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Abstract 

Purpose: Physiologically-based pharmacokinetic (PBPK) models are essential in drug 

development but require parameters that are not always obtainable. We developed a 

methodology to investigate the feasibility and requirements for precise and accurate estimation 

of PBPK parameters using population modelling of clinical data and illustrate this for two key 

PBPK parameters for hepatic metabolic clearance, namely whole liver unbound intrinsic 

clearance (CLint,u,WL) and hepatic blood flow (Qh) in children. 

Methods: First, structural identifiability was enabled through re-parametrization and 

the definition of essential trial design components. Subsequently, requirements for the trial 

components to yield precise estimation of the PBPK parameters and their inter-individual 

variability were established using a novel application of population optimal design theory. 

Finally, the performance of the proposed trial design was assessed using stochastic simulation 

and estimation.  

Results: Precise estimation of CLint,u,WL and Qh and their inter-individual variability 

was found to require a trial with two drugs, of which one has an extraction ratio (ER) ≤ 0.27 

and the other has an ER ≥ 0.93. The proposed clinical trial design was found to lead to precise 

and accurate parameter estimates and was robust to parameter uncertainty. 

Conclusion: The proposed framework can be applied to other PBPK parameters and 

facilitate the development of PBPK models. 
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7.1 Introduction 

Physiologically-based pharmacokinetic (PBPK) models are an essential tool to predict 

the pharmacokinetics (PK) of new compounds in various human populations. PBPK models 

quantify how drug molecules, characterized by drug-specific parameters reflecting their 

properties, interact with organisms which are defined by system-specific parameters reflecting 

anatomical and physiological measures. Predictions are made by feeding drug-specific 

parameters into a PBPK model with the system-specific parameter values of the population of 

interest. This has been proven useful for instance to define first-in-child doses 1–3 or support 

paediatric clinical trial design 2,4. 

System-specific parameter values for PBPK models can be either obtained 

experimentally by direct measurements or they can be derived from clinical PK data through 

model parameter estimation 5–7. The latter not only allows for coping with a lack of 

experimental data, which may be particularly relevant in special patient populations, but is 

also the most robust approach which has been well described by Tsamandoura et al. 8. For 

instance, it has been found that ontogeny functions estimated from clinical PK data performed 

markedly better than those developed from in vitro measurements 7. However, estimating 

parameter values is not always trivial due to structural identifiability issues. Structural 

identifiability refers to the possibility to uniquely estimate model parameters given a model 

and ideal, error-free data 9,10. Without a guarantee of structural identifiability, parameter 

estimates will be either non obtainable or random and unreliable 11. In such cases global 

structural identifiability, meaning that only one unique solution exists for each parameter, can 

be obtained by fixing or using priors for some model parameters, while estimating the others.  

Once global structural identifiability of model parameters is achieved, population 

modelling of longitudinal data can be used for estimation of the PBPK parameters and their 

inter-individual variability. However, structural identifiability of a model does not guarantee 

precise and unbiased parameter estimates, as this depends on the information content of the 

data. Therefore, model parameters should also be numerically identifiable, meaning that 

accurate and precise estimates can be obtained given real, observed data. Numerical 

identifiability can in general terms be achieved by designing studies that yield sufficiently rich 

data 12. Evaluation and optimization of trial designs for population PK analyses can be 

achieved without time-consuming clinical trial simulations using optimal design software 13. 

Optimal design software packages approximate the Fisher information matrix (FIM) of 
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population models and rely on the Rao and Cramer bound that states that the inverse of the 

FIM is the lower bound of the variance-covariance matrix of any unbiased estimator of the 

parameters. While to date population optimal design is routinely used in optimizing trials for 

the precise estimation of population PK parameters 14, it has never been applied to the 

estimation of population PBPK parameters. 

 

 

For drugs undergoing hepatic metabolism, the part of a paediatric PBPK model 

describing this clearance contains two key parameters that cannot be directly measured and 

that cannot be simultaneously estimated from the PK data of one drug, due to identifiability 

issues, namely whole liver unbound intrinsic clearance (CLint,u,WL) and hepatic blood flow 

(Qh). As illustrated in Figure 1, both contribute to the overall hepatic metabolic clearance. The 

extraction ratio (ER) of a drug reflects the relative contribution of these two parameters to 

hepatic metabolic clearance. On one hand, clearance of high ER drugs reflects Qh, while 

clearance of low ER drugs reflects CLint,u,WL. To achieve global structural identifiability, Qh 

is often fixed while CLint,u,WL is estimated based on PK data 5,15. As Qh cannot be directly 

measured in very young children its value is often fixed to an assumed percentage of cardiac 

output 5,15. When this assumed percentage is however not correct, the estimation of CLint,u,WL 

Figure 1 The relationships between extraction ratio (ER), whole liver unbound intrinsic 

clearance (CLint,u,WL) and hepatic blood flow (Qh) for the adult and paediatric population. 

Without knowing Qh, the ER of a drug is unknown, making it mathematically impossible to 

disentangle Qh and CLint,u,WL from clinical concentration-time data of one drug. CL is the 

blood clearance of the unbound drug, see equations 1-6.   
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values and enzyme ontogeny functions may be biased. Therefore, there is a need for other 

methodologies that allow us to cope with the lack of experimental data on system-specific 

parameters. Even though paediatric PBPK models have been proven to predict clearance of 

many drugs with reasonable accuracy 15–17 , such methods would ultimately improve and 

accelerate the development and validation of these models in various paediatric populations. 

The aim of this paper was to develop an analysis framework to investigate whether 

population modelling approach can be used to estimate PBPK model parameters from clinical 

PK data and establish the required criteria for such estimations. The developed analysis 

framework depends on firstly establishing the data requirements for structural identifiability 

of PBPK model parameters. Then on a subsequent application of innovative population 

optimal design theory to define a clinical trial design that yields precise estimates of the 

relevant model parameters. And lastly on the evaluation of the performance of the proposed 

trial design in terms of bias and imprecision of parameter estimates using stochastic simulation 

and estimation. The approach is illustrated using the simultaneous estimation of Qh and 

CLint,u,WL in the paediatric population as an example. 

 

7.2 Materials and Methods 

An analytical workflow was developed, which is composed of the three following 

steps: structural identifiability, optimal design and evaluation of the optimized design 

performance. R version 3.3.1 was used for calculations, data management and 

visualizations 18. For optimal design procedures of step 2 of the analytical workflow, the PFIM 

program 4.0 running in R was used 19. PBPK simulations were performed with Simcyp 

software (Simcyp, Sheffield, UK) V15.R1 to derive PBPK model parameters value for optimal 

design procedures in step 2 and the stochastic simulations and estimations in step 3. Stochastic 

simulations and estimations were performed in step 3 using NONMEM version 7.3 20 and Perl-

speaks-NONMEM software package version 4.6.0 21. 
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7.2.1 Step 1: Structural identifiability  

The dispersion model (equation 1 – 6) was used to describe hepatic plasma clearance 

based on PBPK-principles. This model was selected as it has been reported to better predict 

clearance than the well-stirred model for high clearance drugs, while both models lead to 

equivalent clearance predictions for other drugs 22,23. 

 

CLp = CLb × B: P           (1) 

CLb = Qh × ER           (2) 

ER = 1 − FH            (3) 

FH =  
4a

(1+a)2exp{(a−1) 2DN⁄ }−(1−a)2exp{−(a+1) 2DN⁄ }
       (4) 

a =  (1 + 4RN × DN)1 2⁄           (5) 

RN = (fu B: P⁄ ) × 𝐶𝐿𝑖𝑛𝑡𝑢,𝑊𝐿 Qh⁄          (6) 

 

In these equations CLp is the total (bound and unbound) plasma clearance, B:P is the 

blood to plasma ratio, CLb is the whole blood clearance, Qh is the hepatic blood flow, ER is 

the hepatic extraction ratio, FH is the hepatic availability, fu is the unbound drug fraction in 

plasma, CLint,u,WL is the whole liver unbound intrinsic clearance, RN is the efficiency number 

and DN is the dispersion number, which was taken to be 0.17 23.  

