate Data

Let y; = (Y;1,Yia:---,Yi;) be a j-dimensional vector of interval indicator variables ob-
served on the i-th subject. The Confirmatory Factor Analysis (CFA) is based on the as-
sumption that y; can be attributed to ¢ common factors, denoted by 8; = (6;1,...,0:,),

and j unique factors (or measurement errors), denoted by €; = (€;1,...,€;;), with j > ¢
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V12
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Y1 Y2 VE] Ya Y5 Y6
€1 €9 €3 €4 €5 €6

Figure 1.3: A path diagram of a CFA with six indicator variables represented by a square, and
two latent variables represented by a circle.

(Thurstone, 1947; Joreskog & Sorbom, 1981). The CFA is defined as,

Yir = A1bin + ..+ Aigbig + €

Yio = A210i1 + ...+ Aaglig + €in

yij = )\p19i1 + ...+ )\jqﬁiq + Eij

or, in matrix form

yi =A0; +¢;, (1.19)

where A is the matrix of factor loadings. Let ¥ be the covariance matrix of common
factors, and let ® be the covariance matrix of the unique factors. In Figure 2.1 an
example of a path diagram is displayed which corresponds to a measurement model with
six indicators (j = 6) and two underlying latent variables (¢ = 2).

In CFA, the common and unique latent variables follow multivariate normal distribu-
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tions, i.e., @ ~ Ny(0,®) and € ~ N;(0,®), where ® is a diagonal matrix. Given the

model, the expected covariance matrix of the indicator variables becomes

S =AUAT + D, (1.20)

CFA for Multivariate Dichotomous Data

CFA was originally developed for modeling interval indicator variables. The covariance
or correlation matrix of the observed variables was used as a primary object of analysis.
The same method was later proposed for handling categorical (or dichotomous) indicator
variables (Christoffersson, 1975; B. Muthen, 1978).

Let y; = (vi1, Y2, - -+ Yijs---,Yig) be a J—dimensional vector of dichotomous in-
dicator variables observed on the i-th subject. CFA of dichotomous variables assumes
an underlying latent variable for each indicator variable, which is denoted by y; =
(Y71 Yfas - -5 Y- -+ Yis). Thus, the variable y;; equals one if its underlying latent vari-
able y;‘j is above a certain threshold value 7;, otherwise it equals zero. Therefore, the

measurement model for y; is given by

]., If y:} Z Tj,
y; =A0; +e€, y;= (1.21)
0, if y;kj < Tj.
The formula for the covariance matrix remains the same, i.e., V(y*) = X, but the

elements in ® matrix are not free parameters anymore, rather

® = | — diag(APAT), (1.22)

yielding diag(X) = I. Therefore, the model has three sets of free parameters: 7, A, and

W (Christoffersson, 1975; B. Muthen, 1978).
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Multivariate Regression with Latent Variables: The MIMIC Model

The measurement model is often not an ultimate step since researchers are interested
in group differences and/or measurement invariance on the latent variables (Stapleton,
1978; Kenneth, 1989; T. Brown, 2006). This can be done by including external variables
into CFA, and the new model becomes the Multiple Indicators Multlple Causes (MIMIC)
model (Joreskog & Goldberger, 1975; B. Muthen, 1983, 1984).

Let x; = (%41, 42, - - -, Tip) be the external variables observed on the i-th subject. Fig-
ure 2.2 shows the path diagram for a MIMIC model with two external variables connected
to the two common latent variables. The MIMIC model extends the CFA model presented

in (1.19) with relationships between the latent variables and the external variables, i.e.,

Yy, = AO;+¢

0, = T''x;+¢, (1.23)

where T gives the regression coefficients, and ¢ the structural disturbances. It is assumed
that the disturbances and the measurement errors are uncorrelated to each other and to
X, but not necessarily among themselves. The covariance matrix of the latent variables

now becomes

T =TT%,T+ 3¢,

where X, is a covariance matrix for the external variables, and 3. for the disturbances.

For estimation and identification of the MIMIC model, we refer to Muthén (1983, 1984).
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Figure 1.4: A path diagram for a MIMIC model with two external variables that are represented
by a square.

1.7 Outline of the Thesis

Latent variable models are often used for analyzing multivariate binary data with and
without the presence of explanatory variables. In Chapter 2 we investigate the performance
of such models using a simulation study. We show the impact of the number of indicator
variables, sample size, and type of indicator variables, on the performance of latent variable
models.

In Chapter 3 we study properties of the IPC model for analyzing bivariate binary data.
The main aim of this chapter is to investigate the potential of the IPC model in recovering
three parameters of bivariate binary data: the marginal probabilities, joint probabilities,
and association structure. A simulation study is used to evaluate the performance of the
model. As the IPC model is not able to fully recover the three parameters, a Bivariate

IPC (BIPC) model is proposed. The BIPC model is an adjusted form of the IPC model



1.7. OUTLINE OF THE THESIS 25

to fully recover parameters of interest for bivariate binary data.

However, it is not straight forward to extend the BIPC model for the analysis of
multivariate binary data. This is due to the fact that both the pairwise and higher-
order association structure parameters must be specified in the likelihood function, and
thus the computation becomes cumbersome. This issue will be addressed in Chapter 4
by developing a Multivariate Logistic Distance (MLD) model which is a new model for
analyzing multivariate binary data. The MLD model unifies two domains of statistical
methods, i.e., Multidimensional Scaling (MDS: Kruskal & Wish, 1978; Borg & Groenen,
2005) and Generalized Linear Model (GLM: McCullagh & Nelder, 1989; Agresti, 2002).
As a form of regularization, the MLD model allows for dimension reduction and therefore
less parameters are estimated compared to existing marginal models for multivariate binary
data. Moreover, the model enhances interpretation by using a biplot (Gabriel, 1971; Gower
& Hand, 1996; Gower, Lubbe, & Le Roux, 2011) based on a distance interpretation.

For this newly proposed distance model we developed an R package called mldm.
Using an empirical dataset, usage of the package is demonstrated in Chapter 5. The
package handles both the clustered bootstrap method and the sandwich estimators for
obtaining standard errors of model parameters. It also provides a biplot function for the
graphical representation of the fitted model. In Chapter 6 we conclude the thesis with a

recommendation for future research.






Chapter 2

Effects of a Small Number of Dichotomous Indicators in

Latent Variable Modeling: A Simulation Study

Abstract

Structural equation models were originally proposed for the analysis of continuous or inter-
val indicator variables. Recently, factor analysis and structural equation models have been
applied for data with dichotomous indicators and with only a few indicators per latent
variable, i.e. 2 or 3. We investigated the performance of Confirmatory Factor Analy-
sis (CFA) and the Multiple Indicators Multlple Causes (MIMIC) model for dichotomous
indicators in comparison with interval indicators in a Monte Carlo simulation study.

The performance of both CFA and the MIMIC model was studied in terms of the
quality of recovering the true factor scores and the incidence of improper solutions, more
specifically non-convergence and Heywood cases. Furthermore, in the case of the MIMIC
model, the focus was on the type-l error rate and power.

We showed that both CFA and the MIMIC model performed poorly with a small
number of dichotomous indicators, i.e., (1) improper solutions occurred much more fre-
quently; (2) the true factor scores are poorly recovered; (3) the type-l error rates are too

conservative mostly and inflated sometimes; and (4) the observed power was weak.

27
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2.1 Introduction

Latent variable models are a general class of models that are used for analyzing multi-
variate data (Bartholomew & Knott, 1999; Skrondal & Rabe-Hesketh, 2004). In Latent
Variable (LV) models the multivariate observed variables (manifest variables) are treated
as dependent variable, and one or more unobserved variables (latent variables) are treated
as independent variables. The observed variables are also known as indicators because
they are used as an indirect measure of the latent variables.

The Latent variables can be interval or categorical. As displayed in Table 2.1, there are
four classes of LV models based on the cross-classification of whether the observed variable
and/or latent variable is interval and/or categorical (Bartholomew & Knott, 1999). Our
main focus in this paper will be on Confirmatory Factor Analysis (CFA), which is a
special case of Structural Equation Modeling (SEM: Thurstone, 1947; Jéreskog & Sorbom,
1981; Christoffersson, 1975; B. Muthen, 1978; Bock & Lieberman, 1970; Mislevy, 1986).
Tomarken and Waller (2005) provided a detailed literature review on Structural Equation

Modeling (SEM) focusing on its strengths, limitations, and misconceptions.

Table 2.1: Classes of Latent Variable Models.

