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Chapter 6

Sports Analytics for
Professional Speed Skating

Arno Knobbe, Jac Orie, Nico Hofman,
Benjamin van der Burgh, Ricardo Cachucho

in journal of the Data Mining and Knowledge Discovery, Volume 31,
Issue 6, pp 1872–1902, Springer, November 2017

Abstract

In elite sports, training schedules are becoming increasingly complex, and a
large number of parameters of such schedules need to be tuned to the specific
physique of a given athlete. In this paper, we describe how extensive analysis
of historical data can help optimize these parameters, and how possible pitfalls
of under- and overtraining in the past can be avoided in future schedules.
We treat the series of exercises an athlete undergoes as a discrete sequence
of attributed events, that can be aggregated in various ways, to capture the
many ways in which an athlete can prepare for an important test event. We
report on a cooperation with the elite speed skating team LottoNL-Jumbo, who
have recorded detailed training data over the last 15 years. In this project, we
analyse this data, and extract actionable and interpretable patterns that can
provide input to future improvements in training. We present two alternative
techniques to aggregate sequences of exercises into a combined, long-term
training effect, one of which based on a sliding window, and one based on a
physiological model of how the body responds to exercise. Next, we use both
linear modeling and Subgroup Discovery to extract meaningful models.
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90 CHAPTER 6. SPORTS ANALYTICS

6.1 Introduction

This paper describes research challenges related to a recent Sports Analytics
project between a leading Dutch professional speed skating team and data
scientists from Universiteit Leiden and Hogeschool van Amsterdam. During
its history, the athletic team, currently called LottoNL-Jumbo, has included
numerous Dutch skaters that competed at the European, world, and Olympic
level, and presently includes a world record holder and two Olympic medal-
ists. The project involved 15 years of detailed training data kept by the
coach of the team (second author of this paper) with the aim of improving
the training program and further optimising the performance of current and
future skaters of the team. In this paper, we report on the data science
techniques required to analyse this non-trivial data, and showcase findings
for specific athletes. A number of novel techniques are introduced to deal
with the specifics of the recorded data, and to produce interpretable and
actionable results that can help fine-tune the training programs.

Speed skating is a winter sport where athletes compete on skates to cover a
given distance on an oval (indoor) ice rink. In this paper we focus here on
long-track speed skating events, which involves a 400 meter oval track with
two lanes. Events over multiple distances exist, ranging from 500 meters to
10 000 meters, with each skater typically specialising in one or two distances,
depending on their physiology and training. Although each race in an event
involves two skaters, the final standing is determined by the overall ranking of
times of all participants. This effectively makes each race a time trial, where
the outcome of a given skater is only determined by their own performance.
From a data mining point of view, this is attractive since all results can be
assumed independent, and one can simply collect all race results of an athlete
without having to consider the influence of the ‘opponent’.

The available data, painstakingly collected by the coach, involves primarily
descriptions of the daily training activities, partly structured and partly free
text. The structured part of the description is very consistent, and cap-
tures a classification of the nature of the training (e.g. “cycling extensive
endurance”), as well as numeric values indicating the duration (in minutes)
and intensity (on a subjective scale of 1 to 10) of the session. Training data is
specific to individual athletes, and the intensity of the training was obtained
from the athlete, post hoc. With six training days per week, and potentially
two sessions per day, this amounts to roughly 450 sessions per season, mak-
ing for a substantial data collection per athlete/season. Next, race results
are available that capture test events which will stand as our target. These
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were scraped from the internet1. As a result, the problem is essentially a
regression task, since target and predictors are both numeric variables.

While evidently being in the regression domain, it is not immediately clear
what the independent variables of our task might be. Clearly, the indepen-
dent variables should capture aspects of the training program prior to the
events in question. However, the available data is a long sequence of events
with a small number of characteristics (type, duration, intensity, ...), so some
form of transformation is necessary to arrive at an attribute-value represen-
tation that is amenable to main-stream regression analysis. In this paper, we
take an aggregation-based feature construction approach, inspired by earlier
work in [14], in order to derive a fairly extensive set of features that cap-
ture the preparation (training, but also absence thereof) from various angles,
for example focussing on specific periods prior to the test event, or on spe-
cific intensity zones. In its basic form, the aggregation will take place over
windows of varying lengths (ranging from one day to several weeks) using
different aggregate functions and variables, with specifiers such as training
type and intensity zones. In a more elaborate approach, developed for this
specific purpose, the aggregation will take the form of convolution with a
physiology-inspired kernel consisting of several exponential decay functions
of varying half times. This kernel is inspired by the so-called Fitness-Fatigue
model [16], that tries to capture how the human body responds to a specific
training impulse over the course of time.

After having obtained a suitable attribute-value representation with poten-
tially predictive features, the next challenge is to produce meaningful models
from this dataset. The overall aim of this project is to provide the coaching
staff with easy-to-understand, actionable pointers as to how to fine-tune the
training routines, and avoid pitfalls of under and over-training. Therefore, we
specifically intend to discover interpretable patterns, that are relatively easy
to understand by the domain experts, and ideally do not involve a great many
variables. We will be working with two types of regression techniques. As-
suming mostly linear dependencies between the aggregated features and the
target variable, regularized linear regression methods such as LASSO [27, 90]
are attractive since they select features and produce relatively concise models
of the data. However, with the physiological domain at hand, it is likely that
non-linear dependencies will also exist, and rather, one expects thresholds to
exist on the features, where too large or too low a value (e.g. training load)
will produce sub-optimal results. For such phenomena, we expect Subgroup
Discovery [50, 30, 5, 78] to produce more useful results.

