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Chapter 1

Introduction

1.1 Categorical Response Data

In statistical analysis, we often explore and analyze a single variable or many variables

depending on the research question at hand. A variable, sometimes referred to as a

random variable, is a statistical quantity which can be measured or observed. The fol-

lowing are examples of a variable: age, gender, survival of a patient (i.e., survived or

not survived), mental status (i.e., normal, mild, moderate, severe), marital status (single,

married, divorced, widowed), temperature and humidity, carbon emission, etc.

As described by Agresti (2002, Chap. 1), a variable can be classified in different

ways: (1) response (sometimes referred to as dependent or outcome) variable versus

explanatory (sometimes referred to as independent or predictor) variable; (2) continuous

variable versus discrete variable; (3) quantitative variable versus qualitative variable; and,

(4) nominal variable versus ordinal variable. Except for the first classification, the criteria

for the other classifications are based on the type of values or measurements a variable

could take. Gender, for example, is a nominal variable because it takes a value which is

either male or female. Gender is also a qualitative variable. Mental status, on the other

hand, could be defined either as qualitative or quantitative depending on the research.

1



2 CHAPTER 1.

In the above example, mental status is defined as an ordinal qualitative variable since

there is a natural ordering between values for severity of mental status. Both survival

of a patient and marital status, in the above example, are nominal qualitative variables.

Qualitative variables are sometimes referred to as categorical variables. Age, like mental

status, could be defined either as a discrete quantitative variable (e.g., Age (in years)

= 23, 24, 43, etc) or as a continuous quantitative variable (e.g., Age (in hours) =

1.5, 3.5, 8.0, etc) or as a ordinal qualitative variable (e.g., Age = young, middle,

elderly). The other variables in the above example (i.e., temperature, humidity and

carbon emission) are defined most of the time as continuous quantitative variables.

In regression analysis or Analysis of Variance (ANOVA), for example, we study the

relationship between a response variable and one or more explanatory variable(s). The

aim of such analysis is to understand the amount of change on a response variable when

a explanatory variable changes by some amount (usually a unit change). For example, a

researcher might be interested in the relationship between mental status and age. The

hypothesis of her research could be that severity of mental status of a subject might be

affected by age. In this case, the response variable is mental status and the explanatory

variable is age. Another example where a response variable is continuous, is the relation-

ship between level of temperature in a given area (or country) and the amount of carbon

emission. In this case, the response variable is temperature and it is a continuous variable.

Carbon emission is the explanatory variable since it has the potential to explain level of

atmospheric temperature.

In this thesis, the focus is on categorical response variables (where the response variable

takes discrete values, e.g., yes / no, cured / not cured, etc) and the relationship between

one or more explanatory variable(s) and these response variables.



1.2. EXPLANATORY VARIABLES 3

1.1.1 Binary Response Data

A binary response variable is a categorical variable whose values are binary (i.e., yes or

no; 1 or 0; survived or not survived; passed or failed). In many areas of research binary

response variables are collected. A clinical psychologist might be interested depression,

depression=1 if a given subject in the study has a depression, otherwise depression=0

representing absence of depression. A cardiologist might be interested to predict the

chance of a patient to survive after performing heart surgery (i.e., survival = 1 if a

patient survived; survival = 0 otherwise).

1.1.2 Multicategory Response Data

A multicategory response variable is a categorical variable with more than two possible

values. Mental and marital status are examples of multicategory response variable.

1.2 Explanatory variables

An explanatory variable is expected to influence the response variable of interest. A

possible set of explanatory variables for mental status could be age, residence (i.e., rural

or urban), life style (e.g., smoking status, physical exercise, etc), personality traits (e.g.,

neuroticism, extroversion), etc. In this dissertation the explanatory variables might be

continuous or categorical.

1.3 Logistic Regression Model

Logistic Regression (LR) model is a statistical model used for analyzing categorical re-

sponse data. LR model is a member of the family of Generalized Linear Models (GLMs)

(Agresti, 2007, chap. 3). The GLM is a general framework that extends ordinary linear

regression model for continuous response variable to other types of variables (e.g., cat-
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egorical response variables, i.e., both binary and multicategorical variables). Our main

focus in this thesis will be GLM for categorical response data.

A GLM has three parts: (1) a random component; (2) a systematic component; and,

(3) a link function. The random component represents the distribution of the response

variable. The systematic component represents a linear combination of the explanatory

variables. The link function is the part which does the linking between the response and

the explanatory variables. Below is the mathematical representation of GLM:

g(µ) = β0 + β1x1 + β2x2 + . . .+ βkxp, (1.1)

where µ = E(Y ) is the random component and it is the expected value of the distribution

of response variable Y from the exponential family. The right-hand side of Eq. (1.1)

represents the systematic part of GLM including the intercept (i.e., β0) and the regression

coefficients (i.e., β1, β2, . . . , βp corresponding to the p explanatory variables denoted by

x). The link function is g(.) and it connects the random part (i.e., µ) to the systematic

part (i.e., β0 + βTx, where x = (x1, x2, . . . , xp)
T).

1.3.1 Binary Logistic Regression

Binary logistic regression, sometimes referred to as simple logistic regression, is a GLM

for binary response data (Agresti, 2007, chap. 4). Let yi denote the observed value of a

binary dependent variable Y for subject i, where i = 1, 2, . . . , N . Binary logistic regression

models the probability of a “success” category conditional on the value of explanatory

variables xi, Pr(yi = 1|xi) = π(xi), i.e.,

π(xi) =
exp(β0 + βTxi)

1 + exp(β0 + βTxi)
, (1.2)

where xi = (xi1, xi2, . . . , xip)
T.
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The log-odds representation of the same binary LR model (1.2) is,

logit[π(xi)] = β0 + βTxi, (1.3)

where logit[π(xi)] = log [π(xi)/(1− π(xi))]. This representation of binary LR is similar

to the Generalized Linear model presented in Eq. (1.1) where the link function is now the

“logit” function with µ = π(xi) = Pr(yi = 1|xi).

1.3.2 Multinomial Logistic Regression

Multinomial LR model is a GLM for multicategory response data (Agresti, 2007, chap.

6). Let Gi = k denote the observed value of a multicategory dependent variable G for

subject i, where i = 1, 2, . . . , N .

The Multinomial Baseline-Category Logit (MBCL) model is a natural extension of

binary logistic regression model to the case of a nominal categorical variable. The prob-

ability of the k-th category in MBCL model (i.e., Pr(Gi = k|xi) = πk(xi)) is defined

as,

πk(xi) =
exp(β0k + βT

k xi)∑
c exp(β0c + βT

c xi)
. (1.4)

The log-odds representation of the MBCL model (1.4) becomes,

logit[πk(xi)] = β0k + βT
k xik, (1.5)

where logit[πk(xi)] = log [πk(xi)/πb(xi)]. The index b refers to the reference (or baseline)

category against which other categories are compared with. Thus, there are (C − 1)

number of “logit” models in MBCL for a multicategory response variable, G, with C the

number of categories.

Suppose a researcher would like to study people’s preference for environment (or
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location) to spend their weekend. The possible values of the response variable G could be:

stay at home, meet friends at their place, meet friends at a city center, travel to somewhere

(e.g., park, beach, museum, other cities), and go to the gym. Let Gi = 0, 1, 2, 3, 4 be

the numerical representation of the possible values and to be used in the MBCL model,

respectively. Suppose the main aim of the investigation is to estimate the probability of

preference of people to spend the weekend out of their home. That is, the probability

of going to the gym, the park, the beach, museum, and other cities. In this case, the

reference/baseline category will be staying at home (i.e., Gi = 0).

1.3.3 Parameter Estimation in Logistic Regression Models

In logistic regression, parameters of the model (i.e., the intercept and the regression

coefficients) are unknown and thus estimated from sample data. Maximum likelihood

optimization is a standard method used for estimating the parameters of LR models.

The likelihood function is the probability of the sample data, expressed as a function

of model parameters (Agresti, 2002, pp. 6). The likelihood function for a binary LR

model assuming a binomial distribution is defined as (Agresti, 2002),

L(y|β) =
N∏
i=1

ni!

yi!(ni − yi)
π(xi)

yi [1− π(xi)
yi ]ni−yi , (1.6)

where ni represents the number of trials and yi represents the number of successes, and

β is a concatenation of the intercept and the regression coefficients of the binary LR

model. The maximum likelihood estimation technique optimizes the likelihood function

(Eq. (1.6)). Similarly, the likelihood function of MBCL model is defined as (Agresti,

2002),

L(G|β) =
N∏
i=1

[
ni!∏
cGic!

∏
c

πc(xi)
Gic

]
. (1.7)
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1.4 Distance Models

Multidimensional scaling (MDS) is a technique developed in the behavioral and social

sciences for studying the structure of objects or people (Davison, 1983, pp. 1). MDS

uses proximity between pairs of objects as an input for analysis.

The proximity data is either similarity or dissimilarity of objects. In similarity data,

the higher value for the proximity measure represents more alike pairs of objects whereas

in dissimilarity data, the higher value for proximity measure represents less alike pairs of

objects. An example of the latter type of proximities would be flight times.

Other examples of proximity measures are the correlation coefficient and joint prob-

abilities (Davison, 1983, pp. 1). We will show later in this thesis that it is possible to

express logistic regression models (i.e., Eq. (1.2) and (1.4)) in terms of distance models.

In that case, probability is a similarity measure. That is, the smaller the relative distance

between a subject (or person) point and a category point, the larger the probability that

the subject chooses that category.

1.4.1 Multidimensional Scaling

In MDS, the proximities are represented in terms of distances between points in a low

dimensional space (Kruskal & Wish, 1978; Davison, 1983; Borg & Groenen, 2005). The

Euclidean distance model for dissimilarity measures is defined as (Davison, 1983, pp. 3),

δtu =

[
M∑

m=1

(ztm − zum)2

]1/2

, (1.8)

where ztm is the coordinate of object t on dimension m (m = 1, 2, . . . ,M) . An example

of MDS solution is shown in Figure 1.1 which is a two-dimensional configuration of five

objects: A, B, C, D and E. Suppose we would like to know: (1) how dissimilar A and D

are, and (2) how dissimilar A and C are. This question can be answered easily by imputing
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object coordinates in Eq 1.8. That is, δAD =
[
(zA1 − zD1)

2 + (zA2 − zD2)
2
]1/2

=[
(6− 3)2 + (7− 6)2

]1/2
= 3.16. Similarly, δAC =

[
(zA1 − zC1)

2 + (zA2 − zC2)
2
]1/2

=[
(6− 7)2 + (7− 3)2

]1/2
= 4.1. Thus, object A is more similar to D than to object C. The

MDS problem is the reverse of this calculation: it is to find the coordinates of the points

given the proximities.

Figure 1.1: MDS Model: A two-dimensional configuration of dissimilarity data with five objects
(i.e., A, B, C, D and E).

1.4.2 Multidimensional Unfolding

Coombs (1964) proposed a distance model for preference data, sometimes referred to

as multidimensional unfolding (MDU) model. Preference data refers to proximity data
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between a subject (usually a person) and an object (usually a product). For example,

preference of students about study courses, preference of customers about set of product

designs, preference of instructors about teaching methodology, etc. In this case, subjects

are asked to rank their preference for a set of objects or stimuli.

Figure 1.2: MDU Model: A two-dimensional configuration of preference data with four subjects
(i.e., s1, s2, s3 and s4) and five objects (i.e., A, B, C, D and E).

The objective of MDU is to find distances in Euclidean space between subjects and

objects that approximate a set of proximities as well as possible (Heiser, 1981, 1987; De

Leeuw, 2005). An example of MDU is shown in Figure 1.2 which is the same configuration

as Figure 1.1 with respect to the objects and with additional points for the subjects.

The position of the subjects are sometimes referred to as an ideal points of subjects.
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The closer an object or stimulus to the ideal, the more it will be preferred (Davison, 1983,

pp. 7). Suppose we would like to know which object (A or C) in Figure 1.2 most preferred

by the fourth subject. This question can be answered by working out Eq 1.8. That

is, δS4,A =
[
(zS4,1 − zA1)

2 + (zS4,2 − zA2)
2
]1/2

=
[
(1− 6)2 + (1− 7)2

]1/2
= 7.81.

Similarly, δS4,C =
[
(zS4,1 − zC1)

2 + (zS4,2 − zC2)
2
]1/2

=
[
(1− 7)2 + (1− 3)2

]1/2
=

6.3. Thus, this subject prefers object C since the object is closer to its ideal position.

Analogous to MDS, the unfolding problem is the reverse of this calculation: it is to find

the coordinates of the object points and ideal points given the proximities between object

and subjects.

1.4.3 IPDA Model

Takane, Bozdogan, and Shibayama (1987) proposed Ideal Point Discriminant Analysis

(IPDA). The IPDA model is a multidimensional unfolding technique used for classification

of subjects. The input data of IPDA model are not preference data but classification data,

i.e., a given subject would choose one and only one object from a set of categories. The

probability for the k−th category in the IPDA model is defined as (Takane, Bozdogan, &

Shibayama, 1987),

πk(xi) =
mk exp(−δ2ik)∑
cmc exp(−δ2ic)

, (1.9)

wheremk is a bias parameter for category k which can be interpreted as a prior probability

of the class, and δ2ik is the squared Euclidean distance in anM−dimensional space between

an ideal point for subject i with coordinates ηim and a class point for category k with

coordinates γkm (Takane et al., 1987), i.e.,

δ2ik =

M∑
m=1

(ηim − γkm)2. (1.10)
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The ideal points are assumed to be a linear combination of the explanatory variables:

ηi = β0 + xiβ,

where β is a (p ×M) matrix with regression weights and, β0 an M dimensional vector

with intercepts. The parameters of this model are the regression weights and the class

points. The class points, denoted as γ, is a matrix of dimension (C ×M).

The MBCL model, i.e., Eq. (1.4) and (1.5), is equivalent to the IPDA model in

maximum dimensionality, i.e., M = (C − 1) where C is number of categories or objects.

1.4.4 IPC Model

De Rooij (2009a) proposed the Ideal Point Classification (IPC) model. The IPC model is

a probabilistic multidimensional unfolding model and closely related to the IPDA model.

As noted by Takane et al (1998), the interpretation of IPDA model is hampered by

the bias parameters. De Rooij (2009a) showed that the bias parameters can be ignored

without loss of information, except when (1) the response variable has many categories

and a low-dimensional distance model is used; and (2) the response variable has a category

that dominates the other categories. The probability for the k−th category in the IPC

model is defined as (De Rooij, 2009a),

πk(xi) =
exp(−0.5 ∗ δ2ik)∑
c exp(−0.5 ∗ δ2ic)

. (1.11)

By looking at Eq. (1.9) and Eq. (1.11), it can be seen that IPC model is equivalent to

the IPDA model without the bias parameters. The log-odds representation of the IPC

model is,

logit[πk(xi)] = 0.5 ∗ δ2ib − 0.5 ∗ δ2ik, (1.12)
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where δ2ib is the squared Euclidean distance between the b-th baseline category and the

ideal point for subject i.

IPC Model for Binary Data

De Rooij (2009a) showed that logistic regression for a binary response variable, i.e., Eq.

(1.2) and (1.3), can be expressed as an unidimensional IPC model. That is, a distance

model in a joint space with points representing the two categories of the response variable

and points representing the subjects.

The unidimensional IPC model of the binary response variable which is a simplification

of Eq. (1.11) becomes,

π(xi) =
exp(−0.5 ∗ δ2i1)

exp(−0.5 ∗ δ2i0) + exp(−0.5 ∗ δ2i1)
. (1.13)

The class points of the unidimensional IPC model are given by γ =

[
γ01, γ11

]T
, where

γ01 is the class point of the baseline category (i.e., Y = 0), and γ11 is the class point of

the “success” category (i.e., Y = 1). The log-odds representation of the unidimensional

IPC model is,

logit[π(xi)] = 0.5 ∗ δ2i0 − 0.5 ∗ δ2i1

= 0.5 ∗ (ηi1 − γ01)
2 − 0.5 ∗ (ηi1 − γ11)

2

= (γ11 − γ01) ∗ ηi1 + 0.5 ∗ (γ201 − γ211).

(1.14)

With a restriction on class points for model identification (e.g., γ =

[
0, 1

]T
), the

unidimensional IPC model can be simplified to,

logit[π(xi)] = (β0 − 0.5) + βTxi. (1.15)
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Thus, the unidimensional IPC model is equivalent to the binary logistic regression pre-

sented in Eq. (1.2) and (1.3) and has the same regression coefficients (i.e., β) and an

intercept with an offset of half (i.e., βIPC
0 = βLR

0 + 0.5).

IPC Model for Multicategory Data

As shown in Eq. (1.5), MBCL model is a natural extension of a simple LR model for

nominal response variable. De Rooij (2009a) also showed that IPC model in a maximum

dimensional space (i.e., M = C − 1) is equivalent to the MBCL model.

The log-odds representation of IPC model for a multicategory response variable is given

in Eq. 1.12. By setting constraints on the class points, the IPC model can be identified

uniquely. Suppose we have a multicategory response variable G with four categories such

as c = 0, 1, 2, 3. For model identification, the class points in a maximum dimensional

space (M = 3) can be represented as follows,

γ =



0 0 0

1 0 0

0 1 0

0 0 1


. (1.16)

That is, the first category (probably the baseline) is positioned on the origin (i.e., γ1m =[
0 0 0

]
), the second category is on the x−axis (i.e., γ2m =

[
1 0 0

]
), the third

category is on the y−axis (i.e., γ3m =

[
0 1 0

]
), and the fourth category is on the

z−axis (i.e., γ4m =

[
0 0 1

]
). With this class points configuration, it is possible to

show that the IPC model is equivalent to the MBCL model. For demonstration purpose,

let us see the derivation of the log-odds representation of the second category (i.e., c = 1)
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against the baseline (i.e., c = 0). That is,

logit[π1(xi)] = 0.5 ∗ δ2i0 − 0.5 ∗ δ2i1

= 0.5 ∗
3∑

m=1

(ηim − γ0m)2 − 0.5 ∗
3∑

m=1

(ηim − γ1m)2

=

3∑
m=1

(γ1m − γ0m) ∗ ηim + 0.5 ∗
3∑

m=1

(γ20m − γ21m)

= ηi1 − 0.5

= (β01 − 0.5) + βT
1 xi.

(1.17)

Similarly, the log-odds for the third category: logit[π2(xi)] = ηi2−0.5 = (β02−0.5)+βT
2 xi,

and the log-odds for the fourth category: logit[π3(xi)] = ηi3 − 0.5 = (β03 − 0.5) +βT
3 xi.

Thus, βIPC
p = βMBCL

p for regression coefficients with dimension (p ×M), and βIPC
0 =

βMBCL
0 − 0.5 for intercepts with dimension (1×M).

1.5 Multivariate Binary Data

In the previous sections, we considered only a single binary or multicategory response

variable. However, it is not uncommon to see multiple binary/multicategory response

variables in a given study. In medical science, for example, researchers are often interested

not only on the efficacy of a newly developed drug, but also on the side effect of the drug.

The explanatory variables in such a drug study setting could be the type of treatment (i.e.,

placebo, current drug, and newly developed drug), age, gender, etc. In this hypothetical

study, there are two binary responses: efficacy (i.e., whether the subject is cured or not),

and side effect (i.e., whether the drug has a side effect or not).

Multivariate binary data with multiple binary response variables and one or more

explanatory variables, are often collected in empirical sciences such as psychology, crim-

inology, epidemiology, life sciences and medicine. In the British coalminers study, for
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example, researchers investigated impact of exposure to smoking and pneumoconiosis on

two respiratory diseases, breathlessness (1 = yes; 0 = no) and wheeze (1 = yes; 0 = no),

of coalminers in Britain (Ashford, Morgan, Rae, & Sowden, 1970; McCullagh & Nelder,

1989; Palmgren, 1989).

Another example of multivariate binary data is the Netherlands Study of Depression

and Anxiety (NESDA). In NESDA, data were collected to investigate the interplay between

personality traits and co-morbidity of depressive and anxiety disorders (Penninx et al.,

2008; Spinhoven, De Rooij, Heiser, Penninx, & Smit, 2009). Co-morbidity is a presence

of two or more mental disorders. In the area of mental disorders clinical psychologists

and epidemiologists are interested in co-morbidity and how co-morbidity is related to risk

factors such as personality traits and background variables (Krueger, 1999; Beesdo-Baum

et al., 2009; Spinhoven, Penelo, De Rooij, Penninx, & Ormel, 2013). The NESDA data

will be a leading example throughout this dissertation. We thank the NESDA consortium

for providing the data.

Another study in which multivariate binary data arises is the Indonesian Children’s

Study (ICS: Sommer, Katz, & Tarwotjo, 1984; Liang, Zeger, & Qaqish, 1992) where over

three-thousand children were medically examined to investigate whether they had respi-

ratory infection, diarrhoeal infection, and xerophthalmia. The aim of the ICS study was

to investigate whether vitamin A deficiency places children at increased risk of respiratory

and diarrhoeal infections.

Suppose yi = (yi1, yi2, . . . , yij , . . . , yiJ)
T denotes the multivariate responses observed

on the i−th subject, which is a (J × 1)-dimensional vector of all responses. The yij

represents a binary measurement of the j-th response variable observed on the i-th subject.

In Table 1.1, we display the typical structure of such multivariate data in long format. The

first column (Subject) contains subjects’ identification number. The second column has

binary measurements of the multivariate response variable. For demonstration purpose,

we assume a total of five binary response variables that are measured for each subject.
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The other columns in Table 1.1 have measurements for explanatory variables X1, X2, . . . ,

Xp.

Table 1.1: The structure of multivariate data in long format.

Explanatory variables

Subject Response X1 X2 Xp

1 y11 x11 x12 . . . x1p

1 y12 x11 x12 . . . x1p

1 y13 x11 x12 . . . x1p

1 y14 x11 x12 . . . x1p

1 y15 x11 x12 . . . x1p
...

...
...

...
...

...

i yi1 xi1 xi2 . . . xip

i yi2 xi1 xi2 . . . xip

i yi3 xi1 xi2 . . . xip

i yi4 xi1 xi2 . . . xip

i yi5 xi1 xi2 . . . xip
...

...
...

...
...

...

n yn1 xn1 xn2 . . . xnp

n yn2 xn1 xn2 . . . xnp

n yn3 xn1 xn2 . . . xnp

n yn4 xn1 xn2 . . . xnp

n yn5 xn1 xn2 . . . xnp
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1.5.1 Bivariate Binary Data

Two cross classified binary variables observed on the i-th subject is displayed in Table

1.2. The rows represent measurements of the first binary response variable (yi1), and

the columns represent measurements of the second response variable (yi2). In this Table,

both marginal probabilities (shown in the margins, i.e., πi1., πi0., πi.1, and πi.0) and the

joint probabilities (shown in the four cells, i.e., πi,11, πi,10, πi,01, and πi,00) are presented.

The sum of probabilities either for the margins by row/column or for the individual cells

always equals one.

Empirical researchers working with bivariate binary data are often interested in one of

the following thee parameters (Ashford et al., 1970; MacLean, Sofuoglu, & Rosenheck,

2018; Bhuyan, Islam, & Rahman, 2018): (1) the marginal probabilities; (2) the association

between the two binary responses; or (3) the joint (or multinomial) probabilities.

Table 1.2: Cross-classification of measurements of a bivariate binary data observed on the i-th
subject.

yi2

1 0

yi1 1 πi,11 πi,10 πi1.

0 πi,01 πi,00 πi0.

πi.1 πi.0 1.00

Joint Probabilities

The joint probability is an important quantity of bivariate binary data. In the Coalminers

study, for example, let yi1 and yi2 denotes the measurements of breathlessness and wheeze

of the coalminers, respectively. Then, the joint probability πi,10 represents the probability

of getting breathlessness, but no wheeze. Similarly, the joint probability πi,01 represents

the probability of getting wheeze, but no breathlessness. The other joint probabilities

represents risk of getting both respiratory diseases (πi,11), and the risk of getting none of
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the diseases (πi,00).

Bivariate binary data are special case of a multicategory response variable with four

categories. Therefore, we can use a single index to represent the joint probabilities, i.e.,

πik(xi) = Pr(Gi = k|xi). For the joint probabilities in Table 1.2, this means: πi1 = πi,00,

πi2 = πi,10, πi3 = πi,01, and πi4 = πi,11. Because of this relationship, logistic regression

models for a multicategory response data such as the MBCL model (Eq. 1.4 and 1.5)

and the IPC model (Eq. 1.11 and 1.12), can be used to analyze the joint probabilities of

bivariate binary data.

Marginal Probabilities

The marginal probability of a bivariate binary data models a single response variable

without controlling for measurements of the second response variable. Two separate

simple logistic regression models (Eq. 1.2 and 1.3) can be used for this purpose, one

for each response variable. In the Coalminers study, the marginal model can be used

to answer a question about probability of breathlessness (wheeze) of coalminers due to

exposure.

Association

The third quantity of interest is the association between the binary response variables.

The association gives us information about the relationship of the two binary response

variables. That is, it tells us whether the probability of occurrence of the second response

variable increase/decrease when the probability of occurrence of the first response variable

increases, and vice versa.

The most common measures of association structure for bivariate binary data are the

odds (OR) ratio and the relative risk (RR). In this thesis, we use the OR as measure

of association. The OR can also be modeled to investigate the impact of explanatory

variables on the association structure (Lipsitz, Laird, & Harrington, 1990; Bahadur, 1961).
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That is,

log (τi) = β0 + βTxi, (1.18)

where τi denotes the OR and is defined as τi = (πi4 × πi1)/(πi2 × πi3).

1.6 Models for Multivariate Binary Data

The most common statistical modeling approach for analyzing multivariate binary re-

sponses in the presence of explanatory variables, are (1) marginal models (Agresti, 2002,

Chap 11), and (2) latent variable models (Agresti, 2002, Chap 12). Marginal models

are sometimes referred to as population-averaged models. Latent variable models are

sometimes referred to as random-effects or subject-specific models.

1.6.1 Marginal Models

The availability of the multivariate normal distribution for multivariate interval responses,

makes application of maximum likelihood-based statistical models relatively easy. How-

ever, for binary responses, there is no general parsimonious parameterization of the mul-

tivariate binary distribution, and therefore estimation becomes difficult (Agresti, 2002;

Cox, 1972). Liang and Zeger (1986) proposed Generalized Estimating Equations (GEE)

for marginal modelling of correlated categorical data. GEE is a quasi-likelihood (QL) esti-

mation method that does not require specification of a particular multivariate distribution.

It is widely used as a standard approach for fitting marginal models on multivariate data

(Ziegler, Kastner, & Blettner, 1998; Fitzmaurice, Davidian, Verbeke, & Molenberghs,

2008; Ziegler, 2011).
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1.6.2 Latent Variable Modeling

Latent variable models are a general class of models that are used for analyzing multi-

variate data (Bartholomew & Knott, 1999; Skrondal & Rabe-Hesketh, 2004). In Latent

Variable (LV) models the multivariate response variables are treated as dependent vari-

ables, and one or more unobserved variables, referred to as latent variables, are treated

as independent variables. The response variables are sometimes called indicators because

they are used as an indirect measure of the latent variables.

The main application of LV models are: (1) for reducing the dimensionality of the

multivariate data (to explain the variation of observed variables in few dimensions), (2) as

measurement model (for representing a concept or construct that cannot be directly mea-

sured, e.g., depression, quality of life, political attitude, mathematical ability, intelligence,

etc), and (3) for assigning scores on the latent scale which correspond to subjects’ profile

(Bartholomew, Steele, Moustaki, & Galbraith, 2002; Bollen, 2002; Rizopoulos, 2006).

Tomarken and Waller (2005) provided a detailed literature review on Structural Equation

Modeling (SEM) focusing on its strengths, limitations, and misconceptions.