Latent variable

Observed variable Interval Categorical

Interval Factor Analysis/ Latent Profile Analysis/
Structural Equation Modeling  Mixture Modeling
Categorical Item Response Theory/ Latent Class Analysis

Latent Trait Analysis

Traditionally SEM focuses on the analysis of continuous (or interval) indicator vari-

ables. Many studies have been performed to investigate the performance of structural
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equation models (Boomsma, 1983, 1985; J. C. Anderson & Gerbing, 1984; Acito & An-
derson, 1986). Recently, in clinical psychological research structural equation models
have been proposed for the analysis of comorbidity of depressive and anxiety disorders
(Krueger, 1999; Beesdo-Baum et al., 2009). A typical characteristic of these models is
that the indicators are dichotomous, i.e the indicators indicate whether someone has or
does not have a particular disorder, and that there are only a few indicators per latent
variable, i.e. 2 or 3. We believe the application of structural equation models in such a
scenario (i.e., dichotomous indicators with a few number of variables per factor) is not
adequate enough to obtain a valid result about the research question that we would like to
answer. This is because with two indicator variables, there are only four patterns (i.e., (0,
0), (0, 1), (1, 0), and (1, 1)) with four corresponding observed proportions. Similarly, for
three indicators, there will be eight patterns. Therefore, there is only limited information
and it is hard to satisfy the normality assumption of the underlying latent variables in the
structural equation model. However, we did not find large scale simulation studies that
address our concerns. The aim of the current paper is to fill this gap. Therefore, we
conducted a simulation study to investigate the performance of SEM for the analysis of
a small number of dichotomous indicator variables per factor.

In our simulation study, we conducted two types of experiments. In the first experi-
ment, the performance of Confirmatory Factor Analysis (CFA) as a measurement model
is studied. The outcome variables of interest for this experiment are the incidence of
nonconvergence, occurrence of Heywood cases, and the quality of recovering the true
factor scores in CFA. In the second experiment, we study the performance of the Multiple
Indicators Multlple Causes (MIMIC) model (Stapleton, 1978; Kenneth, 1989; T. Brown,
2006). In this case, the outcome variables of interest are the type-l error rate and the
power of the statistical test for the regression coefficients in the MIMIC model. In both
experiments we study the impact of five design variables on the outcome variables. The

design variables are type of indicator variables (i.e., interval or categorical), number of
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indicators, strength of factor structure, correlation between factor scores, and sample size.

The outline of this paper is as follows. In Section 2.2 we discuss issues with factor
analysis and results found in the literature. The design and analysis of the simulation
study is presented in Section 2.3. In Section 2.4, the results of the simulation studies
are discussed. We conclude with a discussion of the results and some remarks for future

research in Section 2.5.

2.2 Issues with Factor Models for Multivariate Data

2.2.1 Indeterminacy of Factor Scores

The indeterminacy of factor scores refers to a situation where the same indicator variables
may produce different factor scores with the same model fit, and thus no unique solution
does exist for the factor scores (Acito & Anderson, 1986; Guttman, 1955; Heermann, 1964,
1966; Schonemann, 1971; Schonemann & Wong, 1972; Green, 1976, Elffers, Bethlehem,
& Gill, 1978). Some argue that the reason for the indeterminacy of factor scores is due to
the presence of too many parameters compared to the number of equations in the model

(Grice, 2001).

2.2.2 Improper Solutions

Factor analysis of multivariate data can sometimes produce improper solutions (Rindskopf,
1984; Boomsma, 1983, 1985; Kenneth, 1989; Chen, Bollen, Paxton, Curran, & Kirby,
2001). The most common improper solutions are nonconvergence and Heywood cases
(Kenneth, 1989, pp. 282). Heywood cases occur when the estimated variances of a

model become negative.
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2.2.3 Previous Studies

Indeterminacy of factor scores in CFA has been studied by Acito and Anderson (1986).
The impact of the number of indicators, factoring method, factor structure (i.e., the
magnitude of factor loadings), number of factors, and sample size on indeterminacy of
factor scores was investigated. Acito and Anderson found that both the factor structure
and the factoring method have large effects on the indeterminacy of factor scores. A
limitation of their study was that only interval indicators were considered. In the current
study we also consider dichotomous indicators.

Improper solutions, i.e., nonconvergence and Heywood cases, in CFA has been studied
using a Monte Carlo simulation by Anderson and Gerbing (1984) and by Boomsma (1985).
Anderson and Gerbing studied the impact of sampling error and model characteristics on
the incidence of improper solutions. Improper solutions occurred more frequently for
smaller sample sizes and for models with fewer indicators for each factor (J. C. Anderson
& Gerbing, 1984). Boomsma studied the impact of the number of indicators, correlation
between factors, and factor structure. All of the design variables had a large effect on the
incidence of improper solutions (Boomsma, 1985). Like the study by Acito and Anderson
(1986), however, both studies considered only interval indicators. In this paper, we extend
their study on improper solutions by including both interval and dichotomous indicator
variables.

Marsh, Hau, Balla and Grayson (1998) performed a simulation study and studied
extensively the impact of the number of indicators and sample size in a CFA on the
occurrence of improper and nonconverged solutions, accuracy of parameter estimates, and
goodness-of-fit indexes. Their main aim was to provide data driven evidence (contrary to
rules of thumbs) for the number of indicators per factor and sample size to fit confirmatory
factor models. They concluded that it is always good to have more indicators per factor

and a larger sample size whenever possible. Similar studies were conducted by Ding,
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Velicer, and Harlow (1995), Kenny and McCaoch (2003) and Marsh, Balla, and McDonald
(1988), although the main focus of these studies was on measures of fit for factor models.

In general, all these studies investigated the impact of variables of interest on statistical
properties of CFA when the indicator variables are interval. Categorical (or dichotomous)
indicator variables were not considered. Furthermore, emphasis was given for factor models
and the MIMIC model was not studied in a similar fashion. Our present simulation study

fills these gaps since both issues are addressed.

2.3 Monte Carlo Simulation Study

We followed the six-step approach of Monte Carlo simulation design in structural equation

modelling (Paxton, Curran, Bollen, Kirby, & Fen, 2001; Skrondal, 2000; Boomsma, 2013).

2.3.1 The Research Problem

Our main objective is to investigate the performance of SEM models, specifically Con-
firmatory Factor Analysis (CFA) and the MIMIC model, with only a few dichotomous
indicators assumed per factor. We investigate the quality of recovering the true factor
scores and the incidence of improper solutions (nonconvergence and Heywood cases). We
study the impact of five design variables on the outcome variables. To have a benchmark
to compare the performance of latent variable models for analyzing dichotomous indicator
variables, we also consider interval indicator variables. We used Mplus statistical soft-
ware package (L. Muthen & Muthen, 1998-2012) with the default estimation procedures
to analyze our simulated datasets, because that is how most applied researchers analyze
their data.

The design variables are type of indicator variables (i.e., interval or categorical), num-
ber of indicators, strength of factor structure, strength of correlation between latent

variables, and sample size. We conducted two experiments, where in the first experiment
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we study the performance of CFA and in the second experiment the performance of the

MIMIC model.

2.3.2 Experimental Plan

The simulated data were generated from a 2-factor model whose path diagram is shown
in Figure 2.1 for the CFA and in Figure 2.2 for the MIMIC model. In the path diagrams
we have six observed variables y; (j =1,2,...,6), two latent variables 6, (¢ = 1,2), and
unique factors indicated by €;. The model parameters in CFA are the factor loadings Aj,
and the covariance between the latent variables 15.

In the case of the MIMIC model (Figure 2.2) explanatory variables (zy, k = 1,2) are
added to the path diagrams. In addition to parameters of the factor model, the MIMIC
model also has regression weights (Vxq)-

An equal number of indicator variables per factor was assumed in the data generation
process. The variances of the factors were restricted to unity for identifiability of CFA.
Table 2.2 shows the design variables considered in our Monte Carlo simulation and in the
last column their corresponding values (or ranges) are given. The first design variable is
type of indicators which is either dichotomous or interval. Two possible situations were
considered for dichotomous indicator variables. The first case assumes a low success rate,
i.e., between 5% — 15%. This case is denoted by BLR in Table 2.2 which stands for
Binary indicators with Low success Rates. The other situation has moderate success rate
(between 40% — 50%), and is denoted by BMR which stands for Binary indicators with

Moderate success Rates.
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Figure 2.1: A path diagram of a factor model with six indicator variables represented by a
square, and two latent variables represented by a circle.
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Figure 2.2: A path diagram for a MIMIC model with two external variables that are represented
by a square.
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Table 2.2: The design variables with their corresponding values (or ranges) that are considered
in the Monte Carlo simulation study. BLR stands for Binary indicator variables with Low
success Rates; and BMR for Binary indicator variables with Moderate success Rates.

Variable Parameter  Level Value/Range
Type of Indicators - BLR 5% — 15%
BMR 40% — 50%
Interval —
Number of Indicators J Few 6
Medium 10
Large 16
Factor structure Aig Weak (0.316,0.447)
Moderate (0.316,0.632)
Strong (0.632,0.775)
Correlation between Factors Y12 Independence 0.0
Moderate 0.4
Strong 0.8
Sample size N Very Small 50
Small 100
Big 300
Very Big 3,000

For the number of indicators, Anderson and Gerbing (1984) suggested at least 3

indicators per factor in CFA. Kenny and McCoach (2003) varied the number of indicators
from four to twenty-five to assess the impact on measures of fit. The number of indicators
in our simulation study was varied from 3 to 8 per factor, which is equivalent to J = 6 to
J = 16 indicators in total. For the factor structure, we used the ranges proposed by Acito
and Anderson (1986). Both factor structure and variances for the measurement errors

can be derived from the factor loadings, i.e., ¥11 = Z'j]:l /\§1 and 19y = Z;]:l )\?2,
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and ¢; = 1 — A2, respectively. In our simulation study, following Acito and Anderson
(1986), we set factor loading values to: (0.316,0.447) for weak structure, (0.316,0.632)
for moderate structure, and (0.632,0.775) for strong structure.