In the dispersion model, CLp values can be directly derived from PK data of 

intravenously administered drugs. In the paediatric population, the unbound drug fraction in 

plasma (fu) and the blood to plasma ratio (B:P) of a drug can be obtained experimentally and, 

assuming these values were obtained precisely and accurately, they were fixed in the model 

(equation 1-6). Qh and CLint,u,WL are thereafter the only two parameters that remain to be 

estimated. As in this case the dispersion model can be written as a single equation with two 

unknowns, clinical data on the PK of one drug will not yield structural identifiability. 

Therefore, clinical trial scenarios were explored based on obtaining PK profiles of two 

different drugs, in which case there would be two equations for clearance, each with two 

unknowns. Global structural identifiability can then be obtained if the unknowns are the same 

in both equations.  
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Using this approach, Qh is a system-specific parameter that will be the same for two 

drugs administered to individuals from the same population, assuming the drugs do not alter 

Qh. CLint,u,WL is however a parameter that combines system-specific properties (i.e., 

isoenzyme abundance) and drug-specific properties (i.e., isoenzyme activity measured in in 

vitro systems as intrinsic clearance (μl / min) per functional unit of system). This means that 

even when two drugs are metabolized by the same isoenzyme, their CLint,u,WL value is likely 

to be different. Therefore a re-parameterization of CLint,u,WL was performed to separate 

system-specific parameters from drug-specific parameters.  

The ratio in CLint,u,WL (CLintratio) of drug A and drug B that are metabolized by the 

same isoenzyme is equivalent to the ratio in the activity for the metabolizing isoenzyme of the 

two drugs according to equation 7. Therefore, this parameter is a drug-specific parameter. 

CLintratio =  
CLint,u,WL_B

CLint,u,WL_A
=

isoenzyme activity B × isoenzyme abundance 

isoenzyme activity A × isoenzyme abundance 
=

isoenzyme activity B

isoenzyme activity A
        (7) 

This ratio does not vary with age, as the isoenzyme activity towards a drug is believed 

to be unaffected by maturational processes. When fixing CLintratio obtained for the two drugs, 

one unique CLint,u,WL value can be estimated in a patient population for the two drugs 

according to the re-parametrization in equations 8 and 9:  

CLint ,u,WL = CLint,u,WL_A                     (8) 

CLint ,u,WL_B = CLint,u,WL  ×  CLintratio                     (9) 

 

7.2.2 Step 2: Optimal design for precise population parameter estimates 

Because population PK modelling disentangles inter-individual variability in PK 

parameters from residual unexplained variability, this method allows for the estimation of 

population PK parameter values Θ and their inter-individual variability ω2 which is 

characterized as described in equation 10. In order to obtain precise estimates of Θ and ω2 for 

CLint,u,WL and Qh, a global sensitivity analysis of the uncertainty of these parameters with 

respect to the drugs ERs was undertaken using PFIM 4.0 (see under uncertainty section in 

methods). Defining the relationship between parameter uncertainty and the drugs ERs enables 

optimization of the trial design, by selecting drugs based on their ER. ER was chosen as the 

trial design parameter to optimize because it reflects the relative information content of drug 

clearance values regarding CLint,u,WL and Qh (see Figure 1).  
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7.2.2.1 Clinical trial design  

The clinical trial design is illustrated in Figure 2. To allow for structural identifiability, 

the clinical trial design was composed of two arms. The patients in each arm belonged to the 

same paediatric population, for which 1-year-olds were chosen, and the drugs administered in 

each arm were eliminated by the same isoenzyme and had different extraction ratios. In order 

to ensure that the sampling design was informative enough, while only focusing on the 

optimization of drug’s ER, the number of patients and blood samples were chosen to be high, 

with 45 patients included in each arm and 7 blood samples drawn in each patient. This choice 

allowed us to assess the impact of the drug’s ER on the performance of the trial design without 

a confounding impact of patient or sample number. Finally, in order to assess the impact of 

the drug's ER on the performance of the design without any confounding impact of sampling 

times, drug dosing, and number of patients and sampling times, these parameters were adapted 

to the drugs’ properties. To do so, drugs were administered as a constant rate infusion with 

infusion rate and sampling times adapted to the drugs clearance and half-life respectively, and 

each arm of the study included the same number of patients and sampling times. The infusion 

rate was set to reach the same arbitrary steady state concentration of 70 mg/L. Sampling times 

were drawn every half-life, from the first half life after the start of the infusion up to seven 

half-lives.  

 

 

Figure 2 Overview of the clinical trial design. Qh is the hepatic blood flow, CLint,u,WL is the 

whole liver unbound intrinsic clearance as define in equations 8 and 9. Θ represents the fixed 

effect and ω2 represents the inter-individual variance. Cogs indicate trial design variables 

which are adapted to the drug properties in order to prevent them from being confounding 

factors when assessing the impact of the drug's ER on the performance of the design. 
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7.2.2.2 Hypothetical drug combinations 

A total of 99 hypothetical drugs were generated and each unique combination was 

tested in the design. In order to reduce computational costs and increase interpretability of the 

results, fu and B:P were taken to be 1. Using the dispersion model, population values of 

CLint,u,WL (ΘCLint,u,WL
) were calculated to be such that ER values ranged from 0.01 to 0.99. 

This required population values of Qh (ΘQh) which was obtained by simulating 500 male and 

500 female individuals of 1 year in Simcyp and estimating the population parameter value 

using the “fitdist” function from the fitdistrplus R package 24 in R.  

 

7.2.2.3 Studied models and parameters 

For illustration, the proposed workflow is applied to identifying Qh and CLint,u,WL in 

the paediatric population. As none of the parameters in the dispersion model are impacted by 

absorption or distribution processes, it is possible to study this PBPK sub-model in full while 

simplifying the remaining aspects of the PK model for the purpose of this work. Therefore, for 

each drug in the design (drug A and B), the structural model was a one compartment PK model 

with a volume of distribution VA and VB respectively and with constant intravenous infusion 

(see PFIM model code in Supplementary Material 2 and corresponding model equations in 

Supplementary Material 1). Clearance was parameterized as defined by the dispersion model 

(equation 1–6). CLint,u,WL for drug A and B was parameterized according to equations 8 and 9 

respectively. The differential equations of the models, as implemented in PFIM can be found 

in Supplementary Material 2. Inter-individual variability was implemented on all fixed effects 

except on fu, B:P, DN and CLintratio. Inter-individual variability on fu and B:P can be measured 

and are therefore attainable parameters. DN is a model specific parameter with a fixed value 

taken from literature. And as a drug-specific parameter, CLintratio is not subject to inter-

individual variability. For the other parameters, inter-individual variability was assumed to 

follow a log normal distribution and implemented using equation 10, in which η is normally 

distributed with a mean of 0 and a variance of ω2 (see eq.10). 

𝑃𝑖 =   θ ×  𝑒ƞ                                                                               (10) 

A proportional residual error model for each arm in the design with a standard 

deviation σ of 0.1 was assumed, to yield the same impact of the model error on the parameter 

uncertainty between study arms and study designs. Information on the values and estimation 
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of the fixed effects, inter-individual variability and residual errors implemented in the models 

can be found in Table 1. 

