
Methods and tools for mining multivariate time series
De Gouveia da Costa Cachucho, R.E.

Citation
De Gouveia da Costa Cachucho, R. E. (2018, December 10). Methods and tools for mining
multivariate time series. Retrieved from https://hdl.handle.net/1887/67130

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/67130

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/67130

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/67130

Author: de Gouveia da Costa Cachucho, R.E.
Title: Methods and tools for mining multivariate time series
Issue Date: 2018-12-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/67130
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 4

Mining Multivariate Time
Series with Mixed Sampling
Rates

Ricardo Cachucho, Marvin Meeng, Ugo Vespier,
Siegfried Nijssen, Arno Knobbe

in Proceedings of the ACM International Joint Conference on Perva-
sive and Ubiquitous Computing (UbiComp), 2014

Abstract

Fitting sensors to humans and physical structures is becoming more and
more common. These developments provide many opportunities for ubiq-
uitous computing, as well as challenges for analyzing the resulting sensor
data. From these challenges, an underappreciated problem arises: modeling
multivariate time series with mixed sampling rates. Although mentioned in
several application papers using sensor systems, this problem has been left
almost unexplored, often hidden in a pre-processing step or solved manually
as a one-pass procedure (feature extraction/construction). This leaves an op-
portunity to formalize and develop methods that address mixed sampling rates
in an automatic fashion.
We approach the problem of dealing with multiple sampling rates from an
aggregation perspective. We propose Accordion, a new embedded method that
constructs and selects aggregate features iteratively, in a memory-conscious
fashion. Our algorithms works on both classification and regression problems.
We describe three experiments on real-world time series datasets.

51

52 CHAPTER 4. ACCORDION

4.1 Introduction

This paper presents a practical modeling task in the field of multivariate time
series analysis, and algorithms to solve this task. In real-world applications
involving time series, specifically those produced by multiple sensors, one is
often confronted with the challenge of analyzing data captured at various
sampling rates. This might occur when one wants to include sensors that
measure processes at various rates, for example the vibration (high sampling
rate) and temperature (low rate) of a large windmill. In this paper, we
analyze a specific instantiation of such a problem, where the aim is to model a
target time series, that is captured at (much) lower rates than the remaining
series. To model the target series in terms of the remaining ones, we will
somehow have to ‘slow down’ the high-frequency measurements in order to
match the target.

As a motivating example, consider the problem of activity recognition. In
this problem, the task is to classify a person’s activities into a finite set of
classes, typically at a fairly slow rate. The activity will be predicted using
body-worn or environmental sensors, for example measuring physiological
parameters (e.g. heart rate), acceleration or position in space. The practical
problem here is that modern sensors tend to measure at high sampling rates
(typically 1 Hz or higher), whereas activity is registered at much lower rates
(e.g. once every 60 seconds). Therefore, each period to be classified is de-
scribed by many measurements (per sensor). The most obvious solution is to
combine multiple measurements into a single value characterising the period,
for example, the average heart rate or the highest acceleration experienced
over this period.

In this paper, we approach this challenge from an aggregation perspective:
for a given sensor and a given time interval (a window of data), an aggregate
function will summarize a sequence of sensor readings into a single numeric
value. An aggregate feature is composed of three main components: a sen-
sor measuring at high rates (the predictor), a window over which values of
the sensor are aggregated, and finally an aggregate function that combines
these values into a single outcome. Assuming a target series sampled at
low frequency fr and the remaining time series at higher frequency fS, the
proportion fS/fr denotes the number of measurements per sensor that corre-
spond to a single target value. To allow for phenomena that involve unknown
degrees of integration over time, our algorithm will be allowed to consider
windows both longer and shorter than fS/fr.

4.1. INTRODUCTION 53

To illustrate how the optimal window size may be somewhat larger or smaller
than the proportion fS/fr, consider the challenge of modeling a person’s sleep
quality (one of our applications mentioned in the experimental section) from
various sensors, both body-worn and placed in the environment. In this
case, 24 hours of sensor data naturally correspond to a single target value
describing the sleep quality of one night. However, one can imagine that
a feature capturing the amount of strenuous activity during the four hours
prior to sleep might play an important role, which corresponds to a window
size of only 1/6th of the ‘natural’ window. Similarly, windows covering more
than 24 hours are imaginable, such as those related to the nutrition over the
last 48 hours. Clearly, a fixed window size based on the mentioned proportion
will not guarantee optimal results, and we will have to include and optimize
the size of the window as a parameter in the definition of features.

Although a feature construction step (even including aggregation) is the back-
bone of many activity recognition projects [25], all too often this step is
presented as a one-pass process [6, 69, 58, 75], such that only a fixed set
of features becomes available for the actual modeling step. The resulting
features are static and constructed manually, either based on some domain
knowledge about the physics involved, or by making default choices. It is not
hard to imagine that this step is, in fact, the result of several iterations of
trial and error. Moreover, this fixed set is required to be relatively small, for
reasons of memory or storage. The iterative method we propose, Accordion,
is an embedded approach that does both feature construction (building can-
didate aggregate features), and feature selection automatically, allowing for
features to be created dynamically during the search process.

At each iteration in the search process, Accordion transforms high frequency
predictors into a set of candidate aggregate features at the lower frequency
of the target, searching for the best combination of the components that
compose an aggregate feature. From this set of aggregate features, only the
most promising candidate feature is selected and materialized, in a greedy
fashion. Therefore we categorize our algorithms as memory-conscious. With
the dynamic construction of features proposed here, we aim to solve both
the issue of choosing the right features and estimating their parameters, as
well as the varying requirements for the informative features that occur while
modeling the data (for example, further down in a decision tree). In order
to do so, the feature construction and selection steps are closely tied with
the final modeling process, in both the regression and classification setting.
Inspired by Brush’s challenge of enhancing reproducibility and clarity [12],

54 CHAPTER 4. ACCORDION

our algorithms and activity recognition datasets are made available1.