Confirmatory Factor Analysis of Multivariate Data

Let yi = (yi1, yi2, . . . , yij) be a j-dimensional vector of interval indicator variables ob-

served on the i-th subject. The Confirmatory Factor Analysis (CFA) is based on the as-

sumption that yi can be attributed to q common factors, denoted by θi = (θi1, . . . , θiq),

and j unique factors (or measurement errors), denoted by εi = (εi1, . . . , εij), with j > q
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λ52

λ62

ψ12

Figure 1.3: A path diagram of a CFA with six indicator variables represented by a square, and
two latent variables represented by a circle.

(Thurstone, 1947; Jöreskog & Sörbom, 1981). The CFA is defined as,

yi1 = λ11θi1 + . . .+ λ1qθiq + εi1

yi2 = λ21θi1 + . . .+ λ2qθiq + εi2

...

yij = λp1θi1 + . . .+ λjqθiq + εij

or, in matrix form

yi = Λθi + εi, (1.19)

where Λ is the matrix of factor loadings. Let Ψ be the covariance matrix of common

factors, and let Φ be the covariance matrix of the unique factors. In Figure 2.1 an

example of a path diagram is displayed which corresponds to a measurement model with

six indicators (j = 6) and two underlying latent variables (q = 2).

In CFA, the common and unique latent variables follow multivariate normal distribu-
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tions, i.e., θ ∼ Nq(0,Ψ) and ε ∼ Nj(0,Φ), where Φ is a diagonal matrix. Given the

model, the expected covariance matrix of the indicator variables becomes

Σ = ΛΨΛT +Φ. (1.20)

CFA for Multivariate Dichotomous Data

CFA was originally developed for modeling interval indicator variables. The covariance

or correlation matrix of the observed variables was used as a primary object of analysis.

The same method was later proposed for handling categorical (or dichotomous) indicator

variables (Christoffersson, 1975; B. Muthen, 1978).

Let yi = (yi1, yi2, . . . , yij , . . . , yiJ) be a J−dimensional vector of dichotomous in-

dicator variables observed on the i-th subject. CFA of dichotomous variables assumes

an underlying latent variable for each indicator variable, which is denoted by y∗
i =

(y∗i1, y
∗
i2, . . . , y

∗
ij , . . . , y

∗
iJ). Thus, the variable yij equals one if its underlying latent vari-

able y∗ij is above a certain threshold value τj , otherwise it equals zero. Therefore, the

measurement model for yi is given by

y∗i = Λθi + εi, yij =


1, if y∗ij ≥ τj ,

0, if y∗ij < τj .

(1.21)

The formula for the covariance matrix remains the same, i.e., V(y∗) = Σ, but the

elements in Φ matrix are not free parameters anymore, rather

Φ = I− diag(ΛΨΛT), (1.22)

yielding diag(Σ) = I. Therefore, the model has three sets of free parameters: τ , Λ, and

Ψ (Christoffersson, 1975; B. Muthen, 1978).
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Multivariate Regression with Latent Variables: The MIMIC Model

The measurement model is often not an ultimate step since researchers are interested

in group differences and/or measurement invariance on the latent variables (Stapleton,

1978; Kenneth, 1989; T. Brown, 2006). This can be done by including external variables

into CFA, and the new model becomes the Multiple Indicators MultIple Causes (MIMIC)

model (Jöreskog & Goldberger, 1975; B. Muthen, 1983, 1984).

Let xi = (xi1, xi2, . . . , xip) be the external variables observed on the i-th subject. Fig-

ure 2.2 shows the path diagram for a MIMIC model with two external variables connected

to the two common latent variables. The MIMIC model extends the CFA model presented

in (1.19) with relationships between the latent variables and the external variables, i.e.,

yi = Λθi + εi

θi = ΓTxi + ζi, (1.23)

where Γ gives the regression coefficients, and ζ the structural disturbances. It is assumed

that the disturbances and the measurement errors are uncorrelated to each other and to

x, but not necessarily among themselves. The covariance matrix of the latent variables

now becomes

Ψ = ΓTΣxΓ+Σζ ,

where Σx is a covariance matrix for the external variables, and Σζ for the disturbances.

For estimation and identification of the MIMIC model, we refer to Muthén (1983, 1984).
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Figure 1.4: A path diagram for a MIMIC model with two external variables that are represented
by a square.

1.7 Outline of the Thesis

Latent variable models are often used for analyzing multivariate binary data with and

without the presence of explanatory variables. In Chapter 2 we investigate the performance

of such models using a simulation study. We show the impact of the number of indicator

variables, sample size, and type of indicator variables, on the performance of latent variable

models.

In Chapter 3 we study properties of the IPC model for analyzing bivariate binary data.

The main aim of this chapter is to investigate the potential of the IPC model in recovering

three parameters of bivariate binary data: the marginal probabilities, joint probabilities,

and association structure. A simulation study is used to evaluate the performance of the

model. As the IPC model is not able to fully recover the three parameters, a Bivariate

IPC (BIPC) model is proposed. The BIPC model is an adjusted form of the IPC model
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to fully recover parameters of interest for bivariate binary data.

However, it is not straight forward to extend the BIPC model for the analysis of

multivariate binary data. This is due to the fact that both the pairwise and higher-

order association structure parameters must be specified in the likelihood function, and

thus the computation becomes cumbersome. This issue will be addressed in Chapter 4

by developing a Multivariate Logistic Distance (MLD) model which is a new model for

analyzing multivariate binary data. The MLD model unifies two domains of statistical

methods, i.e., Multidimensional Scaling (MDS: Kruskal & Wish, 1978; Borg & Groenen,

2005) and Generalized Linear Model (GLM: McCullagh & Nelder, 1989; Agresti, 2002).

As a form of regularization, the MLD model allows for dimension reduction and therefore

less parameters are estimated compared to existing marginal models for multivariate binary

data. Moreover, the model enhances interpretation by using a biplot (Gabriel, 1971; Gower

& Hand, 1996; Gower, Lubbe, & Le Roux, 2011) based on a distance interpretation.

For this newly proposed distance model we developed an R package called mldm.

Using an empirical dataset, usage of the package is demonstrated in Chapter 5. The

package handles both the clustered bootstrap method and the sandwich estimators for

obtaining standard errors of model parameters. It also provides a biplot function for the

graphical representation of the fitted model. In Chapter 6 we conclude the thesis with a

recommendation for future research.





Chapter 2

Effects of a Small Number of Dichotomous Indicators in

Latent Variable Modeling: A Simulation Study

Abstract

Structural equation models were originally proposed for the analysis of continuous or inter-

val indicator variables. Recently, factor analysis and structural equation models have been

applied for data with dichotomous indicators and with only a few indicators per latent

variable, i.e. 2 or 3. We investigated the performance of Confirmatory Factor Analy-

sis (CFA) and the Multiple Indicators MultIple Causes (MIMIC) model for dichotomous

indicators in comparison with interval indicators in a Monte Carlo simulation study.

The performance of both CFA and the MIMIC model was studied in terms of the

quality of recovering the true factor scores and the incidence of improper solutions, more

specifically non-convergence and Heywood cases. Furthermore, in the case of the MIMIC

model, the focus was on the type-I error rate and power.

We showed that both CFA and the MIMIC model performed poorly with a small

number of dichotomous indicators, i.e., (1) improper solutions occurred much more fre-

quently; (2) the true factor scores are poorly recovered; (3) the type-I error rates are too

conservative mostly and inflated sometimes; and (4) the observed power was weak.

27
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2.1 Introduction

Latent variable models are a general class of models that are used for analyzing multi-

variate data (Bartholomew & Knott, 1999; Skrondal & Rabe-Hesketh, 2004). In Latent

Variable (LV) models the multivariate observed variables (manifest variables) are treated

as dependent variable, and one or more unobserved variables (latent variables) are treated

as independent variables. The observed variables are also known as indicators because

they are used as an indirect measure of the latent variables.

The Latent variables can be interval or categorical. As displayed in Table 2.1, there are

four classes of LV models based on the cross-classification of whether the observed variable

and/or latent variable is interval and/or categorical (Bartholomew & Knott, 1999). Our

main focus in this paper will be on Confirmatory Factor Analysis (CFA), which is a

special case of Structural Equation Modeling (SEM: Thurstone, 1947; Jöreskog & Sörbom,

1981; Christoffersson, 1975; B. Muthen, 1978; Bock & Lieberman, 1970; Mislevy, 1986).

Tomarken and Waller (2005) provided a detailed literature review on Structural Equation

Modeling (SEM) focusing on its strengths, limitations, and misconceptions.

Table 2.1: Classes of Latent Variable Models.

Latent variable

Observed variable Interval Categorical

Interval Factor Analysis/ Latent Profile Analysis/

Structural Equation Modeling Mixture Modeling

Categorical Item Response Theory/ Latent Class Analysis

Latent Trait Analysis

Traditionally SEM focuses on the analysis of continuous (or interval) indicator vari-

ables. Many studies have been performed to investigate the performance of structural
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equation models (Boomsma, 1983, 1985; J. C. Anderson & Gerbing, 1984; Acito & An-

derson, 1986). Recently, in clinical psychological research structural equation models

have been proposed for the analysis of comorbidity of depressive and anxiety disorders

(Krueger, 1999; Beesdo-Baum et al., 2009). A typical characteristic of these models is

that the indicators are dichotomous, i.e the indicators indicate whether someone has or

does not have a particular disorder, and that there are only a few indicators per latent

variable, i.e. 2 or 3. We believe the application of structural equation models in such a

scenario (i.e., dichotomous indicators with a few number of variables per factor) is not

adequate enough to obtain a valid result about the research question that we would like to

answer. This is because with two indicator variables, there are only four patterns (i.e., (0,

0), (0, 1), (1, 0), and (1, 1)) with four corresponding observed proportions. Similarly, for

three indicators, there will be eight patterns. Therefore, there is only limited information

and it is hard to satisfy the normality assumption of the underlying latent variables in the

structural equation model. However, we did not find large scale simulation studies that

address our concerns. The aim of the current paper is to fill this gap. Therefore, we

conducted a simulation study to investigate the performance of SEM for the analysis of

a small number of dichotomous indicator variables per factor.

In our simulation study, we conducted two types of experiments. In the first experi-

ment, the performance of Confirmatory Factor Analysis (CFA) as a measurement model

is studied. The outcome variables of interest for this experiment are the incidence of

nonconvergence, occurrence of Heywood cases, and the quality of recovering the true

factor scores in CFA. In the second experiment, we study the performance of the Multiple

Indicators MultIple Causes (MIMIC) model (Stapleton, 1978; Kenneth, 1989; T. Brown,

2006). In this case, the outcome variables of interest are the type-I error rate and the

power of the statistical test for the regression coefficients in the MIMIC model. In both

experiments we study the impact of five design variables on the outcome variables. The

design variables are type of indicator variables (i.e., interval or categorical), number of
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indicators, strength of factor structure, correlation between factor scores, and sample size.

The outline of this paper is as follows. In Section 2.2 we discuss issues with factor

analysis and results found in the literature. The design and analysis of the simulation

study is presented in Section 2.3. In Section 2.4, the results of the simulation studies

are discussed. We conclude with a discussion of the results and some remarks for future

research in Section 2.5.

2.2 Issues with Factor Models for Multivariate Data

2.2.1 Indeterminacy of Factor Scores

The indeterminacy of factor scores refers to a situation where the same indicator variables

may produce different factor scores with the same model fit, and thus no unique solution

does exist for the factor scores (Acito & Anderson, 1986; Guttman, 1955; Heermann, 1964,

1966; Schonemann, 1971; Schonemann & Wong, 1972; Green, 1976; Elffers, Bethlehem,

& Gill, 1978). Some argue that the reason for the indeterminacy of factor scores is due to

the presence of too many parameters compared to the number of equations in the model

(Grice, 2001).

2.2.2 Improper Solutions

Factor analysis of multivariate data can sometimes produce improper solutions (Rindskopf,

1984; Boomsma, 1983, 1985; Kenneth, 1989; Chen, Bollen, Paxton, Curran, & Kirby,

2001). The most common improper solutions are nonconvergence and Heywood cases

(Kenneth, 1989, pp. 282). Heywood cases occur when the estimated variances of a

model become negative.
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2.2.3 Previous Studies

Indeterminacy of factor scores in CFA has been studied by Acito and Anderson (1986).

The impact of the number of indicators, factoring method, factor structure (i.e., the

magnitude of factor loadings), number of factors, and sample size on indeterminacy of

factor scores was investigated. Acito and Anderson found that both the factor structure

and the factoring method have large effects on the indeterminacy of factor scores. A

limitation of their study was that only interval indicators were considered. In the current

study we also consider dichotomous indicators.

Improper solutions, i.e., nonconvergence and Heywood cases, in CFA has been studied

using a Monte Carlo simulation by Anderson and Gerbing (1984) and by Boomsma (1985).

Anderson and Gerbing studied the impact of sampling error and model characteristics on

the incidence of improper solutions. Improper solutions occurred more frequently for

smaller sample sizes and for models with fewer indicators for each factor (J. C. Anderson

& Gerbing, 1984). Boomsma studied the impact of the number of indicators, correlation

between factors, and factor structure. All of the design variables had a large effect on the

incidence of improper solutions (Boomsma, 1985). Like the study by Acito and Anderson

(1986), however, both studies considered only interval indicators. In this paper, we extend

their study on improper solutions by including both interval and dichotomous indicator

variables.

Marsh, Hau, Balla and Grayson (1998) performed a simulation study and studied

extensively the impact of the number of indicators and sample size in a CFA on the

occurrence of improper and nonconverged solutions, accuracy of parameter estimates, and

goodness-of-fit indexes. Their main aim was to provide data driven evidence (contrary to

rules of thumbs) for the number of indicators per factor and sample size to fit confirmatory

factor models. They concluded that it is always good to have more indicators per factor

and a larger sample size whenever possible. Similar studies were conducted by Ding,
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Velicer, and Harlow (1995), Kenny and McCaoch (2003) and Marsh, Balla, and McDonald

(1988), although the main focus of these studies was on measures of fit for factor models.

In general, all these studies investigated the impact of variables of interest on statistical

properties of CFA when the indicator variables are interval. Categorical (or dichotomous)

indicator variables were not considered. Furthermore, emphasis was given for factor models

and the MIMIC model was not studied in a similar fashion. Our present simulation study

fills these gaps since both issues are addressed.

2.3 Monte Carlo Simulation Study

We followed the six-step approach of Monte Carlo simulation design in structural equation

modelling (Paxton, Curran, Bollen, Kirby, & Fen, 2001; Skrondal, 2000; Boomsma, 2013).

2.3.1 The Research Problem

Our main objective is to investigate the performance of SEM models, specifically Con-

firmatory Factor Analysis (CFA) and the MIMIC model, with only a few dichotomous

indicators assumed per factor. We investigate the quality of recovering the true factor

scores and the incidence of improper solutions (nonconvergence and Heywood cases). We

study the impact of five design variables on the outcome variables. To have a benchmark

to compare the performance of latent variable models for analyzing dichotomous indicator

variables, we also consider interval indicator variables. We used Mplus statistical soft-

ware package (L. Muthen & Muthen, 1998-2012) with the default estimation procedures

to analyze our simulated datasets, because that is how most applied researchers analyze

their data.

The design variables are type of indicator variables (i.e., interval or categorical), num-

ber of indicators, strength of factor structure, strength of correlation between latent

variables, and sample size. We conducted two experiments, where in the first experiment
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we study the performance of CFA and in the second experiment the performance of the

MIMIC model.

2.3.2 Experimental Plan

The simulated data were generated from a 2-factor model whose path diagram is shown

in Figure 2.1 for the CFA and in Figure 2.2 for the MIMIC model. In the path diagrams

we have six observed variables yj (j = 1, 2, . . . , 6), two latent variables θq (q = 1, 2), and

unique factors indicated by εj . The model parameters in CFA are the factor loadings λjq

and the covariance between the latent variables ψ12.

In the case of the MIMIC model (Figure 2.2) explanatory variables (xk, k = 1, 2) are

added to the path diagrams. In addition to parameters of the factor model, the MIMIC

model also has regression weights (γkq).

An equal number of indicator variables per factor was assumed in the data generation

process. The variances of the factors were restricted to unity for identifiability of CFA.

Table 2.2 shows the design variables considered in our Monte Carlo simulation and in the

last column their corresponding values (or ranges) are given. The first design variable is

type of indicators which is either dichotomous or interval. Two possible situations were

considered for dichotomous indicator variables. The first case assumes a low success rate,

i.e., between 5% − 15%. This case is denoted by BLR in Table 2.2 which stands for

Binary indicators with Low success Rates. The other situation has moderate success rate

(between 40% − 50%), and is denoted by BMR which stands for Binary indicators with

Moderate success Rates.
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Figure 2.1: A path diagram of a factor model with six indicator variables represented by a
square, and two latent variables represented by a circle.
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Figure 2.2: A path diagram for a MIMIC model with two external variables that are represented
by a square.
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Table 2.2: The design variables with their corresponding values (or ranges) that are considered
in the Monte Carlo simulation study. BLR stands for Binary indicator variables with Low
success Rates; and BMR for Binary indicator variables with Moderate success Rates.

Variable Parameter Level Value/Range

Type of Indicators − BLR 5%− 15%

BMR 40%− 50%

Interval −

Number of Indicators J Few 6

Medium 10

Large 16

Factor structure λjq Weak (0.316, 0.447)

Moderate (0.316, 0.632)

Strong (0.632, 0.775)

Correlation between Factors ψ12 Independence 0.0

Moderate 0.4

Strong 0.8

Sample size N Very Small 50

Small 100

Big 300

Very Big 3, 000

For the number of indicators, Anderson and Gerbing (1984) suggested at least 3

indicators per factor in CFA. Kenny and McCoach (2003) varied the number of indicators

from four to twenty-five to assess the impact on measures of fit. The number of indicators

in our simulation study was varied from 3 to 8 per factor, which is equivalent to J = 6 to

J = 16 indicators in total. For the factor structure, we used the ranges proposed by Acito

and Anderson (1986). Both factor structure and variances for the measurement errors

can be derived from the factor loadings, i.e., ψ11 =
∑J

j=1 λ
2
j1 and ψ22 =

∑J
j=1 λ

2
j2,
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and φj = 1 − λ2j , respectively. In our simulation study, following Acito and Anderson

(1986), we set factor loading values to: (0.316, 0.447) for weak structure, (0.316, 0.632)

for moderate structure, and (0.632, 0.775) for strong structure.

For the sample size, Boomsma (1985) recommended a sample size of at least N = 50

and Anderson and Gerbing (1984) suggested a sample size of at least N = 150. Boomsma

and Hoogland (2001) showed that a sample size below N = 200 is vulnerable for the

occurrence of improper solutions. In our Monte Carlo simulation the sample size was

varied from N = 50 to N = 3, 000. Three possible situations for the correlation between

the latent variables were considered: ψ12 = 0.0 (independence), ψ12 = 0.4 (moderate

association), and ψ12 = 0.8 (strong association).

2.3.3 Simulation

The simulated data is generated following the MIMIC model. In the simulated MIMIC

model eight explanatory variables were considered. The true values that are used in the

simulation study are based on the fitted MIMIC model on the NESDA data (Penninx et

al., 2008). The first explanatory variable was generated from a Binomial distribution and

the others from a Standard Normal distribution, i.e., x1 ∼ Bin(0.67) and xk ∼ N(0, 1)

for k = 2, . . . , 8. The regression coefficients used in the simulation are the following, for

x1: γ11 = γ12 = 0.00; x2: γ21 = −0.10, γ22 = −0.20; x3: γ31 = γ32 = 0.00; x4:

γ41 = 1.00, γ42 = 0.95; x5: γ51 = −0.30, γ52 = −0.25; x6: γ61 = γ62 = 0.00; x7:

γ71 = 0.00, γ72 = 0.10; and x8: γ81 = γ82 = 0.00.

Factor structures were then generated from a bivariate normal distribution θ ∼ N2(µ,Ψ),

where

µ =

µ1

µ2

 =

γT
1 x+ ζ1

γT
2 x+ ζ2

 ,
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and

Ψ =

ψ11 ψ12

ψ21 ψ22

 =

γT
1 Σxγ1 + Var(ζ1) ψ12

ψ12 γT
2 Σxγ2 + Var(ζ2)

 ,
where γ1 is a vector of regression coefficients for the first factor, and similarly γ2 for the

second factor.

2.3.4 Estimation

For each simulated data set a 2-factor model was fitted with and without explanatory vari-

ables, which corresponds to the CFA and the MIMIC model, respectively. The analysis was

done using the Mplus statistical software version 7 (L. Muthen & Muthen, 1998-2012).

A Maximum Likelihood Robust (MLR) estimator was employed for interval indicators

whereas a Weighted Least Square estimator with Mean and Variance adjusted (WLSMV)

was used for dichotomous indicator variables. The WLSMV is the default estimator in

Mplus. We used the package called MplusAutomation (Hallquist, 2012) to help us call

and run Mplus from the R environment.

The analysis procedure in our Monte Carlo simulation can be summarized as follows,

1. Fit a 2-factor CFA (or MIMIC model) on the simulated data.

2. Check if the fitted model is estimated without any problem due to improper so-

lutions. Otherwise, identify the problem and record as nonconvergence and/or

Heywood .

3. Estimate the factor scores, i.e., θ̂ = (θ̂1, θ̂2).

4. If the fitted model is estimated correctly, calculate the correlation between true and

estimated factor scores, i.e., ρq = Corr(θq, θ̂q) where q = 1, 2. In the case of the

MIMIC model, in addition to the correlation between factor scores, calculate:
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(a) the type-I error rate the regression coefficients.

(b) the power of the regression coefficients.

5. Repeat Step 1 to 4 for each simulated data set.

2.3.5 Replication

In our Monte Carlo simulation we use a full factorial 3 × 3 × 3 × 3 × 4 design, with in

total 324 In each cell we use R = 100 replications.

2.3.6 Analysis of Output

For the first experiment, the variables of interest are the incidence of improper solutions

and the quality of recovering the true factor scores in CFA .

The incidence of improper solutions was analyzed using a logistic regression model

(Agresti, 2002). When a low rate of improper solutions is found in the data, Firth logistic

regression (FLR: Firth, 1993) was used because it yields finite parameter estimates in

the presence of complete or quasi-complete separation (Heinze & Schemper, 2002). SAS

version 9.4 was used to fit the logistic regression models (SAS Institute Inc., 2013). The

Odds Ratio (OR) was used as an effect size measure for evaluating the practical signifi-

cance of the design variables and their interactions. We used the guidelines suggested by

Ferguson (2009), i.e., an odds ratio of about 2 (or 0.50) indicates a small effect, about 3

(or 0.33) a medium effect, and about 4 (or 0.25) a large effect. For interpretation of sim-

ulation results, we focus on large effects for type of indicators and number of indicators,

and their interactions with the other design variables.

Analysis of Variance (ANOVA) was used for analyzing the correlation data, i.e., ρ1 and

ρ2, to assess the impact of design variables on the quality of recovering the true factor

scores. Because ρ1 and ρ2 are very similar we focus on ρ1. A Fisher’s transformation is

used to obtain an unbounded dependent variable, i.e., z1 = 0.5× ln [(1 + ρ1)/(1− ρ1)].
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We used SPSS version 21 to fit the ANOVA model (IBM SPSS, 2012). The partial eta

squared, denoted by η2, will be used as a measure of effect size for the ANOVA model.

According to Cohen (1988), a value of η2 = 0.01 indicates a small effect, η2 = 0.059 a

medium effect, and η2 = 0.138 a large effect. For interpretation of simulation results, we

focus on large effects for type of indicators and number of indicators, and their interactions

with the other design variables.

In the second experiment we are further interested in the type-I error rate and the

power for the regression weights of the MIMIC model. These measures were obtained by

first calculating the proportion of cases in which an effect becomes statistically significant.

For the effects equal to zero, the calculated proportion represents the type-I error rate;

otherwise, the proportion corresponds to the power of the test. In the case of type-I error

rate, a 95% confidence interval of the proportion using the Wilson interval was calculated

(L. D. Brown, Cai, & DasGupta, 2001).

2.4 Results

2.4.1 Experiment-I: Confirmatory Factor Analysis

Nonconvergence in CFA

About 18.9% of the analyses in our simulation study did not converge. We applied logistic

regression on the nonconvergence outcome variable (1: not converged; 0: converged) to

investigate the impact of the design variables. The observed proportions of nonconver-

gence cross classified by design variables are presented in Table 2.3. A two-way interaction

logistic model was fitted to the nonconvergence data.

The results of the 2-way interaction model are displayed in the Appendix (Table A.1);

our focus here will be on the effects of two of the design variables, i.e., type of indicators

and number of indicators, and their interaction with the other design variables. The type
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of indicators has a large effect on the incidence of nonconvergence in CFA. Moreover, we

found a large effect of 2-way interaction between the type of indicators and the following

variables: number of indicators, factor structure, and sample size. There is also a large

effect of number of indicators on the incidence of nonconvergence in CFA, and its 2-way

interaction with the sample size. Figure 2.3 displays the corresponding interaction plots for

the large effects. The first three panels (from left to right) show interaction plot between

the type of indicators and the other design variables (i.e., the number of indicators, the

factor structure, and the sample size). The last panel is for the interaction plot between

the number of indicators and the sample size.

Regardless of the other design variables (i.e., number of indicators, factor structure,

and sample size), we found a large effect of type of indicators on the prevalence of non-

convergence in CFA. The worst result was obtained for the binary indicators, specifically

for the BLR data. For interval indicators, there was not much effect of the other design

variables on the prevalence of nonconvergence in CFA.

By looking at the first and the last panel in Figure 2.3, there is a large interaction

effect between the number of indicators with the type of indicators and the sample size.

That is, the worst prevalence of nonconvergence due to the number of indicators was

obtained when the binary indicators (i.e., BLR and BMR data) are analyzed by CFA. For

the sample size, the worst prevalence of nonconvergence due to the number of indicators

was found when the sample size is below N <= 300.
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Figure 2.3: Interaction plot for Nonconvergence rate: The first three panels (from left to right)
show interaction plot between the type of indicators and the number of indicators, the factor
structure, and the sample size, respectively. The last panel is for the interaction between the
number of indicators and the sample size.

Heywood cases in CFA

About 6.6% of the analyses in our simulation study resulted in Heywood cases. We

applied logistic regression models on the Heywood outcome variable (1: yes; 0: no). The

observed proportions of Heywood cases cross classified by the design variables are shown
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in Table 2.4. A 2-way interaction logistic model was fitted on the Heywood data, and the

results are presented in the Appendix (Table A.2).

Like for the nonconvergence analysis, our focus will be on the effects of the type

of indicators and the number of indicators, and their interaction with the other design

variables. The type of indicators has a large effect on the incidence of Heywood in CFA.

Moreover, we found a large effect of 2-way interaction between the type of indicators

and all the other design variables, i.e., number of indicators, factor structure, correlation

between latent variables, and sample size. There is also a large effect of number of

indicators on the incidence of nonconvergence in CFA, and its 2-way interaction with both

the factor structure and sample size. Figure 2.4 displays the interaction plots for the large

effects. The first four panels (from left to right) show interaction plot between the type

of indicators with the number of indicators, the factor structure, the correlation between

underlying latents, and the sample sizes. The last two panels are for the interaction plot

between the number of indicators with the factor structure and sample size.

In the first three panels, it can be seen that there is no large difference in prevalence

of Heywood cases among the type of indicators used in CFA. The fourth panel shows the

interaction with the sample size, where the highest number of Heywood cases was found

for the BLR data, except for a large and small data sets.

There is a large effect of the number of indicators on the prevalence of Heywood

cases in CFA. The first panel in the last row shows that the worst result was found for

a small number of indicators regardless of the type of indicators in CFA. Furthermore,

more Heywood cases were found for the smallest number of indicators with weak factor

structure and with small sample sizes.