 

Table 1 Estimated and fixed model parameters 

Parameters Values Estimated and fixed 

parameters 
Fixed effects 

ΘCLint,u,WL
 [0.10 – 156] L/h Estimated 

Θ𝑄ℎ 20.3 L/h Estimated 

Θ𝑓𝑢 1 Fixed 

Θ𝐵:𝑃 1 Fixed 

ΘVA
 4 L Estimated 

ΘVB
 4 L Estimated 

ΘD𝑁
 0.17 Fixed 

ΘCLintratio
 [0.00065 – 0.97000] Fixed 

Inter-individual variability 

ωCLint,u,WL

2  [ 0.1 – 0.8] Estimated 

ω𝑄ℎ
2  [ 0.1 – 0.6] Estimated 

ωVA

2  0.25 Estimated 

ωVB

2  0.25 Estimated 

Residual error 

𝛔𝐴 0.1 Estimated 

𝛔𝐵 0.1 Estimated 

Θ fixed effect; ω2 inter-individual variance. 𝛩𝑉𝐴
, 𝛩𝑉𝐵

, correspond to fixed effects for the 

volume of distribution of drug A and B respectively.  

 

7.2.2.4 Design evaluation with PFIM 4.0 

The models, parameters and designs described above were implemented in 

PFIM 4.0 19. Concentration-time profiles obtained for both drug A and B were simultaneously 

analysed to enable for the estimation of Θ and ω2 for CLint,u,WL and Qh. The clinical design 

parameter to optimize for precise estimation of these parameters was the ER of each of the 
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two drugs in the design. To do so, the population Fisher information matrix (FIM) was 

evaluated for each drug combination in PFIM 4.0. The expected standard errors for each 

population parameter were calculated as the square root of the diagonal of the inverse of the 

FIM and reported in PFIM outputs with corresponding relative standard errors (rse). Parameter 

uncertainties were assessed using their rse with precise estimates being defined as having an 

rse ≤ 30%. 

 

7.2.2.5 Uncertainty  

ER, which is the design variable that was optimized, is dependent on the relative 

contribution of CLint,u,WL and Qh to overall hepatic metabolic clearance, but not on their 

absolute values since there is an infinity of combinations of CLint,u,WL and Qh values leading 

to a specific value of ER. Hence, combinations of ΘCLint,u,WL
 and ΘQh that lead to similar ER 

values are estimated with the same rse%. Therefore, no uncertainty on the ΘCLint,u,WL
 and ΘQh 

was implemented in the design evaluation procedure to avoid unnecessary computations, 

meaning that only one value for ΘCLint,u,WL
 and one value for ΘQh as displayed in Table 1 was 

used in the PFIM runs. 

For each combination of hypothetical drugs, the analysis was repeated for different 

values of ωCLint,u,WL

2 and ωQh
2  in order to account for uncertainty in these parameters. The range 

in ωCLint,u,WL

2  was set from 0.1 to 0.8, while the range in ωQh
2  was set from 0.1 to 0.6, both 

reflecting realistic ranges (see Supplementary Material 1). Then, design evaluations were 

repeated using each combination of the upper and lower uncertainty value of the defined range 

for ωCLint,u,WL

2  and ωQh
2 , running 4 possible inter-individual variance scenarios in total, 

yielding a global sensitivity analysis of the uncertainty of CLint,u,WL and Qh. Only the lowest 

and highest values for ωCLint,u,WL

2 and ωQh
2  were retained in the uncertainty analysis since this 

yields the extreme values for the rse values. Rse results of all variance scenarios were collapsed 

for each hypothetical drug combination into one single precision category reflecting the worst-

case scenario of all variance scenarios. The PFIM model file, input file, and the R command 

to launch the PFIM evaluation runs for all combinations of hypothetical drugs for one 

uncertainty scenario are provided in Supplementary Material 2 to 4. The table containing the 

drug properties used for the PFIM runs are provided in Supplementary Table 1.   
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7.2.3 Step 3: Investigation of performance of the proposed design 

In step 2, the requirements for ER of the two drugs yielding numerical identifiability 

of fixed effect Θ and inter individual variability ω2 of CLint,u,WL and Qh were identified. In the 

last step of the developed approach, the performance of the proposed design was investigated 

in terms of bias and imprecision using stochastic simulation and estimation (sse).  

First, two drugs meeting the ER requirements defined in step 2 were selected and their 

ER was converted to expected plasma clearance (CLp) values in a one year old using the 

expected age-appropriate ΘQh value derived from Simcyp in step 2. The volume of distribution 

of each drug was used together with their expected CLp to derive their expected half-life. Since 

the clinical trial design depends on the half-life and CLp of the two drugs for establishing 

sampling times and infusion rate respectively these parameters were used for its 

implementation. 

Because the true value of ΘQh might differ from the value derived from Simcyp in 

step 2, the selected drugs might have an ER differing from their expected ER. Therefore, 

uncertainty in both Θ and ω2 values of CLint,u,WL and Qh, were accounted for in the sse. This 

was performed by sampling each of these parameters 1000 times from a uniform distribution. 

For the population parameters the range of the distribution entailed the typical values from 

step 2 ±50%. For the variance parameters the range of the distribution entailed the range 

defined for the parameter uncertainty in step 2. Sampling of population parameter values 

Θ𝑄ℎ and ΘCLint,u,WL
 was restricted, such that their corresponding CLp values yielded a 

variation of ±30% of the drugs’ CLps value derived from the ERs of the selected drug A and 

drug B. This mimics the accepted 30% uncertainty of the reported CLp value in literature. The 

performance of the design settings were assessed using relative estimation error re 

(equation 11), mean relative estimation error mre (equation 12), and and relative root mean 

square error rrmse (equation 13) for Θ and ω2 CLint,u,WL and Qh, using only the runs for which 

minimization was successful.  

Relative estimation error (%)  =
𝑒𝑠𝑡𝑖−𝑡𝑟𝑢𝑒𝑖

𝑡𝑟𝑢𝑒𝑖
× 100                                                 (11) 

Mean relative estimation error (%)  =
1

𝑁
∑

𝑒𝑠𝑡𝑖−𝑡𝑟𝑢𝑒𝑖

𝑡𝑟𝑢𝑒𝑖
× 100

𝑁

𝑖=1
              (12) 

Relative root mean square error (%) = √
1

𝑁
∑

(𝑒𝑠𝑡𝑖−𝑡𝑟𝑢𝑒𝑖)2

𝑡𝑟𝑢𝑒𝑖
2 × 100

𝑁

𝑖=1
             (13) 
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In these equations, true is the true parameter value used in the simulation step, est is 

the estimated parameter value from the estimation step, and i is the run index, ranging from 1 

to N, the total number of runs for which minimization was successful. 

 

7.3 Results 

7.3.1 Step 1: Structural identifiability 

Qh and CLint,u,WL were found to be structurally identifiable when the concentration-

time profiles from a clinical trial with 2 arms were simultaneously analysed. Each arm of the 

trial required patients from the same population and administration of different drugs 

metabolized by the same isoenzyme for which the ratio in intrinsic clearance (CLintratio) is 

known.  

 

7.3.2 Step 2: Optimal design for precise population parameter and variance estimates 

Precision of fixed effects and variance values for CLint,u,WL and Qh obtained with 

combinations of two drugs in the described clinical trial design are summarized in Figure 3. 

Except for drug combinations with similar extraction ratio ER (i.e., drug combinations near 

the line of unity), most drug combinations will lead to a precise ΘCLint,u,WL
estimate. However, 

for the estimate of ωCLint,u,WL

2  to be precise, at least one of the drugs should have a low 

extraction ratio. For ΘQh, most drug combinations leading to precise estimation include one 

drug with a high ER, while for precise estimation of ωQh
2 , at least one drug with an ER ≥ 0.93 

is required. Finally, precise estimation of all parameter estimates (rse ≤ 30%) requires one drug 

with an ER ≥ 0.93 and one drug with an ER ≤ 0.27. Parameter estimation with rse ≤ 50% 

(corresponding to the blue and green areas in Figure 3) for all parameters, requires one drug 

with an ER ≥ 0.85 and one drug with an ER ≤ 0.41. 

