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Translational Relevance: A number of studies have reported that T-
cells responding to the two oncoproteins E6 and E7 of high-risk 
human papillomavirus (HPV) can infiltrate the tumor 
microenvironment of patients with HPV-driven tumors and 
speculated that these T-cells might be important for tumor control. 
This is the first study that really addresses this question by measuring 
the T-cell response in the tumor, analysed the influence of these 
HPV16-specific T-cells on the microenvironment within the tumor and 
then waited for many years to define their impact on patient survival. 
Here we show how the presence of these HPV-specific T-cells is 
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associated with a completely different microenvironment and that 
intratumoral HPV-specific type 1 polarized T-cells provides HPV16-
positive oropharyngeal cancer patients with a 37-fold higher chance 
to respond excellently to standard therapy, across all TNM stages. The 
results will fuel the discussion on de-intensification of the standard 
therapy and potential applicable forms of immunotherapy. 
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Abstract 

Purpose: Human papilloma virus (HPV)-associated oropharyngeal 
squamous cell cancer (OPSCC) has a much better prognosis than HPV-
negative OPSCC and this is linked to dense tumor immune infiltration. 
Since the viral antigens may trigger potent immunity, we studied the 
relationship between the presence of intratumoral HPV-specific T-cell 
responses, the immune contexture in tumor microenvironment and 
clinical outcome. 

Experimental design: To this purpose an in-depth analysis of tumor-
infiltrating immune cells in a prospective cohort of 97 HPV16-positive 
and -negative OPSCC patients was performed using functional T-cell 
assays, mass cytometry (CyTOF), flow cytometry and fluorescent 
immunostaining of tumor tissues. Key findings were validated in a 
cohort of 75 HPV16-positive OPSCC patients present in the publicly 
available cancer genomic atlas database.  

Results: In 64% of the HPV16-positive tumors type 1 HPV16-specific T-
cells were present. Their presence was not only strongly related to a 
better overall survival, a smaller tumor size and less lymph node 
metastases but also to a type I oriented tumor microenvironment, 
including high numbers of activated CD161+ T-cells, CD103+ tissue-
resident T-cells, dendritic cells (DC) and DC-like macrophages.  

Conclusions: The viral antigens trigger a tumor-specific T-cell response 
that shapes a favorable immune contexture for the response to 
standard therapy. Hence, reinforcement of HPV16-specific T-cell 
reactivity is expected to boost this process. 
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Introduction 
The incidence of oropharyngeal squamous cell cancer (OPSCC) is 
rising, especially in younger adults [1]. Classically the development of 
OPSCC is related to p53 mutations, but currently more than half of all 
OPSCC are caused by a high-risk human papillomavirus, most often 
type 16 (HPV16) [1]. Although HPV-associated OPSCC are more often 
diagnosed with TNM stage III-IV, consisting of an earlier T stage and 
more advanced N stage, than HPV-negative OPSCC [2], they display a 
much better prognosis than HPV-negative tumors after 
(chemo)radiation therapy. This is independent of many common 
histopathological parameters [2, 3], but associated with the presence 
of a strong adaptive immune response gene signature [4] and dense 
tumor infiltration by activated CD4+ and CD8+ T-cells [3, 5, 6], 
suggesting a role for the adaptive immune system in the response to 
therapy. Notably, HPV-associated OPSCC express viral proteins and 
we have shown that they may function as tumor-specific antigens for 
OPSCC-infiltrating T-cells [7]. Clear evidence for a protective role of 
tumor-infiltrating HPV-specific T-cells in OPSCC, however, is lacking. 
Hence, it is important to evaluate if HPV-positive OPSCC are 
commonly infiltrated by HPV-specific T-cells, and specifically, how this 
pertains to the composition of the tumor microenvironment and 
survival. We purely focused on the analysis of HPV-specific T-cell 
reactivity within the tumor-infiltrating lymphocyte (TIL) population 
since detection of circulating HPV-specific T-cells might reflect a 
response to past infections [8], potentially even in other anatomical 
locations [8] and, thus, less relevant to our study. In case of such a 
relation, reinforcement of HPV-specific T-cell reactivity becomes 
highly attractive for treatment of OPSCC. 
 

Materials and methods 

Patients  

Patients with histological confirmed OPSCC were included after 
signing informed consent. This study is part of a larger observational 
study P07-112 [7], approved by the local medical ethical committee 
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of the Leiden University Medical Center (LUMC) and in agreement 
with the Dutch law. Patient enrolment was from November 2007 until 
November 2015. Blood and tumor tissue samples were taken prior to 
treatment and handled as described previously [9] and in 
Supplementary Methods. Peripheral blood mononuclear cells (PBMCs) 
and tumor infiltrating lymphocytes (TILs) were stored until use. HPV 
typing and p16ink4a immunohistochemical staining was performed on 
former fixed paraffin embedded (FFPE) tumor sections at the 
department of pathology at the LUMC. Immunofluorescent staining 
of FFPE tumor sections for CD8 and Tbet was performed as described 
previously [10] and in Supplementary Methods. The patients received 
the standard-of-care treatment which could consist of surgery, 
radiotherapy, chemotherapy, treatment with monoclonal antibody or 
combinations hereof. Staging of the tumor was done according to the 
National Comprehensive Cancer Network (https://www.nccn.org/ 
professionals). Patient characteristics are given in Supplementary 
Table S1. 

 

Cancer cell lines.  