1http://www.osta.nl

http://www.osta.nl
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This Sports Analytics paper has two sides. On the Sports side, we present
some interesting findings that are of practical relevance to the team, with
the following key contributions:

• The application of the Fitness-Fatigue model and the fitting of this
model to individual skaters, where the parameters of the model convey
key properties of each skater.

• Various demonstrative, interpretable patterns concerning improved train-
ing practices.

• The presentation of results relating to competitions.

• The capability to produce detailed findings for other skaters.

On the Analytics side, we introduce a number of new ways to exploit detailed
training data, of relevance not just in the speed skating discipline, and in
some cases applicable to other analytics domains also. In this domain the
key contributions are:

• Introduction of (conditional) aggregation as a way of aggregating dis-
crete sequences of events, and producing a range of features that cap-
ture various aspects of those sequences.

• Aggregation by means of two options: one that is easy to compute and
interpret (uniform window), one that is more physiologically plausible,
and at the same time harder to compute (the Fitness-Fatigue model).

• Application of linear modeling and Subgroup Discovery in order to
select key features and produce interpretable models. 5) Evaluation
of models in terms of R2 and p-values, that makes linear models and
subgroups immediately comparable.

6.2 Speed Skating and Sports Analytics

The (long-track) speed skating takes place on an oval track 400 meters in
length. Races are typically held with two participants at each time (skating in
separate lanes), but each participant is ranked on their individual time. Both
men and women compete, in separate competitions. Races come in various
distances, but the most common distances at major events are 500 m, 1000
m, 1500 m, 3 000 m, 5 000 m and 10 000 m, of which the last distance only
applies to men, who in turn do not skate the 3 000 m. These disciplines are
usually divided into sprint, medium, and long distance, and skaters typically
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specialize in one of these, and compete in only a few of these disciplines,
although participation is facultative. Each category requires a specific type of
physiology, which explains the specialization of athletes. Furthermore, each
distance requires a specific type of training, and exercises for one distance
may actually harm the performance on other distances [64, 45]. This implies
that our analysis will often be specific to a small number of similar distances,
or even be specific to individual athletes. Since the training programs are
well-developed, and the senior athletes will have several years of experience
working with the coach, the produced findings may be subtle, which will
often call for an athlete-specific approach.

Even though races for a specific event can be considered time trials, there
will be a level of variance in the race results that cannot be explained by
differences in race preparation and training. It is a well-know fact within
speed skating that times are determined to a reasonable degree by the ice
rink. First of all, the ice properties will differ from one venue to the next,
and top venues will have better ice maintenance techniques and experience.
Another factor that influences the times, besides ice quality, is the altitude
of the venue, with higher ice rinks tending to be faster due to the lower air
resistance. In order to compensate for the difference in rink speeds, we have
opted to work with relative times rather than recorded times.
Definition 9 (Relative time). For a race of distance d, by a skater of gender
g, at ice rink r, finishing in time t (in seconds), the relative time trel is
defined as

trel = t/trec(d, g, r)

where trec(d, g, r) is the record for a specific discipline and ice rink.

Relative time will produce race results slightly above 1.0 or exactly 1.0 if a
race either produced or replicated a rink record. The use of relative time not
only allows comparisons between results at different venues, but theoretically
also comparisons between results in different disciplines or even between men
and women, although one might be comparing apples and oranges here on
other aspects of the data. The rink records were scraped from the Dutch
Wikipedia page2 that collects local records. Note that the use of records
to estimate the speed of a rink is not flawless. First of all, records are
continuously subject to improvement, such that the definition of relative
time is sometimes problematic. Next, some venues rarely host international
events, such that their records do not fairly represent the theoretical speed of
the rink, and actually produce under-estimates of the relative times athletes
set (meaning they appear faster than they are). In order to avoid constantly

2https://nl.wikipedia.org/wiki/Lijst_van_snelste_ijsbanen_ter_wereld

https://nl.wikipedia.org/wiki/Lijst_van_snelste_ijsbanen_ter_wereld
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having to update the list of records and subsequent analyses, which is rather
time-consuming, we choose to fix the records at a particular point in time.
A minor side effect of this is that some newer results may actually have a
relative time below 1.0. Our collected list of international rink records will
be made available3 as part of this publication.

6.3 Feature Construction by Aggregation

As explained in the introduction, the training data takes the form of a se-
quence of annotated events, corresponding to the individual exercises an
athlete performs. While being valuable information, this sequential repre-
sentation will require certain transformations in order to elicit general char-
acteristics of an athlete’s preparation for a race. Individual exercises will
generally not play a deciding role in the outcome (unless of very extreme
nature), and it is the combined nature of exercises that determines the effect
of the training program. Therefore, some form of aggregation is required to
draw out the various aspects of training that potentially play a role. Al-
though there is a large body of knowledge about the effect of certain types of
exercise in the sports physiology literature, it is still uncertain what aspects
of training and preparation determine the variance in race results that still
remains, as for example exemplified in Figure 6.1. For this reason, our fea-
ture construction approach will include a rather large collection of features,
with the aim of including many angles and leaving room for discovery in later
stages of the analysis. Furthermore, it is not quite clear how long the effect
of specific exercises lasts for individual athletes, and thus what period prior
to the test event should actually be included in the aggregation. Our set of
constructed features will therefore involve time windows of various lengths,
ranging from one day to several weeks.

In this paper, we will consider two general aggregation approaches, the first
of which involves uniform aggregation over the various windows. The second
based on convolution using a kernel that is based on the exponential decay
function.

3http://datamining.liacs.nl/rink-records.txt

http://datamining.liacs.nl/rink-records.txt
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Figure 6.1: Distribution of relative times over 1000 m as estimated by kernel
density estimation (based on 75 results, with a Gaussian kernel of σ = 0.0051).
The probability density estimate continuing below 1.0 is an artefact of the KDE.
The best time in the list is actually a rink record in the Hague (the Netherlands)
at 1.0.