Supplemental Figure 1 shows the results presented in Figure 3, but separated for the 

four variance scenarios. As shown by both Figure 3 and Supplementary Figure 1, 

ωCLint,u,WL

2 and ωQh
2  drive the threshold for the highest and lowest ER value required in the 

drug combination for precise estimation of all parameters respectively. Supplementary 

Figure 1 also shows that the value of each of these thresholds are driven by both ωCLintu,WL

2 and 
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ωQh
2 . For precise parameter estimates, an increase in ωQh

2  from 0.1 to 0.6 leads on one hand to 

a decrease in the threshold for the highest ER value required in the drug combination from 

0.79 to 0.56 when ωCLint,u,WL

2  is equal to 0.1 and from 0.93 to 0.80 when ωCLint,u,WL

2 is equal to 

0.8. On the other hand, such an increase in ωQh
2  also leads to a decrease in the threshold for 

the lowest ER value required in the drug combination from 0.48 to 0.27 when ωCLint,u,WL

2  is 

equal to 0.1 and from 0.76 to 0.55 when ωCLint,u,WL

2 is equal to 0.8. The reverse is observed 

regarding ωCLint,u,WL

2 , with an increase in ωCLint,u,WL

2 leading to an increasing threshold for the 

highest ER value required in the drug combination for precise estimates of ωQh
2  and ΘQh, and 

an increasing threshold for the lowest ER value required in the drug combination for precise 

ωCLint,u,WL

2  estimates. 

Figure 3 Parameter precision as a function of the extraction ratios (ER) of the two drugs 

studied in the clinical trial. Θ represents the fixed effect, ω² the inter-individual variance in 

the parameter. CLint,u,WL is the whole liver unbound intrinsic clearance as defined in 

equations 8 and 9, Qh is the hepatic blood flow. For each tested drug combination, the 

precision of the parameter estimates are summarized, with each pixel representing the results 

for all four variance scenarios (i.e., 𝜔𝐶𝐿𝑖𝑛𝑡𝑢,𝑊𝐿

2 and 𝜔𝑄ℎ
2  of 0.1 and 0.1, 0.1 and 0.6, 0.8 and 

0.1 or 0.8 and 0.6 respectively) according to the following colour scheme: green indicates 

relative standard errors (rse%) ≤ 30% for all scenarios, blue indicates rse% is between 30 

and 50% for at least one variance scenario, and red indicates rse% > 50% for at least one 

variance scenario, and red indicates rse% > 50% for at least one variance scenario. 
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The results on ER requirements for drug A and B are independent of the age of children 

as the ER does not depend on absolute values of ΘQh and ΘCLint,u,WL
. However, the ERs of 

drugs are often unknown, especially in special patient populations, because as presented in 

Figure 1, ER in children changes due to maturation of both CLint,u,WL and Qh and the impact 

of these changes are isoenzyme-dependent due to different maturation patterns. 

To facilitate the identification of model drugs for which clinical data could be obtained 

to precisely estimate population values and variance of CLint,u,WL and Qh at different ages, 

maturation patterns of different isoenzymes were used to identify isoenzymes and ages for 

which drugs with the lowest and highest ER required for such estimation are likely to exist. 

To do so, the dispersion model in combination with maturation patterns for CLint,u,WL of 

various isoenzymes as implemented in Simcyp V15 (see Supplementary Material 1) were used 

to calculate expected ER values for the hypothetical drugs that are substrates of these 

isoenzymes in children of various ages. We found that drugs with an ER ≤ 0.27 are likely to 

exist for all investigated isoenzymes at all ages (results not shown). However, drugs with an 

ER ≥ 0.93 are likely to exist only for specific isoenzyme pathways and ages, as shown in 

Table 2 by the increased blue and red boxes with younger ages for most isoenzyme pathways. 

This is, because low enzyme maturation will reduce the overall ER of drugs. As a result, drugs 

metabolized by slowly maturing isoenzymes such as CYP2E1 and UGT2B7, are unlikely to 

have a high ER at young ages. On the other hand, drugs metabolized by fast maturing 

isoenzymes, such as CYP1A2 or UGT1A4, with a very high ER over a wide range of paediatric 

ages are likely to exist and could be used as model drugs. 

For convenience, to identify drugs with desired ER values, the ER values have also 

been translated into the required total plasma clearance values (CLp) for various paediatric 

ages. This is presented in Table 3, which shows for instance that in a one-year old child, 

ER ≤ 0.27 and ER ≥ 0.93 translate into a CLp ≤ 5.5L/h and a CLp ≥ 18.9 L/h, respectively. 
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Table 2 Identification of isoenzyme pathways and ages for which combinations of two drugs 

leading to precise Qh and CLint,u,WL fixed effects and inter-individual variability estimates is 

theoretically possible 

 

The cells indicate whether within the set of hypothetical drugs (see Supplementary Material 1) 

a combination of two drugs exist with which Qh and CLint,u,WL fixed effects and inter-individual 

variability estimates can be obtained with rse ≤ 30% (green), 30% < rse ≤ 50% (blue), or 

rse >50% (red). Calculations are performed for a situation in which ΘQh and isoenzyme 

maturation are set to values as implemented in Simcyp V15 or to a value that is 50% higher or 

lower reflecting extreme scenarios of uncertainty on ΘQh and 𝛩𝐶𝐿𝑖𝑛𝑡𝑢,𝑊𝐿
. 

Isoenzyme Uncertainty 1 day 1 month 6 months 1 year 2 years 5 years 15 years 25 years

Qh - 50%

CLint,u,WL +50%

none

Qh + 50%

CLint,u,WL - 50%

Qh - 50%

CLint,u,WL +50%

none

Qh + 50%

CLint,u,WL - 50%

Qh - 50%

CLint,u,WL +50%

none

Qh + 50%

CLint,u,WL - 50%

Qh - 50%

CLint,u,WL +50%

none

Qh + 50%

CLint,u,WL - 50%

Qh - 50%

CLint,u,WL +50%

none

Qh + 50%

CLint,u,WL - 50%

Qh - 50%

CLint,u,WL +50%

none

Qh + 50%

CLint,u,WL - 50%

Qh - 50%

CLint,u,WL +50%

none

Qh + 50%

CLint,u,WL - 50%

Qh - 50%

CLint,u,WL +50%

none

Qh + 50%

CLint,u,WL - 50%

Qh - 50%

CLint,u,WL +50%

none

Qh + 50%

CLint,u,WL - 50%

UGT1A4

UGT1A6

UGT2B7

CYP1A2

CYP2C18_19

CYP2D6

CYP2E1

CYP3A4_5

UGT1A1
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Table 3 Conversion table to convert the extraction ratio (ER) values of 0.27 and 0.93 to total 

plasma clearance (CLp, equation 1) in various postnatal ages using expected hepatic blood 

flow (Qh) values and fu and B:P values taken to be 1 
 

Expected  

ΘQh (L/h) 

CLp (L/h) 

corresponding 

to ER = 0.27 

CLp (L/h) 

corresponding 

to ER = 0.93 

25 years 87.0 23.5 80.9 

15 years 89.2 24.1 83.0 

5 years 41.5 11.2 38.6 

2 years 30.0 8.1 27.9 

1 year 20.3 5.5 18.9 

6 months 13.0 3.5 12.1 

1 month 7.5 2.0 7.0 

1 day 6.4 1.7 6.0 

Expected ΘQh is the fixed effect for the hepatic blood flow derived from Simcyp simulations.  

 

7.3.3 Step 3: Investigation of bias 

The performance of a clinical trial design resulting from step 1 was evaluated using sse 

with one drug with an ER of 0.94 and one drug with an ER of 0.2 in one-year old children. 