For the sample size, Boomsma (1985) recommended a sample size of at least N = 50
and Anderson and Gerbing (1984) suggested a sample size of at least N = 150. Boomsma
and Hoogland (2001) showed that a sample size below N = 200 is vulnerable for the
occurrence of improper solutions. In our Monte Carlo simulation the sample size was
varied from N = 50 to NV = 3,000. Three possible situations for the correlation between
the latent variables were considered: 12 = 0.0 (independence), ¥12 = 0.4 (moderate

association), and 112 = 0.8 (strong association).

2.3.3 Simulation

The simulated data is generated following the MIMIC model. In the simulated MIMIC
model eight explanatory variables were considered. The true values that are used in the
simulation study are based on the fitted MIMIC model on the NESDA data (Penninx et
al., 2008). The first explanatory variable was generated from a Binomial distribution and
the others from a Standard Normal distribution, i.e., 1 ~ Bin(0.67) and z; ~ N(0,1)
for Kk =2,...,8. The regression coefficients used in the simulation are the following, for
10 11 = Y12 = 0.00; z2: vo1 = —0.10, y22 = —0.20; z3: 731 = v32 = 0.00; z4:
va1 = 1.00, v42 = 0.95; z5: 51 = —0.30, v52 = —0.25; we: Y61 = Y62 = 0.00; z7:
~v71 = 0.00, 72 = 0.10; and xg: g1 = g2 = 0.00.
Factor structures were then generated from a bivariate normal distribution 6 ~ Ny (p, ¥),

where
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and

o Y 2| ¥ Zav1 + Var(¢r) P12

a1 a2 12 ¥3 Xy + Var(z)
where 1 is a vector of regression coefficients for the first factor, and similarly «- for the

second factor.

2.3.4 Estimation

For each simulated data set a 2-factor model was fitted with and without explanatory vari-
ables, which corresponds to the CFA and the MIMIC model, respectively. The analysis was
done using the Mplus statistical software version 7 (L. Muthen & Muthen, 1998-2012).
A Maximum Likelihood Robust (MLR) estimator was employed for interval indicators
whereas a Weighted Least Square estimator with Mean and Variance adjusted (WLSMV)
was used for dichotomous indicator variables. The WLSMV is the default estimator in
Mplus. We used the package called MplusAutomation (Hallquist, 2012) to help us call
and run Mplus from the R environment.

The analysis procedure in our Monte Carlo simulation can be summarized as follows,
1. Fit a 2-factor CFA (or MIMIC model) on the simulated data.

2. Check if the fitted model is estimated without any problem due to improper so-
lutions. Otherwise, identify the problem and record as nonconvergence and/or

Heywood.
3. Estimate the factor scores, i.e., O = (él,ég).

4. If the fitted model is estimated correctly, calculate the correlation between true and
estimated factor scores, i.e., p; = Corr(ﬁq,éq) where ¢ = 1,2. In the case of the

MIMIC model, in addition to the correlation between factor scores, calculate:
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(a) the type-l error rate the regression coefficients.

(b) the power of the regression coefficients.

5. Repeat Step 1 to 4 for each simulated data set.

2.3.5 Replication

In our Monte Carlo simulation we use a full factorial 3 x 3 x 3 x 3 x 4 design, with in

total 324 In each cell we use R = 100 replications.

2.3.6 Analysis of Output

For the first experiment, the variables of interest are the incidence of improper solutions
and the quality of recovering the true factor scores in CFA .

The incidence of improper solutions was analyzed using a logistic regression model
(Agresti, 2002). When a low rate of improper solutions is found in the data, Firth logistic
regression (FLR: Firth, 1993) was used because it yields finite parameter estimates in
the presence of complete or quasi-complete separation (Heinze & Schemper, 2002). SAS
version 9.4 was used to fit the logistic regression models (SAS Institute Inc., 2013). The
Odds Ratio (OR) was used as an effect size measure for evaluating the practical signifi-
cance of the design variables and their interactions. We used the guidelines suggested by
Ferguson (2009), i.e., an odds ratio of about 2 (or 0.50) indicates a small effect, about 3
(or 0.33) a medium effect, and about 4 (or 0.25) a large effect. For interpretation of sim-
ulation results, we focus on large effects for type of indicators and number of indicators,
and their interactions with the other design variables.

Analysis of Variance (ANOVA) was used for analyzing the correlation data, i.e., p; and
p2, to assess the impact of design variables on the quality of recovering the true factor
scores. Because p; and py are very similar we focus on p;. A Fisher's transformation is

used to obtain an unbounded dependent variable, i.e., 21 = 0.5 x In[(1 + p1)/(1 — p1)].
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We used SPSS version 21 to fit the ANOVA model (IBM SPSS, 2012). The partial eta
squared, denoted by 772, will be used as a measure of effect size for the ANOVA model.
According to Cohen (1988), a value of 772 = 0.01 indicates a small effect, 772 = 0.059 a
medium effect, and 7]2 = 0.138 a large effect. For interpretation of simulation results, we
focus on large effects for type of indicators and number of indicators, and their interactions
with the other design variables.

In the second experiment we are further interested in the type-l error rate and the
power for the regression weights of the MIMIC model. These measures were obtained by
first calculating the proportion of cases in which an effect becomes statistically significant.
For the effects equal to zero, the calculated proportion represents the type-l error rate;
otherwise, the proportion corresponds to the power of the test. In the case of type-l error

rate, a 95% confidence interval of the proportion using the Wilson interval was calculated

(L. D. Brown, Cai, & DasGupta, 2001).

2.4 Results

2.4.1 Experiment-l: Confirmatory Factor Analysis

Nonconvergence in CFA

About 18.9% of the analyses in our simulation study did not converge. We applied logistic
regression on the nonconvergence outcome variable (1: not converged; 0: converged) to
investigate the impact of the design variables. The observed proportions of nonconver-
gence cross classified by design variables are presented in Table 2.3. A two-way interaction
logistic model was fitted to the nonconvergence data.

The results of the 2-way interaction model are displayed in the Appendix (Table A.1);
our focus here will be on the effects of two of the design variables, i.e., type of indicators

and number of indicators, and their interaction with the other design variables. The type



Table 2.3: Percentage of nonconvergence in CFA under different experimental settings. Each cell result is based on R = 100 simulated

replications.
N Sample Size
Qc
m 50 100 300 3000
Q. Number of Indicators
Mﬂn Type of Indicators ~ Factor structure ~ Correlation between factors 6 10 16 6 10 16 6 10 16 6 10 16
)
BLR Weak Independence 73.0 520 540 810 69.0 43.0 79.0 580 7.0 13.0 0.0 0.0
Moderate 780 700 510 810 710 41 76.0 33.0 100 2.0 00 0.0
Strong 720 730 760 870 650 480 640 360 230 150 20 0.0
Moderate Independence 79.0 580 500 830 65.0 31.0 750 240 5.0 5.0 0.0 0.0
Moderate 76.0 63.0 420 820 480 21.0 56.0 10.0 1.0 0.0 00 0.0
Strong 790 630 620 810 560 350 450 21.0 120 6.0 1.0 0.0
Strong Independence 67.0 560 360 660 26.0 9.0 27.0 1.0 0.0 0.0 0.0 0.0
Moderate 740 58.0 410 69.0 330 21.0 120 1.0 0.0 0.0 00 0.0
Strong 71.0 62.0 420 540 380 250 7.0 1.0 0.0 0.0 00 0.0
BMR Weak Independence 79.0 510 270 750 410 7.0 48.0 8.0 0.0 0.0 0.0 0.0
Moderate 85.0 60.0 310 680 47.0 6.0 31.0 2.0 0.0 0.0 0.0 0.0
Strong 79.0 56.0 46.0 66.0 330 270 29.0 17.0 6.0 4.0 00 0.0
Moderate Independence 82.0 49.0 150 73.0 23.0 2.0 32.0 0.0 0.0 0.0 0.0 0.0
Moderate 75.0 300 120 56.0 7.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0
Strong 66.0 52.0 240 50.0 200 8.0 18.0 3.0 0.0 0.0 0.0 0.0
Strong Independence 52.0 22.0 7.0 22.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Moderate 52.0 14.0 2.0 26.0 0.0 0.0 1.0 0.0 0.0 0.0 00 0.0
Strong 28.0 9.0 5.0 10.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Interval Weak Independence 36.0 25.0 7.0 16.0 3.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0
Moderate 27.0 220 5.0 11.0 4.0 0.0 2.0 0.0 0.0 0.0 00 0.0
Strong 23.0 150 2.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0
Moderate Independence 32.0 9.0 1.0 9.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Moderate 12.0 4.0 0.0 7.0 1.0 0.0 2.0 0.0 0.0 0.0 00 0.0
Strong 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0
o Strong Independence 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
< Moderate 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Strong 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0
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of indicators has a large effect on the incidence of nonconvergence in CFA. Moreover, we
found a large effect of 2-way interaction between the type of indicators and the following
variables: number of indicators, factor structure, and sample size. There is also a large
effect of number of indicators on the incidence of nonconvergence in CFA, and its 2-way
interaction with the sample size. Figure 2.3 displays the corresponding interaction plots for
the large effects. The first three panels (from left to right) show interaction plot between
the type of indicators and the other design variables (i.e., the number of indicators, the
factor structure, and the sample size). The last panel is for the interaction plot between
the number of indicators and the sample size.