6.3.1 Uniform Aggregation

Before defining the notion of a (time) window, we first formalize the events
to be aggregated, as they appear in the data of our application.
Definition 10 (Exercise). An exercise is defined as a tuple e = (t, ampm, dur,
int, load), where t is the date of the exercise, ampm is a binary variable indi-
cating the morning or afternoon session. Numeric values dur, int, and load,
indicate the duration (in minutes), the subjective intensity (on a scale of 1
to 10), and the load (in intensity-minutes) of the exercise, respectively.

The three crucial numeric attributes of an exercise specify the following:

• The duration simply specifies the length of the exercise. Durations tend
to be rounded to quarters of hours (especially for longer exercises),
but this is deliberate, and athletes generally adhere to the required
duration.

• The intensity indicates how heavy the exercise was, as perceived by the
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athlete, with 10 being the intensity of a race itself. During training,
values of 9 or 10 are rare. Although intensity is a subjective measure,
the athletes are very used to it, and will rate specific trainings fairly
consistently.

• The load is defined as the product of duration and intensity, with the
intention of capturing the total energy expenditure during the exercise.
Although load is actually a derived attribute (it does not appear in our
normalized database, for that reason), we include it in the definition of
an exercise because it plays a crucial role both in the modeling as in
the reasoning behind the training program4.

Note that the races themselves also appear as exercises in the database, since
it is crucial to include the training load produced by such intense events, when
considering the preparation for other races. In speed skating, several races
often take place in a single weekend, such that later races are influenced by
earlier ones.
Definition 11 (Time Window). A (time) window wt,m is a set of exercises
e1, . . . , en, such that all dates ei.t are before t, and not more than 2m − 1
days before t: t− 2m+ 1 ≤ ei.t < t.

Note that day t itself is not part of the window. For reasons that will become
clear in later sections, we have opted to define the length of a window in terms
of its middle m, essentially indicating the ‘centre of mass’ of the window. A
window wt,1 will thus include the one day prior to t, wt,2 indicates the three
days prior to t, and so on.

For a window w, the following primitive aggregates will be considered:

Count Simply the number of exercises in w: |w|.

Sum(duration) The sum of durations of the exercises in w:
∑

i ei.dur.

Sum(intensity) The sum of intensities of the exercises in w:
∑

i ei.int.

Sum(load) The sum of loads of the exercises in w:
∑

i ei.load.

Avg(duration) The average duration of the exercises in w:
∑

i ei.dur/|w|.

Avg(intensity) The average intensity of the exercises in w:
∑

i ei.int/|w|.

4Note that the definition in terms of a product of duration and intensity might be too
simplistic, since neither duration nor intensity may be a linear scale. Doubling the length
of an exercise may have an exaggerated effect if the intensity is (too) high, and doubling
the intensity makes the exercise entirely different in nature, addressing different metabolic
systems.
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Avg(load) The average load of the exercises in w:
∑

i ei.load/|w|.

Max(duration) The maximum duration of the exercises in w: maxi ei.dur.

Max(intensity) The maximum intensity of the exercises in w: maxi ei.int.

Max(load) The maximum load of the exercises in w: maxi ei.load.

Aggregation using the minimum was deemed senseless, since a very light
training has little effect, and one could interpret daily rest periods as very
light exercises anyway.

Specifiers

Each primitive aggregate listed above can be applied to all the exercises in a
given window, or just to subsets of exercises from specific categories. These
subsets are specified by what we will refer to as specifiers. We apply the
following specifiers:

Morning/afternoon sessions By specifying am, pm or no specifier at all,
the aggregate can include only the morning sessions, only the after-
noon sessions, or all sessions, respectively. Note that during the winter,
the coach will plan exercises on the ice in the morning, and alterna-
tive training in the afternoon, so distinguishing between those may be
fruitful.

Intensity intervals Exercises at different intensities will trigger different
parts of the system, and hence will produce a different training stim-
ulus. As specifier, we optionally select only exercises within specific
intensity intervals [l, u], where l ∈ [1, 10] and u ∈ [l, 10].

Note that each type of specifier will introduce multiple variants of the primi-
tive aggregates. For ampm, adding specifiers will raise the number of aggre-
gates (per window size) from 10 to 30. For the intensity-intervals, there will
be 1/2 · 10 · (10 + 1) = 55 variants of each primitive. However they are only
applied to the 4 primitive aggregates that do not involve intensity and load,
producing 55 · 4 = 220 aggregates. In order to avoid combinatorial explosion
of the aggregate collection, we do not include combinations of specifiers (such
as low intensities in morning sessions). In total, there will be 250 aggregates
per window.
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Aggregation and Convolution

Observe that such uniform aggregation over a window can be seen as a form
of convolution with a rectangular kernel [85]. The convolution of a time series
x(t) (in this case any of the training parameters that are aggregated) applies
a kernel to the series to obtain a new series y(t) as follows:

y(t) = h ∗ x(t) =
∞∑

i=−∞

h(i)x(t− i)

Here, h refers to the kernel, which is required to sum to 1 over its domain. In
the case of a uniform window, the kernel is essentially a rectangular function
(remember that 2m− 1 is the length of the window):

h(t) =

{
1/(2m− 1) if 0 ≤ t ≤ 2m− 1

0 otherwise

Since the rectangular kernel is zero over a large part of its domain, the
convoluted function y(t) can be computed much faster. In the next section,
we will introduce a kernel that is both more natural and more expensive to
compute.