The OPSCC cell lines were obtained from the University of Michigan 
(Ann Arbor, MI, USA) and called UM-SCC. We obtained UM-SCC4 
(passage 22), UMC-SCC6 (passage 33), UM-SCC19 (passage 17) (all 
three HPV negative), and UM-SCC47 (passage 98) and UM-SCC104 
(passage 15) (both HPV16-positive) in 2012. The cells were cultured in 
RPMI 1640 (Gibco/ Thermo Fisher Scientific (TFS) Bleiswijk, the 
Netherlands) with 10% Fetal Calf Serum (PAA laboratories; Pashing, 
Austria) and penicillin/streptomycin (TFS). Tumor cell supernatant 
(TSN) was prepared after 5 days of culture as described previously 
[11]. Microsatelite analysis was performed in July 2016 by BaseClear 
(Leiden, the Netherlands) to assure cell line authentication when the 
experiments were performed. Mycoplasma was tested on a monthly 
basis. 

 

https://www.nccn.org/%20professionals
https://www.nccn.org/%20professionals
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T-helper clones.  
Clonal dilution was performed using the TILs from patient H68 as 
described previously [7]. Their HPV specificity and cytokine 
production was determined. This resulted in multiple CD4+ T-helper 
(Th) cell clones of which Th1 (clones 78 and 97), Th2 (clone 133) and 
Th17 (clones 12 and 103) were selected for the experiments. T-cell 
supernatant was obtained after stimulation  with  cognate HPV 
peptide loaded on with EBV immortalized B cells for 3 days.   
 
TIL and tumor cell analyses 
The phenotype and composition of dispersed tumors (and expanded 
TILs) was analyzed by flow [9, 12-15] and time of flight mass 
cytometry (CyTOF) [16] (Supplementary Methods). Supplementary 
Table S2 shows the 36 markers used for CyTOF analysis. The reactivity 
of TILs was determined in a 5-days proliferation assay [9] and by 
intracellular cytokine staining [15]. Supernatant from the proliferation 
test were subjected to cytokine analysis [15]. The effect of TSN on DC 
differentiation was determined phenotypically and functionally 
(cytokine/chemokine production) upon LPS or agonistic CD40 
antibody stimulation in presence or absence of INF  as described 
previously [11, 13] and in Supplementary Methods. 
 
Treatment of tumor cells. Tumor cells were seeded (15000 – 27500 
cells/well) in a flat bottom 96 well plate (Costar/TFS) and allowed to 
adhere overnight at 37oC. The next day, the cells were incubated with 
the indicated concentrations of IFNγ and/or TNFα for 48 hours at 
37oC, followed by the MTT assay (Trevigen, Gaithersburg, MD, USA) 
according to the manufacturer’s protocol to determine the 
percentage of proliferating cells compared to the untreated cells (set 
at 100%) [13]. Tumor cells (70000 - 100000) were adhered in 24 well 
plate overnight as described above followed by treatment for 24 
hours with a fixed dose of cisplatin (15 µg/mL) in the presence or 
absence of indicated concentrations TNFα (0-30 ng/mL). The cells 
were harvested and analysed for apoptosis by flow cytometry. In 
another experiment tumor cells prepared in 24 well plates were 
treated for 24 and 48 hours with IFNγ (250 IU/mL; Immunotools) and 
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TNFα (30 ng/mL) or 20% of supernatant obtained from Th1 (H68 
clone 97), Th2 (H68 clone 133) or Th17 (H68 clone 103) cells with or 
without the addition of apoptosis inducer and cIAP1/2 interacting 
compound BV6 (5 µM smac mimetic; APExBIO, Houston, TX, USA) and 
pan-caspase inhibitor zVADfmk (20 µM FMK001, R&D systems, 
Minneapolis, MN, USA), together known to induce necroptosis [17-
19]. Necrostatin (Nec)-1s (2263-1, Biovision, Milpitas, CA, USA) was 
added to the conditions used for UM-SCC19 to inhibit necroptosis via 
inhibition of RIP1K [14]. The treated tumor cells were harvested and 
subjected to SYTOX green staining to establish the percentage of 
dead cells and in parallel stained for flow-based apoptosis analysis 
using Annexin V (early apoptosis) and 7-AAD (late apoptosis). As 
indicated tumor cells were also analysed for RNA expression (quantative 
PCR) [14] and protein content (western blot) [14] (See also 
Supplementary Methods).  
 
Statistical analysis 
Unpaired parametric t test was used to determine the difference 
between various treatments of the cells from the UM-SCC tumor cell 
lines. Date of two groups of patients were analyzed using the 
unpaired non-parametric analysis (Man Whitney). Fisher Exact test 
was used to analyze categorical data in a contingency table. Data of 
the three groups of patients (p16-IR-; p16+IR-; p16+IR+) were 
analyzed using the unpaired non-parametric one-way ANOVA (Kruskal 
Wallis). Hazard ratio (HR) with a 95% confidence interval (CI95%) was 
calculated to determine the difference in survival curves. The non-
parametric log-rank test (Mantel-Cox test) was done to compare the 
survival distribution of the two group of patients. In all cases a P-value 
of 0.05 and below was considered significant (*), P<0.01 (**) and 
P<0.001 (***) as highly significant. 
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Results 

The majority of HPV16-positive OPSCC contain HPV16-specific 
Th1/Th17 cytokine producing T-cells  
To interrogate the role of HPV-specific T-cells in OPSCC we 
prospectively assembled a cohort of 97 patients with OPSCC, 57 of 
which were HPV16 positive. Analysis of the patient characteristics 
showed the expected percentage of HPV-positive patients [2, 3] and 
the differences in smoking, N-stage and disease specific survival when 
compared to HPV-negative OPSCC (Fig. 1A, Supplementary Table S1), 
indicating that our patient cohort does not differ from those reported 
in literature.  
 