When thinking of the aggregate feature construction possibilities, it is good
to note that the search space is potentially very large, due to the choices of
sensor, aggregate function and window size (which may vary substantially, as
noted). Therefore, we search for (candidate) aggregate features heuristically.
We propose algorithms that consider a feasible set of candidate features by
a) limiting the actual choice of aggregate functions to a small set (min, max,
avg, . . .), b) performing a moderate search over the possible window sizes,
and c) selecting the final aggregate features at different degrees of greediness.
On top of these choices, we tackle the potentially large size of the final dataset
by materializing only the selected features.

In general, we distinguish between two types of applications, one where the
slow target series is numeric, and we are effectively dealing with a regres-
sion model, and one where the target is nominal and we need a classification
model. The feature selection algorithm works differently for either setting,
but the essence of constructing sets of candidate features using aggregation is
identical. The main difference between the two versions is the kind of mod-
eling they mimic: in the regression case, the feature construction algorithm
effectively builds a linear model in a greedy fashion. In the case of classifi-
cation, we construct a decision tree of aggregate features along the lines of
C4.5 [80].

The main contributions of this paper are as follows:

• Present and formalize a common task in the modeling of multivariate
time series, related to the target being measured at a lower rate than
the remaining series.

• Propose an embedded algorithm for the proposed task, that dynami-
cally constructs, selects and models (all in one solution), using a man-
ageable set of aggregate features in the contexts of both classification
and regression.

• Describe how both algorithms are memory-conscious, materializing only
a limited set of aggregate features, and potentially increasing the pos-
sible search space for good features.

• Algorithm implementation and datasets are made available to the re-
search community.

1http://www.liacs.nl/~cachucho/publications.html

http://www.liacs.nl/~cachucho/publications.html

4.2. PRELIMINARIES 55

4.2 Preliminaries

4.2.1 Multivariate Time Series with Mixed Sampling
Rates

The data we consider is assumed to come from sensor systems. We assume
that our sensor system S = {s1, . . . , sp, r} consists of p+ 1 sensors. The first
p sensors will act as predictors, while the last sensor r, the response, will be
treated as the target sensor that we wish to predict or explain. |s| and |r|
indicate the length (number of data points) of s and r, respectively. While
the domain for the predictors is always the set of real numbers R, the domain
of r is either R (regression setting), or a finite set of classes (classification
setting).

We assume that all sensors register measurements synchronously and at the
same fixed sampling rate, except for the response, which is registering at a
lower sampling rate. We also assume that the predictor sampling rate is an
integer q > 1 multiple of the sampling rate of the response: fS = q · fr. This
leads to the following definition.
Definition 6. A time series dataset with mixed sampling rates is assumed
to consist of:

• A set of time series S, representing the predictor variables, where S is
materialized as a matrix of size |s| × p. Each time series s in S is a
vector of real numbers, where si, i = 1, . . . , |s| is the ith element of s.

• A time series r, representing the response variable. This time series
has a length of |r| = |s|/q, where q ∈ N+∧q > 1; the ith element in r is
assumed to have been measured at the same time as the i · qth element
in s.

Note that this implies that the measurements of S and r do not start at the
same time (see Figure 4.1).

Figure 4.1: Relation between high (fS) and low (fr) sampling rates.

56 CHAPTER 4. ACCORDION

4.2.2 Feature Construction with Mixed Sampling Rates

As discussed, our aim is to model the response variable in terms of the
predictors, over time. As the two are sampled at different rates, we will ‘slow
down’ the high frequency measurements of S using aggregate functions, and
turn them into features that are available at the sampling rate of r. In
other words, we will be taking a feature construction approach. In order to
transform the high frequency measurements into lower frequency ones, we
employ the notion of a window :
Definition 7 (Window). Given a window length w and an index 1 ≤ w ≤
i ≤ |s| in a predictor time series s, a window of length w at index i consists
of the time series of measurements s[i−w+1, . . . , i] = si−w+1, si−w+2, . . . , si.

For a response series measured q times as slow as the predictors, it could
make sense to choose w such that w = q. Figure 4.1 depicts such a situation.
However, experimental evaluation reveiled that this choice may not always
be optimal. Both window lengths w > q and w < q could also be argued
for. Therefore, we simply assume that w ∈ N+. Note that when w > q, each
consecutive window will have the following fraction of overlap: 1−q/w.

We will employ aggregate functions to summarize the measurements in a
window into a single value. An aggregate function a ∈ A takes as input a time
series of measurements m, and produces a single numeric value a(m) ∈ R.
The fixed set of aggregate functions A = {min,max, avg, . . .} we use will be
described in more detail in the next section.

We can now define aggregate features as follows.
Definition 8 (Aggregate Feature). Given a choice of window size w, an
aggregate function a and a predictor time series s ∈ S, the aggregate feature
afs,a,w is a vector of length |s|/q, defined as follows:

afs,a,w[i′] = a(s[max(1, i′ · q − w + 1), . . . ,′ ·q])

where 1 ≤ i′ ≤ |s|/q.

An aggregate feature for a given dataset can hence be specified by a tuple
of parameters (s, a, w). Sometimes we will refer to these features without
reference to their parameters, just as a generic aggregate feature f .

A set of aggregate features F together with the vector of response values r
can be used to create a new data matrix. Each aggregate feature corresponds
to a column of this matrix. The number of rows in this matrix corresponds
exactly to the length of r, |r| = |s|/q.

4.3. THE ACCORDION METHOD 57

More formally, a data matrix S′ of dimension |r| × (|F| + 1) is obtained,
where S′t,f is the feature calculated for the tth target instance using the fth
feature descriptor in F .