6.3.2 The Fitness-Fatigue Model

Although uniform aggregation is intuitive and straightforward to implement
(and as we will see, provides fairly good models), it is somewhat unnatural.
First of all, it is unlikely that all exercises over a period of, say, four weeks
will have the same influence on the level of fitness at a race. Rather, one
would expect that exercises several weeks ago have a much smaller influence
than more recent ones. Second, the hard distinction between an exercise 28
days ago, and one 29 days ago seems unnatural, and may introduce minor
artefacts in the constructed features. Finally, there is a general pattern
where the initial effect of an exercise is negative, while after a short period of
rest and recuperation, the effect is positive. Ideally, the aggregated features
should exhibit such behaviour.

In this section, we introduce a type of aggregation based on convolution with
a more natural gradually progressing kernel. We will use a multi-component
kernel that is taken from the physiology literature [16] and aims to model the
complex way in which a human body responds to exercise by initial fatigue,
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followed by a slight improvement in performance, the effects of which die
out gradually over the course of several week, returning to a state of fitness
comparable to that prior to the exercise.

The core of this kernel is based on the exponential decay function, as fol-
lows:

he(m) = e−λm, m ≥ 0

The parameter λ here determines the speed with which this kernel decays
towards zero, in other words, the speed with which the effects of exercise
diminish over time. Although the exponential decay is defined in terms of
λ (with unit s−1), we will primarily define a specific kernel in terms of the
parameter τ (in units s, or more conveniently, in days), which corresponds to
the ‘mean lifetime’ of the kernel, and as such can be interpreted as the centre
of mass of the kernel. This makes this parameter immediately comparable
to parameter m of a uniform window, which is also the centre of mass of the
kernel. The simple relationship between τ and λ is as follows:

τ = 1/λ

The exponential decay function effectively models the diminishing positive
effect of an exercise as time passes. However, it does not include the tiring
effects of exercise in the few days after training, which may outweigh the
positive influence of training. For this reason, [16] introduced the so-called
Fitness-Fatigue model, which models these two effects as two components of
a kernel with different weights and different decay factors, as follows:

h2(m) = e−λfitm −Ke−λfatm, m ≥ 0

λfit determines the speed with which the positive effects of training (the
fitness) diminish, and typically corresponds to a τfit in the order of months,
while λfat determines the shape of the fatigue curve immediately after the
exercise. The associated τfat is typically in the range of two weeks. Initially,
the influence of fatigue is about twice as big as that of the improved fitness
(determined by the value of K).

The fitness in the above two-component model is assumed to be immedi-
ately improved after the exercise, which in practice is not the case. The
desired adaptation in various metabolic systems will not take effect until
several days after the exercise, such that the fitness will need to be modeled
with an additional component [16], producing the following three-component
kernel:

hff (m) = (e−λfitm − e−λdelm)−Ke−λfatm, m ≥ 0
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Figure 6.2: The three-component Fitness-Fatigue kernel (in solid black) as a
function of time after the exercise (in days). The fitness and fatigue parts are also
shown, in solid grey and dashed, respectively.

where λdel affects the exponential function that reduces the initial fitness. In
Figure 6.2, the combination of fitness and fatigue into this kernel is demon-
strated. In [16], values are given for the associated parameters, obtained by
fitting the convolved function to athletic data, producing the values below.
Although these values seem reasonable, they will be athlete- and specialism-
specific, such that we will fit these values to specific datasets collected, in
the experimental section. The published values for the parameters are as
follows:

τfit = 50 days, τdel = 5 days, τfat = 15 days, K = 2.0

6.4 Modeling Approaches

6.4.1 Regularized Linear Regression

In the previous section, we explained the procedures to build large sets of
interpretable features about the training, that might be able to explain the
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target variables of performance. These target variables might be a linear
function of a subset of the aggregate features, but we do not know which
ones beforehand. In order to find a good subset of aggregate features for
each target variable, we use LASSO [90], a method for estimating gener-
alized linear models using convex penalties (l1) to achieve sparse solutions
[27].

Assume t̄ is the mean of the target variable:

t̄ =
1

n

n∑
i=1

ti

The coefficient of determination R2 is now defined as:

R2(t, f) = 1−
∑

i(ti − fi)2∑
i(ti − t̄)2

(6.1)

where
∑

i(ti − fi)2 is the sum of squared differences between the actual and
predicted target value, and

∑
i(ti − t̄)2 is the sum of squared differences

between the target value and the constant function t = t̄. Note that R2 is
between 0 and 1 whenever the model f is produced using the Ordinary Least
Squares method, but may be lower than 0 for functions derived differently.
R2 is often interpreted as the explained variance, where a value of 0 means
that no variance in the dependent variable can be explained by variance in
the independent variable(s), and a value of 1 means that all variance can
thus be explained (a perfect fit of the data).

6.4.2 Subgroup Discovery

The previous section focussed on linear models, assuming that the depen-
dencies we hope to discover are indeed linear in nature. Unfortunately, in
the domain we are focussing on, it is quite likely that the relationship be-
tween (extent of) training and performance is non-linear. When doing a
certain training routine, it can be expected that the relationship is in fact
curved, with peak performance being achieved at a certain optimal load on
the human body. Doing too little will not achieve the right effect, but doing
too much of the training also produces sub-optimal performance. Specifi-
cally, one can expect thresholds in the training load above (or below) which
performance will rapidly diminish. Therefore, we will also experiment with
modeling techniques that are more local in nature, and find subsets of the
data where performance was surprisingly low, as well as finding variables and
thresholds that will identify such sub-optimal subsets.
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Our paradigm of choice for such (potentially) non-linear data is that of Sub-
group Discovery [50, 54]. It is a data mining framework that aims to find
interesting subgroups satisfying certain user-specified constraints. In this pro-
cess, we explore a large search space to find subsets of the data that have
a relatively high value for a user-defined quality measure. We consider con-
straints on attributes, and determine which records satisfy these constraints.
These records then form a subgroup. The constraints on the attributes (the
description) form an intensional specification of a part of our dataset, and
the subgroup forms its extension (that is, an exhaustive enumeration of the
members of the subgroup).