Regardless of the other design variables (i.e., number of indicators, factor structure,
and sample size), we found a large effect of type of indicators on the prevalence of non-
convergence in CFA. The worst result was obtained for the binary indicators, specifically
for the BLR data. For interval indicators, there was not much effect of the other design
variables on the prevalence of nonconvergence in CFA.

By looking at the first and the last panel in Figure 2.3, there is a large interaction
effect between the number of indicators with the type of indicators and the sample size.
That is, the worst prevalence of nonconvergence due to the number of indicators was
obtained when the binary indicators (i.e., BLR and BMR data) are analyzed by CFA. For
the sample size, the worst prevalence of nonconvergence due to the number of indicators

was found when the sample size is below N <= 300.
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Figure 2.3: Interaction plot for Nonconvergence rate: The first three panels (from left to right)
show interaction plot between the type of indicators and the number of indicators, the factor
structure, and the sample size, respectively. The last panel is for the interaction between the
number of indicators and the sample size.

Heywood cases in CFA

About 6.6% of the analyses in our simulation study resulted in Heywood cases. We
applied logistic regression models on the Heywood outcome variable (1: yes; 0: no). The

observed proportions of Heywood cases cross classified by the design variables are shown
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in Table 2.4. A 2-way interaction logistic model was fitted on the Heywood data, and the
results are presented in the Appendix (Table A.2).

Like for the nonconvergence analysis, our focus will be on the effects of the type
of indicators and the number of indicators, and their interaction with the other design
variables. The type of indicators has a large effect on the incidence of Heywood in CFA.
Moreover, we found a large effect of 2-way interaction between the type of indicators
and all the other design variables, i.e., number of indicators, factor structure, correlation
between latent variables, and sample size. There is also a large effect of number of
indicators on the incidence of nonconvergence in CFA, and its 2-way interaction with both
the factor structure and sample size. Figure 2.4 displays the interaction plots for the large
effects. The first four panels (from left to right) show interaction plot between the type
of indicators with the number of indicators, the factor structure, the correlation between
underlying latents, and the sample sizes. The last two panels are for the interaction plot
between the number of indicators with the factor structure and sample size.

In the first three panels, it can be seen that there is no large difference in prevalence
of Heywood cases among the type of indicators used in CFA. The fourth panel shows the
interaction with the sample size, where the highest number of Heywood cases was found
for the BLR data, except for a large and small data sets.

There is a large effect of the number of indicators on the prevalence of Heywood
cases in CFA. The first panel in the last row shows that the worst result was found for
a small number of indicators regardless of the type of indicators in CFA. Furthermore,
more Heywood cases were found for the smallest number of indicators with weak factor

structure and with small sample sizes.



Table 2.4: Percentage of Heywood cases in CFA under different experimental settings. Each cell result is based on R = 100 simulated

replications.
N Sample Size
Qc
m 50 100 300 3000
Q. Number of Indicators
Mﬂn Type of Indicators ~ Factor structure ~ Correlation between factors 6 10 16 6 10 16 6 10 16 6 10 16
)
BLR Weak Independence 21.0 6.0 3.0 51.0 240 20 500 260 30 50 00 00
Moderate 21.0 3.0 6.0 410 230 70 440 150 40 10 00 0.
Strong 14.0 4.0 2.0 42.0 9.0 1.0 28.0 6.0 1.0 00 00 00
Moderate Independence 18.0 2.0 4.0 520 16.0 0.0 48.0 9.0 0.0 00 0.0 0.0
Moderate 9.0 3.0 1.0 33.0 7.0 0.0 26.0 1.0 00 00 00 0.0
Strong 8.0 0.0 4.0 31.0 4.0 0.0 8.0 0.0 00 00 00 00
Strong Independence 10.0 4.0 7.0 12.0 0.0 0.0 2.0 0.0 00 00 00 0.0
Moderate 6.0 3.0 4.0 9.0 0.0 0.0 0.0 0.0 00 00 00 00
Strong 5.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 00 00 00 0.0
BMR Weak Independence 47.0 13.0 3.0 53.0 180 3.0 34.0 5.0 00 00 00 0.0
Moderate 45.0 20.0 2.0 370 13.0 1.0 120 0.0 00 00 00 0.0
Strong 51.0 14.0 1.0 25.0 2.0 1.0 1.0 0.0 00 00 00 0.0
Moderate Independence 41.0 10.0 1.0 38.0 6.0 0.0 11.0 0.0 0.0 00 00 00
Moderate 38.0 5.0 0.0 23.0 1.0 0.0 4.0 0.0 00 00 00 00
Strong 17.0 1.0 0.0 13.0 0.0 0.0 1.0 0.0 00 00 00 0.0
Strong Independence 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00
Moderate 3.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 00 00 00 00
Strong 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 00 0.0
Interval Weak Independence 66.0 48.0 140 540 140 20 20.0 0.0 00 00 00 0.0
Moderate 51.0 340 12.0 46.0 7.0 1.0 9.0 0.0 00 00 00 0.0
Strong 38.0 18.0 6.0 13.0 0.0 0.0 0.0 0.0 00 00 00 0.0
Moderate Independence 60.0 22.0 2.0 40.0 2.0 0.0 10.0 0.0 0.0 00 0.0 00
Moderate 40.0 13.0 1.0 24.0 1.0 0.0 2.0 0.0 00 00 00 0.0
Strong 14.0 4.0 0.0 1.0 0.0 0.0 0.0 0.0 00 00 00 00
< Strong Independence 8.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 00 00 00 0.0
< Moderate 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 00 00
Strong 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 00 0.0
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Figure 2.4: Interaction plot for Heywood rate: The first four panels (from left to right) show
the interaction between the type of indicators and the number of indicators, the factor
structure, the correlation between underlying latents, and the sample size, respectively. The last
two panels are for the interaction between the number of indicators and the factor structure

and the sample size.
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Recovery of Factor Scores

The observed average correlations between the true and estimated factor scores for the
first latent variable cross classified by the design variables as displayed in Table 2.5. A
2-way interaction ANOVA model was fitted on the transformed correlation data, and
the results are presented in the Appendix (Table A.3). Large effects were found for the
number of indicators, the type of indicators, and the interaction between type of indicators
and factor structure. Figure 2.5 displays the interaction plots for the large effects. The
first panel shows two main-effect plots corresponding to effects of the type of indicators
and the number of indicators, respectively. The second panel shows the interaction plot
between the type of indicators and the factor structure.

Both plots show that there is a large effect of type of indicators on the quality of
recovering the true factor scores in CFA. The worst result was obtained for the binary
indicators (i.e., BLR and BMR) regardless of the other design variables.

The first plot also shows a large effect of the number of indicators on the quality of
recovering the factor scores in CFA. The worst result was found for the smallest number
of indicators. Although we found a large interaction effect between the type of indicators

and the factor structure, the second plot in Figure 2.5 does not clearly show this effect.
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Figure 2.5: Interaction plot for Quality of Recovering Factors: The first panel shows two main
effects for the type and number of indicators. The second panel shows the interaction between
the type of indicators and the factor structure.

2.4.2 Experiment-ll: The MIMIC Model

In the second experiment, we study the type-l error rate and the power of the regression

parameters (i.e., 7) of the MIMIC model.

Type-|l Error

In this section we study the impact of design variables on the Type-I error rate. Although
there are a couple of parameters whose true values are set to zero in the simulation study,
for demonstration purpose we chose one of the parameters, i.e., 731 which indicates the
relationship between X3 and the first latent variable whose results are presented in Table
2.6.

Those values whose 95% confidence interval excluded the nominal level of significance

(e = 0.05) were made bold; there are a total of fourteen cells which resulted in such cases,



49

RESULTS

2.4.