4.2.3 Problem Statement

Our main task is to find good aggregate features for time series datasets with
mixed sampling rates. More formally, we assume we are given a time series
dataset as introduced in Definition 6, as well as a function score(F , r) that
can evaluate the quality of a set of features with respect to response variable
r. The task is to find a set of aggregate features F , such that each feature is
described by:

• A predictor time series s ∈ S.

• An aggregate function a ∈ A.

• A window size w.

Furthermore, the feature set F should optimize the scoring function score(F , r).
Scoring functions in this paper can be based on regression or classification
models. The details of this will be discussed in the next section.

4.3 The Accordion method

4.3.1 Aggregation of Time Series

Aggregate functions provide a means for summarizing a series of measure-
ments in a window, in various ways, as illustrated in Figure 4.2. Different
aggregate functions capture different aspects of the measurements within a
window. Although the space of aggregate functions is conceivably very large,
we have opted for a relatively small collection of functions that represent com-
mon statistics of sets of values. The set of aggregate functions, A, considered
in this paper is composed of:

• avg : the mean value,

• med : the median,

• max : the maximum value,

• min: the minimum value,

58 CHAPTER 4. ACCORDION

0 100 200 300 400 500 600

0
5
0

1
0
0

1
5
0

2
0
0

seconds

H
e
a
rt

 R
a
te

HR
HR_min_60
HR_max_60
HR_mea_60
HR_med_60
HR_iqr_60
HR_std_60
HR_rms_60

Figure 4.2: Aggregate features built from heart rate logged at 1 Hz.

4.3. THE ACCORDION METHOD 59

• stdv : the standard deviation,

• the inter-quartile range: IQR = inf{x ∈ R : 0.75 ≤ P (X ≤ x)} −
inf{x ∈ R : 0.25 ≤ P (X ≤ x)},

• the root mean squared: RMS =

√
1
n

n∑
i=1

x2i .

One could argue that features of windows from the frequency domain, such
as properties of the spectrum of the data, could also be interpreted as aggre-
gate functions: they take a set of measurements (in fact, a sequence), and
summarize them into a single value. Such features would capture more peri-
odic properties of the data in the window. Because our algorithms are open
source we argue the set of aggregate functions, A, should be seen as mutable.
Domain knowledge could be used to change it. If inclined to do so, one can
change (add and remove) the aggregate functions that compose A, in order
to capture cyclical aspects or peculiarities of the data. The remainder of
this paper assumes always the same rather small list of statistical aggregate
functions, but there are no technical reasons why other aggregate functions
could not be involved also.

Algorithm 4 CalculateAF

Input: time series s, aggregate function a ∈ A, window size w, ratio q =
fS/fr.
for i′ ∈ {1, . . . , |r|} do
i = i′ · q
if i < w then

afs,a,w[i′]← a(s[1, . . . , i])
else

afs,a,w[i′]← a(s[i− w + 1, . . . , i])
end if

end for
return an aggregated feature: afs,a,w

An aggregate feature results from the use of an aggregate function a, applied
to a predictor s using a sliding window with length w, as formally described
in Algorithm 4. To construct an aggregate feature, Algorithm 4 slides a
window over the predictor using the reference indices i ∈ {q, 2q, . . . , |r| · q}.
For each reference index i, the algorithm checks for boundary limitations.

60 CHAPTER 4. ACCORDION

If i is smaller than the window size w, the aggregate feature’s i′th instance
takes into account only the available data from the predictor, s[1, . . . , i].
Otherwise, the window is s[i− w + 1, . . . , i]. The aggregate function is then
applied to the data in the window.

4.3.2 Feature Construction

This section describes the construction process of multiple aggregate features,
as a search problem for the optimal combinations of aggregate function a,
high frequency predictor s, and window size w. The objective of the feature
construction process is both to slow down the sampling frequency of one or
more predictors, and to transform these into good aggregate features. A
good aggregate feature should properly describe a target variable (r) at its
low sampling rate, fr.

In order to avoid brute force feature construction, and direct the search
towards an optimal choice of (s, a, w), a ranking measure ranking the feature
candidates is required. The ranking measures are obtained by the use of
scoring functions, SC(r, afs,a,w). To deal with classification problems, we
considered the well-known entropy-based scoring function information gain
(see for example [80]). For regression problems, the cross-correlation [63]
scoring function is selected:

γr,f(τ) = E[(ri − µr) · (fi−τ − µf)],

where τ is the time lag between an aggregate feature f and a target variable
r. In the presence of a delayed relation between action (f) and reaction
(r), cross-correlation allows the identification and construction lag regression
models [31].

The process of feature construction is detailed in Algorithm 5. This algorithm
performs a grid search over the available predictor time series in S and the
aggregate functions in A (the two outer loops). The number of different
values for both these parameters of an aggregate feature is generally limited,
so all combinations will be considered exhaustively.

For each choice of s and a, the algorithm returns the best window size wbest.
In essence, this is a task of linear optimization of an unknown function for
a given parameter w. In order to avoid a simple exhaustive search for the
optimal window size, we sample this function iteratively, and zoom in on
a promising interval [wl, wh] at each iteration. This heuristic optimization
algorithm works as follows.