The uncertainty on ΘCLintu,WL
 and Θ𝑄ℎ included in the sse, lead to the simulation of 1000 

combinations of ΘCLintu,WL
 and Θ𝑄ℎwith a range of ER from 0.09 to 0.38 and from 0.76 to 

0.99 for the drug with the lowest and the highest ER respectively. Minimization was successful 

in 78.3% of the sse runs. The mre was ≤ 7.5% for all parameters (Table 4), and the rrmse was 

below 31%. The confidence interval (5th and 95th percentile) of the re was below or around 

20% for ΘCLintu,WL
 and ΘQh. Higher values were found for ωCLintu,WL

2 and ωQh
2  , with values 

below or around 47%.   
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Table 4 Assessment of the clinical trial performance based on the precision and accuracy of 

the parameter estimates of the sse with uncertainty 

 ΘCLintu,WL
 Θ𝑄ℎ ωCLintu,WL

2  ω𝑄ℎ
2  

re 5th percentile -16.2935 -18.356 -44.4268 -47.0063 

re 50th percentile 0.715404 -1.6823 -9.7909 -10.7792 

re 95th percentile 23.68881 16.63842 41.03665 46.80308 

mre 1.548568 -1.19669 -7.38877 -7.24315 

rrmse 12.21483 10.9555 26.24813 30.54991 

Re, relative estimation error; mre, mean relative estimation error; rrmse, relative root mean 

square error; Θ, fixed effect, ω2, inter-individual variance. CLint,u,WL is the whole liver 

unbound intrinsic clearance as define in equations 8 and 9 and Qh is the hepatic blood flow. 

 

7.4 Discussion 

The aim of this paper was to develop an analysis framework to investigate the 

feasibility and clinical trial requirements for the estimation on clinical data of PBPK 

parameters with a population PK approach. This work represents, to our knowledge, the first 

application of population optimal design principles for the estimation of PBPK parameters. 

Being able to a priori define trial requirements that yield sufficiently informative data (i.e., 

numerical identifiability), is essential for a decision-making process when costs and benefits 

of performing a study need to be weighed. The complex design requirements derived in our 

example for instance, would not be easy to define and would likely not have been met using 

conventional study design approaches. The execution of clinical trials that yield uninformative 

data that do yield numerical identifiability is both unethical, especially in vulnerable 

populations, and cost-inefficient. 

While we focused on CLint,u,WL and Qh in a paediatric population, the analysis 

workflow herein developed can be applied to other PBPK parameters, a different number of 

parameters, and for other populations. In these cases, the workflow would contain the same 

steps as outlined here: structural identifiability, optimal design and evaluation of the optimized 

design performance. 

In our example, in the first step of the workflow, structural identifiability for the 

estimation of both CLint,u,WL and Qh was found possible when PK data of a minimum of two 

drugs were simultaneously analysed. In addition, both drugs must be administered in patients 

groups from the same population, metabolized by the same isoenzyme, and their CLintratio 
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should be known. CLintratio is the ratio of the in vitro measured intrinsic clearance of the drugs 

and is a drug-specific parameter (equation 7).  

In the second step, the use of optimal design not only allowed to optimize the 

characteristics of drugs to include in the clinical trial design in order to solve numerical 

identifiability issues, but also acts as a safeguard ensuring global identifiability of the model 

parameters. Indeed, optimal design identifies models that are either globally or locally 

structurally non identifiable since their Fisher information matrix is non invertible 25. We 

found that given the described trial design, the two drugs included in the trial should have an 

ER ≥ 0.93 and an ER ≤ 0.27, in order to precisely (rse ≤ 30%) estimate Θ and ω2 for CLint,u,WL 

and Qh. These requirements might not be easy to meet since drugs with ER ≥ 0.93 are rare, 

especially in very young children whose isoenzyme maturation can lead to a decrease in ER 

with decreasing age 26. This is shown in Table 2, displaying isoenzymes and ages for which 

drugs with ER values that meet these criteria exist within the set of hypothetical drugs tested. 

These results show that characterization of isoenzyme specific ontogeny is challenging in very 

young children not only due to the sparsity and lack of available data in this population, but 

also due to intrinsic characteristics of the system which leads to a decrease in ER with 

decreasing age. Drugs metabolized by fast maturing isoenzymes were found to be the best 

model drugs to estimate Qh and CLint,u,WL simultaneously. For instance, CYP1A2 substrates 

are likely to have the required ERs in children as young as 6 months even in situations where 

ΘCLintu,WL
 and ΘQh deviate up to ±50% of their expected values. UGT1A4 substrates are likely 

to have the required ERs in children as young as term neonates of one day, but only in 

situations where ΘCLintu,WL
 and ΘQh values correspond to their expected value or are up to 

+50% and -50% of their expected value respectively. To support the selection of such model 

drugs from existing drugs, the requirements in ER were translated into CLp values in the 

conversion table (see Table 3) using reported hepatic blood flow values. Overall, these results 

do highlight the importance of investigating the clinical trial requirements a priori, as 

otherwise the chances of successfully estimating PBPK model parameters from clinical PK 

data using population approach will be very low.  

In the last step of our analysis workflow, stochastic simulations and estimations were 

used to assess the performance of the optimized study design, since optimal design only 

addresses parameter precision. While step 2 defined the ER of the two drugs required in the 

clinical trial, in practice the selected drugs might have an ER deviating from their expected 

values, which was accounted for in the sse. Uncertainty in fixed effects and inter-individual 
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variability for CLint,u,WL and Qh was also accounted for in the sse. This step allowed for the 

assessment of whether further investigation to optimize the clinical trial design would be 

needed to ensure unbiased parameter estimates. Absolute mean ree was below 7.5% for all 

parameters and the rrmsee was below 31%, meaning that on average the estimates both are 

accurate and precise. The confidence interval (5th and 95th percentile) of the relative estimation 

error was below or around 20% for ΘCLintu,WL
 and ΘQh. Higher values were found for 

ωCLintu,WL

2 and ωQh
2  which was expected due to parameter uncertainty and the general difficulty 

in estimating inter-individual variability. Overall, the sse showed that the proposed clinical 

trial design is robust to parameter uncertainty. 

Once existing model drugs with the required ER are identified, clinical data to estimate 

Θ and ω2 for CLint,u,WL and Qh can be sought. The source of these data could either be new 

clinical trials or historical data from studies meeting the defined design requirements. 

An advantage of PBPK models is that quantification of system-specific model 

parameters, like Qh and the maturation profile of CLint,u,WL, for each isoenzyme, needs to be 

performed only once. Once Qh has been quantified for instance using substrates for the 

CYP1A2 or UGT1A4 isoenzymes, this can be implemented in the PBPK model either as fixed 

value or as prior in order to estimate Θ and ω2 for CLint,u,WL, for any other drug or other 

isoenzyme pathway in the same population. This is important because both CLint,u,WL and Qh 

cannot be directly measured and because identifiability is important for the estimation of 

PBPK model parameters 27.   

While in this work we focus on popPBPK parameter estimation for a specific age, the 

scalability of the rse results with regard to ER allows for the applicability of design 

requirements across the entire age range. Since most paediatric PK studies include patients of 

a range of ages, estimation of a maturation function would be preferable over the estimation 

of parameter values for each specific paediatric age. In the future this work could be extended 

to the design of studies for the estimation of such maturation functions. This will require the a 

priori definition of the most suitable covariate for maturation function and optimization of 

study designs for the estimation of parameters in continuous covariate functions, the latter of 

which is not yet available in the PFIM software. 