A number of papers in the literature discuss SD variants for regression tasks,
which to some extent are applicable to our case. One group of techniques
focusses on finding subgroups where the target shows a surprisingly high
(or conversely, low) average value [30, 5, 78, 59]. Typical proposed quality
measures use statistical tests to capture the level of deviation within the
subgroup, often weighted by the size of the subgroup, for example the mean
test or z-score [78],

ϕz(S) =
√
|S|µS − µ0

σS

where µS and µ0 stand for the subgroup and database means of the target,
respectively, and σS denotes the standard deviation within the subgroup S.
Other works consider the distribution of target values within the subgroup
[41], and use statistical measures for assessing distributional differences.

In the majority of these quality measures, the interestingness is computed
from the distribution of the subgroup alone, or when compared to that of the
entire dataset. Here, we take a slightly different approach, and consider the
subgroup description a dichotomy of the data, where both the distribution
of the subgroup as well as of the complement play a role in determining the
quality of the dichotomy. Therefore, we introduce a new quality measure for
numeric targets in SD. This quality measure uses the well-known notion of R2

to capture how well a subgroup and its corresponding complement describe
the data, in comparison to the distribution of the entire dataset, so ignoring
the dichotomy. Hence, we treat the subgroup as a model of the data, to be
more specific a step function of two parts. The following two averages over
the target t provide the constant prediction for, respectively, the subgroup
and its complement:

t̄subg =
1

|S|
∑
i∈S

ti
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t̄comp =
1

n− |S|
∑
i/∈S

ti

These two average values now lead to the following step function:

fS(i) =

{
t̄subg if i ∈ S
t̄comp if i /∈ S

The quality measure Explained Variance is now simply defined as follows:

ϕEV (S) = R2(t, fS)

This quality measure uses the definition of R2 given in the previous section,
which was independent of the nature of the model f . Note that by using
this quality measure, we have a way of directly comparing the discovered
subgroups (with corresponding step functions) to the linear models, which is
a clear benefit over the traditional quality measures. We furthermore observe
that the step functions, despite representing dichotomies, can be based on
subgroups of multiple conditions. Therefore, the resulting step functions will
be multi-dimensional (involving potentially multiple features). The quality
measure introduced here was implemented in the Cortana Subgroup Discov-
ery tool [66].

6.5 Experimental Results

In order to demonstrate the kinds of analyses and results of the proposed
methods on actual data, and to test the benefits of individual techniques
proposed above, we experiment with data from four athletes of the LottoNL-
Jumbo team, two male and two female. All experiments were performed
using three software components:

1. A relational database that organizes all the different datasets and meta-
data concerning exercise and competition: the Performance Sports
Repository (PSR).

2. A dashboard accessible over the Internet, that provides various views
and visualizations of the data, and allows online aggregation and linear
modeling of the data.

3. The generic Subgroup Discovery tool Cortana5, which was extended

5Sources in Java and an executable of this tool can be downloaded from http://

datamining.liacs.nl/cortana.html.

http://datamining.liacs.nl/cortana.html
http://datamining.liacs.nl/cortana.html
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Table 6.1: Dataset details for competition results of four skaters.

Gender Distance Competitions Sessions

M1 Male 1000 m 75 2 758
M2 Male 500 m 142 2 930
F1 Female 1500 m 60 2 230
F2 Female 500 m 22 1 095

for this purpose with a direct database connection to the PSR, and the
Explained Variance quality measure [66].

We will demonstrate the results on the datasets listed in Table 6.1, collected
from four athletes. Next to competition data, we also have physical test data,
for which we provide results for one of the athletes (M1 in the table below),
for which we have 146 records.

We will generally describe three types of modeling of the data: 1) univariate
models, either using a linear or a step function, where we rank all features
by R2, 2) multivariate models using LASSO, and 3) Subgroup Discovery
using Cortana. Note that univariate step models can also be interpreted as
subgroups with a single condition, such that results between settings 1 and
3 overlap to some extent. When mining for subgroups, we use beam search
to a fairly shallow depth, typically to a maximum depth of three or less,
depending on the experiment. When not further specified, the subgroups (or
their step functions) presented involve a single feature (d = 1). The width
of the beam is set to a default of w = 100 (candidates that proceed to the
next level). For the numeric attributes, the Cortana setting ‘best’ is applied,
which means that for each attribute, all numeric threshold are considered and
the optimal split point is selected. The resulting locally optimal subgroup is
added to the result list if of sufficiently quality, and conditionally added to
the beam for further refinement.

Before considering more systematic experiments, for example, testing the
merits of the Fitness-Fatigue model, we first present results for a single skater,
and demonstrate the kinds of input given to the coach concerning possible
changes to the training schedule.
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6.5.1 Demonstration of results

This section discusses results for female skater F1 who specializes in the
medium to long distances. We first focus on 1500 m races, for which we have
60 examples over a period of five years. The average relative time for this
skater was 1.0391, so 3.91% above the track record. We have training details
for the entire five years, such that we can aggregate the preparation for each
of these races easily.