¥00 ¥00 900 900 800 00 600 800 00 0O ¥I0O 600 Suong

¥00 ¥00 900 S00 900 €00 S00 900 Y00 00 600 800 S1es3poy

¢00 ¢00 co0 IT0 90 €00 800 900 800 00 600 0T0 aouapuadapu Suong

800 S00 <00 €00 €0 900 SO0 ¥OO €0 800 OT0 V0O Suons

¥00 ¥00 €00 00 900 100 SO0 SO0 OT0 600 600 OTO S1espoy

100 900 ¥00 S0 900 S0 SO0 010 TIT0 <TI0 600 800 aouapuadapu S1e43poN

600 900 €00 Ss00 ¥00 €00 TIT'0 000 600 900 SO0 ¥OO Suong

900 00 00O ¥00O ¥00O <CO0 000 800 00 IT'0 IT0O 00 d1espoy

€00 00 800 ¥00O 00 800 SO0 80 100 600 00 €00 souspuadapul eI |ensa1u)
¥0'0 900 €00 010 8€0 00 000 000 OCO 000 - 000 Suong

000 900 SO0 000 000 000 TIT'O 000 000 - 000 000 S1e49poy

000 000 000 000 000 SO0 OO 000 00O 00O 000 ©OOO souspuadapul Suong

€00 €00 800 SO0 SO0 OO0 00 ¥0O ¥00 SO0 YO0 €00 Suong

¢00 c¢o0 SO0 TIT0  ¥00 €00 SO0 €00 S0 800 €00 000 21e4apoy

800 <¢00 800 00 SO0 €00 €00 900 €00 000 OT0 SO0 aouapuadapu a1e49poy

€00 S00 600 €00 900 €0 900 SO0 900 00 200 000 Suong

G600 900 800 S00 SO0 OO0 €00 SO0 <00 00 000 €00 S1e4apoN

¥0'0 100 S00 C00 800 ¥O0 ¢00 900 TOO0 CO0 20O 200 souspuadapul %M JiNg
¢00 800 €00 IT0 000 000 000 000 000 - 000 - Suong

000 1000 800 00 900 000 000 000 000 000 000 000 S1e43poy

000 600 600 OT'0 000 000 80 000 000 000 000 - aouspuadapu Suong

¢00 900 800 €00 T00 T00 LTO 000 000 - - 000 Suong

¢00 €00 €00 100 ¥00 Y00 000 000 000 - - - a1e49poN

€00 €00 0T'0 900 600 000 000 000 000 - - - Souspuadapul S1e49poy

¥0'0 §00 S00 C00 SO0 100 €00 000 000 - - - Suong

€00 <¢00 €00 00 <00 <00 000 €00 000 - - - a1e49pojy

¥00 100 100 ¢00 ¥00 TO0O 000 000 000 - - - souspuadapu RN d1d
91 0t 9 91 0t 9 91 0t 9 91 (0)8 9 $1010B} UDIMIDQ UOIIB[II0D)  24NIDNJIS Jojde4{  slojedipu] jo adA)

SJ01BDIpU| JO JaquINp
000€ 00€ 00T 05

9z1g s|dweg

‘|92 1BY3 JOJ PAUIBICO 949M S}|NSDJ PI[BA OU 9]EDIPUI SBUI| PAYSE(] 'SUOIIN|OS
Jadoudwi Jo ssnedsq siayyip (192 4ad suonedijdsa Jo ssquinu sy *(gO'0 = ©) 9duedIIUSIS JO [9A3] [BUIWOU Y1 SUIPN|OXS [BAISIUI SOUSPLUOD
94,G6 1ussaidal ploq ul sanjea sy "TEL ‘Jo1dey 1S4l Byl pue €Y usamiaqg diysuolle|sd Y3 Joj sa1ed Jous |-adA1 pansssqQ 19'g d|qel



50 CHAPTER 2.

i.e., one for BLR data, one for BMR data, and the rest for interval data. However, for
BLR and BMR data with N = 50 no results were found due to the presence of improper
solutions and are thus represented by dashed lines in Table 2.6. Therefore, this resulted
in a wider confidence interval for the binary indicators (i.e., the BLR and the BMR data)
and because of that the 5% level of significance level is included.

Although the confidence intervals obtained for both BLR and BMR data do include the
level of significance, most of the point estimates are either zero or very high. Therefore,
the observed type-l error rates were too conservative (i.e., values very close to zero) for
BLR, and inflated (i.e., above the 5% nominal level of significance) for BMR indicators.
In the case of interval indicators, most of the confidence intervals included the nominal
level of significance, and their results seems stable around a = 0.05.

The number of indicators had an impact on the recovery of type-l error rate, particu-
larly for dichotomous indicator variables with low success rates (BLR). That is, among the
108 observed type-| error rates obtained from BLR only thirteen included the 5% nominal
level of significance in their 95% confidence interval for J = 6, while sixteen for J = 10
and nineteen for J = 16 recovered the required type-l error rate. In the case of both
BMR and interval indicators, we found no significant difference on the recovery of type-I

error rate among the type of indicators.

Power

In this section we focus on the observed power of three of the parameters in the MIMIC
model, i.e., v51 = —0.30 representing a moderate effect, y72 = 0.10 for a small effect, and
Y42 = 0.95 for a strong effect. Their results are shown in Table 2.7 and in the Appendix
(Table A.4 and A.5), respectively. Some of the cells of these tables had no values due to
the presence of improper solutions and are consequently represented by dashed lines. A
threshold value of 0.80 will be used as a criterion to represent adequate power.

It is evident from Table 2.7 that most of the observed power values obtained from
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dichotomous indicators are very low, except when the sample size is very large. Let us
elaborate on this point using the results under a sample size of N = 300 from Table 2.7.
Out of the twenty-seven observed values for BLR (i.e., Binary indicators with Low success
Rates) none of them passed the threshold value of 0.80 and the maximum value achieved
was only 0.56. For the case of BMR (i.e., Binary indicators with Moderate success Rates),
only one out of twenty-seven had an observed power of exactly 0.80. In the case of interval
indicators, however, eleven out of twenty-seven satisfied the criteria and the maximum
value achieved was an observed power of 0.86.

The minimum power was 0.00 for both BLR and BMR while it was 0.12 for interval
indicators. With a small effect size of 772 = 0.10 as shown in the Appendix (Table A.4),
among the 216 cells for dichotomous indicators (i.e., both BLR and BMR) only three of
the observed values are larger than 0.8 while in the case of interval indicators nineteen out
of 108 cells satisfied this criterion. These results show that the MIMIC model performed
poorly for analyzing dichotomous indicators, particularly for dichotomous indicators with

low success rates.

2.5 Conclusion and Discussion

Structural equation models are originally proposed for analysis of continuous (or interval)
indicator variables. Recently, factor analysis and structural equation models have been
applied for data with dichotomous indicators and with only a few indicators per latent
variable, i.e., 2 or 3 (Krueger, 1999; Beesdo-Baum et al., 2009). Using a Monte Carlo
simulation study, we showed that latent variable models applied on such type of data
performed poorly with higher incidence of improper solutions, poor quality of recovering
the true factor scores, too conservative or inflated type-l error rates, and weak power.
About 18.9% out of all the analyses in the CFA did not achieve convergence, and

about 6.6% were Heywood cases (i.e., out-of-bound problem). It is shown that the type
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of indicators and the number of indicators in CFA plays a major role on the occurrence of
the nonconvergence in CFA. That is, high prevalence of nonconvergence was obtained for
binary indicators with a few indicators per latent variable. For the occurrence of Heywood
cases in CFA, the number of indicators also played a major role. The quality of recovering
the true factor scores in CFA was poor in the case of binary indicators, and it became
worse with less indicators per latent variable.

We evaluated the performance of the MIMIC model using the type-l error rate and
the power of test for the regression weights. Most of the confidence intervals of the type-
| error distribution obtained from the dichotomous indicators, did not include the 5%
nominal level of significance. The type-l error rates were mostly conservative, although
few of them were inflated. For interval indicators, however, most of the results included
the nominal level of significance within their 95% confidence interval. The power of the
test with dichotomous indicators was poor compared to the interval indicators.

It is important to note that we used an advantageous design for our Monte Carlo
simulation study. The latent variables were generated from a bivariate normal distribution.
Moreover, the population model was correctly specified. In empirical studies it is likely that
assumptions are only partially valid. Moreover, the fitted model could be misspecified;
for example, an important indicator variable may not have been included in the analysis.
Under such conditions we would expect even more improper solutions and factor scores
that are further off than what we found in our current study.

Latent trait or Item Response Theory (IRT) model has also been proposed for analyzing
dichotomous indicator variables (Lord & Novick, 1968). It was shown by Mislevy (1986)
and Takane and De Leeuw (1987), that CFA and IRT models are formally equivalent and
thus yielding similar results. Knol and Berger (1991) conducted a simulation study to
compare the performance of these models and found that the common factor analysis on
the matrix of tetrachoric correlations performed similar to IRT models for multidimensional

data. Furthermore, Gldckner-Rist and Hoijtink (2003) recommended a joint application
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of the models. We conclude our discussion with a recommendation for those researchers
who do confirmatory factor analysis on data with a small number of dichotomous indicator
variables. It is shown in our Monte Carlo simulation that the method performed poorly
for this type of data and therefore must be used carefully. An alternative statistical model
which requires less assumptions might be more appropriate, for example the multivariate

logistic distance model (Worku & De Rooij, 2018).