4.3. THE ACCORDION METHOD 61

Algorithm 5 ConstructCandidates

Input: set of predictor time series S, target variable t, scoring function SC,
decision threshold, maximum window growth ω, number of steps m.
C ← ∅
q ← |S|/|r|
for all s ∈ S do

for all a ∈ A do
λ← 1
wbest ← 0, scorebest ← 0
wl ← q, wh ← q · ω
stop← false
repeat
δ ← wh−wl

m

w ← 0, score← 0
for all i ∈ {1, . . . ,m} do

f← CalculateAF(s, a, wl + i · δ, q)
if SC(f, t) ≥ score then
w ← wl + i · δ
score← SC(f, t)

end if
end for
if scorebest > score then
stop← true

else
scorebest ← score, wbest ← w

end if
wl ← wbest − q/λ, wh ← wbest + q/λ
λ← λ+ 1

until stop
if scorebest > threshold then
C ← C ∪ {afs,a,wbest

←CalculateAF(s, a, wbest, q)}
end if

end for
end for
return C

62 CHAPTER 4. ACCORDION

The interval is initialized based on a parameter ω which indicates the largest
acceptable window growth relative to q (the natural window size). At each
iteration of the repeat-until loop, a uniform sample is made of the current
interval, in m steps (specified by the user, but typically low). Each candi-
date window size is used to compute a candidate aggregate function f =
CalculateAF(s, a, wl + i · δ, q) and its associated score. By the end of each
iteration, the current best window size wbest is known, and the interval of
inspected sizes is reduced to [wbest − q/λ, wbest + q/λ], narrowing constantly
the original interval through the iterations, around the current wbest. This re-
peated zooming in on the best window size is continued until a more detailed
inspection does not yield a better result.

Both Algorithm 4 and 5 are built under the assumption that both target and
predictors are sampled at constant sampling rates, but this assumption can
be broken in multiple ways. First consider the situation of a target measured
at an unstable sampling rate. To overcome this limitation we would need
to recalculate q by replacing |S| with the median sampling rate of S, and
recalculate the reference indexes i to synchronize both target and predictors.
Secondly the predictors could be measured at an unstable sampling rate.
This would require changing the algorithms from index-based windows into
time-based windows. The indexes i′ and reference indexes i in Algorithm 4
need to be referenced using timestamps, and the window size w needs to be
expressed in time units.

Although exhaustive search over window sizes guarantees finding the abso-
lute maximum, the computational costs of this approach would be unaccept-
able. For this reason, our algorithm employs heuristic optimization to find
the optimal window size efficiently. As the score of aggregate functions is
generally well-behaved, this heuristic algorithm will typically find the global
optimum, rather than a local one. As an example, Figure 4.3 shows an ex-
haustive scoring landscape for different window sizes, given a low frequency
(days) numeric target, a high frequency predictor (1 Hz) and an aggregate
function (RMS). The vertical line represents the best window size wbest, as
determined by Algorithm 5 in a fraction of the time taken by the exhaustive
search. Note how this graph also provides a good example of how the optimal
window size may differ substantially from the naive choice represented here
by 1 on the horizontal scale.

Each combination of s and a results in a single wbest. The associated aggre-
gate feature is then added to the result set of candidate features C, under
the condition that its score is higher than a certain threshold.

4.3. THE ACCORDION METHOD 63

0 1 2 3 4 5 6

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Sensor bioharness.posture and AF RMS

Window Size (in days)

P
e

a
rs

o
n
 C

o
rr

e
la

ti
o

n
(a

f_
i,
ta

rg
e

t)

Figure 4.3: Landscape of scoring measure for one of the regression datasets. The
horizontal scale indicates multiples of q (in this case 24 hours), the vertical scale
the correlation with the target. Note how the optimal window size is almost twice
(44 hours) that of the naive choice of w = q.

Throughout our experiments, the threshold value was set to 0.5 for infor-
mation gain, and 0.2 for cross-correlation. For ease of implementation, our
algorithms will always assume the number of steps m to be equal to the max-
imum window growth divided into q steps, ω/q, thus effectively removing one
parameter.

An important characteristic of our algorithm is that it is memory-conscious.
This sets it apart from other feature construction methods [6, 25], because it
does not simultaneously materialize most of the inspected features. Keeping
only the scores SC(t, afs,a,w) gives us concise information about how good
an aggregate feature could perform, relatively to a target variable t. Every
time Algorithm 5 is called, the end result is a collection of at most p · |A|
candidate features, which is an acceptable number in most cases.

4.3.3 Feature Selection: Embedded approach

In order to increase the chances of finding dependencies between the aggre-
gate features and the response, we developed an embedded feature selection

64 CHAPTER 4. ACCORDION

Algorithm 6 Aggregate Features Selection: Regression

Input: set of predictor time series S, response variable r, scoring function
SC, maximum window growth ω, number of steps m.
F ← ∅
t← r
while ¬whiteNoise(t) do
C ←ConstructCandidates(S, t, SC, ω,m)
if C = ∅ then

return F
end if
fbest ← arg maxf∈C SC(f, t)
F ← F ∪ {fbest}
l← fitLM(F , r)
t← r− l(F)

end while
return F

method, such that at each iteration of the final modeling algorithm, we do
not work with a static set of features. At each iteration, Accordion per-
forms a new feature construction step, and searches for the best aggregate
feature.

Regression problems

As the search space of candidate aggregate features can grow too large to
explore exhaustively, we resort to a heuristic search that only constructs a
subset of promising candidate features, C. When the set C is large (> 40),
a wrapper-based search for the optimal subset becomes impractical [33]. As
for backward-stepwise selection in linear models, if the number of candidate
features is larger than the number of instances, the use of the least squares
method for coefficient estimation becomes impossible [84]. To overcome these
potential problems, we employed a forward-stepwise selection process [39]. As
described in Algorithm 6, at each iteration, we add a new aggregate feature
creating a nested sequence of models, until one of the following stopping
criteria is satisfied:

• The set of candidate aggregate features C returned by Algorithm 5 is
empty.

• The decomposed target variable is considered white noise.