44 CHAPTER 2.
T
ab

le
2
.4
:
P
ercen

tag
e
o
f
H
eyw

o
o
d
cases

in
C
FA

u
n
d
er

d
iff
eren

t
exp

erim
en
tal

settin
g
s.

E
ach

cell
resu

lt
is
b
ased

o
n
R

=
1
0
0
sim

u
lated

rep
licatio

n
s.

S
a
m
p
le

S
ize

5
0

1
0
0

3
0
0

3
0
0
0

N
u
m
b
er

o
f
In
d
ica

tors

T
yp

e
o
f
In
d
ica

tors
F
a
ctor

stru
ctu

re
C
orrela

tio
n
b
etw

een
fa
ctors

6
1
0

1
6

6
1
0

1
6

6
1
0

1
6

6
1
0

1
6

B
L
R

W
ea
k

In
d
ep

en
d
en

ce
2
1
.0

6
.0

3
.0

5
1
.0

2
4
.0

2
.0

5
0
.0

2
6
.0

3
.0

5
.0

0
.0

0
.0

M
o
d
era

te
2
1
.0

3
.0

6
.0

4
1
.0

2
3
.0

7
.0

4
4
.0

1
5
.0

4
.0

1
.0

0
.0

0
.0

S
tro

n
g

1
4
.0

4
.0

2
.0

4
2
.0

9
.0

1
.0

2
8
.0

6
.0

1
.0

0
.0

0
.0

0
.0

M
o
d
era

te
In
d
ep

en
d
en

ce
1
8
.0

2
.0

4
.0

5
2
.0

1
6
.0

0
.0

4
8
.0

9
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
9
.0

3
.0

1
.0

3
3
.0

7
.0

0
.0

2
6
.0

1
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

8
.0

0
.0

4
.0

3
1
.0

4
.0

0
.0

8
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

In
d
ep

en
d
en

ce
1
0
.0

4
.0

7
.0

1
2
.0

0
.0

0
.0

2
.0

0
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
6
.0

3
.0

4
.0

9
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

5
.0

2
.0

2
.0

2
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

B
M
R

W
ea
k

In
d
ep

en
d
en

ce
4
7
.0

1
3
.0

3
.0

5
3
.0

1
8
.0

3
.0

3
4
.0

5
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
4
5
.0

2
0
.0

2
.0

3
7
.0

1
3
.0

1
.0

1
2
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

5
1
.0

1
4
.0

1
.0

2
5
.0

2
.0

1
.0

1
.0

0
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
In
d
ep

en
d
en

ce
4
1
.0

1
0
.0

1
.0

3
8
.0

6
.0

0
.0

1
1
.0

0
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
3
8
.0

5
.0

0
.0

2
3
.0

1
.0

0
.0

4
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

1
7
.0

1
.0

0
.0

1
3
.0

0
.0

0
.0

1
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

In
d
ep

en
d
en

ce
6
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
3
.0

0
.0

0
.0

1
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

In
terva

l
W
ea
k

In
d
ep

en
d
en

ce
6
6
.0

4
8
.0

1
4
.0

5
4
.0

1
4
.0

2
.0

2
0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
5
1
.0

3
4
.0

1
2
.0

4
6
.0

7
.0

1
.0

9
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

3
8
.0

1
8
.0

6
.0

1
3
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
In
d
ep

en
d
en

ce
6
0
.0

2
2
.0

2
.0

4
0
.0

2
.0

0
.0

1
0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
4
0
.0

1
3
.0

1
.0

2
4
.0

1
.0

0
.0

2
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

1
4
.0

4
.0

0
.0

1
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

In
d
ep

en
d
en

ce
8
.0

0
.0

0
.0

2
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

M
o
d
era

te
7
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

S
tro

n
g

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0



2.4. RESULTS 45

Figure 2.4: Interaction plot for Heywood rate: The first four panels (from left to right) show
the interaction between the type of indicators and the number of indicators, the factor
structure, the correlation between underlying latents, and the sample size, respectively. The last
two panels are for the interaction between the number of indicators and the factor structure
and the sample size.



46 CHAPTER 2.

Recovery of Factor Scores

The observed average correlations between the true and estimated factor scores for the

first latent variable cross classified by the design variables as displayed in Table 2.5. A

2-way interaction ANOVA model was fitted on the transformed correlation data, and

the results are presented in the Appendix (Table A.3). Large effects were found for the

number of indicators, the type of indicators, and the interaction between type of indicators

and factor structure. Figure 2.5 displays the interaction plots for the large effects. The

first panel shows two main-effect plots corresponding to effects of the type of indicators

and the number of indicators, respectively. The second panel shows the interaction plot

between the type of indicators and the factor structure.

Both plots show that there is a large effect of type of indicators on the quality of

recovering the true factor scores in CFA. The worst result was obtained for the binary

indicators (i.e., BLR and BMR) regardless of the other design variables.

The first plot also shows a large effect of the number of indicators on the quality of

recovering the factor scores in CFA. The worst result was found for the smallest number

of indicators. Although we found a large interaction effect between the type of indicators

and the factor structure, the second plot in Figure 2.5 does not clearly show this effect.
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Figure 2.5: Interaction plot for Quality of Recovering Factors: The first panel shows two main
effects for the type and number of indicators. The second panel shows the interaction between
the type of indicators and the factor structure.

2.4.2 Experiment-II: The MIMIC Model

In the second experiment, we study the type-I error rate and the power of the regression

parameters (i.e., γ) of the MIMIC model.

Type-I Error

In this section we study the impact of design variables on the Type-I error rate. Although

there are a couple of parameters whose true values are set to zero in the simulation study,

for demonstration purpose we chose one of the parameters, i.e., γ31 which indicates the

relationship between X3 and the first latent variable whose results are presented in Table

2.6.

Those values whose 95% confidence interval excluded the nominal level of significance

(α = 0.05) were made bold; there are a total of fourteen cells which resulted in such cases,
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i.e., one for BLR data, one for BMR data, and the rest for interval data. However, for

BLR and BMR data with N = 50 no results were found due to the presence of improper

solutions and are thus represented by dashed lines in Table 2.6. Therefore, this resulted

in a wider confidence interval for the binary indicators (i.e., the BLR and the BMR data)

and because of that the 5% level of significance level is included.

Although the confidence intervals obtained for both BLR and BMR data do include the

level of significance, most of the point estimates are either zero or very high. Therefore,

the observed type-I error rates were too conservative (i.e., values very close to zero) for

BLR, and inflated (i.e., above the 5% nominal level of significance) for BMR indicators.

In the case of interval indicators, most of the confidence intervals included the nominal

level of significance, and their results seems stable around α = 0.05.

The number of indicators had an impact on the recovery of type-I error rate, particu-

larly for dichotomous indicator variables with low success rates (BLR). That is, among the

108 observed type-I error rates obtained from BLR only thirteen included the 5% nominal

level of significance in their 95% confidence interval for J = 6, while sixteen for J = 10

and nineteen for J = 16 recovered the required type-I error rate. In the case of both

BMR and interval indicators, we found no significant difference on the recovery of type-I

error rate among the type of indicators.

Power

In this section we focus on the observed power of three of the parameters in the MIMIC

model, i.e., γ51 = −0.30 representing a moderate effect, γ72 = 0.10 for a small effect, and

γ42 = 0.95 for a strong effect. Their results are shown in Table 2.7 and in the Appendix

(Table A.4 and A.5), respectively. Some of the cells of these tables had no values due to

the presence of improper solutions and are consequently represented by dashed lines. A

threshold value of 0.80 will be used as a criterion to represent adequate power.

It is evident from Table 2.7 that most of the observed power values obtained from
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dichotomous indicators are very low, except when the sample size is very large. Let us

elaborate on this point using the results under a sample size of N = 300 from Table 2.7.

Out of the twenty-seven observed values for BLR (i.e., Binary indicators with Low success

Rates) none of them passed the threshold value of 0.80 and the maximum value achieved

was only 0.56. For the case of BMR (i.e., Binary indicators with Moderate success Rates),

only one out of twenty-seven had an observed power of exactly 0.80. In the case of interval

indicators, however, eleven out of twenty-seven satisfied the criteria and the maximum

value achieved was an observed power of 0.86.

The minimum power was 0.00 for both BLR and BMR while it was 0.12 for interval

indicators. With a small effect size of γ72 = 0.10 as shown in the Appendix (Table A.4),

among the 216 cells for dichotomous indicators (i.e., both BLR and BMR) only three of

the observed values are larger than 0.8 while in the case of interval indicators nineteen out

of 108 cells satisfied this criterion. These results show that the MIMIC model performed

poorly for analyzing dichotomous indicators, particularly for dichotomous indicators with

low success rates.

2.5 Conclusion and Discussion

Structural equation models are originally proposed for analysis of continuous (or interval)

indicator variables. Recently, factor analysis and structural equation models have been

applied for data with dichotomous indicators and with only a few indicators per latent

variable, i.e., 2 or 3 (Krueger, 1999; Beesdo-Baum et al., 2009). Using a Monte Carlo

simulation study, we showed that latent variable models applied on such type of data

performed poorly with higher incidence of improper solutions, poor quality of recovering

the true factor scores, too conservative or inflated type-I error rates, and weak power.

About 18.9% out of all the analyses in the CFA did not achieve convergence, and

about 6.6% were Heywood cases (i.e., out-of-bound problem). It is shown that the type
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of indicators and the number of indicators in CFA plays a major role on the occurrence of

the nonconvergence in CFA. That is, high prevalence of nonconvergence was obtained for

binary indicators with a few indicators per latent variable. For the occurrence of Heywood

cases in CFA, the number of indicators also played a major role. The quality of recovering

the true factor scores in CFA was poor in the case of binary indicators, and it became

worse with less indicators per latent variable.

We evaluated the performance of the MIMIC model using the type-I error rate and

the power of test for the regression weights. Most of the confidence intervals of the type-

I error distribution obtained from the dichotomous indicators, did not include the 5%

nominal level of significance. The type-I error rates were mostly conservative, although

few of them were inflated. For interval indicators, however, most of the results included

the nominal level of significance within their 95% confidence interval. The power of the

test with dichotomous indicators was poor compared to the interval indicators.

It is important to note that we used an advantageous design for our Monte Carlo

simulation study. The latent variables were generated from a bivariate normal distribution.

Moreover, the population model was correctly specified. In empirical studies it is likely that

assumptions are only partially valid. Moreover, the fitted model could be misspecified;

for example, an important indicator variable may not have been included in the analysis.

Under such conditions we would expect even more improper solutions and factor scores

that are further off than what we found in our current study.

Latent trait or Item Response Theory (IRT) model has also been proposed for analyzing

dichotomous indicator variables (Lord & Novick, 1968). It was shown by Mislevy (1986)

and Takane and De Leeuw (1987), that CFA and IRT models are formally equivalent and

thus yielding similar results. Knol and Berger (1991) conducted a simulation study to

compare the performance of these models and found that the common factor analysis on

the matrix of tetrachoric correlations performed similar to IRT models for multidimensional

data. Furthermore, Glöckner-Rist and Hoijtink (2003) recommended a joint application
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of the models. We conclude our discussion with a recommendation for those researchers

who do confirmatory factor analysis on data with a small number of dichotomous indicator

variables. It is shown in our Monte Carlo simulation that the method performed poorly

for this type of data and therefore must be used carefully. An alternative statistical model

which requires less assumptions might be more appropriate, for example the multivariate

logistic distance model (Worku & De Rooij, 2018).



Chapter 3

Properties of Ideal Point Classification Models for Bivari-

ate Binary Data

Abstract

The Ideal Point Classification (IPC) model was originally proposed for analysing multino-

mial data in the presence of predictors. In this paper, we studied properties of the IPC

model and extended it for analysing bivariate binary responses with a specific focus on

three parameters: (1) the marginal probabilities; (2) the association structure between

the two binary responses; and (3) the joint probabilities. We found that the IPC model

with a specific class point configuration, represents either the marginal probabilities or the

association structure. However, the IPC model is not able to represent both parameters

at the same time. We then derived a new parameterization of the model, the Bivariate

IPC (BIPC) model, which is able to represent both the marginal probabilities and the

association structure. Like the standard IPC model, the results of the BIPC model can be

displayed in a biplot, from which the effects of predictors on the binary responses and on

their association can be read. We will illustrate our findings with a psychological example

relating personality traits to depression and anxiety disorders.

This chapter was published as Worku, H. M. & De Rooij, M. (2017). Properties of Ideal Point
Classification Models for Bivariate Binary Data. Psychometrika, 82 (2), 308-328. To address remarks of
the PhD committee, this chapter is slightly modified.

55
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3.1 Introduction

Multiple binary outcome data are often collected in epidemiology, psychology, medicine,

and other life and behavioral sciences. For example, in the Netherlands Study of Depres-

sion and Anxiety (NESDA) data were collected on depression and anxiety disorders, and

how these disorders are influenced by personality traits and background variables (Penninx

et al., 2008; Spinhoven et al., 2009). In this paper, we focus on bivariate binary data in

which two dichotomous response variables are observed for each subject in a study. An-

other example with bivariate binary data is the British coalminers study (Ashford et al.,

1970), which investigated data on breathlessness (1 = difficult; 0 = Normal) and wheeze

(1 = difficult; 0 = Normal) of coalminers in Britain, to study the impact of exposure on

these respiratory indicators (Ashford et al., 1970; McCullagh & Nelder, 1989; Palmgren,

1989).

Let us denote the bivariate binary responses observed from the i-th subject by Yi1 and

Yi2. The p dimensional vector xi represents the explanatory variables without including

an intercept, where i = 1, 2, . . . , N . The cross-classified binary responses are displayed in

Table 3.1 in which the corresponding probabilities are also presented, i.e., the probabilities

within the four cells represent the joint probabilities; and those at the margins represent the

marginal probabilities. Empirical researchers working with bivariate binary data are often

interested in the following parameters: (1) the marginal probabilities; (2) the association

between the two binary responses; and (3) the joint (or multinomial) probabilities.

In marginal modelling, the main focus is on the analysis of the marginal probabilities

separately in which the association structure between the binary responses could be a

direct interest or treated as a nuisance parameter (Agresti, 2002, pp. 455; Molenberghs &

Verbeke, 2005, pp. 55). In the margins of Table 3.1, the marginal probabilities are denoted

by πil· = Pr(Yi1 = l) and πi·l = Pr(Yi2 = l), where l = 0, 1. Bahadur (1961) proposed

a marginal model based on the full likelihood for analysing bivariate binary data. The
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joint distribution was characterized by the two marginal distributions and the correlation

between the two binary responses. Lipsitz, Laird and Harrington (1990) followed the idea

of Bahadur (1961) and showed that other measures of association can also be used (e.g.,

the odds ratio or relative risk). For a 2× 2 contingency table, the odds ratio is calculated

as τi = (πi,11 × πi,00)/(πi,10 × πi,01) where πi,11 = Pr(Yi1 = 1, Yi2 = 1); πi,00 =

Pr(Yi1 = 0, Yi2 = 0); πi,10 = Pr(Yi1 = 1, Yi2 = 0); and πi,01 = Pr(Yi1 = 0, Yi2 = 1).

Marginal model parameters can be fitted directly or by imposing restrictions on the

joint distribution (Molenberghs & Verbeke, 2005, pp. 49). Aitchison and Silvey (1958,

1960) originally proposed constrains on parameters in maximum likelihood function. Their

approach was later applied to categorical data by Lang and Agresti (1994), and other re-

searchers (Lang, 1996; Bergsma, 1997; Bergsma & Rudas, 2002; Vermunt, Rodrigo, &

Ato-Garcia, 2001). McCullagh and Nelder (1989) introduced a multivariate logistic trans-

formation which can be used to relate the joint distribution to the marginal probabilities

and the association structure. Their approach is widely used for marginal modelling of

multivariate categorical responses (Glonek & McCullagh, 1995; Molenberghs & Lesaffre,

1994, 1999).

In recent years, the marginal modelling strategy has shifted from fitting and testing

linear constraints on parameters to inequality constraints for addressing certain scientific

questions (Colombi & Forcina, 2001; Bartolucci, Forcina, & Dardanoni, 2001; Bartolucci,

Colombi, & Forcina, 2007). For ordinal responses, for example, it may be interesting

to know whether the univariate distributions are stochastically ordered in some way, i.e.,

whether pairs of responses are positively correlated, or whether the degree of positive

dependence changes with certain predictor variables (Colombi & Forcina, 2001).

The main drawback of a full likelihood-based marginal modelling approach is that

it is computationally intensive and prone to model misspecification, especially when the

number of response variables increases (Agresti, 2002, pp. 465; Molenberghs & Ver-

beke, 2005, pp. 151). Liang and Zeger (1986) proposed an extension of quasi-likelihood
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Table 3.1: Cross-classification of bivariate binary data observed from i-th subject.

Yi2
1 0

Yi1 1 πi,11 πi,10 πi1.
0 πi,01 πi,00 πi0.

πi.1 πi.0 1.00

method, called Generalized Estimating Equations (GEE or GEE1), that does not require

full specification of the response distribution. In GEE1 the association structure is treated

as a nuisance parameter. Second-order GEE, called GEE2, (Liang et al., 1992) and Alter-

nating Logistic Regression (ALR: Carey, Zeger, & Diggle, 1993) are commonly used for

modelling both the marginal probabilities and the association structure.

The third parameter of interest are the joint probabilities. The joint probabilities as

displayed in Table 3.1 (i.e., πi,00; πi,10; πi,01; and πi,11) correspond to a multinomial

response variable, denoted by Gi, with four categories (g = 4). For simplicity, we use a

single index to refer to the joint probabilities, i.e., πij = Pr(Gi = j). For example, the

four cells in Table 3.1 can be represented as: πi1 = πi,00; πi2 = πi,10; πi3 = πi,01; and

πi4 = πi,11. In the NESDA study, for example, a multinomial response variable can be

defined from the two binary outcome variables. That is, Gi = 1 if the subject has no

depression or anxiety; Gi = 2 if (s)he has an anxiety disorder, but no depression disorder;

Gi = 3 if the subject has depression disorder, but no anxiety disorder; and Gi = 4 if

there is co-morbidity. Statistical models such as the Multinomial Baseline-Category Logit

(MBCL: Agresti, 2002, pp. 267) or Ideal Point Classification (IPC: De Rooij, 2009a), can

be used to analyse multinomial response variables in the presence of predictors.

De Rooij (2009a) proposed the IPC model for analysing a multinomial response variable

in the presence of predictors. The IPC model is a probabilistic multidimensional unfolding

model and closely related to Ideal Point Discriminant Analysis (IPDA) as proposed by

Takane, Bozdogan, and Shibayama (1987). Both IPDA and IPC models are classification

methods based on multidimensional unfolding (MDU) (Heiser, 1981, 1987; De Leeuw,
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2005). The objective of MDU is to find distances in Euclidean space between subjects

and objects that approximate a set of proximities as good as possible. In IPC and IPDA

models, the proximity is given by an indicator matrix that corresponds to the multinomial

response.

De Rooij (2009a) showed that the IPC model in maximum dimensionality is equivalent

to the MBCL model, i.e., if the dimensionality of the Euclidean space equals the number

of categories of the response variable minus one. The MBCL is a natural extension of

binary logistic regression to the case of nominal categorical variables. Both the IPC and

the MBCL models use the joint probabilities to define their likelihood function. Unlike in

the MBCL model, dimension reduction is possible in the IPC models. Thus, less model

parameters are estimated in the reduced space. Furthermore, the results of the IPC model

can be displayed using a biplot (Gower & Hand, 1996; Gower et al., 2011) which enhance

interpretation of the model.

In this paper, our main aim is to study properties of the IPC model for bivariate

binary data, specifically about the representation of the marginal probabilities and of the

association structure. We will show that the IPC model either represents the marginal

models or the association structure well. Next, we study a new parametrization of the IPC

model, namely the Bivariate IPC (BIPC) model, in which both the marginal probabilities

and the association structure are represented. This new model builds forward on the work

of Bahadur (1961) and Lipsitz, Laird and Harrington (1990). Compared to this existing

methodology for jointly modelling the marginal and association structure, our method has

the advantage of dimension reduction and a graphical representation of the model using

a biplot.

The paper is organized as follows. Section 2 presents the theoretical background.

Section 3 studies properties of the IPC models both mathematically and with a simulation

study. Section 4 proposes the BIPC model. Section 5 shows an example application and

then we conclude in Section 6 with a discussion.
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3.2 Background

3.2.1 The Ideal Point Classification Model

In the IPC model (De Rooij, 2009a) the conditional joint probabilities, i.e., πj(xi) =

Pr(Gi = j|xi), are modelled using a distance between two points in an Euclidean space of

dimensionalityM : one point representing subject i with coordinates ηi = [ηi1, . . . , ηiM ]T,

and the other representing class j with coordinates γj = [γj1, . . . , γjM ]T. The smaller

the relative distance between the two points, the larger the probability that the subject

belongs to that class. The IPC model is defined as (De Rooij, 2009a),

πj(xi) =
exp(−0.5× δij)∑
h exp(−0.5× δih)

, (3.1)

where δij is a squared Euclidean distance between the two points and is defined as

δij =

M∑
m=1

(ηim − γjm)2. (3.2)

The coordinates of the subject points are assumed to be a linear combination of the

predictor variables xi and an intercept, i.e., ηi = β0 + xiβ, where β is a (p×M) matrix

with regression weights and, β0 an M dimensional intercept. The parameters of this

model are the regression weights and the class points.

Parameter estimates in the IPC model can be obtained by maximizing a multinomial

log-likelihood function
N∑
i=1

log
∏

j

πj(xi)
fij

 , (3.3)

where fij = 1 if subject i is in category j, zero otherwise.

The IPC model has translation, rotational freedom, and multinomial indeterminacy

(i.e., the class probability remains the same if a constant is added to each subject’s squared
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distance). The total number of restrictions needed is max[M(M−1)/2,M(M+1)−(g−

1)], and thus the total number of free parameters becomes npar = (p+g)M−max[M(M−

1)/2,M(M +1)− (g− 1)] (De Rooij, 2009a). Depending on dimensionality of the fitted

model, γ−parameters are set at fixed values to identify the model. For a multinomial

response variable with g = 4 categories, for example, the maximum dimensionality of the

IPC model is M = 3(= g − 1) and the total number of parameters in that case will be

npar = 3 × (p + 1) that corresponds to the regression parameters only since the class

points can be set to fixed values that span the three-dimensional space. The class point

coordinates can be specified, for example, as

γ =



0 0 0

1 0 0

0 1 0

1 1 1


. (3.4)

The rows in (3.4) correspond to the response categories and the columns to the dimen-

sions. In this case, the IPC model is equivalent to the MBCL model. The advantage

of the IPC model over the MBCL model is that it provides the possibility of dimension

reduction. For the multinomial response with g = 4, a 2-dimensional IPC model can be

fitted with a total number of parameters npar = 2 × (p + 1) + 3, where the first part

(2 × (p + 1)) represents the number of regression coefficients and the second part (+3)

the free class coordinates. From the eight class coordinates five need to be fixed for

identification. This can be accomplished, for example, by defining

γ =



0 0

1 0

0 γ32

γ41 γ42


, (3.5)
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where γ32, γ41, and γ42 are the free class coordinates, i.e., these can be estimated from

the data.

3.2.2 The 2-step Approach of McCullagh and Nelder (1989)

We revisit a 2-step approach often used for constructing multivariate regression models

using joint probabilities of multivariate (or bivariate) binary data, as proposed by McCul-

lagh and Nelder (1989). We later apply this approach in the distance framework to study

the properties of IPC models.

In the first step, a linear transformation is applied on the joint probabilities to obtain

the marginal probabilities, i.e.,

Λi = Lπi, (3.6)

where L is a matrix of zeros and ones and πi = [πi4 πi3 πi2 πi1]
T. In the case of bivariate

binary data, for example, the row margin is given by

Λi1 = L1πi

=

1 0 1 0

0 1 0 1

× [πi4 πi3 πi2 πi1]
T

=

πi4 + πi2

πi3 + πi1

 =

πi1·
πi0·

 .
(3.7)
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Similarly, the column margin is given by

Λi2 = L2πi

=

1 1 0 0

0 0 1 1

× [πi4 πi3 πi2 πi1]
T

=

πi4 + πi3

πi2 + πi1

 =

πi·1
πi·0

 .
(3.8)

In the second step, logarithmic contrasts of interest are formulated, i.e.,

Ψi = CT log[Λi], (3.9)

for an appropriately chosen contrast matrix CT. For the bivariate binary data, the contrast

matrices can be chosen to be CT =

[
1 −1

]
. Thus,

ψi1 =

[
1 −1

]
log[Λi1]

=

[
1 −1

] [
log(πi1·) log(πi0·)

]T
= log(πi1·)− log(πi0·)
= log(πi1·/πi0·)
= logit(πi1·).

(3.10)

Similarly, ψi2 = log(πi·1/πi·0) = logit(πi·1). In the presence of predictors these logits

can be linked to the systematic part as used in Generalized Linear Models (Agresti, 2002);

that is,

logit(πi1·) = β01 + βT
1 xi,

logit(πi·1) = β02 + βT
2 xi.

(3.11)
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The above derivations (equation 3.6 - 3.11) can be summarized as follows.

CT log(L1πi) = β01 + βT
1 xi,

CT log(L2πi) = β02 + βT
2 xi.

(3.12)

To obtain the association structure for bivariate binary data, the joint probabilities can

also be transformed linearly. In this case CT =

[
1 −1 −1 1

]
and L = I such that,

CT log(Lπi) =

[
1 −1 −1 1

]
log[Iπi]

=

[
1 −1 −1 1

] [
log(πi4) log(πi3) log(πi2) log(πi1)

]T
= log(πi4)− log(πi3)− log(πi2) + log(πi1)

= log

πi4 × πi1

πi3 × πi2


= log(τi).

(3.13)

This odds ratio can be linked to predictors as

log(τi) = β03 + βT
3 xi. (3.14)

3.3 Study-1: IPC Model as a Marginal Model

In this section, our aim is in how the IPC model represents both the marginal probabilities

and the association structure for bivariate binary data. We use the 2-step approach

of McCullagh and Nelder (1989) within the distance framework to transform the joint

probabilities into the marginal probabilities and the association structure.
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3.3.1 The 2-dimensional IPC Model

In this section, we show the representation of both the marginal probabilities and the

association structure by a 2-dimensional IPC model. The class point matrix introduced in

equation (3.5) will be used here with an additional restriction imposed on one of the free

class points. That is, γ32 = 1 so that the first dimension pertains to a logistic regression of

the first response and the second dimension to a logistic regression of the second response

(i.e., no further scaling is required).

Representation of the Marginal Probabilities

Let us first show how the marginal probabilities of the two binary responses are represented

by the 2-dimensional IPC model. The joint probability as defined by the IPC model in

equation (3.1) will be used to define the marginal probabilities, that is,

log

πi1·
πi0·

 = log

πi4 + πi2

πi3 + πi1



= log


exp(−0.5δi4)∑
h exp(−0.5δih)

+
exp(−0.5δi2)∑
h exp(−0.5δih)

exp(−0.5δi3)∑
h exp(−0.5δih)

+
exp(−0.5δi1)∑
h exp(−0.5δih)



= log

 exp(−0.5δi4) + exp(−0.5δi2)

exp(−0.5δi3) + exp(−0.5δi1)

.

(3.15)

Let us write out the Euclidean distances δij as defined in equation (3.2). The marginal

model (3.15) becomes,

log

πi1·
πi0·

 = log

 exp [γ41(ηi1 − 0.5γ41)]× exp [γ42(ηi2 − 0.5γ42)] + exp[ηi1 − 0.5]

exp(ηi2 − 0.5) + 1

. (3.16)
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In this paper, we find it convenient to re-parametrize γ41 and γ42 in terms of two other

parameters, i.e., γ41 = 1+φ1 and γ42 = 1+φ2. The φ-parameters represent the deviation

of the last category from (1, 1). By setting φ1 = φ2 = 0, the above result (16) can be

simplified to:

logit[πi1·] = log

 [exp(ηi1 − 0.5)× exp(ηi2 − 0.5)] + exp(ηi1 − 0.5)

exp(ηi2 − 0.5) + 1


= log

 exp(ηi1 − 0.5)× [exp(ηi2 − 0.5) + 1]

exp(ηi2 − 0.5) + 1


= ηi1 − 0.5

= (β01 − 0.5) + βT
1 xi

= β∗
01 + βT

1 xi.