Chapter 3

Properties of Ideal Point Classification Models for Bivari-

ate Binary Data

Abstract

The Ideal Point Classification (IPC) model was originally proposed for analysing multino-
mial data in the presence of predictors. In this paper, we studied properties of the IPC
model and extended it for analysing bivariate binary responses with a specific focus on
three parameters: (1) the marginal probabilities; (2) the association structure between
the two binary responses; and (3) the joint probabilities. We found that the IPC model
with a specific class point configuration, represents either the marginal probabilities or the
association structure. However, the IPC model is not able to represent both parameters
at the same time. We then derived a new parameterization of the model, the Bivariate
IPC (BIPC) model, which is able to represent both the marginal probabilities and the
association structure. Like the standard IPC model, the results of the BIPC model can be
displayed in a biplot, from which the effects of predictors on the binary responses and on
their association can be read. We will illustrate our findings with a psychological example

relating personality traits to depression and anxiety disorders.

This chapter was published as Worku, H. M. & De Rooij, M. (2017). Properties of Ideal Point
Classification Models for Bivariate Binary Data. Psychometrika, 82 (2), 308-328. To address remarks of
the PhD committee, this chapter is slightly modified.

55
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3.1 Introduction

Multiple binary outcome data are often collected in epidemiology, psychology, medicine,
and other life and behavioral sciences. For example, in the Netherlands Study of Depres-
sion and Anxiety (NESDA) data were collected on depression and anxiety disorders, and
how these disorders are influenced by personality traits and background variables (Penninx
et al., 2008; Spinhoven et al., 2009). In this paper, we focus on bivariate binary data in
which two dichotomous response variables are observed for each subject in a study. An-
other example with bivariate binary data is the British coalminers study (Ashford et al.,
1970), which investigated data on breathlessness (1 = difficult; 0 = Normal) and wheeze
(1 = difficult; 0 = Normal) of coalminers in Britain, to study the impact of exposure on
these respiratory indicators (Ashford et al., 1970; McCullagh & Nelder, 1989; Palmgren,
1989).

Let us denote the bivariate binary responses observed from the i-th subject by Y;; and
Yio. The p dimensional vector x; represents the explanatory variables without including
an intercept, where ¢ = 1,2,..., N. The cross-classified binary responses are displayed in
Table 3.1 in which the corresponding probabilities are also presented, i.e., the probabilities
within the four cells represent the joint probabilities; and those at the margins represent the
marginal probabilities. Empirical researchers working with bivariate binary data are often
interested in the following parameters: (1) the marginal probabilities; (2) the association
between the two binary responses; and (3) the joint (or multinomial) probabilities.

In marginal modelling, the main focus is on the analysis of the marginal probabilities
separately in which the association structure between the binary responses could be a
direct interest or treated as a nuisance parameter (Agresti, 2002, pp. 455; Molenberghs &
Verbeke, 2005, pp. 55). In the margins of Table 3.1, the marginal probabilities are denoted
by 7. = Pr(Y;1 = 1) and m;.; = Pr(Y;2 = 1), where [ = 0,1. Bahadur (1961) proposed

a marginal model based on the full likelihood for analysing bivariate binary data. The
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joint distribution was characterized by the two marginal distributions and the correlation
between the two binary responses. Lipsitz, Laird and Harrington (1990) followed the idea
of Bahadur (1961) and showed that other measures of association can also be used (e.g.,
the odds ratio or relative risk). For a 2 x 2 contingency table, the odds ratio is calculated
as 7; = (mi11 X mi00)/(Ti,10 X Ti01) where m 11 = Pr(Yy = 1,Ye = 1); me0 =
Pr(Yi1 =0,Yi2 =0); m.10 = Pr(Yi1s = 1,Yi2 = 0); and ;01 = Pr(Y;1 =0,Y;, = 1).

Marginal model parameters can be fitted directly or by imposing restrictions on the
joint distribution (Molenberghs & Verbeke, 2005, pp. 49). Aitchison and Silvey (1958,
1960) originally proposed constrains on parameters in maximum likelihood function. Their
approach was later applied to categorical data by Lang and Agresti (1994), and other re-
searchers (Lang, 1996; Bergsma, 1997; Bergsma & Rudas, 2002; Vermunt, Rodrigo, &
Ato-Garcia, 2001). McCullagh and Nelder (1989) introduced a multivariate logistic trans-
formation which can be used to relate the joint distribution to the marginal probabilities
and the association structure. Their approach is widely used for marginal modelling of
multivariate categorical responses (Glonek & McCullagh, 1995; Molenberghs & Lesaffre,
1994, 1999).

In recent years, the marginal modelling strategy has shifted from fitting and testing
linear constraints on parameters to inequality constraints for addressing certain scientific
questions (Colombi & Forcina, 2001; Bartolucci, Forcina, & Dardanoni, 2001; Bartolucci,
Colombi, & Forcina, 2007). For ordinal responses, for example, it may be interesting
to know whether the univariate distributions are stochastically ordered in some way, i.e.,
whether pairs of responses are positively correlated, or whether the degree of positive
dependence changes with certain predictor variables (Colombi & Forcina, 2001).

The main drawback of a full likelihood-based marginal modelling approach is that
it is computationally intensive and prone to model misspecification, especially when the
number of response variables increases (Agresti, 2002, pp. 465; Molenberghs & Ver-

beke, 2005, pp. 151). Liang and Zeger (1986) proposed an extension of quasi-likelihood
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Table 3.1: Cross-classification of bivariate binary data observed from i-th subject.
Y:
1 0
Yii 1 mn miio T
0 mo01 mioo Tio.
i1 5.0 1.00

method, called Generalized Estimating Equations (GEE or GEE1), that does not require
full specification of the response distribution. In GEE1 the association structure is treated
as a nuisance parameter. Second-order GEE, called GEE2, (Liang et al., 1992) and Alter-
nating Logistic Regression (ALR: Carey, Zeger, & Diggle, 1993) are commonly used for
modelling both the marginal probabilities and the association structure.

The third parameter of interest are the joint probabilities. The joint probabilities as
displayed in Table 3.1 (i.e., m; 00; mi10; mi01; and m;11) correspond to a multinomial
response variable, denoted by G;, with four categories (g = 4). For simplicity, we use a
single index to refer to the joint probabilities, i.e., m;; = Pr(G; = j). For example, the
four cells in Table 3.1 can be represented as: m;; = m; 00; Ti2 = T;,10; Ti3 = Ti,01; and
mia = mi11. In the NESDA study, for example, a multinomial response variable can be
defined from the two binary outcome variables. That is, G; = 1 if the subject has no
depression or anxiety; G; = 2 if (s)he has an anxiety disorder, but no depression disorder;
G; = 3 if the subject has depression disorder, but no anxiety disorder; and G; = 4 if
there is co-morbidity. Statistical models such as the Multinomial Baseline-Category Logit
(MBCL: Agresti, 2002, pp. 267) or Ideal Point Classification (IPC: De Rooij, 2009a), can
be used to analyse multinomial response variables in the presence of predictors.

De Rooij (2009a) proposed the IPC model for analysing a multinomial response variable
in the presence of predictors. The IPC model is a probabilistic multidimensional unfolding
model and closely related to Ideal Point Discriminant Analysis (IPDA) as proposed by
Takane, Bozdogan, and Shibayama (1987). Both IPDA and IPC models are classification
methods based on multidimensional unfolding (MDU) (Heiser, 1981, 1987; De Leeuw,
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2005). The objective of MDU is to find distances in Euclidean space between subjects
and objects that approximate a set of proximities as good as possible. In IPC and IPDA
models, the proximity is given by an indicator matrix that corresponds to the multinomial
response.

De Rooij (2009a) showed that the IPC model in maximum dimensionality is equivalent
to the MBCL model, i.e., if the dimensionality of the Euclidean space equals the number
of categories of the response variable minus one. The MBCL is a natural extension of
binary logistic regression to the case of nominal categorical variables. Both the IPC and
the MBCL models use the joint probabilities to define their likelihood function. Unlike in
the MBCL model, dimension reduction is possible in the IPC models. Thus, less model
parameters are estimated in the reduced space. Furthermore, the results of the IPC model
can be displayed using a biplot (Gower & Hand, 1996; Gower et al., 2011) which enhance
interpretation of the model.

In this paper, our main aim is to study properties of the IPC model for bivariate
binary data, specifically about the representation of the marginal probabilities and of the
association structure. We will show that the IPC model either represents the marginal
models or the association structure well. Next, we study a new parametrization of the IPC
model, namely the Bivariate IPC (BIPC) model, in which both the marginal probabilities
and the association structure are represented. This new model builds forward on the work
of Bahadur (1961) and Lipsitz, Laird and Harrington (1990). Compared to this existing
methodology for jointly modelling the marginal and association structure, our method has
the advantage of dimension reduction and a graphical representation of the model using
a biplot.