4.3. THE ACCORDION METHOD 65

Algorithm 7 BuildAFTree

Input: set of predictor time series S, nominal response variable r, maximum
window growth ω, number of steps m, minimum leaf size minsup.
C ← ConstructCandidates(S, r, IG, ω,m)
if C = ∅ or |r| < minsup then

return ∅
end if
fbest ← arg maxf∈C IG(f, r)
c← findSplit(fbest, r)
rl, rr ← {r ∈ r|c(r)}, {r ∈ r|¬c(r)}
Fl ← BuildAFTree(S, rl, ω,m,minsup)
Fr ← BuildAFTree(S, rr, ω,m,minsup)
return Fl ∪ Fr ∪ {fbest}

At each iteration of feature selection, new candidate aggregate features are
generated according to the current approximation of the target. In the first
iteration, Algorithm 6 uses the response r as a target to build a set of can-
didate aggregate features. From this set, it chooses the one with the highest
score to add to the set of proposed features F . A linear model is then fitted
(fitLM) to the response variable r, using the set of proposed features F . In
the following iterations, the residual (the part of the signal that cannot be
predicted by the current model) becomes the new target variable, t. At the
end of the process, only a small subset of the constructed aggregate features
is returned.

Classification problems

Decision trees are among the most popular classification models in machine
learning, and one of its best-known characteristics is the ability to deal with
multiple types of data [80], including trend-less time series. Growing a deci-
sion tree involves a divide-and-conquer strategy where each node splits the
data into subsets according to conditions on the predictors, until splitting
no longer increases the separation between classes. To explore time series
with mixed sampling rates, we designed an embedded feature construction
and selection method for decision trees, where at each split new features are
constructed such that the scoring function information gain (IG) is maxi-
mized.

66 CHAPTER 4. ACCORDION

In our method, trees are built recursively. Algorithm 7 shows that at each
iteration, a new set C of candidate aggregate features is constructed, through
a search process looking for the best combinations of aggregate features and
response variable r. From C, only the aggregate feature that maximizes IG
will be used to produce a split: findSplit(fbest, r). The split is then used
to create two branches, corresponding to the decomposition of the response
variable r, into two subsets rl and rr. The subsets are then used recursively to
create more splits until one of the following stopping criteria is satisfied:

• The set of candidate aggregate features C, is returned empty from Al-
gorithm 5.

• The target subset (rl or rr) is smaller than a minimum support, minsup ∈
N+.

Note that we specifically do not use pruning techniques during feature con-
struction, to avoid getting too small a feature set. Decisions about pruning
strategies can be applied during the final stage of model building by the tree
induction method of choice.

4.4 Experiments

In this section, we test our method experimentally, presenting results on the
raw data of three datasets collected using multiple sensor systems. The first
dataset features a classification problem, involving snowboarding in the Alps.
The second and third dataset involve several regression problems, one related
to the running speed estimation of an athlete as captured by a GPS sensor,
and one describing the amount of sleep of different kinds, as a function of a
person’s daily routines. The algorithms described in the previous section and
further data mining techniques described in this section were implemented
in R [81].

In each experiment, we not only compute the results for our embedded
method, but also consider traditional two-step alternatives: construction and
then selection. Feature construction alternatives include a baseline aggrega-
tion method, and grid search feature construction. The baseline aggregates
over a non-overlapping window of size fS/fr by simple averaging. For the grid
search approach, we materialize a rather large amount of aggregate features.
The grid search is bounded, such that it generates an aggregate feature ma-
trix of approximately 5 million cells, allowing an absolute comparison across
datasets.

4.4. EXPERIMENTS 67

D
a
ta

se
t

T
a
rg

et
#

In
p

u
t

#
O

u
tp

u
t

M
et

h
o
d

#
F

ea
tu

re
s

#
F

ea
tu

re
s

ti
m

e
(s

)
A

cc
u

ra
cy

/
sa

m
p

le
s

sa
m

p
le

s
co

n
st

ru
ct

ed
se

le
ct

ed
R

2

S
n

ow
b

o
ar

d
A

ct
iv

it
y

21
1
80

35
3

A
cc

or
d

io
n

30
18

0
15

30
5

8
4
.7
%

B
as

el
in

e
25

10
0.

5
67

.1
%

G
ri

d
se

ar
ch

17
15

0
15

52
6

83
.1

%

S
p

ee
d

S
p

ee
d

(m
/s

)
9
51

20
0

20
88

A
cc

or
d

io
n

11
58

0
2

2
65

4
0
.9
8
6

E
st

im
a
ti

o
n

B
as

el
in

e
6

3
1.

99
0.

38
8

G
ri

d
se

ar
ch

2
39

4
25

1
14

1
0.

50
8

D
a
il

y
L

ig
h
t

(h
)

1
2
96

5
75

15
A

cc
or

d
io

n
19

26
0

4
2

33
4

0
.8
4
0
7

R
ou

ti
n

es
B

as
el

in
e

34
6

28
.7

0.
20

89
G

ri
d

se
ar

ch
32

3
40

0
36

62
40

9
0.

83
91

R
E

M
(h

)
1

2
96

5
75

15
A

cc
or

d
io

n
23

61
0

5
3

10
5

0
.9
1
8
4

B
as

el
in

e
34

4
28

.7
0.

18
37

G
ri

d
se

ar
ch

32
3

40
0

11
62

40
9

0.
88

38
D

ee
p

(h
)

1
2
96

5
75

15
A

cc
or

d
io

n
11

71
0

2
1

45
1

0.
67

19
B

as
el

in
e

34
4

28
.7

0.
08

42
G

ri
d

se
ar

ch
32

3
40

0
15

62
40

9
0
.8
4
5
7

T
a
b
le

4
.1
:

E
x
p

er
im

en
ta

l
se

tu
p

an
d

re
su

lt
s.

68 CHAPTER 4. ACCORDION

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Posture_Min_90

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

HR_RMS_255

Figure 4.4: The plot shows the autocorrelation behaviour for two randomly
sampled aggregate features, from the Routines dataset.

The alternative feature construction methods are followed by well-known fea-
ture selection methods, specifically Lasso for regression [89] and C4.5 for clas-
sification. For Lasso, we used the default options proposed in the glmnet [26]
package in R. To choose the penalty parameter, we employed cross-validation
on the training set, and chose the penalty parameter that minimizes the mean
squared error.