(3.17)

Similarly,

log

πi·1
πi·0

 = log

πi4 + πi3

πi2 + πi1



= log


exp(−0.5δi4)∑
h exp(−0.5δih)

+
exp(−0.5δi3)∑
h exp(−0.5δih)

exp(−0.5δi2)∑
h exp(−0.5δih)

+
exp(−0.5δi1)∑
h exp(−0.5δih)



= log

 exp[γ41(ηi1 − 0.5γ41)]× exp[γ42(ηi2 − 0.5γ42)] + exp[ηi2 − 0.5]

exp[ηi1 − 0.5] + 1

.

(3.18)

By setting φ1 = φ2 = 0 a straightforward marginal model is obtained, logit[πi·1] =

(β02 − 0.5) + βT
2 xi = β∗

02 + βT
2 xi; and, thus we call this the fixed class case. Without

the constraints on the φ-parameters, the marginal models in (3.16) and (3.18) can not
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be simplified further.

Representation of the Association

The odds ratio is defined in terms of the joint probabilities as shown in (3.13). Let us

rewrite the probabilities in terms of the IPC model as in equation (3.1); that is,

log(τi) = log

πi4 × πi1

πi2 × πi3



= log


exp(−0.5δi4)∑
h exp(−0.5δih)

×
exp(−0.5δi1)∑
h exp(−0.5δih)

exp(−0.5δi2)∑
h exp(−0.5δih)

×
exp(−0.5δi3)∑
h exp(−0.5δih)



= log

 exp(−0.5δi4)× exp(−0.5δi1)

exp(−0.5δi2)× exp(−0.5δi3)


= 0.5× [δi2 + δi3 − δi4 − δi1]. (3.19)

This result implies that the differences between pairs of squared Euclidean distances corre-

spond to the log-odds ratio. The distances can be written out and the association model

becomes,

log(τi) = φ1 × (ηi1 − 1) + φ2 × (ηi2 − 1)− 0.5 ∗ (φ21 + φ22). (3.20)

In the case of φ1 = φ2 = 0, log(τi) = 0 which is equal to τi = 1. An odds ratio of unity

indicates no association between the two binary responses, i.e., independence.

3.3.2 The 3-dimensional IPC Model

We now show the representation of the marginal probabilities and the association structure

in a 3-dimensional IPC model. The class point introduced in equation (3.4) will be used
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in the next derivations of the 3-dimensional IPC model.

Representation of the Marginal Probabilities

We follow the same derivation as before, but now the joint probabilities are defined in the

3-dimensional Euclidean space. For the marginal probabilities, we have

log

πi1·
πi0·

 = log

πi4 + πi2

πi3 + πi1



= log


exp(−0.5× δi4)∑
h exp(−0.5× δih)

+
exp(−0.5× δi2)∑
h exp(−0.5× δih)

exp(−0.5× δi3)∑
h exp(−0.5× δih)

+
exp(−0.5× δi1)∑
h exp(−0.5× δih)



= log

 exp [ηi1 + ηi2 + ηi3 − (3/2)] + exp [ηi1 − 0.5]

exp [ηi2 − 0.5] + 1

 . (3.21)

Similarly,

log

πi·1
πi·0

 = log

πi4 + πi3

πi2 + πi1



= log


exp(−0.5× δi4)∑
h exp(−0.5× δih)

+
exp(−0.5× δi3)∑
h exp(−0.5× δih)

exp(−0.5× δi2)∑
h exp(−0.5× δih)

+
exp(−0.5× δi1)∑
h exp(−0.5× δih)



= log

 exp [ηi1 + ηi2 + ηi3 − (3/2)] + exp [ηi2 − 0.5]

exp [ηi1 − 0.5] + 1

 . (3.22)

It is not possible to simplify the above formulas further because of the parameters ηi3.

Compared to the 2-dimensional IPC model with fixed class point, the marginal models
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are not clearly represented in the 3-dimensional IPC models.

Representation of the Association

Using the formula derived in equation (3.19), but with the distances defined in three

dimensions, the association model becomes

log[τi] = 0.5× [δi2 + δi3 − δi4 − δi1]

= 0.5×

{[
3∑

m=1

(η2im − 2ηi1 + 1)

]
+

[
3∑

m=1

(η2im − 2ηi2 + 1)

]

−

[
3∑

m=1

(η2im − 2ηi1 − 2ηi2 − 2ηi3 + 3)

]
−

[
3∑

m=1

η2im

]}
= ηi3 − 0.5. (3.23)

This result proves that the 3-dimensional IPC model represents the association structure

where the third dimension uniquely pertains to the association model.

3.3.3 Discussion

We studied both 2- and 3-dimensional IPC models in terms of marginal probabilities and

association structure of bivariate binary data in the presence of predictors. We showed

that both models with a specific class point specification are able to recover either the

marginal probabilities or the association structure. That is, the 2-dimensional IPC model

with fixed class point, i.e., φ1 = φ2 = 0, is equivalent to the marginal model with an

independence association structure. In the case of a 3-dimensional model, the association

structure is represented by the third dimension.

Based on the results of Section 3.1.1 and 3.1.2, we showed that a 2-dimensional IPC

model with fixed class points, i.e., γ41 = γ42 = 1, represents a marginal model with an

independence association structure. Each of the dimensions in the IPC model is related

to one of the two binary responses. As shown in equation (3.20), the 2-dimensional IPC
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model with free φ-parameters represents the association structure by a mixture of the

marginal parameters and the φ-parameters.

According to the analytical results shown in equations (3.16) and (3.18), the marginal

models can not be further simplified unless φ1 = φ2 = 0. When φ1 6= 0 and φ2 6= 0,

neither the marginal model nor the association structure is well represented. At this stage,

however, we do not know whether the IPC model is capable of recovering the models

for the marginal probabilities and the association structure; therefore, we conducted a

simulation study.

3.3.4 Simulation Study

We were able to show mathematically the performance of both the 2-dimensional IPC

model with fixed class point, denoted by IPC(2D-FIXED), and the 3-dimensional IPC

model, denoted by IPC(3D), in representing the marginal probabilities and the association

structure for bivariate binary data. The analytical derivation under the 2-dimensional IPC

model with free class points, denoted by IPC(2D-FREE), however, was cumbersome.

We conducted a simulation study to fully understand to what degree the IPC(2D-FREE)

model recovers the marginal models and/ or the association model.

Data-generating Model

Bivariate binary data were generated from a Bivariate Logistic Regression model (Palmgren,

1989). The data generating model for the marginal probabilities is defined as follows,

logit[πi1·] = β01 + β11X1i + β21X2i + β31X3i + β41X4i + β51X5i,

logit[πi·1] = β02 + β12X1i + β22X2i + β32X3i + β42X4i + β52X5i.

(3.24)

We set (β01, β02) = (−2.20,−1.50); (β11, β12) = (0.00,−0.25); (β21, β22) = (0.20, 0.00);

(β31, β32) = (−0.15,−0.15); (β41, β42) = (1.05, 1.15); and (β51, β52) = (−0.45,−0.15).
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To generate data we need a representation of the association structure, i.e., log[τi] =

β03 + β13X1i + β23X2i + β33X3i + β43X4i + β53X5i. In the 2-dimensional IPC model,

the association structure is defined in terms of the other parameters as shown in (3.20).

That is, β*03 = φ1 × β01 + φ2 × β02 − 0.5 × φ21 − 0.5 × φ22 − φ1 − φ2 and β*k3 =

φ1 × βk1 + φ2 × βk2, where k = 1, 2, . . . , 5. Therefore, the data generating model for

the association is log[τi] = β∗
03 + β∗

13X1i + β∗
23X2i + β∗

33X3i + β∗
43X4i + β∗

53X5i. We set

φ1 = −0.20 and φ2 = −0.45; thus, the association parameters become β∗
03 = 1.65 and

β∗
k3 = (0.10,−0.05, 0.10,−0.70, 0.15).

Four of the predictors were generated from the standard normal distribution, Xqi ∼

N(0, 1) where q = 2, . . . , 5, and one from a binomial distribution, i.e., X1i ∼ BIN(0.67).

The VGAM package in the R software was used for generating the bivariate binary data

(Yee, 2010).

Design and Analysis

A sample size of N = 500 was used in the simulations and each simulation was replicated

R = 1000 times to obtain the sampling distributions of model parameters.

The performance of the proposed methods was evaluated by Bias (B), Root Mean

Squared Error (RMSE), and Coverage. The bias of a parameter is defined as the difference

between true value and the average of estimated values, i.e., B(β̂) =
¯̂
β − β, with

¯̂
β =

1000∑
r=1

β̂r/1000,

and β̂r is the estimate obtained from r−th replication. The RMSE is defined as

RMSE =

√√√√1000∑
r=1

[
(β̂r − β)2/1000

]
.

Finally, the coverage is defined as the proportion of times the 100(1 − α)% confidence
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interval (CI) includes the true β value, where α corresponds to the nominal level of

significance. The CI is defined as [β̂r±Z1−α/2ŜE(β̂r)] in which SE stands for the standard

error of a parameter.

Simulation Study Results

The simulation results of the 2- and 3-dimensional IPC models are summarized in Table

3.2. The results for IPC(2D-FIXED) are given in columns 4-6, for IPC(3D) in columns

7-9, and for IPC(2D-FREE) in the last three columns. Because we showed analytically

that the marginal models are represented well by the 2-dimensional fixed IPC model, and

the association structure is represented well by the 3-dimensional IPC model, we focus

here on the contrast of the 2-dimensional free model with the other two.

Compared to the IPC(2D-FIXED) results, marginal parameters under the IPC(2D-FREE)

model were more biased. Specifically, two of the effects (i.e., X2 and X4) including the

intercept, were poorly estimated. More specifically, B(β21) = 0.037 is about nine times

bigger compared to the IPC(2D-FIXED) result, B(β22) = −0.016, B(β41) = 0.106, and

B(β42) = 0.050 which all are about three times bigger than those obtained from the

IPC(2D-FIXED). All the RMSE results for the IPC(2D-FREE) model were higher than

those obtained from the IPC(2D-FIXED) model. The coverage of the marginal parameters

by the IPC(2D-FREE) model, compared to the former results, seems promising. However,

both the intercepts and some of the effects were not covered well (i.e., β01: 85.2%; β02:

91.0%; β21: 92.5%; β41: 92.6%%; β52: 91.9%). Unlike the marginal parameters, the

association parameters were fairly well estimated by the IPC(2D-FREE). This is evident

if we compare the results of the association parameters under the IPC(2D-FREE) and the

IPC(3D) models.
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3.3.5 Summary of Study-1

De Rooij (2009a) studied IPC model for categorical data and showed its equivalence to

logistic regression models. It was shown that the MBCL model is equivalent to the IPC

model in maximum dimensionality. These models represent the joint probabilities.

In this Section we studied properties of the IPC model and extended it for analysing

bivariate binary data, focusing on the marginal probabilities and the association structure.

We showed their connection both mathematically and using a simulation study. We found

that a 2-dimensional IPC model with fixed class point (i.e., φ1 = φ2 = 0) represents the

marginal models with an independence association structure. We also found that a 3-

dimensional IPC model with a specific class point configuration represents the association

model in the third dimension.

We also studied the performance of a 2-dimensional IPC model with free class point.

Since its analytical part was cumbersome, we conducted a simulation study to see if it can

recover both the marginal models and the association model. This model represents the

association model well, but the marginal models were misspecified. Therefore, we conclude

that a given IPC model can recover either the marginal models or the association model

of bivariate binary data, but not both of them at the same time.

3.4 Study-2: The Bivariate IPC Model

In the first study, we investigated properties of the standard IPC models for the represen-

tation of both the marginal probabilities and the association structure. It was concluded

that a given IPC model is not able to represent both types of the models at the same time.

In this section, we re-parametrize the IPC model in order to provide a better representation

of both the marginal probabilities and the association structure.

Bahadur (1961) proposed a full likelihood-based marginal model for bivariate binary

data by characterizing the multinomial probabilities in terms of both the marginal prob-



3.4. STUDY-2: THE BIVARIATE IPC MODEL 75

abilities and the correlation coefficient between the two responses (Yi1 and Yi2). Lipsitz,

Laird and Harrington (1990) followed the Bahadur (1961) approach and showed that other

measures of association, such as the odds ratio and the relative risk, can also be used.

In this second study, our aim is to adopt the Lipsitz, Laird and Harrington (1990)

approach into the IPC model framework for better representation of the required statistical

models. As shown in equation (3.3), parameter estimation under the IPC model is based

on the multinomial likelihood function. To avoid confusion with the former IPC model

presented in Section 2.1, we refer the Bahadur-based IPC model as the Bivariate IPC

(BIPC) model.

In the BIPC model framework, the Euclidean distance defined in equation (3.2) will be

used only to define the joint probabilities which are related to the association structure. For

defining the marginal models, we use another Euclidean distance definition emphasizing

the marginal models. That is,

πi1· =
exp(−0.5δi1·)

exp(−0.5δi0·) + exp(−0.5δi1·);

πi·1 =
exp(−0.5δi·1)

exp(−0.5δi·0) + exp(−0.5δi·0),
(3.25)

where δil· =
∑2

m=1 (ηim − γl·m)2 and δi·l =
∑2

m=1 (ηim − γ·lm)2, l = 0, 1. As shown

in Appendix B, the class points of the BIPC model are defined as

γ1 =

0 0

1 0

 ,
and

γ2 =

0 0

0 1

 ,
where γ1 is the class point matrix that corresponds to the first response variable and γ2
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to the second response variable.

The first step according to Bahadur (1961) is to rewrite the the association structure

between the two binary responses, i.e., the odds ratio in our case, using the marginal

probabilities. That is,

τi =
πi4 × πi1

πi2 × πi3
=
πi4 × (1− πi1· − πi·1 + πi4)

(πi1· − πi4)× (πi·1 − πi4)
. (3.26)

We showed in (3.19) that given the IPC model, the odds ratio can be defined in terms

of Euclidean distances, i.e., τi = exp[0.5 × (δi2 + δi3 − δi1 − δi4)]. We will use this

representation as the defining characteristics of the association in the BIPC model. With

free class points, i.e., φ1 6= 0 and φ1 6= 0, the odds ratio becomes,

τi = exp[φ1 × (ηi1 − 0.5φ1 − 1) + φ2 × (ηi2 − 0.5φ2 − 1)]. (3.27)

We can then replace τi in (3.26) by (3.27), and solve the quadratic equation to get

solutions for πi4 (Mardia, 1967). The valid solution for πi4 is,

πi4 =


wi − {w2

i − 4 exp(ai)[exp(ai)− 1]πi1·πi·1}1/2
2[exp(ai)− 1]

if ai 6= 0

πi1· × πi·1 if ai = 0,

(3.28)

where wi = 1− [1− exp(ai)][πi1· + πi·1] and ai = φ1 × (ηi1 − 0.5φ1 − 1) + φ2 × (ηi2 −

0.5φ2 − 1).

The final step is to rewrite the joint probabilities in the multinomial likelihood in

terms of the marginal probabilities and the association structure, i.e., πi2 = πi1· − πi4
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and πi3 = πi·1 − πi4 in which πi4 will be replaced by (3.28). That is,

π∗
i =


πi4

πi·1 − πi4

πi1· − πi4

 . (3.29)

This modified likelihood will be used for estimating the parameters of the BIPC model.

3.4.1 Simulation Study Results

The simulation results of the BIPC model are summarized in Table 3.3. We compare

these results against those in Table 3.2, particularly the results from IPC(2D-FIXED) and

IPC(3D) models.

The bias and RMSE results for the marginal parameters under the BIPC model are

very close to those under the IPC(2D-FIXED) model, which proves that the BIPC model

represents the marginal models well. Almost all the coverages of the marginal parameters

were satisfactory, except two of the effects, one for β22 equal to 92.8% and for β52 equal to

92.2%. Their coverage by the IPC(2D-FIXED) model was 93.9% and 93.5%, respectively.

Compared to the results presented in Table 3.2 for IPC(3D), the BIPC model produced

smaller bias, except for two of the effects, i.e., B(β43) = −0.176 and B(β53) = 0.087.

However, all the RMSEs under the BIPC model were smaller than those obtained from

the IPC models. Almost all the parameters were covered well by the BIPC model, with

a coverage above 95.0%. Compared to the IPC models, the BIPC model estimates are

generally less biased, more accurate, and well covered parameters for both the marginal

models and the association model.

We conclude that the BIPC model represents not only the marginal models, but also

the association model for the analysis of bivariate binary data in the presence of predictors.
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Table 3.3: Summarized results of the simulation study for studying the performance of the
BIPC model for analysing bivariate binary data.

Effect Parameter True Bias RMSE Coverage

Intercept β01 −2.20 −0.074 0.333 95.5

β02 −1.50 −0.048 0.262 94.9

β*03 1.65 0.109 0.602 94.5

X1 β11 0.00 0.021 0.365 94.3

β12 −0.25 0.001 0.288 95.4

β*13 0.10 −0.022 0.369 98.7

X2 β21 0.20 0.005 0.171 94.2

β22 0.00 −0.010 0.144 92.8

β*23 −0.05 −0.044 0.230 95.1

X3 β31 −0.15 −0.007 0.162 95.2

β32 −0.15 0.004 0.137 96.1

β*33 0.10 0.013 0.158 99.3

X4 β41 1.05 0.022 0.195 94.5

β42 1.15 0.009 0.179 93.1

β*43 −0.70 −0.176 0.382 95.7

X5 β51 −0.45 0.007 0.162 96.5

β52 −0.15 0.001 0.149 92.2

β*53 0.15 0.087 0.249 96.8

β*03 = φ1×β01+φ2×β02−0.5×φ2
1−0.5×φ2

2−φ1−φ2; β*k3 = φ1×βk1+φ2×βk2, where k = 1, 2, . . . , 5.

3.5 Application

The NESDA data introduced earlier (Penninx et al., 2008), were analysed using the

proposed distance models. The sample comprised of N = 2, 938 subjects aged 18 to 65

years (Mean=42; S.D.=13.1). About 66.5% were female and the average number of

years of education attained was 12.2 with S.D. = 3.3. The responses of interest were

diagnoses of dysthmia (DYST: 1 if diseased; 0, otherwise) and generalized anxiety disorder

(GAD: 1 if diseased; 0, otherwise). About 10.2% and 15.3% of the subjects in the study

developed DYST and GAD, respectively.

One of the objectives of NESDA is to measure the effect of personality traits on the
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risk of developing mental disorders (Spinhoven et al., 2009). We considered the Big-Five

personality variables, i.e., Neuroticism (N), Extraversion (E), Openness to experience (O),

Agreeableness (A), and Conscientiousness (C). We also took into account the background

variables, i.e., age (AGE), years of educations attained (EDU), and gender (GEN: 1=female;

0=male). Both the personality traits and the background variables will be treated as

predictors.

In the final fitted (B)IPC models, all background variables and two of the personality

traits such as neuroticism and extraversion, are retained since the other traits (such as O,

A and C) are not statistically significant on both dimensions.

Table 3.4: Parameter estimates with corresponding standard errors (between the parenthesis)
obtained from the IPC and BIPC models fitted on the NESDA data. IPC(2D-IND) corresponds
to the 2-dimensional IPC model with fixed class coordinates; IPC(2D-FREE) to the
2-dimensional IPC model with free class coordinates; and IPC(3D) to the 3-dimensional IPC
model.

Models
Effect Parameter IPC(2D-FIXED) IPC(2D-FREE)† IPC(3D) BIPC†

Dysthymia
Intercept β01 −2.20(0.131) −2.57(0.148) −2.55(0.167) −2.21(0.131)
Gender β11 −0.18(0.140) −0.21(0.143) −0.25(0.180) −0.17(0.139)
Age β21 0.20(0.072)* 0.20(0.073)* 0.18(0.093)* 0.20(0.072)*
Education β31 −0.15(0.066)* −0.17(0.067)* −0.18(0.085)* −0.15(0.065)*
Neuroticism β41 1.03(0.102)* 1.14(0.127)* 1.13(0.133)* 1.03(0.102)*
Extraversion β51 −0.46(0.085)* −0.47(0.087)* −0.47(0.11)* −0.45(0.085)*

Generalized Anxiety Disorder
Intercept β02 −1.51(0.105) −1.69(0.118) −1.69(0.118) −1.51(0.103)
Gender β12 −0.26(0.119)* −0.31(0.136)* −0.31(0.137)* −0.26(0.117)*
Age β22 0.06(0.060) 0.03(0.068) 0.02(0.069) 0.05(0.059)
Education β32 −0.13(0.056)* −0.14(0.064)* −0.14(0.065)* −0.12(0.055)*
Neuroticism β42 1.16(0.086)* 1.22(0.098)* 1.22(0.098)* 1.14(0.085)*
Extraversion β52 −0.15(0.070)* −0.10(0.080) −0.10(0.081) −0.14(0.070)*

Association
Intercept β03 — 1.75(0.199) 2.19(0.274) 1.69(0.207)
Gender β13 — 0.23(0.116)* 0.30(0.281) 0.16(0.081)*
Age β23 — −0.02(0.055) 0.01(0.145) −0.06(0.043)
Education β33 — 0.10(0.051)* 0.14(0.133) 0.09(0.034)*
Neuroticism β43 — −0.92(0.187)* −0.89(0.211)* −0.73(0.170)*
Extraversion β53 — 0.08(0.072) 0.07(0.169) 0.16(0.067)*

† β03 = φ1 × β01 + φ2 × β02 − 0.5× φ21 − 0.5× φ22 − φ1 − φ2; βk3 = φ1 × βk1 + φ2 × βk2, where
k = 1, 2, . . . , 5.
* statistically significant, i.e., p < 0.05.
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3.5.1 The IPC Models

The results of 2- and 3-dimensional IPC models fitted on the NESDA data are shown in

Table 3.4.

The 2-dimensional IPC Model

The 2-dimensional IPC model with fixed class points, which is a marginal model with an

independence association structure, is presented in the third column of Table 3.4 and has

a fit statistic of BIC = 3, 784.1 with twelve parameters.

We found a strong positive effect of neuroticism on risk of developing both mental

disorders, i.e., β̂41 = 1.03 with DYST; and β̂42 = 1.16 with GAD. This implies that on

average neurotic (i.e., emotionally unstable) people have a higher chance of developing

the mental disorders. The other personality trait with stronger effect was extraversion

with a moderate negative effect, i.e., β̂51 = −0.46 with DYST; and β̂52 = −0.15 with

GAD. Being an introvert (i.e., having lower social engagement) seems to increase the

chance of developing the mental disorders.

Among the background variables, education was the only predictor with statistically

significant association with both disorders, i.e., β̂31 = −0.15 with DYST; and β̂32 =

−0.13 with GAD. That is, less educated people had a higher chance of developing the

disorders. The other vulnerable groups were males (i.e., β̂12 = −0.26 with GAD) and

elders (β̂21 = 0.20 with DYST).

The fourth column shows the results of the 2-dimensional IPC model with free class

points; its fit statistics was BIC = 3, 723.6 with fourteen parameters. The additional two

parameters are due to the estimated class points, i.e., φ̂1 = −0.01 and φ̂2 = −0.74. The

association parameters presented in the last row block of Table 3.4 under IPC(2D-FREE),

are not free parameters because they are estimated using the other parameters including

the class coordinates as shown in equation (3.20). Gender, education, and neuroticism
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had significant effect on the log-odds ratio, i.e., β̂13 = 0.23, β̂33 = 0.10 and β̂43 =

−0.92, respectively. Neuroticism had a negative strong effect on the log-odds ratio,

which implies that the association between the two disorders became weaker when the

level of neuroticism for a given person increased; and the rate of change was about 0.92

for a unit change in neuroticism. In the case of education, the direction was positive which

implies that the association between the disorders became stronger when a person became

more educated and the rate of change was about 0.10 for a unit change in education.

The results of IPC(2D-FIXED) and IPC(2D-FREE) models are not comparable as

shown mathematically in Section 3.1. This is also evident if we compare the effect of

extraversion under these models, i.e., β̂52 = −0.15 under the IPC(2D-FIXED) model

which is statistically significant, but it became insignificant under the IPC(2D-FREE)

model, i.e., β̂52 = −0.10.

The 3-dimensional IPC Model

The results of the 3-dimensional IPC model are presented in the fifth column that cor-

responds to IPC(3D) and its fit statistic was BIC = 3, 755.4 with eighteen parameters.

The first two row blocks of parameters under the IPC(3D) model have the same inter-

pretation as the other models for the joint probabilities. Thus, we focus on the additional

parameters that are displayed in the last row block, which corresponds to the association

model as shown in equation (3.23).

It is important to note that these parameters are not comparable to those under the

2-dimensional IPC model, because the latter are specified in a lower-dimensional space

and thus are restricted, while the former handles the association structure using separate

parameters on third dimension. Only neuroticism had a significant effect on the log-odds

ratio, i.e., β̂43 = −0.89. This implies that the association between the two disorders

became weaker when the level of neuroticism for a given person increased. The rate of

change was about 0.89 for a unit change in neuroticism.
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3.5.2 The BIPC Model

The last column of Table 3.4 shows the results from the BIPC model which had a fit

statistic BIC = 3, 735.6 with fourteen parameters. The first two row blocks display the

marginal parameters. These results are equivalent to the IPC(2D-FIXED), and thus they

both have the same interpretation.

The last row block shows the parameters of the association model that are obtained

using the other parameters and the estimated class points, i.e., φ̂1 = −0.21 and φ̂2 =

−0.46. Except age, all the predictors were statistically significant in the association model.

The effect of extraversion was β̂53 = 0.16, which implies that the association between

the two disorders became stronger when the level of extraversion increased. In the case

of neuroticism, the effect was negative, β̂43 = −0.73. Thus the more neurotic a person

was the weaker the association between the disorders.

The results of the BIPC model can also be displayed using a biplot (Gower & Hand,

1996; Gower et al., 2011). Figure 1 displays the biplot for the final BIPC model in which

only the predictors having significant effect on both dimensions are considered. The labels

of the predictors are placed at the positive side of the variable axis. On the variable axes

markers are placed that represent µX ± tσX , where µX is the mean of X, σX is the

standard deviation and t = 0, 1, 2, 3. From the biplot it is evident that neuroticism had

a strong association with both mental disorders because its variable axis is long. The

second influential predictor was extraversion pointing to the reverse direction compared

to neuroticism.

The axes of the biplot corresponds to the marginal models, i.e., the horizontal axis

corresponds to DYST and the vertical axis to GAD. The angle between a variable axis

and each axis of the biplot, can be used to evaluate the strength of their association, i.e.,

the smaller the angle the stronger the association between them. For example, the angle

between extraversion and DYST is smaller compared to the angle between extraversion
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and GAD, which indicates that the association between extraversion and dysthmia is

stronger. This result is in line with the estimates shown in the last column of Table 3.4

under extraversion, i.e., β̂51 = −0.45 with DYST and β̂52 = −0.14 with GAD.