The paper is organized as follows. Section 2 presents the theoretical background.
Section 3 studies properties of the IPC models both mathematically and with a simulation
study. Section 4 proposes the BIPC model. Section 5 shows an example application and

then we conclude in Section 6 with a discussion.
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3.2 Background

3.2.1 The ldeal Point Classification Model

In the IPC model (De Rooij, 2009a) the conditional joint probabilities, i.e., m;(x;) =
Pr(G; = j|x;), are modelled using a distance between two points in an Euclidean space of
dimensionality M: one point representing subject i with coordinates 7; = [0;1, - . ., nin] ",
and the other representing class j with coordinates v; = [v,1,... ,’ij]T. The smaller
the relative distance between the two points, the larger the probability that the subject

belongs to that class. The IPC model is defined as (De Rooij, 2009a),

exp(—0.5 X 5”)
Yo exp(—0.5 x &;p,)

mi(x;) =

(3.1)

where §;; is a squared Euclidean distance between the two points and is defined as

M
Z Nim — 'ij . (3.2)
m=1

The coordinates of the subject points are assumed to be a linear combination of the
predictor variables x; and an intercept, i.e., n; = B + x;3, where B is a (p x M) matrix
with regression weights and, By an M dimensional intercept. The parameters of this
model are the regression weights and the class points.

Parameter estimates in the IPC model can be obtained by maximizing a multinomial

log-likelihood function

N
> |log | [Tmx™ ] | (33)

i=1
where f;; = 1 if subject i is in category j, zero otherwise.
The IPC model has translation, rotational freedom, and multinomial indeterminacy

(i.e., the class probability remains the same if a constant is added to each subject’s squared
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distance). The total number of restrictions needed is max[M (M —1)/2, M(M +1)—(g—
1)], and thus the total number of free parameters becomes npar = (p+g) M —max|[M (M —
1)/2, M(M +1) — (g — 1)] (De Rooij, 2009a). Depending on dimensionality of the fitted
model, y—parameters are set at fixed values to identify the model. For a multinomial
response variable with g = 4 categories, for example, the maximum dimensionality of the
IPC model is M = 3(= g — 1) and the total number of parameters in that case will be
npar = 3 X (p + 1) that corresponds to the regression parameters only since the class
points can be set to fixed values that span the three-dimensional space. The class point

coordinates can be specified, for example, as

0 0 O
1 0 0
v = (3.4)
0 1 0
1 1 1

The rows in (3.4) correspond to the response categories and the columns to the dimen-
sions. In this case, the IPC model is equivalent to the MBCL model. The advantage
of the IPC model over the MBCL model is that it provides the possibility of dimension
reduction. For the multinomial response with g = 4, a 2-dimensional IPC model can be
fitted with a total number of parameters npar = 2 x (p + 1) + 3, where the first part
(2 x (p+ 1)) represents the number of regression coefficients and the second part (+3)
the free class coordinates. From the eight class coordinates five need to be fixed for

identification. This can be accomplished, for example, by defining

0 0
1 0
v = ; (3.5)
0 732
Y41 742_
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where 732, 41, and 749 are the free class coordinates, i.e., these can be estimated from

the data.

3.2.2 The 2-step Approach of McCullagh and Nelder (1989)

We revisit a 2-step approach often used for constructing multivariate regression models
using joint probabilities of multivariate (or bivariate) binary data, as proposed by McCul-
lagh and Nelder (1989). We later apply this approach in the distance framework to study
the properties of IPC models.

In the first step, a linear transformation is applied on the joint probabilities to obtain

the marginal probabilities, i.e.,

where L is a matrix of zeros and ones and m; = [m;4 mi3 T2 m1) . In the case of bivariate

binary data, for example, the row margin is given by

Ay =Lim;
1 0 1 0 T
- X [mia iz Tio T
010 1 (3.7)
T4 + Ti2 ;1.
i3 + i1 0.
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Similarly, the column margin is given by

A = Lom;
1 1 0 0 T
= X [771‘4 Ti3 T2 7Ti1]
00 1 1 (3.8)
_ T4 + ;3 | T
T2 + i1 Ti-0

In the second step, logarithmic contrasts of interest are formulated, i.e.,
¥, = C" log[A], (3.9)

for an appropriately chosen contrast matrix C". For the bivariate binary data, the contrast

matrices can be chosen to be C" = [1 _1]. Thus,

Yi1 = {1 —1} log[A1]

= {1 _1} {log(m—l.) 1og(7rio.)]T

= log(m;1.) — log(m;o.) (3.10)

= log(m;1. /mio-)

= |0git(71'i1. )

Similarly, 1,2 = log(m;.;/m;.0) = logit(m;.1). In the presence of predictors these logits
can be linked to the systematic part as used in Generalized Linear Models (Agresti, 2002);
that is,

logit(m;;.) = Bo1 + ,61TX1',
(3.11)

logit(7;.1) = Boz + Ba ;.
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The above derivations (equation 3.6 - 3.11) can be summarized as follows.

C"log(L17;) = Bor + B xi,
(3.12)
C" log(Lam;) = Boa + B3 xi.

To obtain the association structure for bivariate binary data, the joint probabilities can

also be transformed linearly. In this case c’ = {1 -1 -1 1} and L = | such that,

CTlog(Lm)z[l -1 -1 1] log[l;]

z[l -1 -1 1] [log(m4) log(mi3)  log(mia) log(m)]T

= log(m;4) — log(m;3) — log(mi2) + log(m;1) (3.13)

T4 X 41
=log | ——
T3 X T2

= log().

This odds ratio can be linked to predictors as

log(7;) = foz + B3 Xi- (3.14)

3.3 Study-1: IPC Model as a Marginal Model

In this section, our aim is in how the IPC model represents both the marginal probabilities
and the association structure for bivariate binary data. We use the 2-step approach
of McCullagh and Nelder (1989) within the distance framework to transform the joint

probabilities into the marginal probabilities and the association structure.
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3.3.1 The 2-dimensional IPC Model

In this section, we show the representation of both the marginal probabilities and the
association structure by a 2-dimensional IPC model. The class point matrix introduced in
equation (3.5) will be used here with an additional restriction imposed on one of the free
class points. That is, 732 = 1 so that the first dimension pertains to a logistic regression of
the first response and the second dimension to a logistic regression of the second response

(i-e., no further scaling is required).

Representation of the Marginal Probabilities

Let us first show how the marginal probabilities of the two binary responses are represented
by the 2-dimensional IPC model. The joint probability as defined by the IPC model in

equation (3.1) will be used to define the marginal probabilities, that is,

1 i1 1 T4 + T2
o8 0. e m
i exp(—0.58;4) exp(—0.56;2)
Jr
— log >onexp(—0.50;n) >, exp(—0.55;p) (3.15)
exp(—0.50;3) exp(—0.56;1)

+
L >, exp(—0.5d;3)

> on exp(—0.50;1)

exp(—0.50;4) + exp(—0.50;2)
exp(—0.5d;3) + exp(—0.56;1)

= log

Let us write out the Euclidean distances §;; as defined in equation (3.2). The marginal

model (3.15) becomes,

(3.16)

: Ti1e : exp [Ya1(ni1 — 0.5941)] X exp [Yaz(1i2 — 0.5942)] + exp[ni1 — 0.5]
08 08 exp(ni2 — 0.5) + 1 ’
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In this paper, we find it convenient to re-parametrize -y4; and -4 in terms of two other
parameters, i.e., v41 = 1+¢1 and 42 = 1+¢3. The ¢-parameters represent the deviation
of the last category from (1, 1). By setting ¢1 = ¢2 = 0, the above result (16) can be
simplified to:

[exp(n;1 — 0.5) x exp(n;2 — 0.5)] + exp(n;1 — 0.5)

logit[m;;.] = log e p—Y |
i )

exp(ni1 — 0.5) x [exp(n2 — 0.5) + 1]

=lo
& exp(n;2 — 0.5) + 1 (3.17)

=M1 — 0.5
= (Bo1 — 0.5) + B x;

= B4, + Bl x:.

Similarly,
Tie1 T4 + ;3
log =log | ——
Ti«0 Ti2 + Ti1

exp(70.55,;4) exp(70.5513)
+
~log >onexp(—0.50;n) >, exp(—0.58;p) (3.18)
exp(—().55i2) exp(—0.55i1)
+
L >, exp(—0.55;,) >, exp(—0.5d;5)
| exp[ya1 (i1 — 0.57v41)] X exp[ya2(niz — 0.57v42)] + exp[ni2 — 0.5]
= Og

exp[ni1 — 0.5] + 1

By setting ¢1 = ¢2 = 0 a straightforward marginal model is obtained, logit[r;.,] =
(Boz — 0.5) + BIx; = By + Bax;; and, thus we call this the fixed class case. Without

the constraints on the ¢-parameters, the marginal models in (3.16) and (3.18) can not
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be simplified further.