From each patient both freshly obtained and FFPE tumor material 
was stored (Supplementary Fig. S1). The presence, proliferation and 
cytokine production of HPV16-specific and other OPSCC-infiltrating T-
cells in the dissociated OPSCC were analyzed either directly or 
following a 2-4 weeks expansion period (Supplementary Fig. S1). 
Reactivity to the HPV16 E6 and/or E7 oncoproteins was detected 
directly ex-vivo in 6 out of 24 samples, and in 29 of 45 of the 
expanded TIL HPV16-positive cases. All directly ex-vivo detectable 
responses were confirmed in the expanded TIL. None of the 23 tested 
TIL cultures obtained from HPV-negative tumors displayed HPV-
specific reactivity (Fig. 1B and 1C), showing the specificity of these 
type of TIL analyses [7] and demonstrating that HPV-specific T-cells 
only infiltrate HPV+ OPSCC.  
 
Subsequently, supernatants taken from the HPV-reactive cultures 
were assessed for the presence of Th1 (IFNγ, TNFα, IL-2), Th2 (IL-4, IL-
5, IL-10), and Th17 (IFNγ , IL-17) cytokines revealing a Th1/Th17 like 
profile (Fig. 1D). Flow cytometry analysis demonstrated that the 
population of activated and/or cytokine producing HPV-specific T-
cells frequently comprised both CD4+ and CD8+ HPV-specific T-cells 
(Fig. 1E and Supplementary Fig. S2), which targeted multiple epitopes 
simultaneously (Fig. 1F), albeit that the percentage of HPV-specific 
cytokine producing CD4+ T-cells often was higher than that of CD8+ T-
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cells (Fig. 1G). Thus, the majority of HPV16-positive OPSCC tumors are 
infiltrated by HPV16-specific CD4+ and CD8+ T-cells with a Th1/Th17 
profile.  
 
The mechanisms underlying the failure to detect an intratumoral 
HPV16-specific response can be manifold but a first requirement is 
the presence of sufficient quantities of antigen to stimulate T-cells. 
The expression of p16INK4a is a surrogate marker for overexpressed 
functionally active E7 oncoprotein [20]. Forty of the TIL tested HPV16-
positive OPSCC tumors could be analyzed for p16INK4a overexpression 
and in contrast to immune responders (IR+), 7 out of the 15 immune 
non-responders (IR-) failed to show a positive staining 

(Supplementary Fig. S3A). Furthermore, tobacco smoking and in 
particular nicotine is known to impair the responsiveness of T-cells to 
antigenic stimulation [21]. While there were many patients with more 
than 10 pack years of smoking [2] (Supplementary Fig. S3B), this was 
not discriminative for the detection of HPV16-specific immunity 
(Supplementary Fig. S3C). Hence the failure to produce a T-cell 
reaction to HPV in HPV16-positive OPSCC most likely is due to the 
limited quantities of viral proteins available to the immune system.  
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Figure 1. HPV-driven oropharyngeal cancer induces HPV-specific T-
cells and respond better to therapy. A, The Kaplan-Meier plot shows 
the survival of a cohort of 97 treated patients with oropharyngeal 
squamous cell carcinoma (OPSCC) divided by HPV status. B, Three 
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representative examples of freshly dispersed OPSCC as well as 
expanded (cultured) tumor infiltrating lymphocytes (TILs) for the 
same patient subjected to a proliferation assay (in triplicate wells) to 
determine the specificity of the TILs (shown as counts per minute 
(CPM) with standard error of mean (SEM)). Cells in medium only or 
stimulated with PHA served as a negative and positive control, 
respectively.  C, In total 23 patients with a HPV-negative OPSCC and 
45 patients with a HPV-positive OPSCC were tested in the 
proliferation assay as described in B. The percentage and number of 
patients showing an immune response (IR+) or not (IR-) is depicted. D, 
Cytokine production was determined in supernatants of HPV-reactive 
cultures in the proliferation assay. The average production of 21 
cultured TILs is shown with SEM. E, The cultured TILs were stimulated 
with peptide pools or single peptides of the HPV16 E6 or E7 
oncoprotein and analysed by multiparametric flow cytometry to 
determine the specific upregulation of activation markers (CD154 and 
CD137) and production of IFNγ, TNFα and IL-2 by CD4+ and CD8+ T-
cells. The percentage and number of patients demonstrating an HPV-
specific T-cell response are given. F, Heat map of the analysis as in E 
showing the specificity of HPV-specific responses (grey) to single 
peptides, pooled peptides and proteins of HPV16 E6 and E7 for each 
individual patient. The percentage of total CD4+ and CD8+ T-cells 
among TIL is indicated at the top of the heat map. G, The total 
frequency of HPV16-specific CD4+ and CD8+ T-cells in cultured TILs, 
indicated by the cumulative percentage of HPV-specific cytokine 
producing T-cells to each single peptide or pool, is shown for the 
individual patients. Box and whiskers are shown including the minimal 
and maximal value.  N.d. is not detectable.  

 
Tumor infiltration by HPV-specific T-cells correlates with high numbers 
of type 1 oriented T-cells and professional antigen presenting cells in 
the tumor  
Based on the observation that the major component of OPSCC-
infiltrating HPV-specific T-cells consists of CD4+ T-cells, and the 
known activity of tumor-specific CD4+ T-cells to recruit, activate and 
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sustain other immune cells [22, 23], we performed an in-depth 
analysis of the tumor microenvironment in the context of HPV-
specific T-cell reactivity. Since the absence of overexpressed p16INK4a  

in HPV16-positive OPSCC may indicate that their development was 
not driven by the HPV oncoproteins [24], we separated the HPV16-
positive patients into 3 groups: p16INK4a-negative, IR-negative (p16- 
IR-); p16INK4a-positive, IR-negative (p16+ IR-); and p16INK4a-positive, IR-
positive (p16+ IR+) patients. 
 