In the developed analytical workflow, optimal design principles were applied in an 

innovative manner. The clinical design parameter optimized was the ER of the drugs included 

in the clinical trial. In a classical optimal design setting, optimized clinical design parameters 
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include the number of patients and samples, sampling times, and drug dose. In this work, in 

order to assess the impact of the drug’s ER on the performance of the design without any 

confounding impact of these design parameters, these parameters were set such as to have the 

same impact for each hypothetical drug in the study. To do so, drugs were administered as a 

constant rate infusion with infusion rate and sampling times adapted to the drugs clearance 

and half-life respectively, and each arm of the study included the same number of patients and 

number of blood samples. Practically, such design adaptation on half-life and clearance means 

that when normalizing sampling times over the drug’s half-life, sampling times and measured 

concentrations are identical between different drugs (between each arm of the design and 

between different drug combinations tested), which in turn allows for the same impact of 

sampling times and dosing regimen on the design performance. Another innovative feature of 

the workflow is that the optimal design is not given as a unique solution as classically 

performed, but as a range of solutions. This was done by investigating the parameter space of 

the design variable to optimize (ER) and categorization of the results by level of precision. 

The number of patients and samples in the assessed trial designs in step 2 of the 

workflow were selected to be relatively high, so that these variables would not be limiting to 

the optimization of trial requirements regarding the definition of ER values. Once the 

important design features relevant for the research question of interest have been defined in 

the proposed workflow, traditional optimal design procedures could be applied to further 

optimize the trial design regarding these variables. 

In the developed workflow, computational cost was tremendously reduced through the 

optimization of a scalable variable and the use of extreme variance scenarios to account for 

parameter uncertainty. The ER of a drug is a scalable variable, as it can be converted to 

clearance values in any paediatric age by using the expected hepatic blood flow in the 

corresponding age which represents the scaling factor. Indeed, ER reflects the relative 

contributions of Qh and CLint,u,WL to the hepatic metabolic clearance, but is independent of 

the absolute value of these two parameters. Therefore, the results of the optimal design analysis 

obtained for one age, one-year-olds in our example, can be extended to any other ages, 

allowing to reduce the computational cost and to facilitate results interpretation. Moreover, the 

ER summarizes the influence of all drug-specific parameters (e.g., drug binding to plasma 

proteins, drug distribution in red blood cells, etc.), and therefore, accounting for uncertainty in 

ΘCLintu,WL
 and ΘQh becomes unnecessary in the optimal design phase and the result obtained 

in our example for drugs with an unbound drug fraction in plasma or fu of 1 and blood to 
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plasma ratio or B:P of 1 can be translated to drugs for which these parameters take different 

values. Testing all combinations of extreme ωQh
2  and ωCLintu,WL

2  values lead to results 

reflecting the best- and worst-case scenarios in terms of parameter precision. Because we 

defined precise parameter estimates as rse < 30% in all tested variance scenarios, the final 

results reflect the worst-case scenarios and account for all untested intermediate variance 

scenarios. 

In conclusion, this work presents an analysis framework that allows for the a priori 

identification of clinical trial requirements that would allow for the estimation of PBPK model 

parameters from clinical data using population modelling. The example on CLint,u,WL and Qh 

shows that it may be unlikely to design an adequate clinical trial, without the knowledge 

obtained by the application of this analysis framework. Being able to identify PBPK 

parameters that cannot be obtained by direct experimental measurements in a time and cost-

efficient manner would greatly improve the development of PBPK models and their predictive 

performance.  
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Supplementary Material 1 

Realistic extraction ratio ranges for various isoenzymes and ages  

To facilitate the identification of existing compounds that would be suitable model 

drugs, the maximum ranges in extraction ratio that are expected for hypothetical drugs that are 

substrates for various isoenzymes in children of various ages were calculated. This was done 

using the dispersion model in combination with maturation patterns of various isoenzymes as 

implemented in Simcyp V15. ϴQh values were used as obtained for each age as displayed in 

table III and ϴCLint,u,WL
 values were computed as described in equation 1. 

CLint,u,WL = CLint,mic × MPPGL× liver weight × IO                                       (1) 

CLint,mic stands for  intrinsic microsomal clearance for which values between 0.56·10-6 

and 0.209.10-3 L.min-1.mg-1 microsomal protein were used according to literature 1. The 

population mean of the product of MPPGL (microsomal protein per gram of liver) and liver 

weight was derived from the Simcyp simulation similarly as for the computation of ϴQh. 

Isoenzyme ontogeny (IO) values for the different ages and isoenzymes were taken from 

Simcyp V15 and are displayed in the table below. IO is expressed as percentage of adult 

isoenzyme activity. 

 1  

day 

1 

month 

6 

months 

1  

year 

2 

years 

5 

years 

15 

years 

25 

years 

IO CYP1A2 (%) 24 35 118 150 164 161 126 100 

IO CYP2C18-19 

(%) 

30 33 84 95 97 98 100 100 

IO CYP2D6 (%) 6 47 84 91 95 98 100 100 

IO CYP2E1 (%) 10 37 59 67 74 82 88 100 

IO CYP3A4_5 (%) 11 13 48 78 96 104 106 100 

IO UGT1A1 (%) 0.2 23 98 104 100 100 100 100 

IO UGT1A4 (%) 74 74 74 75 77 81 97 100 

IO UGT1A6 (%) 15 30 63 76 87 95 100 100 

IO UGT2B7 (%) 8 9 11 13 18 32 79 100 

In order to account for uncertainty on Qh and Clint,u,WL, extraction ratio ranges were 

also computed with ϴQh values of +/50% and with θCLint,u,WL
 values of ±50% of the values 

described above. For each isoenzyme, the age range was identified in which drugs with 

realistic extraction ratio values exist that are required for the precise estimation of Qh and 

CLint,u,WL. 
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Definition of realistic ranges for ωCLint,u,WL

2  and ωQh
2  for the implementation of parameter 

uncertainty in PFIM 

In step 2 and 3 of the analytical workflow, uncertainty on ωCLint,u,WL

2 and ωQh
2  were 

implemented using realistic ranges for these parameters. 

For ωCLint,u,WL

2 , the range of variance was set to 0.1-0.8, including the minimum and 

maximum hepatic ωCLint,u,WL

2  estimates derived using Simcyp (0.46 and 0.77 respectively) and 

reported clearance variance of low extraction ratio drugs 2. For populations of 1 day, 1 month, 

6 months, 1, 2, 5, 15 and 25 year-olds, 1000 Simcyp simulations of hepatic CLint,u,WL for each 

population were performed, with 50% females and 50% males, assuming drug metabolism by 

different isoenzymes. These isoenzymes were isoenzymes for which model drugs have been 

reported (drugs mainly metabolized by the isoenzyme), namely CYP1A2, CYP2C19, 

CYP2D6, CYP2E1, CYP3A4-5, UGT1A1, UGT1A4, UGT1A6 and UGT2B7 34. For each 

population and isoenzyme, ωCLint,u,WL

2  was estimated using the fitdist function from the 

fitdistrplus R package assuming a log normal distribution.  