Representation of the Association

The odds ratio is defined in terms of the joint probabilities as shown in (3.13). Let us

rewrite the probabilities in terms of the IPC model as in equation (3.1); that is,

Ti4 X 1
log(Ti) = log m
[ exp(—0.5d;4) exp(—0.5d;1)
X
— log >onexp(=0.56;n) >, exp(—0.58;p)
eXp(—0.56,’2) exp(—0.55i3)
X
L >, exp(—0.58;,) >, exp(—0.50;5)
exp(—0.5d;4) x exp(—0.56;1)
= 1
8 exp(—0.50;2) x exp(—0.5d;3)
= 05 >; [(Sig + 0i3 — 04 — 62’1]- (3.19)

This result implies that the differences between pairs of squared Euclidean distances corre-
spond to the log-odds ratio. The distances can be written out and the association model

becomes,

log(7i) = ¢1 x (M1 — 1) + ¢ X (mi2 — 1) — 0.5 % (¢ + ¢3). (3.20)

In the case of ¢1 = ¢3 = 0, log(7;) = 0 which is equal to 7; = 1. An odds ratio of unity

indicates no association between the two binary responses, i.e., independence.

3.3.2 The 3-dimensional IPC Model

We now show the representation of the marginal probabilities and the association structure

in a 3-dimensional IPC model. The class point introduced in equation (3.4) will be used
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in the next derivations of the 3-dimensional IPC model.

Representation of the Marginal Probabilities

We follow the same derivation as before, but now the joint probabilities are defined in the

3-dimensional Euclidean space. For the marginal probabilities, we have

Ti1e
log = log
7T7,'0'
= log
= log
Similarly,
Tie1
log = log
Ti+0
= log

= log

Tig + Ti2
T3 + i1
[ exp(f().5 X 624) exp(70.5 X 512)
Yonexp(—0.5 x ;) + > exp(—0.5 X d;p)
exp(—0.5 X 513) exp(—0.5 X (511)

L >, exp(—0.5 x d;p,) + > onexp(—0.5 X d;p)

exp [ni1 + Mi2 + i3 — (3/2)] + exp [;1 — 0.5]

3.21
exp [ni2 — 0.5] + 1 ( )
T4 + i3
Ti2 + i1
[ exp(—0.5 X 514) exp(—().5 X 513)
Yonexp(—0.5 x ;) + >onexp(—0.5 X d;p)
exp(—0.5 X d;2) exp(—0.5 x ;1)
L >, exp(—0.5 x d;5) + >onexp(—0.5 x d;p)
exp [1i1 + Miz + Mz — (3/2)] + exp [1;2 — 0.5]
(3.22)

exp ;1 — 0.5] + 1

It is not possible to simplify the above formulas further because of the parameters 7;3.

Compared to the 2-dimensional IPC model with fixed class point, the marginal models
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are not clearly represented in the 3-dimensional IPC models.

Representation of the Association

Using the formula derived in equation (3.19), but with the distances defined in three

dimensions, the association model becomes

|0g[7’i] = 0.5x [5L2 + 51'3 — 51‘4 — 6,’1}
3 3
= 05 x { lz (Mo — 2mi1 + 1) | + Z (i — 2mi2 + 1)
m=1 m=1

3 3
lz (Mo — 2001 — 2042 — 2033+ 3) | — [Z 77?7n] }
m=1 m=1

= 13 —0.5. (3.23)

This result proves that the 3-dimensional IPC model represents the association structure

where the third dimension uniquely pertains to the association model.

3.3.3 Discussion

We studied both 2- and 3-dimensional IPC models in terms of marginal probabilities and
association structure of bivariate binary data in the presence of predictors. We showed
that both models with a specific class point specification are able to recover either the
marginal probabilities or the association structure. That is, the 2-dimensional IPC model
with fixed class point, i.e., 1 = ¢o = 0, is equivalent to the marginal model with an
independence association structure. In the case of a 3-dimensional model, the association
structure is represented by the third dimension.

Based on the results of Section 3.1.1 and 3.1.2, we showed that a 2-dimensional IPC
model with fixed class points, i.e., 741 = 742 = 1, represents a marginal model with an
independence association structure. Each of the dimensions in the IPC model is related

to one of the two binary responses. As shown in equation (3.20), the 2-dimensional IPC
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model with free ¢-parameters represents the association structure by a mixture of the
marginal parameters and the ¢-parameters.

According to the analytical results shown in equations (3.16) and (3.18), the marginal
models can not be further simplified unless ¢; = ¢ = 0. When ¢; # 0 and ¢ # 0,
neither the marginal model nor the association structure is well represented. At this stage,
however, we do not know whether the IPC model is capable of recovering the models
for the marginal probabilities and the association structure; therefore, we conducted a

simulation study.

3.3.4 Simulation Study

We were able to show mathematically the performance of both the 2-dimensional IPC
model with fixed class point, denoted by IPC(2D-FIXED), and the 3-dimensional IPC
model, denoted by IPC(3D), in representing the marginal probabilities and the association
structure for bivariate binary data. The analytical derivation under the 2-dimensional IPC
model with free class points, denoted by IPC(2D-FREE), however, was cumbersome.
We conducted a simulation study to fully understand to what degree the IPC (2D-FREE)

model recovers the marginal models and/ or the association model.

Data-generating Model

Bivariate binary data were generated from a Bivariate Logistic Regression model (Palmgren,

1989). The data generating model for the marginal probabilities is defined as follows,

logit[m;1.] = Bo1 + B11X1: + P21 Xoi + B31X3i + Bar Xai + 851 X5, (3.24)

logit[m;.1] = Boz + B12X1i + Ba2Xoi + B32X3i + LaoXui + P52 X5,

We set (ﬁ(n,ﬂog) = (7220, 7150), (611, 512) = (000, 7025), (,621,522) = (020, 000),
(531,632) = (7015, 7015), (ﬂ41,642) = (105, 115), and (B51,B52) = (70457 7015)
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To generate data we need a representation of the association structure, i.e., log[r;] =
Bos + B13X1; + Bo3Xo; + B33X3; + PasXui + B53X5:. In the 2-dimensional IPC model,
the association structure is defined in terms of the other parameters as shown in (3.20).
That is, fog = é1 X o1 + d2 X Boz — 0.5 x @3 — 0.5 X ¢3 — 1 — ¢y and By =
@1 X Br1 + ¢2 X Br2, where k = 1,2,...,5. Therefore, the data generating model for
the association is log[r;] = 53 + 513 X1 + B33 X2i + B33 X3i + BisXai + B33 X5:. We set
¢1 = —0.20 and ¢2 = —0.45; thus, the association parameters become 335 = 1.65 and
Bjs = (0.10,—0.05,0.10, —0.70,0.15).

Four of the predictors were generated from the standard normal distribution, Xg4; ~
N(0,1) where g =2,...,5, and one from a binomial distribution, i.e., X1; ~ BIN(0.67).
The VGAM package in the R software was used for generating the bivariate binary data
(Yee, 2010).

Design and Analysis

A sample size of N = 500 was used in the simulations and each simulation was replicated
R = 1000 times to obtain the sampling distributions of model parameters.

The performance of the proposed methods was evaluated by Bias (B), Root Mean
Squared Error (RMSE), and Coverage. The bias of a parameter is defined as the difference

between true value and the average of estimated values, i.e., B(B) = é — [, with
_ 1000
6="7_ B,/1000,

r=1

and BT is the estimate obtained from r—th replication. The RMSE is defined as

1000

RMSE= |} [(Br — 8)2/1000].

r=1

Finally, the coverage is defined as the proportion of times the 100(1 — a)% confidence
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interval (Cl) includes the true § value, where « corresponds to the nominal level of
significance. The Cl is defined as [BT:EZl_a/gg\E(BT)] in which SE stands for the standard

error of a parameter.

Simulation Study Results

The simulation results of the 2- and 3-dimensional IPC models are summarized in Table
3.2. The results for IPC(2D-FIXED) are given in columns 4-6, for IPC(3D) in columns
7-9, and for IPC(2D-FREE) in the last three columns. Because we showed analytically
that the marginal models are represented well by the 2-dimensional fixed IPC model, and
the association structure is represented well by the 3-dimensional IPC model, we focus
here on the contrast of the 2-dimensional free model with the other two.

Compared to the IPC(2D-FIXED) results, marginal parameters under the IPC (2D-FREE)
model were more biased. Specifically, two of the effects (i.e., X3 and X4) including the
intercept, were poorly estimated. More specifically, B(321) = 0.037 is about nine times
bigger compared to the IPC(2D-FIXED) result, B(23) = —0.016, B(841) = 0.106, and
B(B42) = 0.050 which all are about three times bigger than those obtained from the
IPC(2D-FIXED). All the RMSE results for the IPC(2D-FREE) model were higher than
those obtained from the IPC(2D-FIXED) model. The coverage of the marginal parameters
by the IPC(2D-FREE) model, compared to the former results, seems promising. However,
both the intercepts and some of the effects were not covered well (i.e., Sp1: 85.2%; Boz:
91.0%; B21: 92.5%; Bar: 92.6%%; Ps2: 91.9%). Unlike the marginal parameters, the
association parameters were fairly well estimated by the IPC(2D-FREE). This is evident
if we compare the results of the association parameters under the IPC(2D-FREE) and the

IPC(3D) models.
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3.3.5 Summary of Study-1

De Rooij (2009a) studied IPC model for categorical data and showed its equivalence to
logistic regression models. It was shown that the MBCL model is equivalent to the IPC
model in maximum dimensionality. These models represent the joint probabilities.

In this Section we studied properties of the IPC model and extended it for a