The effect of predictors on the association model can also be read from the biplot. We

showed mathematically in Section 3.1 that the IPC(2D-FIXED) is a marginal model with

an independence association structure. This would correspond to the spatial solution in

the biplot if the last category was positioned at (γ41, γ42) = (1, 1). In the biplot displayed

in Figure 1, however, the last category was positioned at (0.79, 0.54) because φ̂1 = −0.21

and φ̂2 = −0.46. With every unit increase of neuroticism the log odds ratio of dysthimia

and GAD changes by β43 = φ1β41 + φ2β42. Both β41 and β42 were positive while φ1

and φ2 were negative. Therefore, with an increase of neuroticism the log odds ratio

goes down. Along similar lines, we can derive that the log odds ratio increases with an

increase of extraversion. These derivations show explicitly that the marginal model and

the association structure are intuitively coupled, i.e., the same regression coefficients are

used and only the φ-parameters can be used to adjust sign and strength. The adjustment

by φ1 and φ2 is the same for every predictor variable.
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Figure 3.1: Biplot of the final BIPC model fitted on the NESDA data. The predictors
neuroticism, represented by N; extraversion, by E; and education, by EDU. The bivariate binary
responses are dysthmia, represented by DYST; and generalized anxiety disorder, by GAD. The
class coordinates that correspond to the multinomial response variable, denoted by G, are also
displayed.

3.6 Conclusion and Discussion

In this paper, we studied properties of the IPC model and extended it for analysing

bivariate binary data in the presence of predictors, focusing on the marginal probabilities

and the association structure. Researchers often model the marginal probability of an

outcome variable without the influence of the other outcome variable. Such models are
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referred as marginal models since the effect of the other outcome variable is marginalized.

In addition to the marginal models, investigators are sometimes interested in modelling

the association structure between the binary responses. It is expected that the two binary

responses are correlated as they are measured on the same subject.

We found the following three results about the IPC model for analysing bivariate binary

data. The 2-dimensional IPC model with fixed class point(IPC(2D-FIXED)) represents the

marginal models with an independence association structure between the binary responses.

Each dimension under the IPC(2D-FIXED) model pertains to one of the binary response

variables. This result does agree with the finding by Liang and Zeger (1986) in which

they showed that fitting a separate logistic regression model for each binary response

variable gives consistent parameter estimates but biased standard errors. In the IPC model,

however, the standard errors are not biased because estimation of model parameters are

based on a multinomial likelihood function.

The 3-dimensional IPC model (IPC(3D)) represents the association structure in the

third dimension. This model, however, misspecifies the models for the marginal prob-

abilities. The compromise between the former two IPC models is a 2-dimensional IPC

model with free class points (IPC(2D-FREE)). We showed, using simulation studies, that

this latter model represents the association model as a form of restricted model. Like

the IPC(3D) model, the IPC(2D-FREE) model misspecified the models for the marginal

probabilities. Therefore, we conclude that the IPC model represents either the models

for the marginal probabilities or the model for the association structure, but not both of

them at the same time.

We therefore considered a possible extensions of the IPC model for representing both

the marginal models and the association model at the same time. We modified the

multinomial likelihood function following Bahadur (1961) and Lipsitz, Laird and Harring-

ton (1990). The extended IPC model is called the Bivariate IPC (BIPC) model. Using

simulation studies we showed that the BIPC model represented both the models for the
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marginal probabilities and the model for the association structure well.

Unlike existing marginal models for bivariate binary data, the results of the BIPC

model can be displayed graphically in a biplot which enhances the interpretation of the

model. The axes in the biplot correspond to marginal models of the bivariate binary data,

i.e., the horizontal axis corresponds to the first response variable and the vertical axis to

the second response variable. The angle between the variable axis and each axis of the

biplot is used to explain the strength of their association. In the same biplot, one can also

read the relationship between a predictor variable and association structure (i.e., odds

ratio). Therefore, we use both the φ-parameters and the marginal parameters to explain

the direction and strength of their relationship. If both φ-parameters are found to be

positive, it is an indication of a strong positive relationship between a predictor variable

and the association structure. Similarly, an inverse relationship is characterized by the

presence of negative estimates for both φ-parameters.

In this paper our focus was on application of the (B)IPC model for analysing bivariate

binary data. Marginal modelling of multivariate polytomous type of responses has been

an interest in social and other empirical sciences (Bergsma, 1997; Bergsma, Croon, &

Hagenaars, 2009; Molenberghs & Lesaffre, 1994, 1999). The BIPC model can easily be

extended for analysing bivariate polytomous responses by modifying the class coordinates

to accomodate the additional response categories. At this stage, it is, however, not straight

forward to extend the BIPC model for analysing multivariate binary responses. This is

due to the fact that both the pairwise and higher-order association structure parameters

must be specified in the likelihood function. With three binary responses (i.e., Y1, Y2,

and Y3), for example, three pairwise associations and a three-way association parameters

must be specified which makes the computation cumbersome. If the interest is only on

the pairwise association, the BIPC model for bivariate binary data can be extended by

modifying the class point matrix.

We made the data and source codes (R / SAS) used in the simulation studies and in



3.6. CONCLUSION AND DISCUSSION 87

the application available on the online repository system GitHub. The following link can

be used to get access to the files: https://github.com/workuhm1/BIPCM.





Chapter 4

A Multivariate Logistic Distance Model for the Analysis

of Multiple Binary Responses

Abstract

We propose a Multivariate Logistic Distance (MLD) model for the analysis of multiple

binary responses in the presence of predictors. The MLD model can be used to simulta-

neously assess the dimensional/factorial structure of the data and to study the effect of

the predictor variables on each of the response variables. To enhance interpretation, the

results of the proposed model can be graphically represented in a biplot, showing predictor

variable axes, the categories of the response variables and the subjects’ positions. The

interpretation of the biplot uses a distance rule. The MLD model belongs to the family of

marginal models for multivariate responses, as opposed to latent variable models and con-

ditionally specified models. By setting the distance between the two categories of every

response variable to be equal, the MLD model becomes equivalent to a marginal model

for multivariate binary data estimated using a GEE method. In that case the MLD model

can be fitted using existing statistical packages with a GEE procedure, e.g., the genmod

procedure from SAS or the geepack package from R. Without the equality constraint, the

This chapter was published as Worku, H. M. & De Rooij, M. (2018). A Multivariate Logistic Distance
Model for the Analysis of Multiple Binary Responses. Journal of Classification, 35, 1-23, https: / /

doi .org/ 10 .1007/ s00357 -018 -9251 -4 . To address remarks of the PhD committee, this chapter is
slightly modified.
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MLD model is a general model which can be fitted by its own right. We applied the

proposed model to empirical data to illustrate its advantages.
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4.1 Introduction

Multivariate binary data with multiple binary response variables and one or more predic-

tor variables, are often collected in empirical sciences such as psychology, criminology,

epidemiology, life sciences and medicine. In the Netherlands Study of Depression and

Anxiety (NESDA), for example, data were collected to investigate the interplay between

personality traits and co-morbidity of depressive and anxiety disorders (Penninx et al.,

2008; Spinhoven et al., 2009). Another study in which multivariate binary data arises is

the Indonesian Children’s Study (ICS: Sommer et al., 1984; Liang et al., 1992) where over

three-thousand children were medically examined to investigate whether they had respi-

ratory infection, diarrhoeal infection, and xerophthalmia. The aim of the ICS study was

to investigate whether vitamin A deficiency places children at increased risk of respiratory

and diarrhoeal infections.

The availability of the multivariate normal distribution for multivariate interval re-

sponses, makes application of maximum likelihood-based statistical models on such data

relatively easy. However, for binary responses, no multivariate distribution is available and

therefore estimation becomes more difficult. Liang and Zeger (1986) proposed General-

ized Estimating Equations (GEE) for marginal modelling of correlated categorical data.

GEE is a quasi-likelihood (QL) estimation method that does not require specification of

a particular multivariate distribution. It is widely used as a standard approach for fit-

ting marginal models on multivariate data (Ziegler et al., 1998; Fitzmaurice et al., 2008;

Ziegler, 2011). The GEE approach, however, does not allow for a dimensional approach

to analysis. Often researchers have theories how different response variables belong to

one underlying dimension, factor, or latent variable.

For the dimensional approach often latent variable models are used, such as struc-

tural equation models or item response models. These models explicitly define underlying

dimensions. However, these models make distributional assumptions of the latent di-
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mensions or assume an underlying distribution for the dichotomous responses or both.

Such assumptions are often unverifiable, i.e. we cannot check the assumptions using the

data. In Appendix C we showed limitation of latent variable models regarding normality

assumption of factor scores using empirical data.

In this paper we will develop a dimensional model for multivariate binary data within

the marginal framework. The model will be developed within a distance framework, but

we show it can also be seen as a specific marginal model. To enhance interpretation, a

biplot is developed to accompany the model that visualises the result.

De Rooij (2009a) proposed the Ideal Point Classification (IPC) model for analyzing

a multinomial response variable in the presence of predictors. The IPC is a probabilistic

distance model based on unfolding distance function. (De Rooij & Heiser, 2005). De

Rooij (2009a)) also showed that a simple logistic regression for binary response variable

can be written as a unidimensional IPC model. Worku and De Rooij (2017, Chapter 3)

extended the IPC model to the analysis of two binary response variables, i.e., the bivariate

binary data setting, and showed that a new parameterization of the IPC model recovered

both the marginal probabilities and the association structure of bivariate binary data well.

However, this parameterization cannot be easily extended to handling multivariate binary

data because all the possible pairwise and higher order association terms must be specified

in the likelihood function, which makes the model complex and therefore hard to estimate.

Therefore, in this paper we propose a Multivariate Logistic Distance (MLD) model

for analyzing multivariate binary data that extends marginal models for multivariate data.

The MLD model unifies two domains of statistical methods, i.e., Multidimensional Scaling

(MDS: Kruskal & Wish, 1978; Borg & Groenen, 2005) and Generalized Linear Model

(GLM: McCullagh & Nelder, 1989; Agresti, 2013). As a form of regularization, the

MLD model allows for dimension reduction and therefore less parameters are estimated

compared to the existing marginal models for multivariate data. Moreover, the model

enhances interpretation by using a biplot (Gabriel, 1971; Gower & Hand, 1996; Gower et
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al., 2011) based on a distance interpretation.

Unlike existing marginal models for multivariate data, the MLD model can be used for

assessing the factorial/dimensional structure of multivariate data. In the area of mental

disorders (with the NESDA data as example) clinical psychologists and epidemiologists

are often interested in co-morbidity and how co-morbidity is related to risk factors such

as personality traits (Krueger, 1999; Beesdo-Baum et al., 2009; Spinhoven et al., 2013).

Three candidate theories about the co-morbidity of mental disorders have been proposed,

i.e., (1) a 2-dimensional structure with one dimension representing distress and the other

one fear (d/f); (2) a different 2-dimensional structure with one dimension representing

depression and the other one anxiety (d/a); and (3) an unidimensional structure where

all the disorders are represented by a single dimension. The MLD model can be used

to represent such theories within a unified framework, i.e., the candidate theories can be

compared using appropriate statistics, and at the same time the MLD model allows for a

direct relationship between co-morbidity of mental disorders and the predictor variables.

It is assumed here that the covariates have the same effect on each of the responses that

lie on the same dimension.

The paper is organized as follows. Section 2 develops the multivariate logistic distance

model, investigates the link with marginal model for multivariate binary data estimated

using a GEE method, and discusses the construction of biplots for the multivariate logistic

model. In Section 3, the proposed model is fitted to empirical data and the results are

interpreted using the estimated parameters and a graphical representation. We conclude

in Section 4 with a discussion.
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4.2 Multivariate Logistic Regression in a Distance Frame-

work

4.2.1 Logistic Regression as a Distance Model

Logistic regression is a standard method for modelling dichotomous response data. Let

yi denote the observed value for a binary dependent variable Y for subject i, where

i = 1, 2, . . . , N . Logistic regression models the probability of a category conditional on

the value of a predictor variable xi, Pr(yi = 1|xi) = π(xi), i.e.,

π(xi) =
exp(β∗

0 + β∗
1xi)

1 + exp(β∗
0 + β∗

1xi)
, (4.1)

where β∗
0 and β∗

1 are the intercept and the regression coefficient, respectively. Logistic

regression can easily be generalized to accommodate multiple predictors, xi = (xi1, xi2,

. . . , xip)
T, and thus π(xi) = exp(β∗

0 + xTi β
∗)/(1 + exp(β∗

0 + xTi β
∗)), where β∗ is now

a vector with regression coefficients.

De Rooij (2009a) showed that logistic regression can be expressed as a distance model

in a joint space with points representing the two categories of the response variable and

points representing the subjects. In this section, we revisit this relationship and in Section

2.2 discuss an extension for multivariate binary responses.

Let us define a joint unidimensional space for subjects and the classes of the response

variables. Denote by ηi the position of subject i and by γ0 the coordinate of the position

of one category and by γ1 the coordinate of the position of the other category of the binary

response variable. Define δi0 and δi1 to be the squared Euclidean distances between the
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position of subject i and the two categories respectively. That is,

δi1 = (ηi − γ1)
2;

δi0 = (ηi − γ0)
2.

(4.2)

With these two distances we can define the following probability model

π(xi) =
exp(−0.5δi1)

exp(−0.5δi0) + exp(−0.5δi1)
. (4.3)

The smaller the relative distance between a person point and a class point, the larger

the probability that the subject belongs to that class. Therefore, the class probability is

inversely related to the squared Euclidean distance between the points.

The coordinate for subject i, ηi, is assumed to be a linear combination of the predictor

variable xi, i.e., ηi = β0 + β1xi or in case of multiple predictors ηi = β0 + xTi β. The

parameters of the distance model are the regression weights and the category points.

An important tool in the interpretation of probability models is the log-odds. The

log-odds representation of the distance model becomes,

log

[
π(xi)

1− π(xi)

]
= 0.5δi0 − 0.5δi1

= ηi(γ1 − γ0) + 0.5(γ20 − γ21)

= (β0 + β1xi)(γ1 − γ0) + 0.5(γ20 − γ21)

= β0(γ1 − γ0) + 0.5(γ20 − γ21) + β1(γ1 − γ0)xi.

(4.4)

In the case of multiple predictors the logistic distance model takes the same form, hav-

ing an intercept and extra slopes for the additional predictors. For example, with two
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predictors xi = (xi1, xi2)
T, the distance model becomes,

log

[
π(xi)

1− π(xi)

]
= β0(γ1 − γ0) + 0.5(γ20 − γ21)

+ β1(γ1 − γ0)xi1 + β2(γ1 − γ0)xi2.

(4.5)

For a unit increase in xi1 the log-odds in the distance model changes by β1(γ1 − γ0),

similarly for xi2. By setting β∗
0 = β0(γ1 − γ0) + 0.5(γ20 − γ21) and β∗

1 = β1(γ1 − γ0) a

standard logistic regression is obtained.

The logistic distance model (4.4) is not identified and therefore identifiability constraint

must be imposed. For example, with β1 = 2 and (γ1 − γ0) = 1, β∗
1 = 2. The same

value β∗
1 = 2 can also be obtained when β1 = 0.5 and (γ1 − γ0) = 2. By imposing an

identifiability constraint on the class points, the logistic distance model can be identified,

for example by setting γ1 = 1 and γ0 = 0. The logistic distance model is now identified

and its relationship with the univariate logistic model presented in (4.1) becomes

β∗
0 = β0 − 0.5;

β∗
1 = β1.

(4.6)

4.2.2 Multivariate Extension of the Distance Model

In this section, the logistic distance model for a single response variable will be extended

to handling multivariate binary data. Suppose yi = (yi1, yi2, . . . , yij , . . . , yiJ)
T denotes

the multivariate responses observed on the i−th subject, which is a (J × 1)-dimensional

vector of all responses, where yij is the binary measurement of the j-th response variable

observed on the i-th subject. It is not difficult to generalize the methodology to the case

where the number of response variables differs over subjects, but that complicates the

notation. As before, let xi represent the multiple predictors observed on i−th subject. In

Table 4.1, we display the structure of multivariate data in long format. The first column,
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Table 4.1: The structure of multivariate data in long format.

Predictor variables
SID Index Response x1 x2 xp
1 R1 y11 x11 x12 . . . x1p
1 R2 y12 x11 x12 . . . x1p
1 R3 y13 x11 x12 . . . x1p
1 R4 y14 x11 x12 . . . x1p
1 R5 y15 x11 x12 . . . x1p
...

...
...

...
...

...
...

i R1 yi1 xi1 xi2 . . . xip
i R2 yi2 xi1 xi2 . . . xip
i R3 yi3 xi1 xi2 . . . xip
i R4 yi4 xi1 xi2 . . . xip
i R5 yi5 xi1 xi2 . . . xip
...

...
...

...
...

...
...

n R1 yn1 xn1 xn2 . . . xnp
n R2 yn2 xn1 xn2 . . . xnp
n R3 yn3 xn1 xn2 . . . xnp
n R4 yn4 xn1 xn2 . . . xnp
n R5 yn5 xn1 xn2 . . . xnp

SID, is a variable which contains the subjects’ identification number. The second column,

Index, is a categorical indicator variable that indicates for which particular response

variable the binary measurement yij is obtained. In Table 4.1 five response variables are

assumed, i.e., R1,R2, . . . ,R5. The other columns represent measurements of the response

variable and predictor variables, respectively.

A unidimensional space was used to represent the logistic regression model (4.3),

which positions both the subjects and the two categories of the response variable. In the

case of multiple responses yi, the distance model can be extended to accommodate the

additional responses. Suppose there is a second response variable. One possibility for

generalization is to add the two points representing the categories of the second response

variable to the unidimensional space. In that case the predictor variables have a similar

influence on the two response variables.

Another generalization is that the second response variable pertains to another dimen-
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sion, giving rise to a two-dimensional model. The definition of the distance becomes

δ(ηi,γkj) =

M∑
m=1

(ηim − γkj,m)2,

where ηim is the coordinate for the point representing subject i on the m-th dimension

and is defined as a linear combination of the predictors, ηim = β0m+xTi βm; and γkj,m is

the coordinate for category k (k = {0, 1}) of response variable j on dimension m. Each

response variable belongs to one and only one dimension. This assumption is driven by

theories often developed by applied scientists. In the Introduction section we discussed

three different theories about comorbidity of mental disorders. Spinhoven et al. (2013),

for example, found two dimensions of which the first dimension (distress) was represented

by major depressive disorder, generalized anxiety disorder, and dysthimia; and the second

dimension (fear) was represented by panic disorder and social phobia.

The probability for category 1 on response variable j given the predictors, i.e. Pr(yij =

1|xi) = πj(xi), is now defined by

πj(xi) =
exp [−0.5δ(ηi,γ1j)]

exp [−0.5δ(ηi,γ0j)] + exp [−0.5δ(ηi,γ1j)]
. (4.7)

The log-odds representation of the multivariate distance model becomes,

log

[
πj(xi)

1− πj(xi)

]
=

M∑
m=1

{
β0m(γ1j,m − γ0j,m) + 0.5(γ20j,m − γ21j,m)

+ xTi βm(γ1j,m − γ0j,m)
}
.

(4.8)

Because each response variable belongs to a single dimension, the log odds representation

can be further simplified. Suppose response variable j belongs to dimension 1 so that

γ0j,m and γ1j,m equal zero for all m > 1, i.e. all dimensions except the first one. In that

case (4.8) simplifies to a single equation instead of a sum over dimensions. A hypothetical

example is given in Appendix D to elaborate on the derivation of this simplified version.
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This distance model for multivariate binary data (4.7 - 4.8) is called the Multivariate

Logistic Distance (MLD) model. Because the MLD model is a type of bilinear model, for

each dimension we have to fix the origin and scale. Like in the simple logistic regression

representation we fix the class coordinates for one of the response variables on every

dimension, e.g., γ1j,m = 1 and γ0j,m = 0.

The effect of a predictor variable on a specific response variable j is determined by

the dimension the j-th response variable is positioned on. More specifically, the effect

βm(γ1j,m− γ0j,m). Therefore, for different response variables on the same dimension the

size of the effect is different, depending on (γ1j,m−γ0j,m), but the direction is the same as

long as γ1j,m ≥ γ0j,m, ∀j,m, and defined by βm. Furthermore, the larger (γ1j,m−γ0j,m)

the bigger the effect is and vice versa. In other words, the larger the distance between

the two points representing the categories of a single response variable, the better the

predictor variables can discriminate between the categories.

4.2.3 Parameter Estimation

The parameters in the MLD model are estimated by maximizing the likelihood function

for independent data, in the multivariate situation known as quasi-likelihood; i.e.,

L(θ) =

N∏
i=1

J∏
j=1

πj(xi)
yij [1− πj(xi)]

(1−yij), (4.9)

where θ is the concatenation of all the class points and all the regression weights. The

quasi-likelihood (4.9) is an approximation to a full likelihood function for multivariate

binary data as there is no general parsimonious parameterization of the multivariate binary

distribution.

Liang and Zeger (1986) showed that maximizing this quasi-likelihood provides consis-

tent parameter estimates for the multivariate model. However, the standard errors based

on the corresponding Hessian matrix are biased. The same authors proposed a sand-
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wich estimator for the covariance matrix to correct for the bias (Liang & Zeger, 1986).

Another method for obtaining correct standard errors is to apply a clustered bootstrap

method (Sherman & Le Cessie, 1997; De Rooij & Worku, 2012; Cheng, Yu, & Huang,

2013). In this case, the re-sampling procedure is applied on the subject (cluster) level

so that the correlation between the multivariate responses is retained in each bootstrap

sample.

The number of independent parameters estimated in the MLD model, q, equals

q = [M × (p+ 1)] + [(J −M)× 2]. (4.10)

The first term in (4.10), i.e., [M × (p + 1)], corresponds to the number of regression

coefficients; the other term to the number of estimable coordinates of class points. The

identifiability constraints are accounted for in the second term, i.e., in each dimension the

class coordinates for a single response variable are set to fixed values.

The MLD model can be fitted using the NLMIXED procedure in SAS software (SAS

Institute Inc., 2011). Scripts for the analyses in this paper are available upon request from

the first author.

4.2.4 The Relationship of the MLD Model to a Marginal Logistic

Regression model

By setting the distance between the two categories of every response variable to be equal

to one, i.e., (γ1j,m−γ0j,m) = 1, the MLD model becomes equivalent to a marginal model

for multivariate binary data estimated using GEE method (Liang & Zeger, 1986). The

restriction of the class points implies that predictor variables discriminate equally well for

all response variables belonging to a specific dimension. Existing statistical packages with

a GEE procedure (e.g., the genmod procedure from SAS or the geepack package from R)

can be used for fitting this “restricted” MLD model on multivariate binary data.
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Fitting the restricted MLD model using a GEE procedure involves a three-step ap-

proach: (1) construction of a design matrix for both the response and the predictor

variables; and (2) applying the GEE method with the constructed design matrix; and (3)

transforming the GEE parameters to MLD parameters. We now show construction of the

design matrix using the example presented in Table 4.1.

Suppose we want to fit a 2-dimensional model on the five binary response variables.

Further, suppose we like the first three response variables to be represented on the first

dimension, and the fourth and the fifth on the second dimension. Therefore define a

response indicator matrix, denoted by Z, with dimension (J×M). The response indicator

matrix specifies for each response variable to which dimension it pertains, with position

(j,m) equal to one if the j-th response variable belongs to the m-th dimension and zero

otherwise. For the structure layed-out above,

Z =



1 0

1 0

1 0

0 1

0 1


. (4.11)

The design matrix for subject i is then obtained by computing the Kronecker product

between the response indicator matrix and the predictors vector (without intercept), Ui =

Z⊗ xTi , such that

Ui =



xi1 xi2 . . . xip 0 0 . . . 0

xi1 xi2 . . . xip 0 0 . . . 0

xi1 xi2 . . . xip 0 0 . . . 0

0 0 . . . 0 xi1 xi2 . . . xip

0 0 . . . 0 xi1 xi2 . . . xip


. (4.12)
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We concatenate Ui and the identity matrix to get the final design matrix, Si = [Ii,Ui],

Si =



1 0 0 0 0 xi1 xi2 . . . xip 0 0 . . . 0

0 1 0 0 0 xi1 xi2 . . . xip 0 0 . . . 0

0 0 1 0 0 xi1 xi2 . . . xip 0 0 . . . 0

0 0 0 1 0 0 0 . . . 0 xi1 xi2 . . . xip

0 0 0 0 1 0 0 . . . 0 xi1 xi2 . . . xip


.

Then, a vertical concatenation of all Si matrices will give us the final design matrix S on

which the GEE method is finally applied to obtain parameter estimates of the marginal

model. This results in five response specific intercepts (β∗
01, . . . , β

∗
05) corresponding to the

first five columns of S and two sets of p regression weights (β∗
11, . . . , β

∗
p1 and β

∗
12, . . . , β

∗
p2).

The MLD parameters can be derived from these as follows γ0j,m = −(β∗
0j + 0.5) for the

dimension, m, to which disorder j belongs, zero otherwise. The regression weights βjm

are equal to the regression weights obtained from GEE method, βjm = β∗
jm. The number

of parameters in the “restricted” MLD model then becomes q = [M × (p+1)]+(J −M)

since additional constraints are imposed on the class points.

4.2.5 Model Selection

In statistical analysis we often select a parsimonious and best fitting model from a set of

candidate models given the data. In the MLD model, we select not only predictor variables

for the final model, but also the dimensionality of the model must be determined.

Pan (2001) proposed the quasi-likelihood under the independence model criterion

(QIC) as an extension of Akaike Information Criterion (AIC) to GEE:

QIC = −2L(θ) + 2 trace(Ω̂−1
I V̂R), (4.13)

where L(θ) is as defined in 4.9 above; V̂R stands for robust variance estimator obtained
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under the assumption of a general “working” covariance structure R; and, Ω̂ is for the

naive variance estimator obtained under the assumption of an independence correlation

structure. Pan (2001) also proposed a simplified version of QIC when trace(Ω̂−1
I V̂R) ≈

trace(I) = q, i.e.,

QICu = −2L(θ) + 2q.

Yu and De Rooij (2013) studied the performance of QICu for determining the dimen-

sionality of the Trend Vector Model (TVM). Both the Trend Vector model and the MLD

model are marginal models in a distance framework, where the first is used for longitudinal

multinomial response variables and the latter for multivariate binary responses. Yu and

De Rooij (2013) recommended QICu for determining the dimensionality of the distance

model.

In the MLD model, we use QICu fit statistics both for determining the dimensionality

of the model and for variable selection. The model with the lowest QICu statistics is

considered the most parsimonious and best fitting model. As recommended in Yu and De

Rooij (2013), we first determine the dimensionality of the model and then proceed to the

variable selection.

QIC (4.13) is a general formula for model selection and is used if there is also an

interest to select the working correlation matrix, R. (Pan, 2001) In our case, we use

QICu statistics as we are only interested on dimensionality and variable selection.

4.2.6 Biplot for the Multivariate Logistic Distance Model

To enhance interpretation of the model the results of a MLD model can be graphically

represented in a biplot (Gabriel, 1971; Gower & Hand, 1996; Gower et al., 2011). The

biplot represents the subjects, the response variables, and the predictor variables so that

the relationship between predictors and responses can be read from the graph. We first
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demonstrate how the response variables are included in the biplot, and then the predictors.

For a 2-dimensional MLD model the coordinates for a response variable are given by

γj =

γ0j,1 γ0j,2

γ1j,1 γ1j,2

 .
Because each response is positioned on one and only one dimension, one of the columns

in γj equals zero. So, γj represents two points either on the first or second dimension.

Halfway between the two points, a decision line is drawn indicating equal probabilities

for the two categories of a response variable. Due to these lines (horizontal for response

variables on the second dimension and vertical for response variables on the first dimen-

sion), the two dimensional space is partitioned into rectangles, each representing a most

probable response profile.

The predictors are included in the biplot by variable axes (Gower & Hand, 1996). To

derive the variable axis, first, a pseudo-design matrix X̃ is constructed containing ones in

the first column and zeros in the other columns except for the column representing the

variable to be plotted. In this column, marker values are included within the range of the

observed variable. Second, the matrix B with regression weights is defined, i.e.