Uniform features We start with univariate results in the simplest set-
ting: uniform aggregates without specifiers and simple linear models. The
best-fitting aggregate that was found was max load 1 with the following
model:

y = −0.000014x+ 1.042

The explained variance of this model is a mere R2 = 0.0563. The model
starts with a reasonable intercept, and encourages a high load (the product
of duration and intensity) on the day prior to the race. Although the effect is
minor, this suggests that a peak right before a race (possibly due to another
race in the same weekend) is beneficial. The step function associated with
this aggregate function, with a threshold around 360, has a more pronounced
R2 = 0.1233. The two levels are trel = 1.043 for low maximum loads vs.
1.031.

The second-best aggregate is avg intensity 19, with model

y = −0.003952x+ 1.052

which suggests that the intensity should be kept high over a period of almost
three weeks to improve race times. This aggregate actually scores highest on
explained variance of the step function, with a minimum average intensity
of 3.93 (low to moderate intensity). Lower intensities suggest an expected
relative time of trel = 1.044, whereas higher values on average lead to relative
times of trel = 1.028 (R2 = 0.2231). For clarity, details of these three features
are listed in Table 6.2.

Specifiers The addition of specifiers does a great deal to the quality of the
univariate models. The following aggregate scores the best on R2:

• max duration int5 17 (the largest period spent at intensity 5 for the
last 17 days prior to the race)
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Figure 6.3: Graph showing the relation between max duration int5 17 and
the relative time of the subsequent race. The vertical dashed line indicates the
threshold (inclusive to the left) and the solid horizontal lines the two average times
for subgroup and complement. The black line with a slope indicates the best-fitting
simple linear equation.

Exaggerating this type of training has a detrimental effect on the race out-
come: longer durations of this specific training type lead to higher times.
The step function (R2 = 0.3080) caps this value at 70 minutes. With longer
durations of intensity 5, relative times of trel = 1.074 are expected, compared
to trel = 1.035 below this threshold (Fig. 6.3).

Fitness-Fatigue model Switching from uniform to FF features, we note
that the following parameters provide the best (linear) aggregate, based on
the sum of duration: τfit = 39, τdel = 4.0, τfat = 7.0, K = 2.0. The cor-
responding kernel is the one featured in Fig. 6.2 earlier in this paper. The
associated explained variance is R2 = 0.1002.

Multi-variate model The individual features presented so far do not lead
to very well-fitting models, despite their role in informing the coach of ways to
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Figure 6.4: Obtained results (actual) over 60 historical races, compared to the
predicted results of a relatively simple LASSO model based on the training sessions
prior to each race.

Table 6.2: Overview of selected uniform features.

feature linear model R2 linear R2 step low high

max load 1 −0.000014x+ 1.042 0.0563 0.1233 1.043 1.031
avg intensity 19 −0.003952x+ 1.052 0.0557 0.2231 1.044 1.028
max duration int5 17 0.000211x+ 1.029 0.1491 0.3080 1.035 1.074

optimize the training and avoiding some pitfalls of under- and overtraining.
More precise models can of course be obtained by involving multiple features.
The graph in Fig. 6.4 presents the 60 results achieved by the skater, as well
as the predicted times, by a multi-variate linear model. The model, induced
by the LASSO procedure, involves 18 features, selected from the larger pool
of uniform aggregates (ignoring the specifiers). The quality of the model is
R2 = 0.721, obtained on the training set6. Although such models (and more
accurate models involving more complex aggregates) can be used to predict
the outcome of an upcoming race, this particular prediction is of limited
value. Rather, the model is more valuable from a knowledge discovery point
of view, pointing to the features that matter most. In this case, the 18
features mostly include duration over short windows (one to five days), and
intensities over longer windows (approx. two weeks).

6No distinction between training and test set was made for these experiments.
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Subgroups In the above text, we have already presented the following
three subgroups7:

• max load 1 ≤ 360 (R2 = 0.1233)

• avg intensity 19 > 3.93 (R2 = 0.2231)

• max duration int5 17 ≤ 70 (R2 = 0.3080)

The first two subgroups relate to the experiment with just uniform aggre-
gates, where the second subgroup is the optimal step function found at depth
1. The third subgroup relates to the experiment involving specifiers. While
subgroups at depth 1 are interesting since they point to individual predic-
tive features, they capture only shallow effects. We now present subgroups
at greater depth, that indeed describe more complex concepts. The best
subgroup found on the uniform windows (without specifiers) by Cortana at
depth d ≤ 2 is

avg intensity 20 > 3.94 ∨ sum duration 2 > 170 (R2 = 0.4232)

Although Cortana produces subgroups as conjunctions of conditions, for rea-
sons of presentation this was logically inverted8 in the above subgroup. The
subgroup, covering 17 cases, describes races with an average of 1.0299, com-
pared to 1.0526 for the remainder. It specifies that whenever the average
intensity over the last 20 days is too low, and the total duration of exercises
over the last 2 days is also low, this has a negative effect on the race result.
Note how the explained variance has almost doubled at d ≤ 2. Adding a third
feature to the subgroups only produced a marginal improvement, which is
not uncommon in SD.

The addition of specifiers in combination with deeper subgroups produced
slightly better results, with the top subgroup being as follows:

avg duration int5 17 < 60 ∨ sum duration int6789 10 > 115 (R2 = 0.446)

Note that compared to the d = 1 result of R2 = 0.3080, this is a reasonable
improvement. The subgroup specifies that a lower duration of intensity 5
exercises over 17 day, or a higher duration of high-intensity exercises over 10
days, is good.

7Although subgroups are interpreted here as dichotomies, we present them as either
lower or upper thresholds, such that cases meeting the condition(s) specified correspond
to the faster races.