For Qh a range of variance of 0.1-0.6 was selected, which includes recently reported 

portal vein flow variance values in healthy adults (ωQh
2  = 0.13) and in cirrhotic adults 

(omega =0.38) using phase contrast MRI sequence with compressed sensing acceleration and 

high spatial resolution 5. The chosen range also included higher values (0.6 against the highest 

reported value of 0.38 in adults) in order to account for potentially higher hepatic blood flow 

variability in paediatric (sub)populations.  
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Model equations 

The equations of the pharmacokinetic model (structural model) for drug A and drug 

B implemented in PFIM in the step 2 of the analytical workflow are given below: 

Plasma clearance of drug A 

RnA = (fuA BPA⁄ ) × CLint,u,WLA Qh⁄  

aA = √(1 + 4RnA × Dn) 

CLA = Qh ×  BPA × (1 −
4aA

(1 + aA)2exp{(aA − 1) 2DN⁄ } − (1 − aA)2exp{−(aA + 1) 2DN⁄ }
) 

Plasma clearance of drug B 

RnB = (fuB BPB⁄ ) × CLint,u,WLA × CLintratio Qh⁄  

aB = √(1 + 4RnB × Dn) 

CLB = Qh ×  BPB × (1 −
4aB

(1 + aB)2 × exp{(aB − 1) 2DN⁄ } − (1 − aB)2 × exp{−(aB + 1) 2DN⁄ }
) 

Plasma concentration time profile of drug A 

ⅆAA

ⅆ𝑡
 =  K0A −

CLA

VA
 × AA  

CA(t)   =  
AA(t)

VA
   

ⅆAB

ⅆ𝑡
 =  K0B −

CLB

VB
 × AB  

CB(t)   =  
AB(t)

VB
   

With estimated parameters VA (volume of distribution for drug A), CLint,u,WL(whole 

liver intrinsic unbound clearance of drug A), Qh (hepatic blood flow) and VB (volume of 

distribution for drug A) and fixed parameters K0A (infusion rate of drug A), K0B (infusion 

rate of drug B), CLintratio (ratio CLint,u,WLB /CLint,u,WLA), equivalent to the ratio of 

microsomal intrinsic clearance as could be measured in vitro, fuA (fraction unbound of 

drug A), fuB (fraction unbound of drug B), BPA (blood to plasma ratio of drug A), BPB (blood 

to plasma ratio of drug B) and Dn (Dispersion number). 
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Supplementary Material 2 R code PFIM model file 

 

# PFIM model code  

formED<-function(t,y,p){ 

# Estimated parameters 

VA <- p[1]          # 4 L = Volume of distribution for drug A 

CLINTA <- p[2]      # Whole liver intrinsic clearance of drug A 

QH <- p[3]          # Hepatic blood flow 

VB <- p[4]          # 4 L = Volume of distribution for drug B 

 

# Fixed parameters 

K0A <- p[5]         # Infusion rate of drug A 

K0B <- p[6]         # Infusion rate of drug B 

CLINTRATIO <- p[7]  # Ratio CLINTB/CLINTA  

 

 

 

 

FuA <- 1 # Fraction unbound of drug A (fixed to 1) 

FuB <- 1 # Fraction unbound of drug B (fixed to 1) 

BPA <- 1 # Blood to plasma ration of drug A (fixed to 1) 

BPB <- 1 # Blood to plasma ration of drug B (fixed to 1) 

 

 

Dn <- 0.17 # Dispersion number 

 

# Plasma clearance of drug A 

RnA <- FuA*CLINTA/BPA/QH 

aA <- sqrt(1+4*RnA*Dn) 

CLA <-(QH*(1-(4*aA/((1+aA)**2*exp((aA-1)/(2*Dn))-(1-aA)**2*exp(-

(aA+1)/(2*Dn))))))*BPA 

 

# Plasma clearance of drug B 

RnB <- FuB*CLINTA*CLINTRATIO/BPB/QH 

aB <- sqrt(1+4*RnB*Dn) 

CLB <-(QH*(1-(4*aB/((1+aB)**2*exp((aB-1)/(2*Dn))-(1-aB)**2*exp(-

(aB+1)/(2*Dn))))))*BPB 

 

# Plasma concentration time profile of drug A 

yd1 <- K0A-CLA/VA*y[1]  

# Plasma concentration time profile of drug B 

yd2 <- K0B-CLB/VB*y[2]  

 

 

 

list(c(yd1,yd2),c(y[1]/VA,y[2]/VB)) 

 

} 
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Supplementary Material 3 R code PFIM input file 

 

 

#######################################################################

####         INPUT FILE FOR PFIM 4.0                     ####  

####################################################################### 

 

 

#Name of the project 

#--------------------  

project<-"OMEGA QH = 0.1 & OMEGA CLINT = 0.1" 

 

#Name of the file containing the PK or PD model 

#---------------------------------------------- 

file.model<-"model.R" 

 

#Name of the output file for the results and for the Fisher information 

matrix: names after the drug combination 

#--------------------------------------- 

output<-paste("StdoutA",DrugA,"B",DrugB,".r",sep=""); 

outputFIM<-paste("FIMA",DrugA,"B",DrugB,".txt",sep=""); 

 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher 

information matrix 

#--------------------------------------- 

FIM<-"P" 

 

#Previous information for population design (FIM<-"P") only: 

#If previous information is available, please specify below the file 

name; 

#otherwise leave it as the default 

#-------------------------------------------------------- 

previous.FIM<-"" 

 

#RUN:  Evaluation (EVAL) or Optimisation (OPT)  

#------------------------------------------------------- 

run<-"EVAL" 

 

#To display only graphs of models and/or sensitivity functions before 

evaluating the Fisher Information matrix 

graph.only<-F 

 

#Block diagonal Fisher information matrix (option<-1) or complete 

Fisher information matrix (option<-2) 

#---------------------------------------------------------- 

option<-1 

 

#Number of responses 

#-------------------------------------------------------------------- 

nr<-2 
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########################### MODEL OPTION ########################### 

 

#Model form: Differential equations (DE) or analytical form (AF) 

#--------------------------------------------------------------- 

modelform<-"DE" 

 

 

############## DIFFERENTIAL EQUATION OPTION ############## 

 

#Initial time for which initial conditions are given 

#--------------------------------------------------- 

time.condinit<-0 

#Identical initial conditions in each elementary design (Yes=T, No=F) 

#------------------------------------------------------------- 

condinit.identical<-T 

 

# If 'Yes', enter once the expression of the initial values of the 

system at the initial time 

# else, enter the vectors of the initial conditions for each elementary 

design 

# If initial values depend on the parameters to be estimated,  

# enter this parameter into the expression without any quotation marks  

#--------------------------------------------------------- 

condinit<-expression(c(0,0)) 

 

# Error tolerance for solving differential equations 

#---------------------------------------------------- 

RtolEQ<-1e-10 

AtolEQ<-1e-10 

Hmax<-Inf  

 

###### END DIFFERENTIAL EQUATION OPTION ###### 

 

 

 

#Name of the fixed effects parameters 

#------------------------------------- 

parameters<-c("VA","CLINTA","QH","VB","K0A","K0B","CLINTRATIO") 

 

#Fixed effects parameters values 

#------------------------------- 

beta<-

c(4,param_Drug[DrugA,1],0.338351,4,param_Drug[DrugA,3],param_Drug[DrugB

,3],(param_Drug[DrugB,1]/param_Drug[DrugA,1])) 

 

#Some parameters may not be estimated (not estimated = T, estimated = 

F) 

#-------------------------------- 

beta.fixed<-c(F,F,F,F,T,T,T) 

 

#Number of occasions 

#---------------------------------------------------------------------- 

n_occ<-1 

 

#Random effect model (1) = additive  (2) = exponential  

#------------------------------------------------------------------ 

Trand<-2; 
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#Diagonal Matrix of variance for inter-subject random effects: 

#--------------------------------------------------- 

omega<-diag(c(0.25,0.1,0.1,0.25,0,0,0)) 

 

#Diagonal Matrix of variance for inter-occasion random effects: 

#--------------------------------------------------- 

gamma<-diag(c(0,0,0,0,0,0,0)) 

 

#Standard deviation of residual error (sig.inter+sig.slope*f)^2: 

#------------------------------------------------------------------ 

sig.interA<-0 

sig.slopeA<-0.1 

sig.interB<-0 

sig.slopeB<-0.1 

 

 

#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

# vector of sampling times:sampling every half lifes, from 1st to 7th 

half life 

Vi <- 4 # Volume of distribution of drug A and drug B 

CLAi <- param_Drug[DrugA,2] # CLearance of drug A 

CLBi <- param_Drug[DrugB,2] # Clearance of drug B 

 

protA<-list(seq(log(2)/(CLAi/Vi),log(2)/(CLAi/Vi)*7,length.out 

=7),NULL) 

protB<-list(NULL,seq(log(2)/(CLBi/Vi),log(2)/(CLBi/Vi)*7,length.out 

=7)) 