B =

β01 β02

β1 β2

 .
Finally we can compute the matrix H as

H = X̃B,

defining a straight line in our biplot. We will include variable axes for every statistically

significant predictor. Positions of the subjects are computed as the linear combination of

predictor variables and are included in the biplot as points.
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4.3 Application: The NESDA Data

In order to illustrate the MLD model, the NESDA data (Penninx et al., 2008) introduced

earlier were analysed. The sample comprised of N = 2, 938 subjects aged 18 to 65 years

(Mean = 42; S.D. = 13.1). About 66.5% were female and the average number of years

of education attained was 12.2 with S.D. = 3.3. In this study, 37.1% of the subjects have

major depressive disorder (MDD), 10.2% have dysthmia (DYST), 15.3% have generalized

anxiety disorder (GAD), 22.4% have social anxiety disorder (SP), and 28.6% have panic

disorder (PD). These five disorders are the response variables.

The predictors are Neuroticism (N), Extraversion (E), Openness to experience (O),

Agreeableness (A), and Conscientiousness (C). We also took into account three back-

ground variables, i.e., age (AGE), years of education attained (EDU), and gender (GEN:

1 = female; 0 = male). The linear predictor part of the MLD model is

ηim = β0m + β1m(AGE)i + β2m(EDU)i + β3m(GEN)i

+ β4mNi + β5mEi + β6mOi + β7mAi + β8mCi,

where ηim is a coordinate for the i-th subject position on the m-th dimension; and the

β’s are regression weights. The candidate MLD models fitted on the NESDA data are

(1) “distress-fear” (d/f) dimensions, in which MDD, GAD, are DYST are presumed to

be indicators of distress, and PD and SP for fear;

(2) “depression-anxiety” (d/a) dimensions, in which MDD and DYST are indicators of

depression, and GAD, PD, and SP for anxiety;

(3) “unidimensional” where all the five mental disorders are indicators of a single di-

mension.
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Table 4.2: Results of fitting different MLD models to NESDA data. In the first block,
dimensionality of the MLD model is assessed, and followed by variable selection in the second
block.

Model Dimension Predictors q QICu

Model Selection for Dimensionality
1 2 (d/f)† All 21 12,396.42
2 2 (d/a)‡ All 21 12, 398.08
3 1 All 13 12, 418.87

Model Selection for Predictors
1a 2 (d/f) All 21 12396.42
1b 2 (d/f) AGE,EDU,GEN,N,E 15 12396.68
1c 2 (d/f) AGE,EDU,GEN 11 14789.41

† d/f: distress/fear model.
‡ d/a: depression/anxiety model.

These three theories are then translated into the following indicator matrices:

Z(1) =



1 0

1 0

1 0

0 1

0 1


, Z(2) =



1 0

1 0

0 1

0 1

0 1


, Z(3) =



1

1

1

1

1


, (4.14)

respectively. The superscript corresponds to a theory.

For illustration, we fitted both the MLD model with and without imposing equal dis-

tance restrictions on the class points. The results of the MLD model with the restrictions

will be presented first, thereafter the solution without the restrictions will be discussed.

Table 4.2 shows the fit statistics of the candidate MLD models. As shown in the first

block of Table 4.2 which compares different dimensionality, the 2-dimensional distress-

fear (d/f) model fitted the data best (QICu = 12, 396.42). In the second block of Table

4.2, fit statistics for the comparison of different sets of predictor variables are given. The

model with all predictor variables fitted the data best (QICu = 12, 396.42).

The regression weights of this selected model are given in Table 4.3. The standard
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errors based on both the sandwich and the clustered bootstrap method are included in

Table 4.3. Both methods resulted in similar estimates.

There is a strong positive association between neuroticism and the two dimensions:

β̂41 = 0.1167 with distress; and β̂42 = 0.1039 with fear. With every unit increase in

neuroticism the log odds for MDD, DYST, and GAD go up by 0.1167 while the log odds

for SP and PD go up by 0.1039. There is a moderate negative association between

extraversion and the two dimensions: β̂51 = −0.0419 with distress; and β̂52 = −0.0320

with fear. With every unit increase in extraversion the log odds for MDD, DYST, and

GAD go down by 0.0419 while the log odds for SP and PD go down by 0.0320. From

the background variables, only education has a statistically significant effect on both

dimensions: β̂11 = −0.0386 with distress; and β̂12 = −0.0575 with fear. Less educated

people have a higher risk of getting a mental disorder. The variable conscientiousness

had a significant effect only on the second dimension (distress), β̂82 = 0.0189, i.e. it only

influences PD and SP.

Although the total number of parameters of the final d/f model is q = 21, only sixteen

of the parameters were displayed in Table 4.3. The others are the intercepts obtained

from GEE method which are response-specific, i.e., βMDD
01 = −2.23, βGAD

02 = −3.73,

βDYST
03 = −4.28, βPD

04 = −3.74, and βSP
05 = −4.14. Using γ0j,m = −(β∗

0j + 0.5) as shown

in Section 2.4 and γ1j,m = 1+γ0j,m, the class point coordinates for each response variable

can be obtained. Thus, γ01,1 = 1.73 for MDD, γ02,1 = 3.23 for GAD, γ03,1 = 3.78 for

DYST, γ04,2 = 3.24 for PD, and γ05,2 = 3.64 for SP. We can use the estimated class

points to compare the effect of predictors on the risk of developing disorders belonging to

the same dimension. For example, MDD, DYST and GAD belong to the first dimension.

Because γ03,1 = 3.78 for DYST is larger than both γ01,1 = 1.73 for MDD and γ02,1 = 3.23

for GAD, it means that starting from a very low subject position on the first dimension

and then increasing this position will first lead to higher probabilities of MDD, followed by

GAD, and than for DYST. The model accounts for comorbidity because a high probability
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Table 4.3: Summarized results of the final “distress-fear” MLD model fitted on NESDA data.
Restriction was applied on the class points, and thus it is a restricted MLD model. The
reported standard errors are based on both sandwich and clustered bootstrap methods. The
number of bootstraps, B = 1000.

Bootstrap
Effect Parameter Estimate SE (sandwich) SE Wald

Distress dimension
Education† β11 −0.0386 0.012 0.012 10.06
Gender β21 −0.1346 0.081 0.081 2.79
Age β31 0.0012 0.003 0.003 0.15
Neuroticism† β41 0.1167 0.006 0.006 413.84
Extraversion† β51 −0.0419 0.007 0.007 39.43
Openness to Experience β61 −0.0031 0.007 0.008 0.17
Agreeableness β71 −0.0074 0.008 0.007 1.03
Conscientiousness β81 −0.0071 0.007 0.007 1.06

Fear dimension
Education† β12 −0.0575 0.012 0.011 26.18
Gender β22 0.0229 0.082 0.083 0.08
Age β32 −0.0008 0.003 0.003 0.08
Neuroticism† β42 0.1039 0.006 0.006 335.26
Extraversion† β52 −0.0320 0.007 0.006 25.56
Openness to Experience β62 0.0008 0.008 0.008 0.01
Agreeableness β72 −0.0003 0.008 0.008 0.00
Conscientiousness† β82 0.0189 0.007 0.007 6.72

† statistically significant effect, p < 0.05.

of DYST implies a high probability of GAD and MDD.

The results of the selected MLD model are displayed in a biplot shown in Figure 4.1.

In order to interpret the biplot, let us first discuss how the biplot was constructed. The

biplot is composed of two parts, i.e., the response space and the variable axes, as shown

in Figure 4.2 and 4.3, respectively. The positions of the two categories of all response

variables are displayed in Figure 4.2. For example, on the vertical dimension there are four

points corresponding to no PD, no SP, having PD, and having SP from the bottom to

the top, respectively. Included in the same representation are decision lines (vertical and

horizontal lines) crossing the mid-points between the two categories. The decision lines

partition the two-dimensional space into rectangles (regions), each representing a most

probable response profile.
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Figure 4.1: Biplot of the final “distress-fear” model fitted on the NESDA data, where the first
dimension is represented by three disorders (MDD, GAD and DYST) and the second dimension
by two disorders (SP and PD). The plot is based on restrictions applied on the class points.

Each region shows the disorder profile by 1’s and 0’s for the order MDD, GAD, DYST,

PD, SP. An index ‘10011’, for example, corresponds to the presence of MDD, PD, and

SP, but the absence of GAD and DYST. In the top-right, an index of ‘11111’ is used

to represent a co-morbidity of all five mental disorders, while the region ‘00000’ in the

bottom left representing the absence of disorders.

In Figure 4.3, both the variable axes (lines) and the subjects points (grey dots) are

displayed. The space includes only statistically significant predictors. On the variable

axes markers are placed that represent µx ± tσx, where µx is the mean of x, σx is the

standard deviation, and t = 0, 1, 2, 3. Variable labels are included at the positive side of
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Figure 4.2: Representation of the binary response variables in the Euclidean space.

the variable axis.

Let us now interpret the biplot displayed in Figure 4.1. Most of the subjects are in the

bottom left region representing absence of all the disorders. However, significant number

of subjects are in other regions representing co-morbidity of mental disorders. The regions

are ‘10000’ corresponding to the presence of having only MDD; and ‘10010’ corresponding

to the presence of having both MDD and PD; ‘10011’ corresponding to the presence of

having MDD, PD, and SP; and, ‘11011’ corresponding to the presence of all disorders,

except DYST. Also a few subjects are in the upper right region having all the mental

disorders.

Now let us interpret the variable axes. The variable axis for Neuroticism (N) runs from

the lower left (low values of neuroticism) to the upper right (high values of Neuroticism),
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Figure 4.3: Variable axes representation of the predictor variables (i.e., N: Neuroticism, E:
Extraversion, C: Conscientiousness, and EDU: EDUcation) in the Euclidean space.

indicating that persons with low values of Neuroticism are located in the ‘00000’ region,

whereas persons with very high values of neuroticism are located in the ‘11111’ region.

In short, the higher neuroticism the more disorders. Contrarily, the variable axes of

extraversion points to the other direction.

The length of the variable axis indicates effect size; the longer the variable axis the

larger the effect of the corresponding variable on the disorders.

The angle between the variable axis and the dimension measures the strength of their

association. The smaller the angle between them, the stronger the association. For ex-

ample, the angle of the extraversion variable axis with the first (horizontal) dimension is

relatively small compared to the angle of extraversion with the second dimension. This

indicates that extraversion has a larger effect on the disorders represented on the first

dimension (MDD, DYST, and GAD) than on the disorders presented on the second di-
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mension (PD and SP). The angle of neuroticism with both dimensions is about equal,

although a bit smaller with the first dimension, indicating that the relationship of neu-

roticism with the disorders on the first dimension (MDD, GAD, and DYST) is slightly

stronger than with the other two disorders. The variable conscientiousness is highly cor-

related to the second dimension and not to the first as its variable axis is orthogonal to

the first dimension.

Finally, there is a strong correlation between the estimates of the subject points in the

two dimensions, corr(η̂i1, η̂i2) = 0.99, indicating that the distress and fear dimensions are

strongly correlated.

We now present the results of MLD model that does not impose restriction on the class

points, i.e., the “unrestricted” MLD model, to address specifically the extra information

from this model. The regression estimates are shown in Table 4.4. The estimates obtained

from the “unrestricted” MLD model are slightly different compared to results obtained

from the “restricted” MLD model fitted on NESDA data (shown in Table 4.3). However,

both results lead to the same conclusion about significance of predictors, which is also

indicated by the “Wald” statistics displayed in the last column of both tables. The class

points for MDD are fixed for identification on the first dimension, i.e. the coordinates are

0 for no MDD and 1 for MDD. Similarly, the coordinates of PD on the second dimension

are fixed to 0 for absence and 1 for presence of the disorder. The other parameters are the

class points, i.e., γ02,1 = 0.96 and γ12,1 = 1.73 for GAD; γ03,1 = 1.10 and γ13,1 = 1.99

for DYST; and, γ05,2 = −0.25 and γ15,2 = 1.28 for SP. The distance between the two

category points is 0.77 for GAD, 0.89 for DYST, and 1.53 for SP.

This unrestricted MLD model provides additional information about how well the

predictors can discriminate between the response categories. According to equation (4.8),

the effect of the predictor variables on each response is partially determined by the distance

between class points of the response variable. The larger the distance between the class

points of a response variable, the better the predictor variables are able to discriminates
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Table 4.4: Regression weights of the final unrestricted “distress-fear” MLD model fitted on
NESDA data. The number of bootstraps used to obtain standard errors equals 1000.

Bootstrap
Effect Parameter Estimate SE Wald

Distress dimension
Education† β11 −0.0203 0.006 11.45
Gender β21 −0.0685 0.042 2.66
Age β31 0.0004 0.001 0.16
Neuroticism† β41 0.0605 0.004 228.77
Extraversion† β51 −0.0226 0.004 31.92
Openness to Experience β61 −0.0020 0.004 0.25
Agreeableness β71 −0.0037 0.004 0.86
Conscientiousness β81 −0.0041 0.004 1.05

Fear dimension
Education† β12 −0.0202 0.005 16.32
Gender β22 0.0005 0.033 0.00
Age β32 −0.0007 0.001 0.49
Neuroticism† β42 0.0424 0.003 199.75
Extraversion† β52 −0.0141 0.003 22.09
Openness to Experience β62 0.0000 0.003 0.00
Agreeableness β72 0.0003 0.003 0.01
Conscientiousness† β82 0.0067 0.003 4.99

† statistically significant effect, p < 0.05.
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between the categories. In the fitted model both DYST and GAD are positioned on the

first dimension; because the distance for DYST (0.89) is larger than the distance for GAD

(0.77), the effect of the predictor variables on DYST is stronger.

4.4 Conclusion and Discussion

We proposed a multivariate logistic distance (MLD) model for analyzing multivariate bi-

nary data that extends existing marginal models in a distance framework. The distance

model for a single response variable was extended to analyzing multivariate binary data

in the presence of predictors. The advantage of the MLD model over existing marginal

model for multivariate data, is the possibility for dimension reduction as a form of regular-

ization which simplifies the complexity of standard multivariate GLM model because less

parameters are estimated. Moreover, using this dimension reduction substantial theories

can be represented and investigated.

We have shown applications of both the “restricted” and the “unrestricted” MLD

models using an empirical data set. The former MLD model imposes a restriction on the

class points and the latter model does not. The “restricted” MLD model is equivalent

to a marginal model for multivariate binary data estimated using GEE method, which

is an advantage for our model because existing software package developed for GEE

can be adopted to fit the MLD model. For the unrestricted case, the MLD model is a

general model and can be fitted by its own right. The general MLD model provides us

with additional information about how well the predictors can discriminate between the

categories of the response variable.

The MLD model has a clear interpretation where both the odds ratio expressions as

well as the biplot representation can be used. The space in the biplot is partitioned into

different regions that indicate the most probable response profile. It is important to note

that the assumption of which response variables belong to which dimension has a crucial
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impact on which regions might occur. In a unidimensional model there are maximal 6

regions, whereas in the two dimensional solution in Figure 2 there are 12 regions. Having

5 response variables, a total of 32 different profiles can be defined. In a five dimensional

model all these 32 profiles are present. Dimension reduction thus reduces the number of

most probable response profiles. Moreover, the regions also account for comorbidity. In

the solution of Figure 2 there is never a response profile where MDD is absent and DYST

and GAD are present. Similarly, if PD is present then also SP is present in the response

profile. Notice, however, that the model is a probability model not a deterministic model.

So, a response profile is most probable but the model does not say that in that region

only a profile must occur.

The effect size of predictor variables can be read from the biplot by the length of the

variable axis. The longer the variable axis the stronger the effect. The differential effect on

the two dimensions can be read from the angle of a variable axis with the dimension. The

smaller the angle the stronger the effect. If a variable has a 90o angle with a dimension,

the variable has no effect on the disorders belonging to that dimension.

The MLD model is related to Canonical Correspondence Analysis (CCA), as proposed

by Ter Braak (1986), which is a multivariate method used for ordination axes that maxi-

mizes the separation among the multivariate binary responses (Ter Braak, 1986; Ter Braak

& Verdonschot, 1995). There are two main differences between CCA and our model. The

first is that these models work in different framework, i.e., the MLD model in a logistic

framework where as CCA in a Gaussian framework. Due to this difference, the MLD can

provide a clear interpretation in terms of (log)-odds and probabilities. The second is that

unlike in CCA, the MLD model can position responses (e.g., mental disorders) on certain

dimensions driven by the theories that we would like to test.

In areas like psychology, epidemiology, criminology, economics, political sciences, etc,

researchers often use Structural Equation Models (SEM) for the analysis of data similar

to the NESDA data (Plewis, 1996; Von Oertzen, Hertzog, Lindenberger, & Ghisletta,
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2010; Spinhoven et al., 2013). Despite its popularity, SEM has limitations as it makes

unverifiable assumptions about the underlying distributions of latent as well as observed

variables (e.g., normality assumption for the latent variables). Moreover, SEM often

suffers from improper solutions, non-convergent solutions, and the predicted factors are

not determinate, i.e., for the same number of response variables multiple solutions can be

obtained for the underlying latent variables. Therefore, they cannot be uniquely identified

(Acito & Anderson, 1986; Boomsma & Hoogland, 2001; Hubbard et al., 2010). In the

application section, we showed that the MLD model can be used for comparing theories

of interest, without making unverifiable assumptions about underlying distributions.

Asar and Ilk (2013) proposed marginal model with shared-parameter within the GEE

method (Asar & Ilk, 2013). To compare with our MLD model, they use the five dimen-

sional model where each response variable pertains to a unique dimension. Then, they

incorporate equality restrictions for certain predictors over different dimensions, giving a

so-called shared parameter. In the restricted MLD model the regression weights are shared

for all response variables belonging to a specific dimension.

Although our focus was on binary data, the model can be extended to polytomous data.

Where for binary data there are two class points on each dimension for polytomous data

there are multiple class points. Interpretation follows largely the binary model, although

in the ordinal case we can derive odds ratios for every contrast of two categories of a

response variable. These are formed by the difference of class points coordinates, just like

in the binary case. The polytomous situation, however, is often more complicated than the

binary one. The binary model for every response variable is by definition unidimensional,

which is not the case for polytomous data. Therefore, the polytomous case needs further

study.

Regarding model assumptions, it is worth mentioning the following two points. The

first point is that the MLD model makes a strong linearity assumption regarding the

explanatory variables, i.e., the model assumes that the explanatory variables are linearly
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related to logit transform of the class probabilities. However, this assumption could be

solved for example by using polynomial functions of the original explanatory variables.

The second point is that, compared to structural equation models, the MLD model does

not have the assumption of a normal distribution for the latent variables anymore.

We developed a package (an alpha version) in R, the mldm package, for fitting the

MLD model on multivariate binary data in the presence of predictors. The package handles

both the clustered bootstrap method and the sandwich estimators for correcting standard

errors of model parameters. The package provides a biplot function for the fitted model.

We also have SAS scripts for fitting the models. The first author can provide the package

or the script upon request.





Chapter 5

mldm: An R Package for Analyzing Multivariate Binary

Data

Abstract

We developed the mldm package in R (R Development Core Team, 2008) to fit a multi-

variate logistic distance model on multiple binary responses in the presence of explanatory

variables. The package handles both the clustered bootstrap method and the sandwich

estimators for obtaining the standard errors of model parameters. The package provides

a biplot function to display results of the fitted model. In this chapter we illustrate the

usage of the package using an empirical data.

This chapter is a user manual for the mldm package in R software developed by Worku, H. M. & De
Rooij, M. (2018) for analyzing multivariate binary data.

119
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5.1 Introduction

The Multivariate Logistic Distance (MLD) model is proposed to analyze multiple binary

responses in the presence of explanatory variables (Worku & De Rooij, 2018). The MLD

model unifies two domains of statistical methods, i.e., Multidimensional Scaling (MDS:

Kruskal & Wish, 1978; Borg & Groenen, 2005) and the Generalized Linear Model (GLM:

McCullagh & Nelder, 1989; Agresti, 2002). As a form of regularization, the MLD model

allows for dimension reduction and therefore less parameters are estimated compared

to the existing marginal models for multivariate data. Moreover, the model enhances

interpretation by using a biplot (Gabriel, 1971; Gower & Hand, 1996; Gower et al., 2011)

based on a distance interpretation.

For fitting the MLD model, we developed the mldm package in R statistical software.

In this chapter we illustrate the usage of the package with an empirical data.

5.2 The Multivariate Logistic Distance Model

Suppose yi = (yi1, yi2, . . . , yij , . . . , yiJ)
T denotes the multivariate responses observed on

the i−th subject, which is a (J×1)-dimensional vector of all responses. The yij represents

a binary measurement of the j-th response variable observed on the i-th subject.

The MLD model defines the probability for category 1 on response variable j given

the explanatory variables, i.e. Pr(yij = 1|xi) = πj(xi), as

πj(xi) =
exp [−0.5δ(ηi,γ1j)]

exp [−0.5δ(ηi,γ0j)] + exp [−0.5δ(ηi,γ1j)]
. (5.1)
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The log-odds representation of (5.1) becomes,

log

[
πj(xi)

1− πj(xi)

]
=

M∑
m=1

{
β0m(γ1j,m − γ0j,m) + 0.5(γ20j,m − γ21j,m)

+ xTi βm(γ1j,m − γ0j,m)
}
.

(5.2)

Because each response variable belongs to a single dimension (see Chapter 4), the log

odds representation can be further simplified. Suppose response variable j belongs to

the first dimension so that γ0j,m and γ1j,m equal zero for all m > 1, i.e. all dimensions

except the first one. In that case (5.2) simplifies to a single equation instead of a sum over

dimensions. Moreover, as the MLD model is a type of bilinear model, for each dimension

we have to fix the origin and scale.

5.2.1 Parameter Estimation

By setting the distance between the two categories of every response variable to be equal

to one, i.e., (γ1j,m−γ0j,m) = 1, the MLD model can be fitted using the Generalized Esti-

mating Equation method (Liang & Zeger, 1986). Therefore, existing statistical packages

with a GEE procedure (e.g., the geepack package in R or the genmod procedure in SAS

software) can be used for fitting the “restricted” MLD model on multivariate binary data.

The restriction of the class points implies that explanatory variables discriminate equally

well for all response variables belonging to a specific dimension.

Fitting the restricted MLD model using a GEE procedure involves a three-step ap-

proach: (1) construction of a design matrix for both the response and the explanatory

variables; (2) applying the GEE method with the constructed design matrix; and (3)

transforming the GEE parameters to MLD parameters.

We now show construction of the design matrix using the example presented in Table

4.1. Suppose we want to fit a 2-dimensional model on the five binary response variables.

Further, suppose we like the first three response variables to be represented on the first
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dimension, and the fourth and the fifth on the second dimension. Therefore define a

response indicator matrix, denoted by Z, with dimension (J×M). The response indicator

matrix specifies for each response variable to which dimension it pertains, with position

(j,m) equal to one if the j-th response variable belongs to the m-th dimension and zero

otherwise. For the structure layed-out above,

Z =



1 0

1 0

0 1

0 1

0 1


. (5.3)

The design matrix for subject i is then obtained by computing the Kronecker prod-

uct between the response indicator matrix and the explanatory variables vector (without

intercept), Ui = Z⊗ xTi , such that

Ui =



xi1 xi2 . . . xip 0 0 . . . 0

xi1 xi2 . . . xip 0 0 . . . 0

0 0 . . . 0 xi1 xi2 . . . xip

0 0 . . . 0 xi1 xi2 . . . xip

0 0 . . . 0 xi1 xi2 . . . xip


. (5.4)

We concatenate Ui and the identity matrix to get the final design matrix, Si = [I,Ui],

Si =



1 0 0 0 0 xi1 xi2 . . . xip 0 0 . . . 0

0 1 0 0 0 xi1 xi2 . . . xip 0 0 . . . 0

0 0 1 0 0 0 0 . . . 0 xi1 xi2 . . . xip

0 0 0 1 0 0 0 . . . 0 xi1 xi2 . . . xip

0 0 0 0 1 0 0 . . . 0 xi1 xi2 . . . xip


.
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Then, a vertical concatenation of all Si matrices will give us the final design matrix S on

which the GEE method is finally applied to obtain parameter estimates of the marginal

model. This results in five response specific intercepts (β∗
01, . . . , β

∗
05) corresponding to the

first five columns of S and two sets of p regression weights (β∗
11, . . . , β

∗
p1 and β

∗
12, . . . , β

∗
p2),

corresponding to the two dimensions. The MLD parameters can be derived from these

as follows γ0j,m = −(β∗
0j + 0.5) for dimension, m, to which disorder j belongs, zero

otherwise. The regression weights βjm are equal to the regression weights obtained from

GEE method, βjm = β∗
jm. The number of parameters in the “restricted” MLD model

then becomes q = J + (M × P ) since additional constraints are imposed on the class

points.

5.3 The NESDA Data

We used the Netherlands Study of Depression and Anxiety (NESDA: Penninx et al.,

2008; Spinhoven et al., 2009) data as a working example in this chapter to demonstrate

usage of the mldm package. NESDA is an ongoing cohort study designed to investigate

determinants of depressive and anxiety disorders in a relatively large and representative

sample of participants. In the current version of data we have, there are N = 2, 938

subjects of age between 18 − 65 years with an average age of 42(S.D. = 13.1) in which

66.5% were female and the average number of years of education attained was 12.2(S.D. =

3.3).

The multivariate binary responses are major depressive disorder (MDD), dysthmia

(DYST), generalized anxiety disorder (GAD), social phobia (SP), and panic disorder (PD).

In this study, about 37.1% of the subjects had MDD, 10.2% had DYST, 15.3% had GAD,

22.4% had SP, and 28.6% had PD. The explanatory variables are the Big-Five personality

traits (i.e., neuroticism, extroversion, openness to experience, agreeableness, and consci-

entiousness) and three background variables (i.e., age, years of education attained and
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gender).

5.4 The mldm Package

5.4.1 Accessing the NESDA Data

The NESDA data is available in the mldm package. For demonstration purpose, we

selected a random sample of 600 subjects. Thus, there are a total of 3000 records in the

dataset with binary responses for the five disorders that are observed for each subject.

Figure 5.1 shows how to extract the NESDA data from the mldm package. The dataset

becomes available for us after we install and load the mldm package to the R environment.

# load the package

library(mldm)

# load the NESDA data

data(NESDA)

## View the dimension of the data

dim(NESDA)

## [1] 3000 11

Figure 5.1: Reading the NESDA data available in the mldm package.

The measurements from the first two subjects are displayed in Figure 5.2 below. The

dataset is in a person-item order where measurements of the five mental disorders are

nested within a subject. The first five rows represent measurements of the five mental

disorders obtained for the first subject. The other measurements (i.e., row 6 − 10) are

the same set of measurements for the second subject.

The last column (pident) has subject’s identification number. The Index column
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is used to identify which response variable (e.g., mental disorder) is measured in a given

row. There are a total of five mental disorders measured for each subject. The Outcome

column holds the actual binary measurements that belong to each response variable (e.g.,

mental disorder). For example, the first subject (pident = 1) has a social phobia disease

because SP = 1 while all the other measurements are zero. Whereas the second subject

(pident = 2) has none of the mental disorders. All the other columns in Figure 5.2

represent measurements on the explanatory variables, i.e., the Big-Five personality traits

and the three background variables.

# display measurements of the first ten subjects

print(head(NESDA, n=10), digits = 0, row.names = FALSE,

right = FALSE)

GEN AGE EDU N E O A C Outcome Index pident

male 41 18 43 28 31 41 35 0 DYST 1

male 41 18 43 28 31 41 35 0 MDD 1

male 41 18 43 28 31 41 35 0 GAD 1

male 41 18 43 28 31 41 35 1 SP 1

male 41 18 43 28 31 41 35 0 PD 1

male 59 9 32 43 31 40 42 0 DYST 2

male 59 9 32 43 31 40 42 0 MDD 2

male 59 9 32 43 31 40 42 0 GAD 2

male 59 9 32 43 31 40 42 0 SP 2

male 59 9 32 43 31 40 42 0 PD 2

Figure 5.2: Excerpt of the NESDA data that shows records belonging to the first two subjects.
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5.4.2 Model Specification and Fitting

Suppose we would like to fit a 2-dimensional MLD model on the NESDA data where the

DYST and MDD response variables belong to the first dimension while the other response

variables (i.e., GAD, SP and PD) belong to the second dimension. This model is also

called the depression-anxiety model (Penninx et al., 2008).