An understanding of the general cytokine polarization in the tumors 
was obtained through analysis of cytokine production following the 
directly ex-vivo activation of all tumor-infiltrating T-cells using the 
mitogen phytohemagglutinin. Interestingly, the IFNγ/IL-17 cytokine 
polarization of HPV-specific T-cells was mirrored in the remainder of 
tumor-infiltrating cells (Supplementary Fig. S4). The production of 
IFNγ and IL-17 was lower in the p16+ IR- and the p16- IR- group. 
Moreover, the production of IL-5 was increased in the latter two 
groups suggesting a shift towards a more type 2 cytokine profile.  
 
In addition, we quantified the number of type 1 polarized immune 
cells in the HPV16-positive tumors using immunohistochemistry for 
CD8 and the with IFNγ-production associated T-box transcription 
factor TBX21 (Tbet). The numbers of tumor-infiltrating Tbet+CD8+ T-
cells and Tbet+CD8-negative T-cells, based on our flow cytometry 
data most likely CD4+ T-cells, correlated with an improved survival 
(Fig. 2A) and were particularly high when the OPSCC contained HPV-
specific T-cells (Fig. 2B).  
 
To comprehensively analyze the composition and phenotype of 
intratumoral immune cells directly ex-vivo, a validated panel of 36 
antibodies adapted from a previous study [16] (Supplementary Table 
S2) was used in combination with mass cytometry (CyTOF) in 13 
freshly dissociated OPSCC. This showed that the HPV16-positive 
OPSCC from HPV16 immune responder patients were stronger 
infiltrated with CD4+ and CD8+ T-cells (Fig. 2C and 2D) carrying an 
effector memory phenotype (Fig. 2E), whereas the HPV16-positive 
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OPSCC in which no HPV16-specific T-cell reactivity was detected, 
displayed a strong influx with B cells (Fig. 2D). NK cells, which may 
also infiltrate tumors and express Tbet, were virtually absent (Fig. 2D). 
In order to automatically discover stratifying biological signatures we 
used the CITRUS algorithm with a false discovery rate (FDR) of 1% 
resulting in 5 distinctive (groups of) populations of immune cells (Fig. 
2F). It confirmed the differences in the percentages of tumor-
infiltrating B cells and T-cells (Fig. 2G), but also revealed the presence 
of three subsets of T-cells that were present at significantly higher 
levels in HPV16 immune responders (Fig. 2H). Inspection of these 
subsets revealed two subsets of activated CD4+ T-cells and a subset 
of tissue-resident effector memory CD8+ T-cells expressing CD103 
(Supplementary Fig. S5A and S5B). The two subsets of activated CD4+ 
T-cells expressed CD38, HLA-DR and PD1 but were separated on the 
basis of CD161 expression (Supplementary Fig. S5A and S5B). The 
CD161-negative subset of activated CD4+ T-cells had a high 
expression of CD25 but also expressed CD127, whereas the CD161+ 
subset displayed an intermediate expression of CD25, making it 
unlikely that these two populations reflected regulatory T-cells. 
Comparison of the tSNE plots of each patient clearly showed the 
almost exclusive presence of CD103+CD8+ T-cells in the IR-positive 
patient group (Supplementary Fig. S5C and S5D). Interestingly, part of 
the CD103+CD8+ T-cells also expressed CD161. There was no 
difference between the different patient groups with respect to the 
percentage of central memory CD161+CD4+ T-cells, but in each of the 
patients with an IR-positive HPV16-positive OPSCC a clearly visible 
effector memory CD161+CD4+ T-cell population was present 
(Supplementary Fig. S5C and S5D).  
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Figure 2. HPV16-positive OPSCC harbouring HPV16-specific T-cells 
display a stronger and more activated immune infiltrate. A, The 
number of CD8+ and CD8- (CD4+)  T-cells positive for Tbet per square 
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mm tumor as determined in OPSCC sections (5 high power fields per 
patient were counted). The 38 HPV16-positive OPSCC patients were 
grouped according to the number of Tbet-positive cells above (hi) or 
below (lo) the median counted number of these cells and plotted in a 
Kaplan-Meier for survival.  B, The patients were grouped based on the 
p16INK4a expression of the tumor and the detection of an HPV-specific 
immune response (IR). The number of Tbet-positive T cells with each 
dot representing  an individual patient sample and the median plus 
interquartile range is shown. Data of all three groups were analysed 
by Kruskal Wallis test. Data of two groups were analysed by unpaired 
non-parametric analysis (Man Whitney U test). C, The ViSNE plots 
visualize the high-dimensional CyTOF data in two dimensions. The 
different cell subsets are indicated. The frequency of CD4+  and CD8+  
T-cells in the freshly dispersed OPSCC samples as determined by 
CyTOF are shown in the graph . Data are expressed as average 
frequencies (± SEM). The three groups differed significantly in their 
CD8+ T-cell frequency. D, Pie charts showing the composition of the 
immune cells and their relative contribution to the tumor 
microenvironment. E, The subdivision of the CD4+ and CD8+ 
frequencies (± SEM) into naïve, central memory and effector memory 
T-cells. Significant differences in the three groups for effector 
memory  CD4+ and CD8+  T-cells and central memory CD8+ T-cells 
were found. F, CITRUS analysis visualized four main populations. The 
CD4+ T cell population included two subpopulations  (indicated by the 
number 1 and 2) and the parental T-cell node is indicated as total T 
cells.  G, The differences in frequency of T- and B-cells is depicted as 
box and whiskers (plus min-max) between the groups of patients. H, 
The frequency of the two subsets of CD4+ T-cells and the CD8+ T-cells 
(subset 3) as determined in F and similar to G. NS, not significant; 
*P<0.05; **P<0.01 and ***P<0.001.  