8The original subgroup discovered, avg intensity 20 ≤ 3.94∧sum duration 2 ≤ 170,
covers the complement.
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Validation of results For the results above, one could wonder to what ex-
tent each result is statistically significant. For individual models, be it linear
or step function, it is possible to compute a p-value that indicates to what
extent the model might be due to chance. Such p-values will be reported in
the detailed experiments in the next section. However, we should note that
we are generating a substantial number of features, such that we are in fact
testing multiple hypotheses. The best ranked result may thus appear to be
significant, even though this is just a consequence of the many models consid-
ered. [23] presents a method for validating the results of an SD algorithm, by
means of a distribution of false discoveries. This distribution is obtained by
running the algorithm repeatedly on the data after swap-randomising the tar-
get attribute, thus capturing what maximum qualities can be obtained from
random data (that resembles the original data). Using the distribution, it is
possible to set a lower bound on the quality (in this case explained variance)
as a function of the desired significance level α. Assuming a significance level
α = 0.05, this validation method produces a lower bound of R2

min = 0.2907
for the uniform data without specifiers, searching for subgroups at depth
d = 1. This means that our optimal subgroup

avg intensity 19 > 3.93 (R2 = 0.2231)

is not actually significant at α = 0.05. It is good to note that the lower bound
produced by the swap randomization depends on the specific settings of the
SD run. Specifically, if the extent of the search is bigger, more hypotheses
will be tested, such that the lower bound will increase in order to account for
the higher probability of finding a seemingly interesting subgroup by chance.
When increasing the search depth to d ≤ 2, the procedure produces a lower
bound of R2

min = 0.4212. This makes the earlier depth 2 result (without
specifiers)

avg intensity 20 > 3.94 ∨ sum duration 2 > 170 (R2 = 0.4232)

just barely significant.

6.5.2 Fitness-Fatigue model

In this section, we analyse the specific merits of the Fitness-Fatigue model in-
troduced in Sec. 6.3.2. We start by considering the four parameters the model
involves, in order to fit the kernel to the specific physiological properties of
the individual athlete. Rough values for the optimal setting were determined
by informal experimentation, after which an extensive grid search was used
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Table 6.3: Optimal parameters for the Fitness-Fatigue model for four speed
skaters.

Input context Optimal parameters

Gender Distance Time n τfit τdel τfat K

M1 Male 1000 m 1.0207 75 13 2.0 2.0 2.00
M2 Male 500 m 1.0212 142 21 2.0 2.0 3.75
F1 Female 1500 m 1.0391 60 39 4.0 7.0 2.00
F2 Female 500 m 1.0691 22 29 4.0 4.0 2.00

to determine the optimal values for each athlete involved. These results are
demonstrated in Table 6.3, for four athletes and their respective distance of
speciality. The left columns indicate the gender of the athlete, the preferred
distance, the average relative time, and the number of races n available. The
remaining columns indicate the optimal values for τfit, τdel, τfat and K. The
three decay parameters are in days. As an optimization criterion, we select
the R2 of the (univariate) linear model of the best feature found.

In order to analyse the stability of these parameters, we selected the third
athlete (the one with the most available data), and varied each parameter in-
dividually, fixing the remaining the parameters to the optimum found earlier.
The R2 of the best feature was recorded for each setting of the parameters.
Fig. 6.5 demonstrates for each parameter how sensitive it is to change, in
terms of quality of fit of the FF model. We note that all functions are very
well-behaved and smooth over the domains considered, with the selected
optimum clearly being undisputed. Furthermore, observe that the functions
appear to be convex, making them fairly straightforward to optimize. Hence,
the relatively simple grid search used in the pragmatic setting can be easily
replaced by a more efficient hill-climber.

Let’s consider the table of FF parameters in more detail. First of all, the
rough numbers are very plausible from a physiological point of view. Clearly,
the fatigue and (delayed) gain in fitness should be in the order of a few days,
while the prolonged benefit of the exercise remains for a longer period in the
order of several weeks. Also, the optimal values clearly differ per athlete,
as a function of the different physiology and type of training the athlete
is subjected to generally. Table 6.3 also suggests a difference between men
and women, with men having a shorter time scale than women, both for
the recuperation and how long the benefit lasts, although such conclusions
are hard to draw from only four cases. Note also that the values reported
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Figure 6.5: Analysis of sensitivity of the features to varying the four parameters
τfit, τdel, τfat and K (from top left to bottom right). Clearly, these functions are
smooth and well-behaved.

here are somewhat different from the ones reported in [16], which are: τfit =
50, τdel = 5, τfat = 15, K = 2.0. As a last observation, we note that τdel
and τfat tend to assume very similar values. What impact this has from a
physiological perspective (the fatigue and beneficial adaptation of the body
go hand in hand?) is hard to say, but at least from a modeling perspective, it
is a good opportunity to dispense with one parameter, and make the fitting
of models more efficient.

Having a stable and physiologically plausible FF model of the training re-
sponse, it is now time to turn to the question whether the model indeed
produces a better fit, compared to our baseline of uniform aggregates. To
this end, we again consider the explained variance R2 of the linear model
on the best feature found, first for uniform features, then for the exponen-
tially decaying features. Since above, the FF model was optimized without
specifiers (intensity zones and morning/afternoon distinction), we compare
the results with a similar setting for the uniform features. Table 6.4 presents
these results. The columns marked “R2 linear” indicate the explained vari-
ance of the simple linear model. The indicated p-values for each result refer
to the statistical significance of a linear regression t-test: the significance
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Table 6.4: Comparison of goodness of fit of best univariate linear model for
(middle) the uniform aggregates and (right) the Fitness-Fatigue model.

Uniform Fitness-Fatigue

Gender Distance R2 linear p-value R2 linear p-value

M1 Male 1000 m 0.41 4.16×10−10 0.30 3.85×10−7

M2 Male 500 m 0.17 2.46×10−7 0.23 7.02×10−10

F1 Female 1500 m 0.06 9.95×10−3 0.11 1.69×10−3

F2 Female 500 m 0.54 9.53×10−5 0.50 2.58×10−5

of the best model, testing the hypothesis that the coefficient of the model
is not 0 (in other words, testing whether the dependent variable is indeed
influenced by the independent variable).