This model can be fitted in the mldm package by first specifying a response indicator

matrix (i.e., the matrix that indicates to which dimension every response belongs). Figure

5.3 shows the response indicator matrix for our 2-dimensional model.

# Indicator matrix

Z <- matrix(c(1,1,0,0,0,

0,0,1,1,1), 5, 2, byrow=FALSE)

print(Z)

## [,1] [,2]

## [1,] 1 0

## [2,] 1 0

## [3,] 0 1

## [4,] 0 1

## [5,] 0 1

Figure 5.3: Specification of an indicator matrix for the depression-anxiety model fitted on the
NESDA data.

The multivariate logistic distance model for the NESDA data is given by

ηim = β1m × AGE+ β2m × EDU+ β3m × GEN

+ β4m × N+ β5m × E+ β6m × O+ β7m × A+ β8m × C,

(5.5)
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where ηim is the i−th subject coordinate in dimension m. Since we want to fit the

depression and anxiety model, the number of dimension becomes two, i.e., M = 2.

The R code below in Figure 5.4 shows the formula following (5.5) for every dimension.

For simplicity reason, we only considered two of the Big-Five personality traits (N and E),

and all the background variables. The left side of the formula (i.e., before the tilde sign)

shows the response variable (Outcome) separated by a pipe operator. For a unidimensional

MLD model, we would not use the pipe operator. At the right side of the formula, the

explanatory variables are displayed which are again separated by the pipe operator. The

pipe operator tells R that the components are dimension-specific. In our case, the MLD

model is a 2-dimensional model.

## specify model formula

mf <- Outcome | Outcome ~ EDU + GEN + AGE + N + E |

EDU + GEN + AGE + N + E

mf <- Formula(mf)

Figure 5.4: A two-dimensional representation of model formula for depression-anxiety model
fitted on the NESDA data.

As model specification in MLD is dimension specific, it is possible to allow a given

explanatory variable to have an effect in one of the dimension but not on the other one.

For example, we can test the hypothesis that agreeableness has an effect on the first

dimension (depression), but not on the second dimension (anxiety) while both openness

to experience and conscientiousness having an effect on anxiety, but not on depression.

Once the response indicator matrix (Z) and the the model formula (mf) are specified,

we are now ready to fit the MLD model using the mldm.fit function as shown in Figure

5.5 below.
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# fit the MLD model on NESDA data

fit <- mldm.fit(formula=mf, index = Index, resp.dim.ind = Z,

data = NESDA, id = pident, scale=TRUE)

# display fitted model result

fit

Call:

mldm.fit(formula = mf, index = Index, resp.dim.ind = Z, data = NESDA,

id = pident, scale = TRUE)

Formula:

Outcome | Outcome ~ EDU + GEN + AGE + N + E | EDU + GEN + AGE +

N + E

QIC: [1] 2542.707

Figure 5.5: Application of the mldm.fit function for fitting the depression-anxiety model on
the NESDA data.

Except the scale parameter in the mldm.fit() function, the input values for the

other parameters are obtained both from the dataset itself (i.e., index = Index, data =

NESDA and id = pident) and model specification (i.e., formula = mf and resp.dim.ind

= Z). The scale argument in the mldm.fit() function is used for transforming the ex-

planatory variables to z-scores.

The mldm.fit() function returns the model formula, and the Quasi-Information Cri-

terion (QIC) statistics of the fitted model.

The other model outputs (e.g., the parameter estimates and the sandwich standard

errors) can be obtained using the summary() function in R as shown in Figure 5.6 below.

The class coordinates section of the output presents parameter estimates for γ̂kj,m.

It represents an estimate for the coordinate of the k-th category that belong to the j-th
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response variable in dimension m. The class point restriction (i.e., γ1j,m − γ0j,m = 1)

can be seen from the estimates. For example, for the first response (DYST) on the first

dimension, its class point estimates are γ̂01 = 2.286 and γ̂11 = 3.286.

The estimates of regression coefficients per dimension (i.e., βm) then follows the

class points as shown in Figure 5.6. These estimates show effect of the explanatory

variables on each dimension, specifically on depression and anxiety dimensions. For ex-

ample, β̂41 = 1.1286 indicates that there is a strong positive association (p-value =

0.0000) between neuroticism and depression; similarly, with anxiety (i.e., β̂42 = 0.9856).

Whereas, extraversion has a moderate negative association with both dimensions, i.e.,

β̂51 = −0.4393 with depression and β̂52 = −0.2782 with anxiety.

The Pearson correlation between the two dimensions is also shown in the result, i.e.,

Corr(η̂i1, η̂i2) = 0.98. This result shows that there is a strong linear relationship between

the positions of the subjects on the first dimension (ηi1) and the second dimension (ηi2).

The results displayed in Figure 5.6 are the default outputs by the summary() function.

However, there are additional outputs (e.g., npar for number of parameters of the fitted

model, etc) which are glm-like results, and they can be obtained by the str(fit) function

in R.
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# display summary of the fitted model result

summary(fit)

Call:

mldm.fit(formula = mf, index = Index, resp.dim.ind = Z, data = NESDA,

id = pident, scale = TRUE)

Formula:

Outcome | Outcome ~ EDU + GEN + AGE + N + E | EDU + GEN + AGE +

N + E

Class Coordinates:

dim1 dim2

gamma01 2.286 0.000

gamma11 3.286 0.000

gamma02 1.781 0.000

gamma12 2.781 0.000

gamma03 0.000 0.050

gamma13 0.000 1.050

gamma04 0.000 0.884

gamma14 0.000 1.884

gamma05 0.000 1.311

gamma15 0.000 2.311

[1] "Regression coefficients for Dimension 1"

estimate san.se wald p

EDU1 -0.0277 0.0894 0.0957 0.7570

GEN1 -0.0136 0.1928 0.0049 0.9439

AGE1 -0.0440 0.0917 0.2309 0.6308

N1 1.1286 0.1187 90.3897 0.0000

E1 -0.4393 0.1109 15.6925 0.0001
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[1] "Regression coefficients for Dimension 2"

estimate san.se wald p

EDU2 -0.2192 0.0759 8.3427 0.0039

GEN2 0.2367 0.1631 2.1076 0.1466

AGE2 -0.0269 0.0735 0.1343 0.7140

N2 0.9856 0.0946 108.6077 0.0000

E2 -0.2782 0.0822 11.4533 0.0007

Correlation among dimensions:

dim1 dim2

dim1 1.00 0.98

dim2 0.98 1.00

QIC:

[1] 2542.707

Figure 5.6: Summary of the depression-anxiety model fitted on the NESDA data.

The Clustered Bootstrap Method

The parameters in the MLD model are estimated using the GEE method. Thus, the Sand-

wich estimators are primarily used for hypothesis testing since the model-based standard

errors are biased. The mldm.fit() function uses this procedure at the backend as a

default estimation method.

The other alternative for obtaining the standard errors of model parameters in the

MLD model is to apply a clustered bootstrap technique (Sherman & Le Cessie, 1997; De

Rooij & Worku, 2012). In this case, the re-sampling procedure is applied on the subject

(cluster) level so that the correlations between the measurements within each subject are

retained.
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The clustered bootstrap method is implemented in themldm package. The bootstrap

argument in the mldm.fit() function is used for this purpose. The function returns both

the parametric and the non-parametric confidence intervals of the model parameters. Fig-

ure 5.7 shows application of the new argument, i.e., bootstrap = 1000. The number

of replicates used here is also what is recommended in practice.

# fit the MLD model using Clustered Bootstrap method

fit_boot <- mldm.fit(formula=mf, index = Index, resp.dim.ind = Z,

data = NESDA, id = pident, scale=TRUE, bootstrap=1000)

# fit_boot

Figure 5.7: Application of the Clustered Bootstrap method with the MLD model.

The summary() function with an additional argument can be used to obtain the

clustered bootstrapped standard errors as shown in Figure 5.8 below.

Generally, layout of the model results are very similar to the one presented before in

Figure 5.6. What makes this result different is that the standard errors are estimated

differently (clustered bootstrap version) with a 95% confidence interval (CI) for the pa-

rameter estimates. By default, the confidence intervals are the parametric ones. The

nonparametric confidence intervals can be obtained by specifying an additional argument

in the summary() function, i.e., boot.nonparam=TRUE .
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summary(fit_boot, bootstrap=TRUE)

Call:

mldm.fit(formula = mf, index = Index, resp.dim.ind = Z, data = NESDA,

id = pident, scale = TRUE, bootstrap = 1000)

Formula:

Outcome | Outcome ~ EDU + GEN + AGE + N + E | EDU + GEN + AGE +

N + E

Class Coordinates:

dim1 dim2

gamma01 2.286 0.000

gamma11 3.286 0.000

gamma02 1.781 0.000

gamma12 2.781 0.000

gamma03 0.000 0.050

gamma13 0.000 1.050

gamma04 0.000 0.884

gamma14 0.000 1.884

gamma05 0.000 1.311

gamma15 0.000 2.311

[1] "Regression coefficients for Dimension 1"

estimate boot.se boot.wald p boot.ll boot.ul

EDU1 -0.0277 0.0882 0.0983 0.7538 -0.2006 0.1452

GEN1 -0.0136 0.1990 0.0046 0.9457 -0.4035 0.3764

AGE1 -0.0440 0.0934 0.2224 0.6372 -0.2271 0.1390

N1 1.1286 0.1220 85.5033 0.0000 0.8893 1.3678

E1 -0.4393 0.1137 14.9184 0.0001 -0.6622 -0.2164

[1] "NB: The confidence intervals are the parameteric ones!"
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[1] "Regression coefficients for Dimension 2"

estimate boot.se boot.wald p boot.ll boot.ul

EDU2 -0.2192 0.0724 9.1658 0.0025 -0.3610 -0.0773

GEN2 0.2367 0.1667 2.0172 0.1555 -0.0899 0.5634

AGE2 -0.0269 0.0748 0.1297 0.7188 -0.1736 0.1197

N2 0.9856 0.0973 102.6649 0.0000 0.7949 1.1762

E2 -0.2782 0.0832 11.1704 0.0008 -0.4413 -0.1150

[1] "NB: The confidence intervals are the parameteric ones!"

Correlation among dimensions:

dim1 dim2

dim1 1.00 0.98

dim2 0.98 1.00

QIC:

[1] 2542.707

Figure 5.8: Summary of the depression-anxiety model fitted on the NESDA data using the
Clustered Bootstrap method.

5.4.3 The Biplot for MLD Model

To enhance interpretation of the model the results of an MLD model can be graphically

represented in a biplot (Gabriel, 1971; Gower & Hand, 1996; Gower et al., 2011). The

biplot represents the subjects, the response variables, and the predictor variables so that

the relationship between predictors and responses can be read from the graph.

The biplot() function in the mldm package can be used to display the results of

the MLD model in a biplot. Figure 5.9 shows the application of this function. The biplot

for the depression-anxiety model is presented in Figure 5.10.
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# biplot of the MLD model

biplot(fit)

Figure 5.9: Application of the biplot() function available in the mldm package.

Figure 5.10: The biplot for depression-anxiety model fitted on the NESDA data.

5.4.4 Model Selection using QIC

In statistical analysis we often select a parsimonious and best fitting model from a set of

candidate models given the data. In the MLD model, we select not only predictor variables

for the final model, but also the dimensionality of the model must be determined.

Pan (2001) proposed the quasi-likelihood under the independence model criterion
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(QIC) as an extension of Akaike Information Criterion (AIC) to GEE:

QIC = −2L(θ) + 2 trace(Ω̂−1
I V̂R), (5.6)

where V̂R represents the robust variance estimator obtained under the assumption of

a general “working” covariance structure R; and Ω̂ is for the naive variance estimator

obtained under the assumption of an independence correlation structure. Pan (2001) also

proposed a simplified version of QIC when trace(Ω̂−1
I V̂R) ≈ trace(I) = q, i.e.,

QICu = −2L(θ) + 2q.

Yu and De Rooij (2013) studied the performance of QICu for determining the dimen-

sionality of the Trend Vector Model (TVM). Both the Trend Vector model and the MLD

model are marginal models in a distance framework, where the first is used for longitudinal

multinomial response variables and the latter for multivariate binary responses. Yu and

De Rooij (2013) recommended QICu for determining the dimensionality of the distance

model.

In the MLD model, we use QICu fit statistics both for determining the dimensionality

of the model and for variable selection. The model with the lowest QICu statistics is

considered the most parsimonious and best fitting model. As recommended in Yu and De

Rooij (2013), we first determine the dimensionality of the model and then proceed to the

variable selection.

The QICu fit statistics is implemented in the mldm package and its value can be

extracted by specifying fit$QIC, where fit is an object of the fitted model.

Model selection for Dimensionality

For demonstration purpose we compare a unidimensional MLD model against a 2-dimensional

MLD model fitted on the NESDA data with the same set of explanatory variables. For
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dimensionality comparison, both the response indicator matrix and model formula should

be redefined. Figure 5.11 shows specification of the indicator matrix for the unidimen-

sional candidate model. For the 2-dimensional model, we use the same indicator matrix

from the depression-anxiety model presented before in Figure 5.3.

# an indicator matrix for the unidimensional MLD model

Z1 <- matrix(c(1,1,1,1,1), 5, 1, byrow=FALSE)

Z1

[,1]

[1,] 1

[2,] 1

[3,] 1

[4,] 1

[5,] 1

Figure 5.11: Specification of an indicator matrix for candidate models with respect to
dimensionality in the model.

The new model formula for the unidimensional candidate model is shown in Figure

5.12 where the explanatory variables are specified only in the first dimension. For the

2-dimensional MLD model we use the same model formula that was defined above for the

depression-anxiety model (i.e., mf) in Figure 5.4.

# formula for the unidimensional model

mf1 <- Outcome ~ EDU + GEN + AGE + N + E

mf1 <- Formula(mf1)

Figure 5.12: Specification of model formula for a unidimensional MLD model.
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Figure 5.13 displays the QIC fit statistics values for the two candidate models. We can

conclude that the unidimensional MLD model fits the data well, although the two QIC

values are very similar, i.e., QIC1D = 2541.235 and QIC2D = 2542.707. Note that

only N = 600 subjects were used for fitting the candidate models. If all subjects (i.e.,

N = 2938) were included in the analysis, the 2-dimensional (depression-anxiety) model

would fit the NESDA data better.

# fit the unidimensional MLD model

fit_dim1 <- mldm.fit(formula=mf1, index = Index, resp.dim.ind = Z1,

data = NESDA, id = pident, scale=TRUE)

# get the QIC value

fit_dim1$QIC

[1] 2541.235

# fit the 2-dimensionl MLD model

fit_dim2 <- mldm.fit(formula=mf, index = Index, resp.dim.ind = Z,

data = NESDA, id = pident, scale=TRUE)

# get the QIC value

fit_dim2$QIC

[1] 2542.707

Figure 5.13: Model selection in MLD model for dimensionality.

Model selection for Explanatory variables

For demonstration purpose, let us compare two candidate 2-dimensional MLD models that

only differs on the explanatory variables. That is, (1) a depression-anxiety model with only

the background variables (i.e., education, gender and age); and, (2) a depression-anxiety
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model with both the background variables and two of the Big-5 personality traits (i.e.,

neuroticism and extroversion). The model formula for each candidate model is presented

below in Figure 5.14.

# the first model, i.e., only the background variables

mf2a <- Outcome | Outcome ~ EDU + GEN + AGE |

EDU + GEN + AGE

mf2a <- Formula(mf2a)

# the second model, i.e., with the background variables and

# two of the personality traits

mf2b <- Outcome | Outcome ~ EDU + GEN + AGE + N + E |

EDU + GEN + AGE + N + E

mf2b <- Formula(mf2b)

Figure 5.14: Model formula structure of the candidate MLD models.

In Figure 5.15 the candidate models are fitted and the QIC results are obtained. The QIC

fit statistics of the candidate models are then extracted by specifying fit$QIC. It can be

concluded that the 2-dimensional MLD model with both the background variables and

the two personality traits fits the data better than the model without (N, E) since it has

a smaller QIC value, i.e., QIC = 2542.707.
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# fit the first model

fit_dim2a <- mldm.fit(formula=mf2a, index = Index, resp.dim.ind = Z,

data = NESDA, id = pident, scale=TRUE)

# get the QIC value for the first model

fit_dim2a$QIC

[1] 3056.799

# fit the second model

fit__dim2b <- mldm.fit(formula=mf2b, index = Index, resp.dim.ind = Z,

data = NESDA, id = pident, scale=TRUE)

# get the QIC value for the second model

fit_dim2b$QIC

[1] 2542.707

Figure 5.15: Model selection in MLD model for explanatory variables.

5.5 Conclusion and Discussion

In this chapter we showed an application of the mldm package using a psychological

dataset. Themldm package fits the newly proposed Multivariate Logistic Distance (MLD)

model for analyzing multivariate binary data.

The mldm.fit() function in the mldm package supports two different estimation

techniques for obtaining standard errors for model parameters in the MLD model, namely

the Sandwich estimator from GEE method and the clustered bootstrap method. Using

the biplot() function, one can easily produce a biplot for the fitted model. The QIC

object returned from the mldm.fit() function can be used to compare candidate MLD
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models. The QIC fit statistics is used to determine: (1) the dimensionality of the model,

and (2) the structure of the explanatory variables.

We made themldm package available on the online repository system GitHub. The fol-

lowing link can be used to get access to the package: https://github.com/workuhm1/mldm-

package-github.





Chapter 6

Conclusions and Discussions

In this dissertation our main aim was to develop a methodology, based on the Ideal Point

Classification (IPC: De Rooij, 2009a) model, for analyzing multivariate categorical data

which requires a less assumptions and takes the data as it is. Existing methodology makes

unverifiable assumptions (e.g., latent variable models and structural equation models that

make a normality assumption for latent variables) or requires the independent variables to

to be categorized (e.g., the GEE2 method for marginal models). In Appendix C we showed

limitation of latent variable models regarding normality assumption of factor scores using

empirical data.

Structural equation models were originally proposed for analysis of continuous (or

interval) indicator variables. Recently, confirmatory factor analysis and structural equation

models have been applied for data with dichotomous indicators and with only a few

indicators per latent variable, i.e., 2 or 3 (Krueger, 1999; Beesdo-Baum et al., 2009).

Using a Monte Carlo simulation study, we showed in Chapter 2 that latent variable models

applied on such type of data performed poorly with higher incidence of improper solutions,

poor quality of recovering the true factor scores, too conservative or inflated type-I error

rates, and weak power.

In this dissertation we further developed the IPC model for analyzing multivariate

143
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binary data. The IPC model is a probabilistic multidimensional unfolding model and closely

related to the Ideal Point Discriminant Analysis (IPDA: Takane et al., 1987). De Rooij

(2009a) showed that the IPC model for a univariate dependent variable with C categories

inM = C−1 dimensions equals the Multinomial Baseline Category Logit (MBCL: Agresti,

2007, chap. 6) model. For a dichotomous dependent variable, it was shown by De Rooij

(2009a) that the IPC model with only one dimension equals a simple Logistic Regression

(LR: Agresti, 2007, chap. 4) model. The IPC model was further studied in Yu and

De Rooij (2013). The IPC model has been successfully applied to investigate trends in

living conditions for psychiatric homeless people over time (De Rooij, 2009b); to look at

vote transitions between political parties (De Rooij, 2011); and, in preferential choice for

television programs of children (De Rooij & Schouteden, 2009).

In Chapter 3 we studied properties of IPC model for analyzing bivariate binary data. A

bivariate logistic regression set-up (Bahadur, 1961; Palmgren, 1989; Lipsitz et al., 1990)

is used so that the Euclidean space of the dependent variables is three-dimensional. In

this case the first dimension pertains to the prevalence of the first dependent variable

(e.g., breathlessness in the Coalminers study); the second pertains to the prevalence of

the second variable (e.g., wheeze); and, the third dimension pertains to the association

between the two dependent variables (e.g., the association between breathlessness and

wheeze in the Coalminers study).

Based on a simulation study and analytical derivations, we showed that the 3-dimensional

IPC model for bivariate binary data fully recovered the association structure between the

two dependent variables, but misspecified the univariate marginal models. On the other

hand, the 2-dimensional IPC model with a “fixed” set of class points (i.e., the first two

columns of the indicator matrix presented in 1.16) fully recovered the marginal models,

but assumes an “independent” association structure between the dependent variables.

With a “free” set of class points, the 2-dimensional IPC model represented the associ-

ation model as a form of restricted model. However, this model misspecified both the
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marginal models and the association model.

To fully recover both the marginal models and the association model of a bivariate

binary data, a re-parameterization of the IPC model was proposed. The newly proposed

model is called a Bivariate IPC (BIPC, Worku & De Rooij, 2017a) model, and using a

simulation study it was shown that this model recovered both the marginal models and

the association model well. Unlike existing marginal models for bivariate binary data, the

BIPC model can provide us with a biplot which enhances the interpretation of the model.

The BIPC model can be extended easily for bivariate polytomous data by adding class

coordinates to accommodate the additional response categories.

A limitation of the BIPC model, however, is that it is not straightforward to extend

it for analyzing multivariate binary data (i.e., with more than two binary or polytomous

responses). This is due to the fact that both the pairwise and higher-order association

structure parameters between the dependent variables must be specified in the likelihood

function. With three binary responses (i.e., Y1, Y2, and Y 3), for example, three pairwise

associations and a three-way association parameters must be specified which makes the

computation cumbersome. Due to this limitation of the BIPC model, we proposed a new

distance-based marginal model in Chapter 4, namely the Multivariate Logistic Distance

(MLD) model, for analyzing multivariate binary data.

The MLD model can be used to simultaneously assess the dimensional structure of the

data and to study the effect of the predictor variables on the response variables. The MLD

model belongs to the family of marginal models for multivariate responses, as opposed to

latent variable models and conditionally specified models. By setting the distance between

the two categories of every response variable to be equal, the MLD model can be fitted

using the GEE estimation method (Liang & Zeger, 1986). Therefore, existing statistical

packages built for the GEE procedure, e.g., the genmod procedure in SAS or the geepack

package in R, can be used for fitting the MLD model. Without the equality constraint,

the MLD model is a general model which can be fitted by its own right (Worku & De
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Rooij, 2018). The former is sometimes referred to as the “restricted” MLD model, and

the later as the “unrestricted” MLD model.

The MLD model is related to Canonical Correspondence Analysis (CCA: Ter Braak,

1986; Ter Braak & Verdonschot, 1995) which is a multivariate method used for ordination

axes that maximizes the separation among the multivariate binary responses. The main

two differences between the CCA and the MLD model are the following. Firstly, the

model set-up is different, i.e., the MLD model is built in a logistic framework where as

the CCA is in a Gaussian framework. Due to this difference, the MLD can provide a

clear interpretation in terms of (log)-odds and probabilities. The second reason is that

unlike in CCA, the MLD model can position responses (e.g., mental disorders) on certain

dimensions driven by the theories that we would like to test.

Like the BIPC model, the MLD model can also be extended for analyzing multivariate

polytomous data. The polytomous situation, however, is often more complicated than

the binary one. The binary model for every response variable in the MLD framework

is by definition unidimensional, which is not the case for polytomous data. Therefore,

we recommend further study to fully understand the behavior of the MLD model with

multivariate polytomous data.

Regarding model assumptions, it is worth mentioning the following two points. The

first point is that the MLD model makes a strong linearity assumption regarding the

explanatory variables, i.e., the model assumes that the explanatory variables are linearly

related to logit transform of the class probabilities. However, this assumption could be

solved for example by using polynomial functions of the original explanatory variables.

The second point is that, compared to structural equation models, the MLD model does

not have the assumption of a normal distribution for the latent variables anymore.

In Chapter 5 we presented an mldm package that was developed in R for fitting the

MLD model. The main function in the mldm package responsible for fitting the MLD

model is mldm.fit(). The function supports the two approaches, namely the Sandwich
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estimator from GEE method and the clustered bootstrap method, which are used for

obtaining standard errors of model parameter estimates. These estimation techniques are

applied in the MLD model to correct bias of the Hessian matrix. Using the biplot()

function, one can produce a biplot for the fitted model. The QIC object returned by the

mldm.fit() function can be used to compare different candidate MLD models. The fit

statistics is mainly used to determine the structure of the fixed part in the MLD model

(i.e., set of explanatory variables); and, the dimensionality of the MLD model.

We conclude the dissertation with some recommendations for future researchers. It is

important to note that we used an advantageous design for our Monte Carlo simulation

study in Chapter 2. The latent variables were generated from a bivariate normal distri-

bution. Moreover, the population model was correctly specified. In empirical studies it

is likely that assumptions are only partially valid. Moreover, the fitted model could be

misspecified; for example, an important indicator variable may not have been included in

the analysis. Under such conditions we would expect even more improper solutions and

factor scores that are further off than what we found in our current study. Therefore, these

methods performed poorly for this type of data and therefore must be used carefully. An

alternative statistical model which requires less assumptions might be more appropriate,

for example the multivariate logistic distance model (Worku & De Rooij, 2018).





Appendix A

List of Tables that belong to Chapter 2

Table A.1: Parameter estimates of the 2-way interaction logistic regression model fitted on the
nonconvergence data. For simplicity, we denote the design variables as, a: type of indicators; b:
number of indicators; c: factor structure; d: correlation between underlying latent variables;
and, e: sample size.