In parallel, we analyzed the tumor microenvironment in a cohort of 
75 HPV16-positive OPSCC patients present in the publicly available 
cancer genomic atlas (TCGA) database [25], using our previously 
published analytical strategy to estimate subpopulations of tumor-
infiltrating immune cells [26]. Since CD4+ T-cells formed the major 
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component in IR-positive patients a gene set enrichment analysis 
(GSEA) of the TCGA RNA-sequencing data was performed to 
determine which immune cells were relatively enriched or depleted in 
HPV16-positive OPSCC with a high vs low CD4 gene expression (Fig. 
3A). The results confirmed the enrichment of activated and effector 
memory T-cells, but also pointed at a potential enrichment in NK cells, 
activated DC and B cells as well as a decreased presence of MDSC in 
tumors with a high CD4 expression. Notably, an increased percentage 
of DCs/DC-like macrophages was observed among the HPV-
responders when the dissociated HPV16-positive OPSCC of our cohort 
were analyzed by flow cytometry (n=18) or CyTOF (n=13) (Fig. 3B and 
3C). In vitro experiments suggest that the increased percentages of 
these antigen presenting cells (APCs) is caused by the presence of the 
intratumoral IFNγ-producing HPV-specific T-cells. Analysis of the 
impact of two different HPV16-positive head and neck squamous cell 
carcinoma (HNSCC) cell lines [27, 28] on GM-CSF+IL-4 driven 
differentiation of monocytes to IL-12p70-producing DCs showed that 
tumor-secreted compounds skewed the monocytes towards type 2-
like macrophages instead (Fig. 3D), that have a low capacity to 
produce IL-12p70 after CD40 ligation unless IFNγ was present (Fig. 3E). 
The resulting APCs now also produced the T-cell attracting 
chemokines CXCL9 and CXCL10 (Fig. 3F). Replacing IFNγ by the 
supernatant of genuine activated HPV-specific Th1 or Th17 T-cell 
clones (Supplementary Fig. S6A) also neutralized the M2-like 
macrophage skewing effect of the tumor cells (Supplementary Fig. 
S6B). A similar effect of HPV-specific Th1 and Th17 cytokines was 
observed on the direct M2-macrophage skewing effect of tumor cells 
(Supplementary Fig. S6C). In addition, the co-stimulatory molecules 
were upregulated. 
 
Thus, the infiltration of OPSCC by HPV16-specific Th1/Th17 cells is 
associated with the presence of highly active tumor 
microenvironment consisting of a dense type 1 oriented immune cell 
infiltrate, known to favor immune-mediated control of cancer cells 
[29].  
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Figure 3. HPV16-specific T-cell produced cytokines stimulate myeloid 
cells towards a type 1 phenotype. A, To identify immune cell types 
that are over-represented in HPV16-positive OPSCC with CD4+ T-cell 
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infiltrate a Gene Set Enrichment Analyses was performed on a cohort 
of 75 HPV16-positive OPSCC patients present in the publicly available 
TCGA database. The expression level of each gene was z-score 
normalized across all patients. For each patient (or group of patients) 
genes were then ranked in descending order according to their z-
scores (mean of z-scores). The association was represented by a 
normalized enrichment score (NES). An immune cell type was 
considered enriched in a patient or group of patients when the false 
discovery rate (q-value) was ≤10%. The Volcano plot for the 
enrichment (blue) and depletion (beige) of immune cell types in CD4+ 
high vs CD4+ low HPV16-positive OPSCC is shown. B, The DCs, 
Langerhans-like DCs and DC-like macrophages in freshly dispersed 
OPSCC of 7 p16-IR-, 3 p16+IR- and 8 p16+IR+ patients were 
determined by flow cytometry (percentage of CD45+ cells ± SEM). C, 
As in B but analysed by mass cytometry (CyTOF; p16-IR- n=4; p16+IR- 
n=4; p16+IR+ n=5). Both in B and C significant differences in total DC 
population were observed between IR- and IR+ within the p16+ 
OPSCC patient group. D, Purified CD14+ cells from 5 healthy donors 
were cultured with IL-4 and GM-CSF for 6 days to differentiate them 
into monocytic DCs (moDC) in the presence/absence of 20% TSN 
obtained from UM-SCC47 or UM-SCC104 (both HPV16-positive 
OPSCC), stained and analysed by flow cytometry. The percentages (± 
SEM) of cells stained for the different marker combinations are 
shown. E, As in D for the 5 healthy donors after the cells have been 
stimulated for an additional 2 days with LPS, agonistic anti-CD40 
antibody or the combination of this antibody with IFNγ. The IL-12p70 
production (in pg/ml; mean ± SEM) is depicted. Non-stimulated cells 
(moDC) were taken along as negative control. F, As in E for the 5 
healthy donors showing the production of CXCL9 and CXCL10 (in 
pg/ml; mean ± SEM) by these myeloid cells. NS, not significant; 
*P<0.05; **P<0.01 and ***P<0.001.  

