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BACKGROUND
Heart rhythm disorders, also known as cardiac arrhythmias, are one of the major causes of 
morbidity and mortality in the world.1,2 Such disorders affect the mechanical function of 
the heart, which could lead to a suboptimal distribution of oxygenated blood, nutrients, and 
regulatory factors to other organs. The clinical management of cardiac arrhythmias relies 
on several anti-arrhythmic therapies, e.g. drugs, ablation, and device implantation that, 
unfortunately, are often unspecific, irreversible and/or traumatizing, respectively.3-7 Recently, to 
overcome these side effects, gene therapy has been introduced as an alternative option to treat 
cardiac arrhythmias. Its main advantage is, indeed, the possibility to modulate cardiac electrical 
function by specifically targeting the biological defect.8,9 In this way, gene therapy can allow for 
a specific treatment that is based on the arrhythmic mechanism. However, gene therapy alone 
is lacking the possibility to gain precise spatiotemporal and quantitative control over a certain 
target. Interestingly, more recently, such precise control could be achieved with an innovative 
strategy, called optogenetics. Here, gene therapy is combined with optics allowing expression 
of light-activatable proteins that are specifically activate and deactivate by simply turning light 
on and off, respectively.10 Among these proteins, there are, for instance, light-gated ion channels 
and light-gated pumps, which are normally expressed in algae and bacteria. Their transgene 
expression and light-activation may allow controlling of a specific biological function, like for 
instance the excitability of cardiac cells. In order to fully comprehend how optogenetics could be 
used to improve our understanding and thereby treatment and of cardiac arrhythmias, a concise 
description of the electrical function of the heart in healthy and diseased conditions is provided 
in the following paragraph. 

Electrical function in healthy and diseased conditions
The heart is a fascinating organ characterized by several cell types, e.g. atrial and ventricles 
cardiomyocytes, sinoatrial cells, atrioventricular cells, Purkinje fibers, fibroblasts, smooth 
muscle cells, and endothelial cells, that all together ensure normal cardiac function, i.e. electrical 
activation initiation and propagation, followed by synchronized mechanical activation.11 In 
healthy condition, the electrical activation of the heart originates in the sinoatrial node, where 
so-called pacemaker cells spontaneously give rise to an action potential. This action potential 
is the result of a chain reaction based on the opening and closing of proteins that are located in 
the sarcolemma of the cardiac cells. In particular, voltage-gated ion channels are the ones that 
have a key role in shaping an action potential.12,13 Those ion channels are pore-forming proteins 
that open and close in response to changes in the voltage and allow the selective passage of 
certain cations or anions according to their electrochemical gradient. This chain reaction is 
characterized by five phases. It starts with an initial depolarization that causes the physiological 
resting membrane potential to become less negative and activates the voltage-gated Na+ (sodium, 
inward current) channels if their threshold is overcome (phase 0, the upstroke). The consequent 
Na+ influx guides the rapid further depolarization of the sarcolemma that triggers the successive 
opening and closing of several Ca2+ (calcium, inward current) and K+ (potassium, outward 



12

Chapter 1

1
current) voltage-gated ion channels. First, the simultaneous inactivation of inward Na+ current 
(INa) and activation of the transient outward K+ current (Ito) guide the first repolarization of 
the membrane (phase 1, the early repolarization). Secondly, the balance between the inward 
currents (ICaL and INaL) and outward currents (IKur, IKr, and IKs) results in the transient plateau 
in membrane voltage (phase 2, the plateau). Finally, the delayed outward rectifying currents 
(IKr and IKs), and the inward rectifying current (IK1) guide the repolarization and (phase 3, 
rapid repolarization) restore the cardiac myocytes resting state (phase 4, restoration on resting 
membrane potential). In this last phase, ionic pumps, like Na+/Ca2+ exchanger also plays a role 
in the restoration of the resting state. An action potential propagates from the sinoatrial node 
to the cardiac myocytes of both atria.14 Next, the electrical activation will propagate through 
the atrioventricular node, where it will slow down to create the critical delay between atrial 
and ventricular contraction, which is needed to allow blood emptying from the atria. Finally, 
the electrical impulse activates the cardiomyocytes of the ventricles, from apex to base, through 
a specialized conduction network consisting of the His-bundle, left and right bundle branches 
and the Purkinje network. Such propagation between cardiac cells relies on intercellular channels 
called gap junctions. Gap junctions consist of six hexamers of proteins called connexins that 
form transmembrane hemichannels (connexons) which connect to connexons of neighboring 
cells allowing the diffusion of small ions and small molecules.15,16 Connexins can co-oligomerize 
with the same connexins and form homomeric connexons or with mixed connexins and form 
heteromeric connexons, although only certain combinations are permitted. The same is true for 
the connexon assembly.17 Gap junction expression is tissue-specific and the ventricles mainly 
express connexin43 and connexin45, whereas connexin40, connexin43, and connexin45 are 
found in the atria and conduction system.18 

