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Chapter 7

Conclusions

In this thesis, we addressed data mining methods, tools and applications for
multivariate time series. The sequential nature of time series imposes specific
algorithmic solutions to address this type of data. Additionally, this thesis
narrows the focus to multivariate time series. The multivariate aspect of the
data reflects the complexity and multi-faceted nature of the system under in-
vestigation. Whether one is measuring infrastructures, athletic performance,
monitoring human activities or analysing life style, there are numerous as-
pects that can be measured. This increasing growth of data frequency and
sources stimulate this data centric era. But with new opportunities also come
several challenges from the perspective of the methods and tools used.

In this chapter, we reflect on our main contributions to meet some of the
knowledge discovery challenges surrounding multivariate time series. We
can separate our contributions into two sides: unsupervised and supervised
learning. Next to these two paradigms, we focus on a group of three aspects
of data science: methods, tools and applications, which for lack of a better
term, we refer to as the data science triad. Aside from these contributions,
we take the opportunity to reflect on two research directions in this era of
data science. Firstly, machine learning as an optimization process in two
directions: better data representation and better model learning algorithms.
Secondly, data science as a paradigm shift of scientific process: scarcity of
data versus big data.

Unsupervised Multivariate Time Series In Chapter 2, we introduced
a data mining method to find biclusters in multivariate time series, which
addresses research questions Q1 and Q2. This task addresses the situation of
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118 CHAPTER 7. CONCLUSIONS

a system that has some recurring patterns over time in a subset of variables.
In contrast with traditional biclustering algorithms, our method is able to find
significant periods of time (larger sequences) where multiple variables deviate
in a coherent manner. By coherent in this context, we mean that for each
selected variable all segments have similar probability distributions.

We argue that framing this pattern recognition challenge as a biclustering
task offers considerable benefits. Firstly, pattern recognition tasks in time
series have been focusing primarily on the univariate scenario and this ne-
glects relationships between variables. Take as an example the monetary
exchange market. We know that the exchange rate of different currencies are
connected, but which currencies are strongly related to the Brazilian real and
which are related to the Singapore dollar? Furthermore, are these relations
always present, or are they triggered by specific events? How long do these
relationships last? The same analogy holds for almost any system measured
over time. We claim that biclustering multivariate time series can playing
an important role in finding such patterns.

Supervised Multivariate Time Series In order to tackle research ques-
tions Q3 and Q4, in Chapter 4 we introduced Accordion, a greedy search
algorithm that produces good aggregate features, both for regression and
classification. With such features, one has a better data representation and
this leads to better models. In the supervised learning setting, Accordion is
a wrapper algorithm that integrates the feature construction and selection
into the learning process. Our method differs from the common practice
of considering feature construction as an isolated pre-processing step. We
demonstrated the positive effects of searching for good aggregate features
automatically by optimizing the selection of three components: time series
variable, aggregate function and window size.

Our method automates a feature construction and selection processes, com-
bining multivariate time series with mixed sampling rates. Normally such
optimization processes come at the expense of producing features which are
not interpretable. We decided to focus on the automatic construction and
selection of interpretable aggregate features. By interpretable, we mean the
combinations of input variables, aggregate functions and different window
sizes. Our optimization process, for each combination of variable and ag-
gregation function, expands and contracts the window size, capturing phe-
nomena that work on different time scales. We believe this method to be
highly promising for further development and implementation in efficient
computation architectures, and better exploration of functional properties of
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Figure 7.1: The triad of data science projects.

different aggregations. This will allow us to get faster and better results in
larger search spaces.

Data Science Triad In addition to the machine learning methods intro-
duced in Chapters 2 and 4, we observe that such methods stand at the
intersection between tools and applications. In fact, data science can be
seen as the integration of methods, tools and applications. Thus, relevant
data science is the implementation of relevant methods, tailored to a specific
application, while using the appropriate tools.