 

 



129 
 

Type 1 cytokines influence tumor cell proliferation and synergize with 
cisplatin-induced cell death 
The OPSCC-infiltrating HPV-specific CD4+ T-cells produced IFNγ and 
TNFα known to drive tumor cell senescence [30] and to synergize 
with platinum-based therapy to kill tumor cells [31]. We, therefore, 
studied if similar mechanisms could play a role in controlling 
oropharyngeal cancer cell growth by HPV-specific CD4 T-cells in vitro. 
We used our collection of 3 HPV-negative and 2 HPV16-positive 
HNSCC cell lines to analyze the expression of proteins involved in 
proliferation, apoptosis and necroptosis following stimulation with 
IFNγ and TNFα. All cell lines expressed the IFNGR and TNFR1 (and 
were responsive to IFNγ evidenced by the phosphorylation of STAT1, 
and to TNFα as shown by RelA phosphorylation (Supplementary Fig. 
S7A to S7C). Furthermore, they expressed the proteins required for 
apoptosis and necroptosis, although the HPV16-positive tumor cells 
lacked expression of the for necroptosis essential protein RIPK3 (Fig. 
4A). Stimulation of the tumor cells with IFNγ and/or TNFα, or culture 
supernatant from antigen-stimulated HPV-specific Th1 or Th17 cells 
revealed a reduction in their proliferation (Fig. 4B and 4C) and an 
increase in the expression of the IFNγ responsive genes IFITM1 and 
RARRES. Both genes are known to stop the proliferative process in 
cells [32, 33] (Fig. 4D and 4E), albeit that these effects differed per 
cell line tested. Expression analysis of the relation between IFNγ, 
IFITM1 and RARRES in the TCGA cohort of HPV16-positive patients 
showed that especially IFNγ and IFITM1 were co-expressed (r = 0.475; 
P = 0.00060), suggesting that IFNγ-induced arrest in proliferation 
occurs in vivo. In line with the RIPK3 expression only the HPV-negative 
cell lines were sensitive to necroptosis (Fig. 4F). Since cisplatin is the 
chemotherapeutic compound of choice for the treatment of OPSCC, 
the induction of cell death by increasing doses of TNFα in the 
presence of cisplatin was tested. The combination of TNFα and 
cisplatin resulted in an increased percentage of apoptotic tumor cells 
at 24 hours, specifically in the HPV-positive cell lines as in the HPV-
negative cell lines no synergistic effect was observed (Fig. 4G) and a 
high percentage of death tumor cells at 48 hours (Supplementary Fig. 
S7D). These effects did not depend on necroptosis as inhibition with 
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necrostatin-1s did not prevent cell death (Supplementary Fig. S7D). 
Thus, apart from their role in changing the microenvironment, IFNγ 
and TNFα may also synergize with standard therapy in controlling 
tumor cell growth and form one of the underlying mechanisms 
explaining the good response rate of HPV-responding patients to 
chemoradiotherapy [2, 3].  
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Figure 4. Sensitivity and resistance of OPSCC cell lines to the anti-
proliferative and cytotoxic effects of pro-inflammatory cytokines 
and/or chemotherapy. A, Protein expression of the indicated proteins 
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involved in the cell death pathway. B, Proliferation of tumor cells 
(from 5 different UM-SCC cell lines) treated with the indicated 
different concentrations of IFNγ and TNFα as determined by MTT 
assay with untreated cells were set at 100%. C, As in B but tumor cells 
were stimulated with different concentrations of culture supernatant 
from HPV-specific stimulated Th1 or Th17 clones. Tumor cells were 
left untreated (control) or treated with 50 IU/mL IFNγ and 30 ng/mL 
TNFα for 24 hours and the expression of D, IFITM  and E, RARRES1 
was determined by RT-quantitative PCR and normalized to the GAPDH 
mRNA. The expression is given as mean (± SEM) for three 
independent experiments. F, The 5 different UM-SCC tumor cell lines 
were treated (in triplicate wells) for 48 hours with 250 IU/mL IFNγ and 
30 ng/mL TNFα in the absence or presence of the 
necroptosis/apoptosis inducers BV6 (5 μM) and zVADfmk (20 μM). 
Untreated tumor cells were taken along as negative controls. Dead 
cells were stained positive using SYTOX green and the mean 
percentage (± SEM) are depicted. Unpaired T test analysis was 
performed between IFNγ+TNFα treatment with or without 
BV6+zVADfmk. G, The tumor cells were left untreated, treated for 24 
hours with 30 ng/mL TNFα or with a fixed concentration of Cisplatin 
(15 mg/mL) plus increasing concentrations of TNFα (7.5, 15 or 30 
ng/mL) as indicated by the triangle. The cells were stained for early 
apoptosis by Annexin-V and for late apoptosis by 7-AAD and analysed 
by flow cytometry. The mean percentage (± SEM) of the apoptotic 
cells in triplicate wells is shown. Total indicates the sum of percentage 
of both the early and late apoptotic cells. NS, not significant; *P<0.05; 
**P<0.01 and ***P<0.001. 

 
Intratumoral activated effector memory CD161+CD4+ Th1/Th17 cells 
have a potential role in disease control  
CD161+CD4+ T-cells are the dominant subtype of T-cells present in 
inflammatory diseases where CD4+ T-cells have an important role to 
drive acute inflammatory processes [34]. Hence, a similar role may be 
expected in the rejection of cancer cells. First, CD161 expression 
among freshly and in vitro expanded TILs was analyzed. A large 
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proportion of our fresh and in vitro expanded TILs expressed CD161. 
Importantly, in vitro expansion did not induce CD161 expression 
(Supplementary Fig. S8A). Subsequently, a flow cytometric analysis of 
8 in vitro expanded TILs was performed to assess the HPV-specific 
component among these cells. On average the percentage of CD161+ 
CD4+ T-cells was 29% (Fig. 5A). The number of HPV-specific T-cells 
producing TNFα (Fig. 5B) was a bit higher than those producing IFNγ 
(Supplementary Fig. S8B) and on average 31% of the HPV-specific 
CD4+ T-cells expressed CD161 (Fig. 5B). This indicates that there was 
a sizeable CD161+ T-cell fraction among HPV-specific CD4+ T-cells in 
most of the patients and also that the distribution of CD161+ cells 
among these HPV-specific T-cells is similar to that of the total 
population. 
 