In summary, in normal and healthy conditions, an action potential originates from 
the cells at the sinus node and propagates from the atria to the ventricles, followed by their  
mechanical activation.

In diseased conditions, e.g. ischemic heart disease, cardiomyopathy, coronary artery disease, 
the initiation and propagation of an action potential may become disturbed, thereby leading 
to cardiac arrhythmias.12 Cardiac arrhythmias can be subdivided into bradyarrhythmias or 
tachyarrhythmias (on which this thesis is focused on), when the heart rate is either too low or 
too high, respectively. Bradyarrhythmias arise when impulse generation at the sinus node is 
abnormally slow or atrioventricular conduction is impaired. Tachyarrhythmias, such as atrial 
tachycardia, atrial fibrillation, ventricular tachycardia, and ventricular fibrillation, can originate 
from (i) abnormal impulse generation leading to automaticity or triggered activity and/or (ii) 
disrupted propagation that results in reentrant activation.19 

Automaticity can be caused by enhanced normal automaticity or abnormal automaticity. 
Enhanced normal automaticity occurs when pacemaker cells, like those localized in the sinus 
node, give rise to an increased number of action potentials in time, due to an increased rate 
of spontaneous diastolic depolarization of the transmembrane potential. In those cells, 
the so-called funny current, also known as pacemaker current, is thought to have a major role 
in such depolarization.20 
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Abnormal automaticity, instead, originates from non-pacemaker cells when the resting 

potential is sufficient depolarized to induce spontaneous impulse initiation. Such automaticity 
can be caused by abnormal Ca2+ handling, activation, and inactivation of delayed rectifier Ik, and 
inward INa current through the Na+/Ca2+ exchanger. 21

Triggered activity involves new impulse initiation that is caused by depolarizations that 
follow a preceding action potential. Such depolarizations are called afterdepolarization and 
can occur early during repolarization phase (early-afterdepolarizations, EADs), or late when 
the cells are back in their resting state (late-afterdepolarization, DADs).22,23 EADs arise when 
the repolarization, during phase 2 or 3, is overcome by a transient shift of the net current towards 
an inward direction. Phase-2 EADs are mainly caused by ICa, Na+/Ca2+ exchanger and late INa. 
Phase-3 EADs are, instead, caused by dysfunction of Na+ channels, e.g. failure to inactivate, 
increase of its narrow window current, and an increase in their recovery from inactivation. 
DADs are usually dependent on Ca2+ overload in the cytoplasm. Such increase activates the Na+/
Ca2+ exchanger and the Ca2+ ions activate chloride channels that lead to depolarizing oscillation 
of the membrane potential that eventually will trigger a new action potential.