In most cases, time series have a natural temporal structure. This prohibits
us from assuming that subsequent aggregate feature instances are iid (inde-
pendent and identically distributed). This follows from the fact that closer
observations have a stronger relation than those further apart. Figure 4.4
shows the autocorrelations of two aggregate features sampled randomly from
Accordion’s candidate features, F . As expected, all of them have a clear
temporal structure. Breaking the iid assumption restricts the model evalua-
tion methods that can be applied. For example, cross-validation should only
be applied when features can be assumed to be iid. Consequently, we split
the data into 66% of data before a selected point in time (the training set),
and 34% for testing.

4.4. EXPERIMENTS 69

4.4.1 Snowboard Data

This experiment involves sensors collecting physiological signals from a sub-
ject while doing winter sports in the Alps. To collect this physiological data,
we used a Zephyr BioHarness 32 sensor system, that is worn on the subject’s
chest. The BioHarness incorporates multiple sensors (ECG, chest expansion,
temperature and tri-axial acceleration), that are embedded in a monitoring
module and a lightweight strap. The system samples at multiple sampling
rates for the different sensors, and derives from them a total of 25 physio-
logical parameters (heart rate, breath rate, posture, peak acceleration, ...),
logged at 1 Hz. The dataset used in this experiment was collected during
353 minutes of snowboarding. During the collection period, the subject used
the BioHarness and a GoPro Hero3 HD camera. Afterwards, the video data
was used to label the activities for each minute, from the following available
labels: lift, lying, sitting, snowboarding, standing and towlift.

The baseline consists of 25 averaged predictors, with a sliding window of size
60, at 1/60 Hz (once per minute), matching the frequency of the target labels.
Table 4.1 presents information for each decision tree built, where the base-
line achieved a predictive accuracy of 67.1%. We used an implementation
of C4.5 from the package rWeka3, which allows R users to use Weka’s4 ma-
chine learning algorithms. Reduced error pruning was used as post-pruning
strategy.

We employed the classification version of Accordion (Algorithm 7). The al-
gorithm used information gain as scoring function, and was allowed to grow
windows up to 5 minutes in length. After considering 30 180 candidate aggre-
gate features, only 15 were selected to compose the set of aggregate features
(F). Figure 4.5 presents the resulting decision tree, with a prediction accu-
racy of 84.7% on the test set. At the root of the tree, active activities are
separated from passive ones based on the minimum heart rate over the last
minute. The right side of the tree distinguishes between active or recently
active activities using heart rate, acceleration and breathing as input pre-
dictors. The left side of the tree predominantly uses acceleration variables
to classify between the different passive activities. Since the predictors were
logged at 1 Hz, the window sizes can be interpreted as the number of seconds
aggregated. The variety of window sizes and aggregate functions (see Figure
4.5) reveal features with multiple degrees of integration over time.

2http://www.zephyranywhere.com/products/bioharness-3/
3http://cran.r-project.org/web/packages/RWeka/index.html
4http://www.cs.waikato.ac.nz/ml/weka/

70 CHAPTER 4. ACCORDION

H
R

_
M

in
_

6
0

≤
1

0
5

>
1

0
5

A
u

x
A

D
C

1
_

R
M

S
_

2
1

0

≤
4

3
7

.4
9

1
>

4
3

7
.4

9
1

H
R

_
M

a
x
_

3
0

0

≤
1

2
6

>
1

2
6

V
e

rtic
a

lM
in

_
M

a
x
_

2
8

5

≤
-0

.9
6

>
-0

.9
6

lift

(8
.0

/1
.0

)
P

o
s
tu

re
_

M
in

_
9

0

≤
-5

7
>

-5
7

ly
in

g

(5
.0

)
H

R
_

M
e

a
n

_
1

8
0

≤
9

5
.9

6
7

>
9

5
.9

6
7

P
o

s
tu

re
_

M
e

a
n

_
1

5
0

≤
-1

9
.0

8>
-1

9
.0

8

s
ittin

g

(8
.0

)

ly
in

g

(9
.0

/4
.0

)

s
ittin

g

(4
0

.0
/3

.0
)

lift

(3
1

.0
/8

.0
)

H
R

_
M

a
x
_

3
0

0

≤
1

0
8

>
1

0
8

P
o

s
tu

re
_

M
e

a
n

_
6

0

≤
-1

1
.1

6
7

>
-1

1
.1

6
7

H
R

_
S

D
_

2
4

0

≤
3

.9
5

6>
3

.9
5

6

s
ta

n
d

in
g

(7
.0

)

lift

(6
.0

/1
.0

)

ly
in

g

(5
.0

/1
.0

)

s
ta

n
d

in
g

(4
2

.0
/4

.0
)

A
c
tiv

ity
_

M
e

a
n

_
1

5
0

≤
0

.0
6

7
>

0
.0

6
7

to
w

lift

(6
.0

)
H

R
_

S
D

_
2

4
0

≤
6

.1
4

6
>

6
.1

4
6

s
ta

n
d

in
g

(8
.0

/3
.0

)
A

u
x
A

D
C

1
_

R
M

S
_

2
1

0

≤
4

3
6

.6
3

2
>

4
3

6
.6

3
2

H
R

_
M

in
_

1
2

0

≤
1

1
5

>
1

1
5

H
R

_
M

a
x
_

3
0

0

≤
1

4
1

>
1

4
1

s
n

o
w

b
o

a
rd

in
g

(1
0

.0
)

H
R

_
S

D
_

9
0

≤
1

0
.0

3
7

>
1

0
.0

3
7

s
ta

n
d

in
g

(1
0

.0
/2

.0
)

s
n

o
w

b
o

a
rd

in
g

(6
.0

)

s
n

o
w

b
o

a
rd

in
g

(2
5

.0
)

H
R

_
S

D
_

2
4

0

≤
1

1
.3

6>
1

1
.3

6

s
n

o
w

b
o

a
rd

in
g

(5
.0

/2
.0

)

s
ta

n
d

in
g

(5
.0

)

F
ig
u
re

4
.5
:

D
ecisio

n
T

ree
C

4.5
im

p
lem

en
ted

in
W

eka,
b

u
ilt

w
ith

th
e

featu
res

p
rop

osed
b
y

A
ccord

ion
.