We illustrate the data science triad in Figure 7.1, by representing a generic
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scheme of what a data science project normally entails. Unlike other fields
such as data mining, data science is finding an equilibrium between designing
generalized machine learning methods and focusing on specific applications
with efficient tools. Examples of such relationships can also be found in this
thesis. For each of the methods (Chapters 2 and 4) there are corresponding
easy to access and intuitive tools in Chapters 3 and 5, respectively. Such tools
address research question Q6. Additionally, Chapter 6 focuses on a specific
application of analyzing and improving the performance of elite speed skating
athletes (research question Q5). This is done by using tailored features and
models for each athlete and a relational database designed for elite sports
performance monitoring.

Machine Learning: Optimizing Two Complementary Directions
The machine learning process is typically characterized as by being a process
of exploration and exploitation of the data. Thus, names for the field such
as data mining become intuitive to understand. Maybe the best explanation
for this tendency has to do with the uncountable data sources and numerous
data structures that exist. Here one could make an analogy with the proverb
of Muhammad and the mountain, the machine learning algorithms being
Muhammad and the mountain being the data (big data). It makes sense to
see the challenge of creating an algorithm that is able to deal with different
mountains, an algorithm that is adaptable to different datasets, reliable in
its findings and fast in the construction of a new model.

An alternative to the view above is to have an algorithm that is able to
describe properly the data. The process of improving a model outcome can
be solved with good representations of the decision space. This space is de-
scribed with the input data or transformations of it. These variable transfor-
mation we normally refer to as feature construction, extraction and selection.
In the light of Muhammad and the mountain, instead of the mountain itself,
maybe the model can be improved by knowing the height of the mountain,
the soil properties, a vast photo gallery of the mountain from different per-
spectives and exposure. If only one could define an algorithm that searches
for such descriptions automatically, maybe linear models could solve the ma-
jority of modeling challenges.

The experimental results in Chapter 4 indicate that there are significant gains
to be had from focusing on the data representation. In the case of this the-
sis, the focus was on improving decision trees and linear regression models.
Probably many more well-known algorithms can benefit from a layer of data
transformation to reach the appropriate representation of the input space.
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In fact, some years back, it would have been difficult to motivate such an al-
gorithm for a task that is commonly seen as a pre-processing task. Presently,
with developments in fields such as convolutional neural networks, motivat-
ing automatic data transformation has become more acceptable. As it seems
with the advances in convolutional neural networks, these two optimization
directions are actually perfectly complementary.

Data Science as a Scientific Paradigm Shift Data science being a
discipline at the intersection of multiple other disciplines, it brings together
multiple empirical sciences, which depend on observations to draw founded
conclusions. In order to avoid drawing incorrect conclusions from observa-
tions, traditionally hypothesis testing is put forward as an essential, if not
the only, scientific paradigm. With the current wealth of data, the field of
data science is put at the center of a great scientific discussion. Is hypothesis
testing presently still a sufficient scientific paradigm for research?

Hypothesis testing has been at the core of empirical sciences. This impor-
tance is due to two main reasons: data was scarce and costly to gather,
and starting from a fixed, prior hypothesis is traditionally how to determine
causality. As a start, in this period of data abundance, we are often ana-
lyzing the whole population instead of only a tiny sample. Concepts such
as big data could trigger a deeper discussion about our present capacity for
inference. Secondly, hypothesis testing is still considered the golden standard
to determine causality. But many new developments in data science, for ex-
ample causal inference [76] are demonstrating that there are in fact ways to
avoid the post hoc ergo propter hoc fallacies. This makes the analysis of ob-
servational data, the predominant setting in data science, a very acceptable
approach for scientific discovery.

So how could a research project be designed according to this new scientific
paradigm? Take the speed skating example of Chapter 6. The central ques-
tion there is how to increase the performance of elite athletes and win more
medals. Following the data science rationale, we need to decide on what all
can be monitored that can conceivably influence the performance of the ath-
lete. One could measure training sessions, daily state of mind, eating logs,
sleeping habits, metabolic variables, you name it. What and how to mea-
sure is no longer governed by preconceived ideas about what is expected to
be the principle driver of athletic performance (the ‘hypothesis’), but rather
by technological, ethical and pragmatic considerations. If it can be practi-
cally, ethically and realistically measured, let’s just include it in the analysis.
After data collection, machine learning will consider numerous promising hy-
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potheses in an exploratory manner, followed by a host of robust evaluation
methods and experts to validate any scientific discoveries.
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