 

 

#Vector of initial proportions or numbers of subjects for each 

elementary design  

#-------------------------------------------------------------- 

subjects<-c(45,45) 

 

#Subjects input: (1) for number of subjects (2) for proportions of 

subjects 

#---------------------------------------------------------------------- 

subjects.input<-1 

 

 

################################################################### 

#                                                                 # 

#                        Covariate model                          # 

#                                                                 # 

################################################################### 

 

########################################## 

# Covariates not changing with occasion  #  

########################################## 

 

#Add covariate to the model  (Yes==T No==F) 

#---------------------------------------------------------------------- 

covariate.model<-F 
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##################################### 

# Covariates changing with occasion #  

##################################### 

 

 

#Add covariate to the model   (Yes==T No==F) 

#---------------------------------------------------------------------- 

covariate_occ.model<-F 

 

 

 

############## GRAPH SPECIFICATION OPTION ############### 

 

#graphical representation of the model (Yes=T, No=F) 

#------------------------------------- 

graph.logical<-F 

 

#graphical representation of sensitivity functions (Yes=T, No=F) 

#------------------------------------- 

graphsensi.logical<-F 

 

 

############# END OF GRAPH SPECIFICATION OPTION ############### 
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Supplementary material 4 R command to launch the PFIM evaluation runs for all 

combinations of hypothetical drugs for one uncertainty scenario 

 

 

# Set working directory 

# open PFIM.r in R studio and clic "source"  

 

  

# Table containing drug properties for all hypothetical drugs.  

# Each row contains the drug properties for one specific drug. 

# 1st column = Whole liver intrinsic clearance, 2nd column = CL, 3rd 

column = infusion rate, 4th column = ER. 

 

param_Drug <- read.csv("EC05_PBPKOD_ODPFIM_HDproperies.csv")  # 

Table corresponding to supplementary table 1 

 

 

combAB <- combn(nrow(param_Drug),2) # Generation of all possible 

combinations of drugs from the pool of hypothetical drugs in 

param_Drug (without repetitions)  

 

 

# Run PFIM evaluation for each hypothetical drug combination 

for (i in 1:ncol(combAB)){ 

DrugA <- combAB[1,i] # Row index in param_Drug containing the drug 

prarameter values for the selected drug A 

DrugB <- combAB[2,i] # Row index in param_Drug containing the drug 

prarameter values for the selected drug B 

 

 

tryCatch({ 

 

PFIM() 

}, error=function(e){}) 

} 
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Supplementary Table 1 excel table containing the drug properties used for the PFIM runs 
 

 

CLint CL k0 ER 

0.001697 0.001691 0.118403 0.004999 

0.003405 0.003383 0.236814 0.009999 

0.006855 0.006767 0.473678 0.019999 

0.01035 0.01015 0.710515 0.029999 

0.013892 0.013534 0.94739 0.04 

0.017481 0.016918 1.18423 0.05 

0.021119 0.020301 1.421094 0.060001 

0.024806 0.023684 1.657906 0.069999 

0.028545 0.027068 1.894782 0.080001 

0.032336 0.030452 2.131643 0.090001 

0.03618 0.033835 2.368471 0.1 

0.040079 0.037219 2.605308 0.11 

0.044034 0.040602 2.842132 0.119999 

0.048047 0.043985 3.078976 0.129999 

0.05212 0.04737 3.31587 0.140001 

0.056252 0.050752 3.552667 0.149999 

0.060448 0.054137 3.789561 0.160001 

0.064707 0.05752 4.026403 0.170001 

0.069031 0.060903 4.263208 0.179999 

0.073424 0.064287 4.500099 0.190001 

0.077885 0.06767 4.736918 0.2 

0.082418 0.071054 4.973778 0.21 

0.087024 0.074437 5.210625 0.22 

0.091705 0.077821 5.447453 0.23 

0.096464 0.081204 5.684305 0.24 

0.101303 0.084588 5.921165 0.250001 

0.106224 0.087972 6.158015 0.260001 

0.111229 0.091355 6.394834 0.27 

0.116322 0.094738 6.631687 0.28 

0.121505 0.098122 6.868542 0.29 

0.12678 0.101505 7.105361 0.299999 

0.132152 0.104889 7.342235 0.31 

0.137622 0.108272 7.579072 0.32 

0.143194 0.111656 7.815906 0.329999 

0.148872 0.115039 8.052761 0.34 

0.154659 0.118423 8.289614 0.35 

0.160559 0.121807 8.526475 0.360001 

0.166575 0.12519 8.763307 0.37 

0.172712 0.128574 9.000146 0.38 

0.178974 0.131957 9.236978 0.389999 

0.185367 0.135341 9.473856 0.400001 



226  |  Chapter 7 

 

CLint CL k0 ER 

0.191893 0.138724 9.710675 0.409999 

0.19856 0.142108 9.947543 0.42 

0.205371 0.145491 10.18437 0.43 

0.212333 0.148875 10.42122 0.44 

0.219452 0.152258 10.65807 0.45 

0.226734 0.155642 10.89492 0.46 

0.234185 0.159025 11.13175 0.469999 

0.241814 0.162409 11.36862 0.48 

0.249627 0.165792 11.60547 0.49 

0.257632 0.169176 11.8423 0.5 

0.265838 0.172559 12.07913 0.509999 

0.274255 0.175943 12.31599 0.52 

0.282892 0.179326 12.55285 0.53 

0.291758 0.18271 12.78967 0.539999 

0.300867 0.186093 13.02654 0.55 

0.310229 0.189477 13.26339 0.56 

0.319857 0.19286 13.50023 0.57 

0.329765 0.196244 13.73708 0.58 

0.339967 0.199627 13.97391 0.59 

0.350481 0.203011 14.21076 0.6 

0.361323 0.206394 14.44761 0.61 

0.372511 0.209778 14.68445 0.62 

0.384067 0.213161 14.9213 0.63 

0.396012 0.216545 15.15815 0.64 

0.40837 0.219929 15.395 0.65 

0.421167 0.223312 15.63183 0.66 

0.434433 0.226695 15.86868 0.67 

0.448199 0.230079 16.10554 0.68 

0.462499 0.233463 16.34238 0.69 

0.477372 0.236846 16.57923 0.7 

0.49286 0.24023 16.81607 0.71 

0.509011 0.243613 17.05291 0.72 

0.525878 0.246997 17.28976 0.73 

0.543519 0.25038 17.52661 0.74 

0.562 0.253764 17.76345 0.75 

0.581398 0.257147 18.0003 0.76 

0.601796 0.260531 18.23714 0.77 

0.623292 0.263914 18.47399 0.78 

0.645998 0.267298 18.71084 0.79 

0.670042 0.270681 18.94768 0.8 

0.695574 0.274065 19.18453 0.81 

0.722768 0.277448 19.42137 0.82 

0.751833 0.280832 19.65822 0.83 
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CLint CL k0 ER 

0.783016 0.284215 19.89507 0.84 

0.816612 0.287599 20.13191 0.85 

0.852986 0.290982 20.36876 0.86 

0.892586 0.294366 20.60561 0.87 

0.935971 0.297749 20.84245 0.88 

0.98386 0.301133 21.0793 0.89 

1.037185 0.304516 21.31614 0.9 

1.097192 0.3079 21.55299 0.91 

1.165593 0.311283 21.78984 0.92 

1.244824 0.314667 22.02668 0.93 

1.338523 0.31805 22.26353 0.94 

1.452439 0.321434 22.50037 0.95 

1.596435 0.324817 22.73722 0.96 

1.789531 0.328201 22.97407 0.97 

2.075989 0.331584 23.21091 0.98 

2.604656 0.334968 23.44776 0.99 
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Supplementary Figure 1 
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Section V   
 

  

Summary, conclusions and perspectives 

 

  

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