Subsequently, we analyzed the survival of the 75 patients with 
HPV16-positive OPSCC in the publicly available TCGA database 
focusing on the expression of CD4, CD8, CD103 and CD161. A high 
expression of CD4, CD8 or CD161 was associated with better overall 
survival but this was not the case for CD103 expression (Fig. 5C-5F), 
albeit that the combined high expression of CD103 with CD8  resulted 
in a better segregation of the survival curves (Fig. 5G). This fits with 
the observation that the expression of CD8 and CD103 was not 
strongly correlated (r = 0,2559; P = 0 .0267) within this cohort. A high 
expression of CD161 with either high CD4 or CD8 expression was also 
associated with better survival (Fig. 5H and 5I). Notably, the 
populations of patients within the group seem to overlap completely. 
Indeed, these markers were highly co-expressed (CD4 and CD161: r = 
0,8351; P = 0.00E00, and  CD8 and CD161: r = 0.8363 ; P = 0.00E00), 
suggesting that they predominantly single out the same patients. 
Since the HPV-specific T-cells predominantly produced IFNγ, TNFα 
and IL-17 (Fig. 1D) we also analyzed the contribution of the respective 
gene expression levels to survival. Specifically, a high expression of 
IFNγ was associated with better survival while a similar trend was 
visible for IL-17 (Fig. 5J and 5K). Combinations of 2-3 cytokines did not 
result in better separation of the survival curves (Supplementary Fig. 
S8C-S8G). 
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Figure 5. Superior disease control correlates with the presence of 
intra-tumoral CD161+ T-cells. A, The proportion of CD161+CD4 T-cells 
among TIL (left) and the proportion of CD161+ cells among CD4+ T-
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cells (right), where the frequencies of total  CD4+ T-cells is set to 
100%. B, As for A but now for the HPV-specific CD4+ T-cells producing 
TNFα upon stimulation with HPV16 E6 and/or E7 overlapping 
peptides. Kaplan-Meier survival plots of the 75 HPV16-positive OPSCC 
in the TCGA database grouped according to high and low gene 
expression using the median value of C, CD4, D, CD8, E,  CD161 
(KLRB1) and F, CD103. As in C-F but now patients are grouped 
according to a high expression of two indicated genes versus all 
others based on the median expression levels of G, CD103 and CD8, H, 
CD161 and CD4, I, CD161 and CD8. J and K, As in C-F for the 
expression of J, IFNγ and K, IL-17A. All graphs, the Hazard Ration (HR) 
with the 95% confidence interval (CI95%) as well as the log-rank test P 
value is given. NS, not significant; *P<0.05; **P<0.01 and ***P<0.001.  

In combination with the above, these data suggest that a dense 
infiltration of HPV16-positive OSSC with IFNγ/IL-17 oriented CD4+ 
and/or CD8+ CD161+ T-cells, including the HPV16-specific T-cells, are 
important for superior disease control in HPV-driven OPSCC. 
Therefore, we analyzed the disease-specific survival of HPV-specific T-
cell responders within the group of patients with HPV16-positive 
OPSCC.  Patients with HPV-positive OPSCC displaying an HPV-specific 
T-cell reaction had a 37.8-fold (95%CI= 7.1 to 199.9) higher chance to 
respond to therapy when compared to patients with HPV16- positive 
OPSCC lacking such a T-cell reaction (Fig. 6A). Especially in stage III-IV 
HPV16- positive OPSCC, the local presence of an HPV16-specific T-cell 
response was a better prognostic parameter for a long survival after 
therapy than staging (Fig. 6B). The differences in survival between 
these two groups could not be attributed to a different cancer 
treatment (Supplementary Table 3).  Intriguingly, also the T- and N-
stage were on average lower in the immune responders (Fig. 6C and 
6D), suggesting that HPV16-specific T-cells were especially present in 
patients with a better control of tumor growth.  
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Figure 6. HPV16-specific T-cells control tumor growth in HPV16-
positive OPSCC. A, Kaplan-Meier survival curves showing the outcome 
of the 45 tested HPV16-positive OPSCC patients, who harboured 
HPV16-specific T-cells in their tumors (immune response positive, IR+) 
versus those who did not display an immune response (IR-). The HR 
with CI95% as well as log-rank P value is given. B, Kaplan-Meier 
survival curves when the 45 HPV16-positive OPSCC patients were 
plotted according to the stage of the disease. Staging was done 
according to the National Comprehensive Cancer Network. C, The 
group of 45 HPV16-positive OPSCC patients was split on the basis of 
p16INK4a expression in the tumor and having an immune response 
directed against HPV16 or not. The tumor size (T stage) is depicted for 
each individual patient in the three groups of patients. D, As in C but 
now for the involvement of lymph nodes (N stage). NS, not significant; 
*P<0.05; **P<0.01 and ***P<0.001. 
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Discussion 
The improved clinical response of OPSCC patients to 
(chemo)radiotherapy has been associated with HPV and with a dense 
activated T-cell infiltrate but the role of the immune response against 
HPV in this still was not completely understood. Our findings 
demonstrate that the virally-derived E6 and E7 antigens make HPV-
associated OPSCC highly visible to the immune system and unleashes 
an intratumoral HPV-specific T-cell response. These cells are poly-
functional, detected among TIL in many of the patients, and have the 
CD161+ phenotype often found in acute rejection processes. They 
may locally facilitate the development of a clinically favorable tumor 
microenvironment because their presence is associated with a 
stronger influx of type 1 oriented CD4+ and CD8+ T-cells, as well as 
DCs and DC-like macrophages. Moreover, they produce cytokines 
which synergize with the platinum-based chemotherapy used to treat 
these patients and their detection is highly predictive for the 
response of patients to (chemo)radiotherapy.   
 