4.4. EXPERIMENTS 71

The grid search approach materialized 17 150 aggregate features and fed it
to C4.5 to build a model from a subset of these. The number of features
constructed corresponds to a matrix of 5 million cells, as described before.
This involved trying 80 different window sizes for each pair of aggregate
function and predictor. Table 4.1 shows that Accordion outperforms grid
search both in computation time and model accuracy.

4.4.2 Speed Estimation

This dataset was collected in the context of an athlete training for the Am-
sterdam marathon. In this context, two accelerometers5 were worn by the
athlete during four training sessions, one strapped to the right wrist and the
other to the right ankle. A Garmin Forerunner6 device was used to measure
distance and speed.

The dataset considered here has as input about 2 hours and 40 minutes of
running measurements from 2 triaxial accelerometers (2 × 3 × 951 200 data
points), at a constant sampling rate of 100 Hz. For the same measurement
period, the target speed values were extracted from the Garmin Forerunner
GPS, of which the median sampling rate is 0.2 Hz. The speed (in m/s)
turned out to be captured at an unstable rate, with time lapses between
measurements ranging from 1 to 10 seconds. Having an unstable target
sampling rate is a specific challenge of this dataset, but one that can fairly
easily be handled by our algorithms.

The design of our algorithms assumes that all the measurements are done at
constant sampling rates. Note that, as long as the predictors are collected
at a constant sampling rate, having an unstable target sampling rate (as is
the case here) is not a problem. We used this specific challenge to show
how our algorithms can be made to work on a broader set of tasks. In fact
only two changes are needed. First, in Algorithm 5, recalculate the relation
between predictors and target sampling rates to q = 100/0.2 = 500, to reflect
the median sampling rate of the target. Second, as a minor modification
of Algorithm 4, we calculate beforehand the reference indices i, such that
predictors and target variable can be synchronized properly.

As baseline experiment, we aggregated 6 variables (2 accelerometers × 3
axes) over non-overlapping windows of variable sizes. With the predictors

5http://www.geneactiv.co.uk/
6https://buy.garmin.com/en-US/US/into-sports/running/cIntoSports-cRunning-

p1.html

72 CHAPTER 4. ACCORDION

0
1

2
3

4
5

6

Speed measurements

S
p

e
e

d
 (

m
/s

)

100 200 300 400 500 600

Figure 4.6: Predicted value (black) vs. real speed (gray).

and target variable synchronized, the Lasso regression selected only 3 fea-
tures, with a fairly low coefficient of determination (R2 = 0.388). As for grid
search, using the limit of creating a feature dataset bounded to 5 million cells,
we materialized 2 394 aggregate features in about 1 141 seconds, and subse-
quently submitted them also to Lasso. The achieved R2 = 0.508, although
higher than baseline, could not outperform Accordion (R2 = 0.986).

The scoring function chosen in this experiment was cross-correlation, en-
abling so-called lag regression, and the maximum window size was set to 60
seconds. During the iterative process of construction and selection, 11 580 ag-
gregate features were constructed, from which only two were selected (thus,
two iterations). The resulting predictions on hold-out data are shown in
Figure 4.6. The final lag regression model is as follow:

speed[i′] = 1.198 · afankleY,RMS,200[i
′]

+0.495 · afankleZ,stdv,5886[i′ − 4] + e[i′]

Interestingly, the accelerometer strapped to the wrist was never selected to
model the speed of the athlete. Also, the selected features use both short
term (window size of 200 equals 2 seconds of accelerometer data) and long
term information (window size of 5886 aggregate approximately 1 minute).
Both these observations can help domain experts redefining future data col-
lections and understanding multiple temporal phenomena. All this insight
can be leveraged by the usage of aggregation functions well known to specific
domains.

4.4. EXPERIMENTS 73

4.4.3 Daily Routines Data

Subsequently, we tested our method on another dataset involving three re-
gression targets, related to the amount of time spent in light sleep, REM
and deep sleep. During the course of 15 days, a subject produced data in
the context of a self-tracking experiment, collected using various sensoring
systems: a) the Zephyr BioHarness (see above), used during the day (except
during bathing), b) OpenBeacon, an RFID wireless sensor system to moni-
tor the time spent at different locations of the home, and c) a Beddit7 sleep
monitoring system to monitor the nights. This last system is used both for
recording the breath and heart rate during the night, as well as determining
the different sleep stages at night (a computation that is part of the black-box
service of Beddit).

The dataset used for this experiment consisted of 34 input attributes, sam-
pled at 1 Hz, of which 24 are physiological variables from both the BioHar-
ness, and Beddit. The remaining 10 variables are binary. They refer to the
subject’s location and were extracted both from the OpenBeacon and Beddit
sensor systems. Table 4.1 summarizes the experimental setup for all targets,
as well as the information about results.

As baseline experiment, we used the same idea of feature construction for
the previous baselines. Although the baseline is quite fast in terms of com-
putation, the R2 results (on the test dataset) show that it is a naive solution.
As for the grid search solution, we materialized 323 400 aggregate features
after about 17 hours of computation, which is considerably slower than what
Accordion took to construct and select its aggregate features. After per-
forming Lasso to all the targets, the R2 results show that this alternative
was outperformed by Accordion in two of the three targets.