Regarding disturbed propagation, reentrant arrhythmias occur when an impulse propagates 
and re-excite cardiac tissue, giving rise to repetitive cycles. 24 Reentrant activity can propagate 
around an anatomical obstacle or a functional core defining in this way anatomical or functional 
reentry, respectively.24,25 In an anatomically determined circuit, the wave-front and the wave-tail 
are separated by a zone of excitable tissue called, excitable gap. The inexcitable anatomical 
obstacles delineate a pathway that is fixed in length and location, giving rise to tachyarrhythmias 
that are characterized by a monomorphic electrocardiographic pattern. The initiation and 
maintenance of anatomical reentry rely on conduction velocity and refractory period, 
indicating that its extinction appears when the excitation wave-front encounters tissue that is 
not yet recovered. Functional reentry can acquire the form of a rotor that forms a dynamical 
organizing center supporting spiraling waves around an excitable, yet inexcited core. An 
important characteristic of such spiral waves is the phase singularity, where the wave-front and 
wave-tail meet each other. The wave-front is characterized by a curvature that progressively 
increases toward the core. At the phase singularity, the convex curvature reaches a critical value 
that makes it impossible for the activity to invade the core. A spiral wave can be stable or drift, 
meander and break-up giving rise to monomorphic or polymorphic electrograms, respectively. 
Such latter behavior can appear in the presence of heterogeneities, such as gradients in 
excitability and refractoriness.26,27 Furthermore, a reentrant wave can make alternate transition 
between functional and anatomical reentry by pinning to or unpinning from an anatomical 
obstruction.28-30 Such phenomenon, which depends on several factors (e.g. size of the obstacle 
and tissue excitability),29,30 highlights the difficulty in identifying which type of reentry drives 
cardiac arrhythmia at a given time and space. 

Treatment of cardiac arrhythmias via gene therapy
As already mentioned, the available treatments for cardiac arrhythmias are far from optimal, 
often characterized by side effects such as limited specificity, pain, and permanent tissue 
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damage.3-7 Such limitations may be overcome by an alternative strategy, i.e. gene therapy. This 
strategy relies on three main strategies: gene transfer, gene silencing, and gene editing. Gene 
transfer aims to i) replace a missing or not functioning protein or ii) introduce a protein that 
is normally not expressed. Gene silencing, instead, is used to reduce the expression of a certain 
protein. Finally, gene editing aims to repair a DNA sequence to repristinate its functionality.8,9 
All gene therapy strategies need the selection of a vector and a delivery system. The vectors are 
needed to translocate genetic material into the targeted cells. Those vectors can be nonviral 
or viral. The nonviral vectors include plasmid DNA, which often forms complexes with other 
molecules that will improve the intracellular translocation.31 Several studies have indicated how 
the percentage of genetically modified cells would increase when instead viral vectors were 
used.32 Those viral vectors are viruses that have been mutated to inhibit their reproduction 
and the pathology associated with them. For the in vivo application adeno-associated viruses 
(AAV) seem to be the first choice.33,34 These vectors, indeed, allow long-term gene expression 
with limited immune reactions. Furthermore, their small diameter allows easier penetration 
through the cardiac tissue. However, they cannot be always used since they cannot incorporate 
a transgene higher than 4.6 kb. For the in vitro application, the choice often goes towards 
the application of lentiviral (LV) vectors. Those vectors are characterized by a positive sense 
single strand linear RNA molecules that are reverse transcripted into cDNA that will allow 
integration of the transgene into the host genomic material allowing long-term gene expression. 
However, this latter property might cause insertional mutagenesis.35,36

The use of viral particles allowed genetic modification of large mammalian heart via 
myocardial injection, intracoronary perfusion, and atrial epicardial gene painting. Genetic 
interventions have been used, for instance, to suppress atrial fibrillation in pigs by kv11.1 
channel inactivation, i.e. by prolonging the action potential duration and the effective 
refractory period. Such modification was achieved in two independent studies by epicardial 
gene painting or direct atrial injection, respectively.37,38 In another study, AF was suppressed 
by increasing the expression of connexins 40 and 43, therefore increasing the conduction 
velocity across the atria.39,40 Ventricular arrhythmias have been suppressed by gene therapy 
in rat and pig ischemic heart models. An ischemic event leads to a decreased level of ATP 
and, as a consequence, to a decreased activity of the ATP-dependent calcium pump, SERCA, 
leading to an increased Ca2+ intracellular concentration, which, as mentioned in the previous 
paragraph, can induce EADs. In these studies, the overexpression of such pump was able to 
reduce ventricular arrhythmias.41,42

However, such genetic modifications are lacking the full control over their quantitative 
activation in space and time. Such control might be achieved thanks to optogenetics that 
combines optics and gene therapy. 