HPV-specific CD4+ and CD8+ T-cells were detected in 64% of the TIL 
derived from HPV16- positive  OPSCC, with a predominance of HPV-
specific CD4+ T-cells, a result that closely matches an earlier study 
[35]. We show that these HPV-specific tumor-infiltrating T-cells as 
well as the other TIL predominantly produced IFNγ and IL-17, 
suggesting the presence of Th1 and Th17 cells. In view of the 
accepted roles of Th1/Th17 CD4+ and CD8+ T-cells in tumor control 
[36, 37], the detection of these cells in HPV16- positive OPSCC is likely 
to favor tumor control. Indeed, a high expression of IFNγ and to a 
lesser extend IL-17 in HPV16- positive OPSCC was associated with 
superior survival. Furthermore, the detection of HPV-specific T-cells 
singled out immunologically ‘’hot’’ tumors, with higher numbers of 
CD4+ and CD8+ T-cells expressing Tbet, effector memory T-cells, DCs 
and DC-like macrophages when compared to HPV16-positive OPSCC 
without HPV-specific T-cells. A dense tumor infiltration by T-cells [38] 
and DCs [39] as well as a predominant adaptive immune gene 
signature [4] have been associated with better survival in head and 
neck cancer, indicating that HPV-specific T-cell infiltrated tumors 
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possess the right type of inflammation. Last but not least, a dense 
infiltrate with T-cells is found more often in patients with superior 
local disease control [40] fitting with our observation that the group 
of patients with a tumor-specific immune response presented with a 
lower T- and N-stage. 
 
Concomitant with the detection of HPV16-specific TIL, we found 
increased frequencies of CD161+ effector memory CD4+ and CD8+ 
TILs as well as CD8+CD103+ TILs. The intratumoral presence of 
CD8+CD103+ T-cells is a beneficial prognostic factor in a number of 
cancer types [41] and this would fit with the fact that we detected a 
high frequency of these cells specifically in T-cell inflamed tumors as 
well as with our analysis of the TCGA database, showing a survival 
advantage for HPV16-positive OPSCC patients with a strong 
expression of both CD8 and CD103. Earlier reports showed that 
CD161+ is predominantly detected on effector and central memory T-
cells that produce IFNγ and/or TNFα [42], Th17 cells [43] and 
regulatory T-cells [44]. CD4+CD161+ T-cells can drive acute 
inflammatory processes [34], suggesting an important and similar role 
for them in cancer. Indeed, CD161 was among the top 10 of tumor 
leukocyte associated genes associated with positive prognosis for 
many human tumors [45]. In our study CD161 was expressed by 
tumor-specific IFNγ- and/or TNFα-producing CD4+ T-cells, higher 
frequencies of CD161 expressing CD4+ T-cells were detected in T-cell 
inflamed tumors and, finally, in the TCGA database the expression 
between CD161 and CD4 or CD8 was highly correlated and a high 
expression of these three genes was associated with a survival 
advantage for HPV16-positive OPSCC patients. Interestingly, mass 
cytometry showed that part of the CD8+CD103+ T-cells also 
expressed CD161.  
In a large meta-analysis in head and neck cancer (MACH-NC) patients 
treated with radiotherapy alone have an overall 5-year survival of 
27.2% whereas in patients receiving concomitant cisplatin 
chemotherapy and radiotherapy an improvement in overall survival of 
6.5% is achieved [46]. Potentially this is explained by studies showing 
that platinum-based chemotherapy synergize with immune cell 
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produced IFNγ and TNFα in killing tumor cells [31], including OPSCC 
cells (this study). Due to the described cisplatin toxic side effects, 
dose reductions in cisplatin of 30% to 69% are often required for 
sustained concurrent chemo-radiotherapy treatment [47, 48] and de-
intensification protocols for these patients are being discussed. This 
should not pose a major problem as lower doses of cisplatin still 
synergize with T-cell responses in animal tumor models [31]. 
 
Finally, the question surfaces whether reinforcement of HPV16-
specific T-cell reactivity in patients with HPV16-positive OPSCC is 
warranted, not only to convert non-responders to HPV responders 
but also to boost existing responses. Clearly, the HPV16-positive 
OPSCC infiltrated by HPV16-specific T-cells meet the criteria of the 
cancer immunogram for immunotherapy [49]. The percentages of 
HPV-specific T-cells among TIL are respectable, however, not enough 
to mediate full tumor regression. In parallel to melanoma, where 
treatment with increased numbers of tumor-specific T-cells can 
mediate clinical responses, therapeutic vaccination is expected to 
increase the number of HPV16-specific T-cells and may result in 
clinical benefit for OPSCC patients. In view of the expression of PD-1, 
by the effector memory CD4+ and CD8+ T-cells (this study and [6]), 
and PD-L1 [50] in tumor tissue a combination of therapeutic 
vaccination and PD-1/PD-L1 blocking is expected to have the best 
outcome. 
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