Based on these numbers, there is clearly not a consistent benefit of the FF
model, over the less natural uniform features. Especially in the case of the
first athlete, the uniform features are in fact more accurate. The feature
in question (although there are multiple variants of similar score) concerns
the sum of the duration over 9 days, which is an indication of too intense
training and hence too high levels of fatigue as a result. Also for the fourth
athlete, the uniform features come out on top. Still, for individual athletes
the FF model may show a considerable improvement in fit over the unnatural
uniform features.

Alternative aggregate functions The presentation of the FF model in
terms of convolution translates into SQL as the SUM aggregate function. If
features based on SUM have a potential benefit, so might the alternative func-
tions AVG and MAX. We present an additional experiment in Table 6.5 that
investigates the added value of these two aggregates to the plain implemen-
tation of the FF model used so far. The last two columns of the table show
that in two cases, AVG or MAX do outperform the standard convolution. This
is interesting, since there is clearly the potential to improve the models in this
way. However, the features are less intuitive to understand since they are not
based on the standard definition of convolution in terms of summation.
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Table 6.5: Analysis of the benefit of adding AVG and MAX as aggregates to the
Fitness-Fatigue model.

SUM SUM, AVG, MAX

Gender Distance R2 linear p-value R2 linear p-value

M1 Male 1000 m 0.30 3.85×10−7 0.30 3.85×10−7

M2 Male 500 m 0.24 7.02×10−10 0.28 1.60×10−11

F1 Female 1500 m 0.11 1.69×10−3 0.15 5.22×10−4

F2 Female 500 m 0.50 2.58×10−5 0.50 2.58×10−5

6.6 Conclusion

We have presented a general approach to the modeling of training data in elite
sports, with a specific application to speed skating in the LottoNL-Jumbo
team. Our approach computes the combined effect of a training schedule by
aggregating details of the individual training sessions, and thus capturing a
considerable number of aspects of training and how one prepares for impor-
tant test moments, such as physical tests and races. Since it is not entirely
clear from the literature what aspects of training contribute the most, and
what parameters individual athletes need to tweak in order to optimize the
training to their specific physique and specialization, we produce a reasonably
large collection of promising features. The most relevant features are then
selected by a number of techniques, specifically univariate linear regression,
the LASSO regression process and Subgroup Discovery. The linear modeling
methods assume that the dependencies of interest are indeed monotonic and
linear, that is, adding more load to the exercise will increase the (long-term)
fitness of the athlete’s body. Clearly, this is not generally the case, and
one would expect there to be certain thresholds, above which training is no
longer beneficial. For each aspect of training, there is an optimal volume,
above or below which training is ineffective. This suggests that non-linear
models, or models that are able to represent thresholds (such as subgroups)
will outperform linear models.

As mentioned in our introduction, we aim to discover interpretable and ac-
tionable patterns in the data, such that the coach can immediately incor-
porate the most significant findings in the preparation for upcoming events,
as well as in future training schedules. We believe that our presented ap-
proach, that deliberately presents simple results, and gives clear guidelines
and boundaries on training load, makes this possible. In fact, individual
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findings on the athletes of the team have led to (subtle) modifications in
training regimens, most notably where sprinters were sometimes subjected
to too much aerobic exercise. It is good to stress again the athlete-specific
nature of our analyses. Luckily, for a reasonable number of skaters, we have
a long enough history to have a substantial database of training-response
examples, where natural variation in preparation has produced a produc-
tive dataset. Athlete-specific data leads to athlete-specific findings, and one
should therefore not interpret any discovered pattern as a general rule of ex-
ercise physiology, but rather as an opportunity to optimize training for that
athlete.

We have presented a number of anecdotal results for a specific skater, demon-
strating that interpretable and actionable results can be found. The best-
fitting subgroup suggests that for a good result, this skater should avoid
longer exercises at intensity 5 (over a longer window), as well as (slightly)
increase the exposure to intensities 6 to 9. Although separate results appear
very significant, a more thorough analysis using swap-randomization is nec-
essary to account for the many features and models being considered. For
this specific skater, statistically significant results could be obtained, despite
there only being 60 available races. With up to 142 race results, other skaters
will allow for much more significant findings.

The Fitness-Fatigue model, introduced as a more natural way to aggregate
training impulses over time, produced reasonable results. After experiment-
ing with four different skaters, two male and two female, very consistent
and realistic values were found for the four parameters of this model. Al-
though slight variations did occur, most notably between the male and fe-
male skaters, the general picture did match that of the coach. Knowing these
(athlete-specific) parameters in detail allows the coach to mix exercise and
recuperation in a more precise manner. From a modeling point of view, we
also demonstrated that the optimal values of these parameters can be found
efficiently, due to their well-behaved nature.

In a number of detailed experiments, we compared different choices in our
modeling approach. A first experiment compared the uniform window to the
Fitness-Fatigue kernel. Given the unnatural nature of a rectangular kernel,
one would expect the FF model to be superior. Somewhat surprisingly, our
data did not support this hypothesis. The FF model did indeed produce
superior models for two athletes, but the uniform window performed equally
superior on the remaining two, leaving this comparison unresolved.

Finally, we considered an experiment whether using the aggregate functions
MAX and AVG, alongside the more obvious SUM, would be beneficial. This was
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indeed sometimes the case, although not by a large margin. Whether such
slightly more accurate models are in fact attractive is questionable, since the
combination with the non-trivial FF kernel does not lead to very interpretable
patterns.