Optogenetics
The term optogenetics, introduced for the first time by Deisseroth, refers to the combination 
of optical and genetic techniques. Such combination allows the expression of light-activatable 
proteins, named microbial rhodopsins, which activation can be precisely controlled in space, 
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time and quantity by light.10 Bacteriorhodopsins, halorhodopsins, and channelrhodopsins are 
the microbial rhodopsins that have been intensively used in the optogenetic field. These proteins 
are usually expressed in organisms such as archaebacteria and algae, where they exploit different 
functions. These functions range from the conversion of light into chemical energy or the motile 
reorientation away or towards a light source.43 Structurally, these proteins are characterized 
by seven transmembrane α-helices with the N- and C-terminus facing the extracellular or 
intracellular milieu, respectively. In all microbial rhodopsin a chromophore, i.e. all-trans-retinal, 
is attached by a Schiff base linkage to the ε-amino group of a Lysine side chain in the middle 
of the helic7. The retinal Schiff base is usually protonated, thereby determining the protein 
absorption into the visible light spectrum. When instead the Schiff base is unprotonated 
the absorption is shifted in the UV region. Beside the Schiff base protonation, the absorption 
spectrum is also determined by the chromophore-protein interactions such as electrostatic 
interaction with charged and polar amino acids.44 Functionally, these proteins are activated 
by light of a specific wavelength that will isomerize the retinal from all-trans to 13-cis. Such 
isomerization will change the conformation of the proteins and allow the preferential passage of 
certain ions. Upon a light pulse, each of these proteins is characterized by an initial current, IPeak, 
which decays to a steady-state current, ISteady-state. Relaxation from IPeak to ISteady-state  is commonly 
called desensitization. Finally, the off-kinetics are determined by the rate of channels closure at 
the end of the light pulse.45 With the aim to control the membrane potential of excitable cells 
these proteins have been expressed in heterologous living cells and tissue. Channelrhodopsin-2 
(Chr2) have been used to depolarize the membrane of cells while Halorhodopsins and 
Archeorodopsins have been used to inhibit excitation by producing a hyperpolarizing current, 
based on chloride ions that are pumped in or protons that are pumped out, respectively.46-48 
Over the years several ChR2 mutants have been generated with the aim to improve biophysical 
properties of the channels, like the ion selectivity, kinetics, spectrum response properties.48 
This now opens new and unique possibilities for cardiac arrhythmias research based on optical 
modulation of excitability with superb spatiotemporal resolution.

AIM OF THE THESIS AND SUMMARY
Therefore, the aim of this thesis is to employ the unique features of optogenetic for investigating 
the underlying mechanism of arrhythmia initiation, maintenance, and termination in order to 
identify novel biological anti-arrhythmic strategies. In Chapter I of this thesis a comprehensive 
description of rhythmic disturbances, gene therapy, and optogenetics is presented. In Chapter 
II, all the steps needed to successfully optogenetically modify atrial cardiomyocytes (aCMCs) 
are described, going from the isolation of native aCMCs, to the production of the LV particles, 
the use of the particle to optogenetically modify the aCMCs and finally the functional assay 
showing the possibility to pace those monolayers by light. In Chapter III, monolayers of 
aCMCs expressing the depolarizing tool CatCh (calcium translocating channelrhodopsin)48 
were used to investigate rotor termination by optogenetically blocking electrical activation at 
or near the rotor core region. The block at the rotor core region would mimic a new ablation 
strategy, that recently has been adopted in clinical settings, i.e. rotor guided ablation, and allow 
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to explore its mechanism of termination. In Chapter IV, the CatCh-expressing monolayers were 
used to investigate the possibility to optogenetically control the spatial and temporal dynamics 
of a spiral wave. In this study in vitro experiments were implemented by in silico experiments. In 
Chapter V, CatCh was expressed in neonatal ventricular tissue slices to investigate optogenetic 
termination of anatomical reentry. Finally, in Chapter VI we exploited a different optogenetic tool 
in combination with patterned illumination to quantitatively exert spatial and temporal control 
over the production of reactive oxygen species (ROS) in monolayers of neonatal rat ventricular 
myocytes (NRVMs). This combination allowed to assess ROS effects on arrhythmogenicity.
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