Effect Estimates (S.E.) p-value OR

Intercept -22.14 (2.548) < 0.0001

Type of Indicators (a) BLR 11.27 (1.578) < 0.0001 78,766.54∗∗

BMR 5.96 (1.637) 0.0003 385.92∗∗

Number of Indicators (b) 6 6.58 (1.451) < 0.0001 717.83∗∗

10 3.27 (1.534) 0.0333 26.20∗∗

Factor structure (c) Weak 9.72 (1.555) < 0.0001 16,724.23∗∗

Moderate 6.53 (1.573) < 0.0001 683.68∗∗

Correlation Independence 0.06 (0.437) 0.8878 1.06

between Factors (d) Moderate -2.57 (0.729) 0.0004 0.08∗∗

Sample size (e) 50 13.39 (2.438) < 0.0001 655,792.70∗∗

100 10.03 (2.44) < 0.0001 22,781.63∗∗

300 4.88 (2.471) 0.0481 131.95∗∗

a × b [a=BLR] × [b=6] -1.70 (0.293) < 0.0001 0.18∗∗

[a=BMR] × [b=6] -0.34 (0.295) 0.2500 0.71

[a=BLR] × [b=10] -1.32 (0.300) < 0.0001 0.27∗

[a=BMR] × [b=10] -0.66 (0.302) 0.0286 0.52

a × c [a=BLR] × [c=Weak] -4.50 (0.646) < 0.0001 0.01∗∗

[a=BMR] × [c=Weak] -2.85 (0.647) < 0.0001 0.06∗∗

[a=BLR] × [c=Moderate] -3.27 (0.652) < 0.0001 0.04∗∗

[a=BMR] × [c=Moderate] -2.17 (0.651) 0.0009 0.11∗∗
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a × d [a=BLR] × [d=Independence] -1.31 (0.204) < 0.0001 0.27∗

[a=BMR] × [d=Independence] -1.15 (0.201) < 0.0001 0.32

[a=BLR] × [d=Moderate] -0.72 (0.214) 0.0008 0.49

[a=BMR] × [d=Moderate] -0.84 (0.210) < 0.0001 0.43

a × e [a=BLR] × [e=50] -2.51 (1.404) 0.0738 0.08∗∗

[a=BMR] × [e=50] 0.15 (1.470) 0.9213 1.16

[a=BLR] × [e=100] -0.65 (1.408) 0.6441 0.52

[a=BMR] × [e=100] 1.09 (1.473) 0.4597 2.97

[a=BLR] × [e=300] 0.85 (1.448) 0.5591 2.33

[a=BMR] × [e=300] 1.68 (1.512) 0.2669 5.36∗∗

b × c [b=6] × [c=Weak] -0.75 (0.149) < 0.0001 0.47

[b=10] × [c=Weak] -0.16 (0.148) 0.2745 0.85

[b=6] × [c=Moderate] -0.02 (0.152) 0.9070 0.98

[b=10] × [c=Moderate] 0.01 (0.150) 0.9258 1.01

b × d [b=6] × [d=Independence] 1.07 (0.129) < 0.0001 2.92

[b=10] × [d=Independence] 0.56 (0.126) < 0.0001 1.76

[b=6] × [d=Moderate] 1.12 (0.132) < 0.0001 3.06∗

[b=10] × [d=Moderate] 0.60 (0.130) < 0.0001 1.82

b × e [b=6] × [e=50] -4.27 (1.413) 0.0025 0.01∗∗

[b=10] × [e=50] -1.80 (1.498) 0.2300 0.17∗∗

[b=6] × [e=100] -3.21 (1.413) 0.0230 0.04∗∗

[b=10] × [e=100] -1.28 (1.497) 0.3927 0.28∗

[b=6] × [e=300] -2.08 (1.417) 0.1418 0.13∗∗

[b=10] × [e=300] -0.74 (1.502) 0.6208 0.48

c × d [c=Weak] × [d=Independence] -0.40 (0.131) 0.0024 0.67

[c=Moderate] × [d=Independence] 0.00 (0.132) 0.9850 1.00

[c=Weak] × [d=Moderate] -0.31 (0.133) 0.0181 0.73

[c=Moderate] × [d=Moderate] -0.53 (0.133) < 0.0001 0.59

c × e [c=Weak] × [e=50] -4.29 (1.404) 0.0022 0.01∗∗

[c=Moderate] × [e=50] -2.79 (1.421) 0.0497 0.06∗∗

[c=Weak] × [e=100] -3.37 (1.404) 0.0164 0.03∗∗

[c=Moderate] × [e=100] -2.17 (1.421) 0.1259 0.11∗∗

[c=Weak] × [e=300] -1.38 (1.410) 0.3288 0.25∗∗

[c=Moderate] × [e=300] -0.76 (1.427) 0.5921 0.47

d × e [d=Independence] × [e=50] 0.62 (0.330) 0.0602 1.86

[d=Moderate] × [e=50] 2.89 (0.666) < 0.0001 17.98∗∗

[d=Independence] × [e=100] 0.77 (0.329) 0.0185 2.17

[d=Moderate] × [e=100] 2.92 (0.665) < 0.0001 18.57∗∗

[d=Independence] × [e=300] 1.12 (0.331) 0.0007 3.06∗
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[d=Moderate] × [e=300] 2.60 (0.666) < 0.0001 13.40∗∗

∗medium effect size, according to Ferguson (2009).

∗∗large effect size, according to Ferguson (2009).
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Table A.2: Parameter estimates of the 2-way interaction logistic regression model fitted on the
Heywood data. For simplicity, we denote the design variables as, a: type of indicators; b:
number of indicators; c: factor structure; d: correlation between underlying latent variables;
and, e: sample size.

Effect Estimates (S.E.) p-value OR

Intercept -20.61 (2.813) < 0.0001

Type of Indicators (a) BLR 8.73 (1.455) < 0.0001 6,179.20

BMR 0.33 (1.950) 0.8664 1.39

Number of Indicators (b) 6 4.13 (1.456) 0.0045 62.28

10 -0.49 (1.934) 0.7982 0.61

Factor structure (c) Weak 6.96 (1.504) < 0.0001 1,049.37

Moderate 1.65 (1.962) 0.3992 5.23

Correlation Independence 5.52 (1.450) 0.0001 248.30

between Factors (d) Moderate 3.75 (1.571) 0.0170 42.55

Sample size (e) 50 13.01 (2.708) < 0.0001 445,359.70

100 7.53 (2.709) 0.0054 1,865.31

300 1.85 (2.794) 0.5075 6.37

a × b [a=BLR] × [b=6] -1.46 (0.285) < 0.0001 0.23∗∗

[a=BMR] × [b=6] 0.72 (0.349) 0.0390 2.06

[a=BLR] × [b=10] -0.97(0.300) 0.0013 0.38

[a=BMR] × [b=10] 0.50 (0.360) 0.1687 1.64

a × c [a=BLR] × [c=Weak] -3.14 (0.322) < 0.0001 0.04∗∗

[a=BMR] × [c=Weak] -0.11 (0.414) 0.7826 0.89

[a=BLR] × [c=Moderate] -2.53 (0.325) < 0.0001 0.08∗∗

[a=BMR] × [c=Moderate] -0.04 (0.416) 0.9312 0.97

a × d [a=BLR] × [d=Independence] -1.61 (0.197) < 0.0001 0.20∗∗

[a=BMR] × [d=Independence] -0.96 (0.194) < 0.0001 0.38

[a=BLR] × [d=Moderate] -1.25 (0.201) < 0.0001 0.29∗

[a=BMR] × [d=Moderate] -0.78 (0.197) < 0.0001 0.46

a × e [a=BLR] × [e=50] -5.23 (1.376) 0.0001 0.01∗∗

[a=BMR] × [e=50] -0.76 (1.861) 0.6843 0.47

[a=BLR] × [e=100] -2.61 (1.373) 0.0578 0.07∗∗

[a=BMR] × [e=100] 0.02 (1.861) 0.9928 1.02

[a=BLR] × [e=300] -0.65 (1.380) 0.6355 0.52

[a=BMR] × [e=300] 0.51 (1.868) 0.7858 1.66

b × c [b=6] × [c=Weak] 0.08 (0.370) 0.8364 1.08

[b=10] × [c=Weak] 1.23 (0.474) 0.0096 3.41∗

[b=6] × [c=Moderate] 1.44 (0.434) 0.0009 4.22∗∗

[b=10] × [c=Moderate] 1.81 (0.530) 0.0006 6.12∗∗

b × d [b=6] × [d=Independence] -0.14 (0.309) 0.6619 0.87
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[b=10] × [d=Independence] 0.28 (0.329) 0.3979 1.32

[b=6] × [d=Moderate] -0.37 (0.311) 0.2353 0.69

[b=10] × [d=Moderate] 0.01 (0.333) 0.9721 1.01

b × e [b=6] × [e=50] -1.49 (1.337) 0.2662 0.23∗∗

[b=10] × [e=50] 0.54 (1.815) 0.7656 1.72

[b=6] × [e=100] 0.50 (1.341) 0.7107 1.64

[b=10] × [e=100] 1.83 (1.817) 0.3138 6.23∗∗

[b=6] × [e=300] 1.01 (1.363) 0.4581 2.75

[b=10] × [e=300] 1.98 (1.835) 0.2806 7.24∗∗

c × d [c=Weak] × [d=Independence] -1.37 (0.361) 0.0001 0.25∗∗

[c=Moderate] × [d=Independence] -0.56 (0.367) 0.1261 0.57

[c=Weak] × [d=Moderate] -1.04 (0.373) 0.0051 0.35

[c=Moderate] × [d=Moderate] -0.63 (0.381) 0.0978 0.53

c × e [c=Weak] × [e=50] -2.55 (1.377) 0.0646 0.08∗∗

[c=Moderate] × [e=50] 0.26 (1.852) 0.8906 1.29

[c=Weak] × [e=100] -0.48 (1.378) 0.7273 0.62

[c=Moderate] × [e=100] 2.10 (1.853) 0.2577 8.14∗∗

[c=Weak] × [e=300] 2.02 (1.503) 0.1793 7.52∗∗

[c=Moderate] × [e=300] 4.06 (1.948) 0.0372 57.89∗∗

d × e [d=Independence] × [e=50] -2.78 (1.361) 0.0414 0.06∗∗

[d=Moderate] × [e=50] -1.46 (1.486) 0.3263 0.23∗∗

[d=Independence] × [e=100] -1.98 (1.358) 0.1456 0.14∗∗

[d=Moderate] × [e=100] -0.87 (1.483) 0.5558 0.42

[d=Independence] × [e=300] -0.90 (1.364) 0.5115 0.41

[d=Moderate] × [e=300] -0.24 (1.489) 0.8705 0.78

∗medium effect size, according to Ferguson (2009).

∗∗large effect size, according to Ferguson (2009).
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Table A.3: Effect size of the 2-way interaction ANOVA model fitted on the average correlations
reported in Table 2.5. The design variables are denoted by letters, i.e., a: type of indicators; b:
number of indicators; c: factor structure; d: correlation between latent variables; and e: sample
size.

Effect F (df) p-value η2

Type of Indicators (a) 35549.88 (2) 0.000 0.736∗∗

Number of Indicators (b) 13661.71 (2) 0.000 0.517∗∗

Factor structure (c) 44178.4 (2) 0.000 0.776∗∗

Correlation between Factors (d) 2643.23 (2) 0.000 0.172∗∗

Sample size (e) 641.25 (3) 0.000 0.070∗

Interactions

a × b 270.02 (4) 0.000 0.041

a × c 1704.7 (4) 0.000 0.211∗∗

a × d 7.76 (4) 0.000 0.001

a × e 9.03 (6) 0.000 0.002

b × c 74.34 (4) 0.000 0.012

b × d 4.53 (4) 0.001 0.001

b × e 3.09 (6) 0.005 0.001

c × d 18.07 (4) 0.000 0.003

c × e 46.14 (6) 0.000 0.011

d × e 7.03 (6) 0.000 0.002

∗medium effect size, according to Cohen (1988).

∗∗large effect size, according to Cohen (1988).
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Appendix B

Identification of the BIPC Model in Chapter 3

In this Section, we address identification issues of the BIPC model. As shown in equation

(3.25), the marginal models are represented in the BIPC model as,

πi1· =
exp(−0.5δi1·)

exp(−0.5δi0·) + exp(−0.5δi1·)
,

πi·1 =
exp(−0.5δi·1)

exp(−0.5δi·0) + exp(−0.5δi·0)
,

where δil· =
∑2

m=1 (ηim − γl·m)2 and δi·l =
∑2

m=1 (ηim − γ·lm)2, l = 0, 1. Like simple logistic

regression (LR) model, the BIPC model can also be represented using log-odds, i.e.,

log

 πi1·
1− πi1·

 = 0.5δi0· − 0.5δi1·,

log

 πi·1
1− πi·1

 = 0.5δi·0 − 0.5δi·1.

In the BIPC model, each binary response variable is positioned on one and only dimension,

and thus the class coordinates are specified as follows:

γl· =
γ0·1 0

γ1·1 0

 and γ·l =
0 γ·02
0 γ·12

 ,
where the first binary response (Yi1) is positioned on the first dimension and the second

binary response variable (Yi2) on the second dimension.

Suppose xi1 represents one of the predictor variables. Let us now simplify the log-odds
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model by replacing the above class points. That is,

log

 πi1·
1− πi1·

 =

2∑
m=1

(ηimγ1·m)−
2∑

m=1

(ηimγ0·m) + 0.5

2∑
m=1

γ20·m − 0.5

2∑
m=1

γ21·m

= ηi1(γ1·1 − γ0·1) + 0.5× (γ20·1 − γ21·1)
= (β01 + β11xi1)(γ1·1 − γ0·1) + 0.5× (γ20·1 − γ21·1)
= β01(γ1·1 − γ0·1) + β11(γ1·1 − γ0·1)xi1 + 0.5× (γ20·1 − γ21·1)
= β∗

01 + β∗
11xi1,

where β∗
01 = β01(γ1·1 − γ0·1) + 0.5× (γ2

0·1 − γ2
1·1) and β∗

11 = β11(γ1·1 − γ0·1). So, for a unit

increase in xi1 the log-odds in the BIPC model changes by β11(γ1·1−γ0·1). Similarly, the

simplified log-odds form of the second binary response variable becomes log[πi·1/(1−πi·1)] =
β02(γ·12 − γ·02) + β12(γ·12 − γ·02)xi1 + 0.5× (γ2·02 − γ2·12) = β∗

02 + β∗
12xi1.

At this stage, the BIPC model is not identified since both the regression weights and

the class coordinates influence the distance model parameters. For unique identification

of model parameters, we must impose restrictions on the class coordinates. This can be achieved,

for example, by setting a unit difference between the class coordinates. That is, γ1·1 =

1 and γ0·1 = 0 for the first response variable, Yi1; and γ·12 = 1 and γ·02 = 0 for Yi2.

Thus, β∗
1s = β1s and β∗

0s = β0s − 0.5, where s = 1, 2.



Appendix C

Chapter 4: Exploring latent variable models with few

number of indicators per factor

Recently, in clinical psychological research factor analysis and structural equation models

have been proposed for the analysis of comorbidity of depressive and anxiety disorders

(Krueger, 1999; Beesdo-Baum et al., 2009). A typical characteristic of these models

is that the indicators are dichotomous, i.e whether someone has or does not have a

particular disorder, and that there are only a few indicators per latent variable, i.e. 2 or

3. These authors found for depressive and anxiety disorders two underlying factors: ‘fear’

with indicators social phobia (SP), and panic disorder (PD), and ‘distress’ with indicators

major depressive disorder (MDD), dysthmia (DYST), and generalized anxiety disorder

(GAD).

We tried to replicate these findings using data from the Netherlands Study for De-

pression and Anxiety (NESDA, Penninx et al., 2008). In this study, measurements were

obtained on N=2,938 subjects of age between 18 − 65 years with an average age of 42

(S.D. = 13.1), 66.5% were female, and the average number of years of education attained

was 12.2 (S.D. = 3.3). In the NESDA study measurements are obtained on each of the

five disorders, i.e., about 37.1% of the subjects in the study had MDD, 10.2% had DYST,
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Table C.1: Fit statistics for the factor models fitted on the NESDA data.

Model # parameters RMSEA CFI
1-factor 10 0.082 0.956
2-factor (fear-distress) 11 0.034 0.994
2-factor (anxiety-depression) 11 0.071 0.974

15.3% had GAD, 22.4% had SP, and 28.6% had PD.

With these data it is possible to investigate the interplay between personality traits

and co-morbidity of mental disorders. We considered Big-Five personality traits, i.e.,

Neuroticism (N), Extraversion (E), Openness to experience (O), Agreeableness (A), and

Conscientiousness (C). After establishing the measurement model we would like to see

the influence of the personality traits and the background variables (age, gender, and

education) in explaining the latent variables.

The first step in the analysis was to establish the measurement model using a Con-

firmatory Factor Analysis (CFA). Besides the fear-distress theory there are two other

competing theories (Krueger, 1999; Beesdo-Baum et al., 2009; Spinhoven et al., 2013):

the first is the anxiety-depression theory which differs from the distress-fear with respect

to generalized anxiety disorder. The anxiety-depression theory places GAD on the other

latent factor. Finally, there is a single factor theory where all five disorders are indicators

of a single underlying factor.

In Table C.1 we present fit statistics of the three measurement models applied to the

NESDA data. The 2-factor model with fear and distress factors fitted the NESDA data

best with fit statistics of RMSEA=0.034 and CFI=0.994. In this selected model, there are

a total of eleven (11) parameters: three (3) loadings on the first factor, two (2) loadings

on the second factor, a covariance between the factors, and a threshold for each of the

five manifest variables.
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Table C.2: Parameter estimates with the corresponding standard errors (S.E.) presented in
parenthesis for the final 2-factor (fear-distress) model.

Effect Parameter Estimate (S.E.)

Fear (F1)

Gender γ11 −0.127(0.072)

Education† γ21 −0.113(0.035)

Age γ31 0.012(0.036)

Neuroticism† γ41 0.985(0.062)

Extraversion† γ51 −0.289(0.045)

Agreeableness γ61 −0.026(0.035)

Conscientiousness γ71 −0.039(0.038)

Openness γ81 −0.014(0.035)

Distress (F2)

Gender γ12 0.003(0.079)

Education† γ22 −0.166(0.039)

Age γ32 −0.020(0.038)

Neuroticism† γ42 0.954(0.069)

Extraversion† γ52 −0.245(0.047)

Agreeableness γ62 0.002(0.037)

Conscientiousness† γ72 0.112(0.041)

Openness γ82 0.002(0.038)

Covariance for Factors

Var(F1) ψ11 1.000(−−)

Var(F2) ψ22 1.000(−−)

Cov(F1, F2) ψ12 0.333(0.053)

Threshold

MDD τ1 0.417(0.048)

DYST τ2 1.533(0.070)

GAD τ3 1.181(0.058)

SP τ4 0.943(0.053)

PD τ5 0.696(0.047)

† statistically significant effect, i.e., p < 0.05.
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In the second step, researchers would like to see the effect of the personality variables

on the two latent factors. Suppose they would fit a Multiple Indicators and MultIple Causes

(MIMIC) model for this purpose. Table C.2 shows the results. From the personality traits,

only neuroticism and extraversion had statistically significant effects on both the fear and

distress factor. The positive association between neuroticism and both dimensions implies

that on average a subject having a higher score on neuroticism would score high on both

fear and distress. In the case of extraversion, the association was negative implying a

subject with lower score on extraversion would score higher on both fear and distress.

Conscientiousness had an effect only on distress. From the background variables, only

education had a strong negative association with both factors.

So far, the theory about comorbidity and the influence of personality variables on

the latent factors replicates earlier findings. However, when computing and plotting the

factor scores some notable results were found. The distribution of the factor scores from

the factor analysis are shown in the left column of Figure C.1, and it can be seen that

the distribution deviates strongly from normality. It is clear that the assumption of a

normally distributed latent variable does not hold. Furthermore, in the right hand side

the factor scores are shown for the two latent variables in the MIMIC model. Surprisingly,

the distribution of these factor scores seems completely different from the distribution

found in the factor analysis.

These surprising results cause doubts about the robustness of latent variable models

with just a few dichotomous indicators per factor. However, we did not find large scale

simulation studies for such models. The aim of Chapter 2 is to fill this gap. In Chapter 4

a Multivariate Logistic Distance (MLD) model is proposed to analyze multivariate binary

data.
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Figure C.1: The distribution of estimated factor scores obtained from the final 2-factor
(fear-distress) model. The top panel representing the distribution of scores from the first factor
(F1) before and after the inclusion of external variables, respectively; and, the bottom panel for
those scores from the second factor (F2) before and after the inclusion of the external variables,
respectively.





Appendix D

Chapter 4: Simplification of log-odds representation of

the MLD model, Eq. 4.8

Let us simplify log-odds representation of the MLD model (Eq. 4.8) using distress-

fear model, where the first dimension (distress) was represented by Major Depressive

Disorder (MDD), Generalized Anxiety Disorder (GAD), and Dysthimia (DYST); and the

second dimension (fear) was represented by Panic Disorder (PD) and Social Phobia (SP)

(Spinhoven et al., 2013). Suppose class coordinates of GAD on the first dimension and PD

on the second dimension are set to fixed for identification reasons. Thus, class coordinates

of the other response variables become

γGAD
2 =

γ02,1 0

γ12,1 0

, γDYST
3 =

γ03,1 0

γ13,1 0

, γSP
5 =

0 γ05,2

0 γ15,2

, (D.1)

For demonstration purpose let us focus on GAD response variable of the first dimension

and SP of the second dimension, and derive their corresponding simplified version of Eq.

4.8.
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The log-odds representation of the multivariate distance model for GAD becomes,

log

[
π2(xi)

1− π2(xi)

]
=

M∑
m=1

{
β0m(γ12,m − γ02,m) + 0.5(γ202,m − γ212,m)

+ xTi βm(γ12,m − γ02,m)
}

=
{{
β01(γ12,1 − γ02,1) + 0.5(γ202,1 − γ212,1)

+ xTi β1(γ12,1 − γ02,1)
}

+
{
β02(γ12,2 − γ02,2) + 0.5(γ202,2 − γ212,2)

+ xTi β2(γ12,2 − γ02,2)
}}

= β01(γ12,1 − γ02,1) + 0.5(γ202,1 − γ212,1)

+ xTi β1(γ12,1 − γ02,1).

Similarly, the log-odds representation of the multivariate distance model for SP be-

comes

log

[
π5(xi)

1− π5(xi)

]
=

M∑
m=1

{
β0m(γ15,m − γ05,m) + 0.5(γ205,m − γ215,m)

+ xTi βm(γ15,m − γ05,m)
}

=
{{
β01(γ15,1 − γ05,1) + 0.5(γ205,1 − γ215,1)

+ xTi β1(γ15,1 − γ05,1)
}

+
{
β02(γ15,2 − γ05,2) + 0.5(γ205,2 − γ215,2)

+ xTi β2(γ15,2 − γ05,2)
}}

= β02(γ15,2 − γ05,2) + 0.5(γ205,2 − γ215,2)

+ xTi β2(γ15,2 − γ05,2).
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Samenvatting

In dit proefschrift beschrijven we recent ontwikkelde statistische tools voor het analy-

seren van multivariate binaire data. Multivariate binaire data, gedefineerd als verzamelde

gegevens van meerdere binaire afhankelijke variabelen en één of meer onafhankelijke vari-

abelen, komen voor in allerlei onderzoeksdisciplines. Neem bijvoorbeeld de Indonesische

Kinderen Studie (ICS). In deze studie is er data verzameld van meer dan drieduizend

kinderen die medisch onderzocht zijn op luchtweginfectie, diarree-infectie, en xeroftalmie.

Het doel van de ICS was om te achterhalen of kinderen met een deficiëntie in Vitamine

A een verhoogd risico lopen op luchtweg- en diarree-infectie.

Een ander voorbeeld waarbij multivariate binaire wordt gebruikt is de Nederlandse

Studie naar Depressie en Angst (NESDA). De gegevens die door NESDA verzamelt worden

dienen ten doel om de interactie tussen persoonlijkheidseigenschappen enerzijds en de

comorbiditeit van depressie- en angststoornissen anderzijds te kunnen onderzoeken. In

dit onderzoeksgebied van psychologische stoornissen zijn psychologen en epidemiologen

veelal genteresseerd in comorbiditeit en hoe comorbiditeit gerelateerd kan worden aan

risicofactoren zoals persoonlijkheidseigenschappen en achtergrondkenmerken.

Er zijn talloze statistische methoden beschikbaar voor het analyseren van multivariate

continue afhankelijke variabelen doordat er goed gebruik gemaakt kan worden van de

multivariate normale kansverdeling. De multivariate regressie en de multivariate variantie

analyse (MANOVA), om er maar een paar te noemen, behoren tot de populaire statistische

methoden die hier worden toegepast. Echter, voor de multivariate categorische data is
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het aanbod van methoden en technieken gering. De huidige beschikbare methoden en

technieken bouwen voorts op assumpties die niet gecontroleerd kunnen worden (zoals het

bestaan van de latente variabelen in latent variable models en structural equation models),

of komen met vereisten dat de onafhankelijke variabelen gecategoriseerd dienen te worden

(zoals de GEE2 methode voor marginale modellen). Met behulp van een Monte Carlo

simulatie studie laten in hoofdstuk 2 we zien dat het toepassen van een latente variable

model op multivariate binaire data tot gebrekkige resultaten leidt wanneer er slechts twee

of drie indicatoren per latente variabele zijn.

In dit proefschrift presenteren we een aangepaste versie van het ideal point classifi-

cation (IPC) model waarmee multivariate binaire gegevens geanalyseerd kunnen worden.

Het IPC model is een probabilistisch multidimensional “unfolding” model en veel lijkend

Ideal Point Discriminant Analysis (IPDA). Hoofdstuk 3 begint eerst met een studie van

de eigenschappen van het IPC model voor het analyseren van bivariate binaire gegevens.

Door gebruik te maken van een kader gebaseerd op de bivariate logistische regressie,

kunnen de afhankelijke variabelen worden gerepresenteerd in een drie-dimensionale Eu-

clidische ruimte. In deze drie-dimensionale ruimte heeft de eerste dimensie betrekking

op de prevalentie van de eerste afhankelijke variabele; de tweede heeft betrekking op de

prevalentie van de tweede variabele; en, de derde dimensie heeft betrekking op de samen-

hang tussen de twee afhankelijke variabelen. Op basis van een simulatie studie kunnen we

aantonen dat met het IPC model het niet volledig mogelijk is om de daadwerkelijke pa-

rameters van de binaire data te achterhalen, dat wil zeggen, de twee marginale prevalentie

parameters en de parameter voor de associatie tussen de twee afhankelijke variabelen. In

hoofdstuk 3 laten we vervolgens zien dat met een re-parameterisatie van het IPC model

het wel mogelijk is om deze parameters terug te vinden. Dit aangepaste model noemen

we het Bivariate IPC (BIPC) model.

Een beperking van het Bivariate IPC model is dat het niet toegankelijk is om uit te

breiden naar multivariate binaire gegevens (meer dan twee binaire afhankelijke variabe-
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len). Door deze beperking van het BIPC model, wordt in hoofdstuk 4 voorgesteld om het

Multivariate Logistische Afstands (MLD) model te gebruiken voor het analyseren van mul-

tivariate binaire data. Het MLD model is een vereniging van twee soorten domeinen van

statistische methoden: het domein van de Multidimensional Scaling (MDS) en het domein

van het Generalized Linear Model (GLM). Het MLD-model kan tegelijkertijd gebruikt wor-

den voor zowel het beoordelen van de dimensionale structuur van de data als het schatten

van het effect van de onafhankelijke variabelen op de afhankelijke variabelen. Zo biedt het

MLD-model de mogelijkheid om op NESDA data tegelijkertijd de dimensionale structuur

van psychologische stoornissen te onderzoeken als het effect van persoonlijkheidseigen-

schappen en achtergrondkenmerken op de prevalentie van psychologische stoornissen.

Voor ondersteuning van interpretatie doeleinden lenen de resultaten de MLD analyse

zich goed voor de grafische weergave in een biplot. Een ander voordeel van het MLD-

model ten opzichte van marginale modellen is dat MLD-model toegepast kan worden in

combinatie met dimensie reductie, waarmee de complexiteit van het standaard multivari-

ate GLM wordt vereenvoudigd door minder parameters te hoeven schatten. Met deze

dimensie-reductie methode wordt de deur geopend naar verder onderzoek.

Wanneer de afstanden tussen de twee categorien op elke afhankelijke variable eenzelfde

waarde krijgen toegewezen, dan kan het MLD-model geschat worden door gebruik te

maken van de GEE methode. Onder deze restrictie van ‘gelijke afstanden’ is het dan ook

mogelijk om het MLD-model te schatten met behulp van bestaande statische software

pakketten zoals de genmod procedure in SAS, of het geepack-pakket in R. Wanneer er

geen gebruikt wordt gemaakt van de gelijke afstanden restrictie, dan is het MLD-model een

op zichzelf staand marginaal model. In hoofdstuk 5 presenteren we hetmldm-pakket dat is

ontwikkeld in R om het MLD-model op data te kunnen toepassen. De belangrijkste functie

in dit pakket is mldm.fit, hiermee kunnen we het MLD-model schatten. Vervolgens

kan met de functie mldm.fit het geschatte model grafisch worden weergegeven in een

biplot. De functie mldm.fit heeft ook als output een object genaamd QIC, met dit
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object kunnen verschillende kandidaat-modellen worden vergelijken. Het mldm-pakket is

publiek toegankelijk en beschikbaar op het online database-systeem GitHub, te vinden via

het URL adres: https://github.com/workuhm1/mldm-package-github.

Ten slotte raden we onderzoekers aan om voorzichtig te zijn met het toepassen van

latent variable models of structural equation models op multivariate binaire gegevens. De

prestatie van statistische methoden gebaseerd op deze modellen is ondermaats met slechts

enkele indicatoren per latente variabele (d.w.z. 2 of 3). Een alternatief statisch model

dat minder assumpties vereist is mogelijk beter toepasbaar, bijvoorbeeld het multivariaat

logistische afstands model.
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