For Accordion, we used cross-correlation as a scoring function, and the max-
imum window size allowed was 3 days. With our method, the target that
took the longest to compute (about 50 minutes) was the REM stage of sleep.
REM sleep is considered the lightest stage of sleep [36]. Figure 4.7 shows
the stack of nested models created by forward selection. For this target,
the algorithm constructed 23 610 aggregated features, from which only 5 (5
iterations) are proposed to explain REM linearly.

7Available from http://beddit.com

74 CHAPTER 4. ACCORDION

2 4 6 8 10 12 14

8
0

1
0
0

1
3
0

REM sleep = F(Alimentation)

Days

R
E

M
 (

m
in

u
te

s
)

2 4 6 8 10 12 14

8
0

1
0
0

1
3
0

REM sleep = F(Alimentation,ECG)

Days

R
E

M
 (

m
in

u
te

s
)

2 4 6 8 10 12 14

8
0

1
0
0

1
3
0

REM sleep = F(Alimentation, ECG, Posture, Breath Rate)

Days

R
E

M
 (

m
in

u
te

s
)

Figure 4.7: Predicted value (black) vs. real amount of REM sleep (gray), for
models based on the first single, two and five (all) features, respectively.

Figure 4.8: High frequency time series can be transformed into aggregated fea-
tures, resulting in a linear lag regression between these and the target variable.

4.5. RELATED WORK 75

From the three targets addressed in this experiment, time spent in deep sleep
gives a good example of both failure and success of our method. Accordion
model scored lower than the one produced Lasso with grid search in terms
of R2, where Lasso wins over our forward-stepwise selection process in terms
of model accuracy. On the other hand, Accordion is faster and produced an
interpretable model (two selected aggregate features), whereas Lasso with
grid search fails to deliver an interpretable model (check Table 4.1: R2 and
#Features selected). Our method produced 11 710 candidate features, from
which only two were selected to explain the amount of deep sleep, resulting
in the following linear model:

deepSleep[i′] = −120.8 + 0.99 · afPosture,RMS,158400[i
′]

+0.11 · afHR,avg,155200[i
′ − 1] + e[i′]

Figure 4.8 helps us to interpret the deepSleep model. Both aggregate features
have window sizes of about two days, with almost 50% of overlapping.
For each moment i′, deep sleep can be explained with posture over the last
two days afPosture, RMS,158400(i

′), and the heart rate of almost two days with
a delay of one day afHR, avg,155200(i

′ − 1).

4.5 Related Work

The problem of activity recognition is commonly tackled with a two-stage
process [6, 69, 58]: first, manually construct aggregate features and then
apply a machine learning technique to discriminate between different activ-
ities. The task of feature construction is so central that surveys of feature
construction techniques became necessary [25]. As the choices in feature
construction influence all the experiments, this often leads to solutions that
are overly specific to the experimental setup (sensors used, data collection,
application). As a result, most methods are not generic [12]. Our algorithm
embeds feature construction into the learning process, which increases the
feature search space, reduces the time spent pre-processing data and avoids
overly specific solutions, which makes it widely applicable.

From a data mining perspective, the use of time series as a data source has
received considerable attention, and has developed into different areas of
research [48, 102, 60], e.g. classification, summarization, subsequence clus-
tering, motif discovery and anomaly detection. As for the challenge of mining
time series with mixed sampling rates, this still remains underappreciated.

76 CHAPTER 4. ACCORDION

To the best of our knowledge, this paper is the first attempt to develop a
data-driven generic solution to this problem, and to focus on the importance
of optimizing the automatic and dymanic construction and selection of ag-
gregate features with respect to a target variable, as opposed to static feature
construction.

In econometrics, regression models are commonly used to relate variables
at the same sampling frequency, even when the data sources are being col-
lected at different rates. When dealing with mixed sampling rates, the most
common technique is still to downsample the predictors [4], or upsample the
target variable [3]. Recent work proposes solutions to forecast directly from
variables with mixed sampling rates, both for univariate [28] and multivariate
time series [57]. These proposed methods still rely mostly on the expertise
and creativity of the economists (domain knowledge-driven), leaving no room
for data-driven knowledge discovery, which our algorithm is capable of do-
ing.

4.6 Conclusions and Future Work

When modeling time series for activity recognition, a drawback is the con-
siderable amount of time required to pre-process them into good features, a
process that often calls on domain knowledge about the underlying problem.
Accordion shortens the pre-processing time, generating candidate aggregate
features automatically by optimization of its components, (s, a, w). We still
believe that domain knowledge can play a big role when modeling, but this
effort could be redirected to higher level questions, such as which set of
aggregate functions (A) to use. One of the directions for future work is nat-
urally to extend the set of aggregate functions, especially to the frequency
domain.

We also motivate the idea of embedding automatic feature construction into
the machine learning process. The idea here is to stop relying on static
sets of features, and at each iteration of feature selection direct the search
for good candidate features. Making use of scoring functions, Accordion is
able to test many candidate features, and return only a small set of selected
features. Especially when quick but reliable results are required, or large
datasets dictate a memory-conscious method, our algorithm is clearly a good
choice. As future work, we would like to mimic the learning process of other
supervized methods, both in regression and classification, keeping the idea
of learning algorithms that do not rely on a static set of features.

4.6. CONCLUSIONS AND FUTURE WORK 77

One of the achievements of our approach is that it outputs interpretable ag-
gregate features. The ability to interpret our aggregate features follows from
the combinations of input variables, well-known aggregate functions and dif-
ferent window sizes. Interpretation of different window sizes come from the
fact that our method searches for different phenomena by expanding or con-
tracting the window size for each feature. In contrast, the standard approach
in activity recognition is to take a more or less arbitrary choice about a win-
dow sizes [6, 69, 58, 37]. In the future, we would like to deal with unstable
sampling rates, both of predictors and target, multiple sampling rates for the
predictors, and targets at a higher sampling rate than the predictors.

